Rank-uniform local law and quantum unique ergodicity for Wigner matrices

László Erdős (IST Austria)

Supported by ERC AdG

Joint with Giorgio Cipolloni, PCTS (Princeton University) and Dominik Schröder (ITS-ETH)

Dec 6, 2022

Collége de France, Paris
Quantum Unique Ergodicity
Quantization of classical systems: $p \rightarrow -i\hbar \nabla_x$

Motto:

Eigenfunctions of the quantization of a chaotic classical dynamics are uniformly distributed.
Quantum (Unique) Ergodicity

Most prominent example:

ψ_i: efn’s of Laplace-Beltrami operator on a surface with ergodic geodesic flow, then

$$\langle \psi_i, A\psi_j \rangle \to \delta_{ij} \int_{S^*} \sigma(A), \quad i, j \to \infty$$

holds for any appropriate pseudo-differential operator A with symbol $\sigma(A)$ (defined on the unit tangent bundle).
Most prominent example:

\(\psi_i \): efn’s of Laplace-Beltrami operator on a surface with ergodic geodesic flow, then

\[
\langle \psi_i, A\psi_j \rangle \rightarrow \delta_{ij} \int_{S^*} \sigma(A), \quad i, j \rightarrow \infty
\]

holds for any appropriate pseudo-differential operator \(A \) with symbol \(\sigma(A) \) (defined on the unit tangent bundle).

Proven for most index pairs Quantum Ergodicity (Šnirel’man 1974), (Zelditch 1987), (Colin de Verdière 1985).

Analogous discrete version on large regular graphs (Anantharaman, Le Masson 2015)
Quantum (Unique) Ergodicity

Most prominent example:

ψ_i: efn’s of Laplace-Beltrami operator on a surface with ergodic geodesic flow, then

$$\langle \psi_i, A\psi_j \rangle \to \delta_{ij} \int_{S^*} \sigma(A), \quad i, j \to \infty$$

holds for any appropriate pseudo-differential operator A with symbol $\sigma(A)$ (defined on the unit tangent bundle).

Proven for most index pairs Quantum Ergodicity (Šnirel’man 1974), (Zelditch 1987), (Colin de Verdière 1985).

Analogous discrete version on large regular graphs (Anantharaman, Le Masson 2015)

Quantum Unique Ergodicity (QUE) conjecture (Rudnick, Sarnak 1994): it holds for all pairs.
Quantum (Unique) Ergodicity

Most prominent example:

\[\psi_i: \text{efn's of Laplace-Beltrami operator on a surface with ergodic geodesic flow, then} \]

\[\langle \psi_i, A\psi_j \rangle \to \delta_{ij} \int_{S^*} \sigma(A), \quad i, j \to \infty \]

holds for any appropriate pseudo-differential operator \(A \) with symbol \(\sigma(A) \) (defined on the unit tangent bundle).

Proven for most index pairs Quantum Ergodicity (Šnirel’man 1974), (Zelditch 1987), (Colin de Verdière 1985).

Analogous discrete version on large regular graphs (Anantharaman, Le Masson 2015)

Quantum Unique Ergodicity (QUE) conjecture (Rudnick, Sarnak 1994): it holds for all pairs.

Physics prediction for generic systems (Feingold, Peres 1986), (Eckhardt et al. 1995)

\[\text{Var}[\langle \psi_i, A\psi_i \rangle] \sim (\text{local ev. spacing}) \cdot \int_{S^*} \sigma(|A|^2). \]
E. Wigner’s vision: energy levels of large quantum systems can be modelled by eigenvalues of large random matrices (e.g. by Wigner matrices).
Wigner matrices

E. Wigner’s vision: energy levels of large quantum systems can be modelled by eigenvalues of large random matrices (e.g. by Wigner matrices)

Definition [Wigner matrix]: $N \times N$ Hermitian random matrix $W = W^*$

- Independent identically distributed entries up to Hermitian symmetry $w_{ab} = \overline{w_{ba}}$
- Normalization: $E w_{ab} = 0$ $E |w_{ab}|^2 = \frac{1}{N}$
Wigner matrices

E. Wigner’s vision: energy levels of large quantum systems can be modelled by eigenvalues of large random matrices (e.g. by Wigner matrices)

Definition [Wigner matrix]: $N \times N$ Hermitian random matrix $W = W^*$
- Independent identically distributed entries up to Hermitian symmetry $w_{ab} = w_{ba}$
- Normalization: $E w_{ab} = 0 \quad E |w_{ab}|^2 = \frac{1}{N}$

\[
\rho(x) = \frac{\sqrt{4 - x^2}}{2\pi}
\]

Semicircular density of states ρ; Bulk level spacing $\sim N^{-\frac{1}{2}}$

Histogram of rescaled gaps and Wigner surmise
E. Wigner’s vision: energy levels of large quantum systems can be modelled by eigenvalues of large random matrices (e.g. by Wigner matrices)

Definition [Wigner matrix]: $N \times N$ Hermitian random matrix $W = W^*$

- Independent identically distributed entries up to Hermitian symmetry $w_{ab} = \overline{w}_{ba}$
- Normalization: $E w_{ab} = 0 \quad E |w_{ab}|^2 = \frac{1}{N}$

![Semicircular density of states](image1)

- Semicircular density of states ρ; Bulk level spacing $\sim N^{-1}$

Wigner’s revolutionary observation: the gap statistics is very robust, it depends only on the symmetry class (hermitian or symmetric), independent of the distribution.

Formulated as the Wigner-Dyson-Mehta conjecture in 60’s, ground-breaking step by Johansson in 1998 (add Gaussian component); finally proven by DBM around 2010.
Extension of Wigner’s vision to Quantum Chaos: Random matrices model chaotic quantum systems, hence QUE is expected to hold for Wigner matrices with optimal speed. Formulated as the Eigenstate Thermalisation Hypothesis by (Deutsch 1991).
Extension of Wigner’s vision to Quantum Chaos: Random matrices model chaotic quantum systems, hence QUE is expected to hold for Wigner matrices with optimal speed.

Formulated as the Eigenstate Thermalisation Hypothesis by (Deutsch 1991). We proved it:

Theorem [Cipolloni, E., Schröder 2022]

For the orthonormal eigenvectors \(u_i \) of an \(N \times N \) Wigner matrix \(W \) and for any deterministic observable (matrix) \(A \)

\[
\max_{i,j \in \text{bulk}} \left| \langle u_i, Au_j \rangle - \delta_{ij} \langle A \rangle \right| \lesssim \frac{N \epsilon \langle |\tilde{A}|^2 \rangle^{1/2}}{\sqrt{N}}
\]

with very high probability, where \(\langle A \rangle := \frac{1}{N} \text{Tr} A \) and \(\tilde{A} := A - \langle A \rangle \) is the traceless part of \(A \).
Extension of Wigner’s vision to Quantum Chaos: Random matrices model chaotic quantum systems, hence QUE is expected to hold for Wigner matrices with optimal speed.

Formulated as the Eigenstate Thermalisation Hypothesis by (Deutsch 1991). We proved it:

Theorem [Cipolloni, E., Schröder 2022]

For the orthonormal eigenvectors u_i of an $N \times N$ Wigner matrix W and for any deterministic observable (matrix) A

$$
\max_{i,j \in \text{bulk}} \left| \langle u_i, Au_j \rangle - \delta_{ij} \langle A \rangle \right| \lesssim \frac{N^c \langle |\hat{A}|^2 \rangle^{1/2}}{\sqrt{N}}
$$

with very high probability, where $\langle A \rangle := \frac{1}{N} \text{Tr} A$ and $\hat{A} := A - \langle A \rangle$ is the traceless part of A.

Eigenbasis $\{u_i\}$ is asymptotically orthogonal to $\{A u_j\}$ for $\langle A \rangle = 0$.

As if u_i and Au_j were independently distributed ℓ^2-bounded N-vectors.

Two basic methods:

- Resolvent method
- Dyson Brownian Motion (DBM)
Comparison with previous results

\[
\max_{i,j \in \text{bulk}} |\langle u_i, \hat{A} u_j \rangle| \leq \frac{N^\epsilon \langle |\hat{A}|^2 \rangle^{1/2}}{\sqrt{N}}, \quad \hat{A} := A - \langle A \rangle, \quad \text{with high prob.}
\]

Previous results:

- \(A = |q \rangle \langle q | \) rank-1 observable = delocalization of eigenvectors, \(|\langle u_i, q \rangle| \lesssim N^{-1/2} + \epsilon \) [E. et al. (2009), Knowles-Yin (2011)] [Resolvent method]
- \(\langle u_i, A u_i \rangle \rightarrow \langle A \rangle \) in probability for each \(u_i \) [Bourgade-Yau (2013)] [DBM]
- Simultaneously in \(i \) and \(j \) [in the bulk] — proven only for Wigner matrices with large (almost \(\mathcal{O}(1) \)) Gaussian component [Bourgade-Yau-Yin (2018)] [DBM]
- Uniformly in the spectrum if \(\langle |\hat{A}|^2 \rangle^{1/2} \) replaced by \(||\hat{A}|| \) [Cipolloni, E, Schröder (2020)] [Resolvent method].
Comparison with previous results

\[
\max_{i,j \in \text{bulk}} |\langle u_i, \hat{A} u_j \rangle| \leq \frac{N^\epsilon \langle |\hat{A}|^2 \rangle^{1/2}}{\sqrt{N}}, \quad \hat{A} := A - \langle A \rangle, \quad \text{with high prob.}
\]

Previous results:

- \(A = |q\rangle\langle q| \) rank-1 observable = delocalization of evectors, \(|\langle u_i, q \rangle| \lesssim N^{-1/2+\epsilon} \) [E. et al. (2009), Knowles-Yin (2011)] [Resolvent method]
- \(\langle u_i, Au_i \rangle \to \langle A \rangle \) in probability for each \(u_j \) [Bourgade-Yau (2013)] [DBM]
- Simultaneously in \(i \) and \(j \) [in the bulk] — proven only for Wigner matrices with large (almost \(O(1) \)) Gaussian component [Bourgade-Yau-Yin (2018)] [DBM]
- Uniformly in the spectrum if \(\langle |\hat{A}|^2 \rangle^{1/2} \) replaced by \(||\hat{A}|| \) [Cipolloni, E, Schröder (2020)] [Resolvent method].

Novelties of our results: [Resolvent method]

- Optimal \(N^{-1/2} \) speed of convergence. In physics: Eigenstate Thermalisation Hypothesis
- Limit is controlled in very high probability, and thus simultaneous in \(i, j \).
- Optimal dependence of the error on \(A \) (HS is the correct norm – our newest result).
Comparison with previous results

\[
\max_{i,j \in \text{bulk}} \left| \langle u_i, \hat{A} u_j \rangle \right| \leq \frac{N^c \langle |\hat{A}|^2 \rangle^{1/2}}{\sqrt{N}}, \quad \hat{A} := A - \langle A \rangle, \quad \text{with high prob.}
\]

Previous results:

- \(A = |q\rangle\langle q| \) rank-1 observable \(\Rightarrow \) delocalization of evectors, \(|\langle u_i, q \rangle| \lesssim N^{-1/2} + \epsilon \) [E. et al. (2009), Knowles-Yin (2011)] [Resolvent method]
- \(\langle u_i, A u_i \rangle \to \langle A \rangle \) in probability for each \(u_i \) [Bourgade-Yau (2013)] [DBM]
- Simultaneously in \(i \) and \(j \) [in the bulk] — proven only for Wigner matrices with large (almost \(\mathcal{O}(1) \)) Gaussian component [Bourgade-Yau-Yin (2018)] [DBM]
- Uniformly in the spectrum if \(\langle |\hat{A}|^2 \rangle^{1/2} \) replaced by \(\|\hat{A}\| \) [Cipolloni, E, Schröder (2020)] [Resolvent method].

Novelties of our results: [Resolvent method]

- Optimal \(N^{-1/2} \) speed of convergence. In physics: Eigenstate Thermalisation Hypothesis
- Limit is controlled in very high probability, and thus simultaneous in \(i, j \).
- Optimal dependence of the error on \(A \) (HS is the correct norm — our newest result).

These are LLN-type results. Next: What about CLT for \([\langle u_i, A u_i \rangle - \langle A \rangle] \)?
Averaged CLT for overlaps

CLT (central limit theorem) for \([\langle u_i, Au_i \rangle - \langle A \rangle]\) can be asked in two senses.

First, we proved CLT after averaging in the index \(i\):

Theorem (Cipolloni, E., Schröder 2020)

For any bounded deterministic matrix \(A\), \(i_0 \in [\delta N, (1 - \delta)N]\) (i.e. bulk) and for any \(K \geq N^\epsilon\)

\[
\frac{1}{\sqrt{2K}} \sum_{|i - i_0| \leq K} \sqrt{N} \left[\langle u_i, Au_i \rangle - \langle A \rangle \right] \overset{m}{\approx} \mathcal{N}(0, \langle |\hat{A}|^2 \rangle) + \mathcal{O}(N^{-\epsilon'} \|\hat{A}\|)
\]

in the sense of moments, where \(\hat{A} := A - \langle A \rangle\) is the traceless part of \(A\).

Similar result holds at the edge with a variance \(\frac{\sqrt{2}}{3} \langle |\hat{A}|^2 \rangle\).
Averaged CLT for overlaps

CLT (central limit theorem) for \([\langle u_i, Au_i \rangle - \langle A \rangle]\) can be asked in two senses.

First, we proved CLT after averaging in the index \(i\):

Theorem (Cipolloni, E., Schröder 2020)

For any bounded deterministic matrix \(A\), \(i_0 \in [\delta N, (1 - \delta)N]\) (i.e. bulk) and for any \(K \geq N^\epsilon\)

\[
\frac{1}{\sqrt{2K}} \sum_{|i-i_0| \leq K} \sqrt{N} \left[\langle u_i, Au_i \rangle - \langle A \rangle \right] \overset{m}{=} \mathcal{N} \left(0, \langle |\hat{A}|^2 \rangle \right) + O(N^{-\epsilon} \| \hat{A} \|)
\]

in the sense of moments, where \(\hat{A} := A - \langle A \rangle\) is the traceless part of \(A\).

Similar result holds at the edge with a variance \(\frac{\sqrt{2}}{3} \langle |\hat{A}|^2 \rangle\).

\(\implies\) Indication that \(\langle u_i, \hat{A}u_i \rangle, \langle u_j, \hat{A}u_j \rangle\) are asymptotically independent for \(i \neq j\).

This CLT is a special case of our general functional CLT: \(\langle f(W)A \rangle \approx \mathcal{N}\) for any fn. of the Wigner matrix \(W\); unlike usual tracial CLT in random matrices, this involves eigenvectors as well!

Averaged CLT uses resolvent method.
Averaged CLT for overlaps

CLT (central limit theorem) for $[\langle u_i, Au_i \rangle - \langle A \rangle]$ can be asked in two senses.

First, we proved CLT after averaging in the index i:

Theorem (Cipolloni, E., Schröder 2020)

For any bounded deterministic matrix A, $i_0 \in [\delta N, (1 - \delta)N]$ (i.e. bulk) and for any $K \geq N^\epsilon$

$$\frac{1}{\sqrt{2K}} \sum_{|i - i_0| \leq K} \sqrt{N} \left[\langle u_i, Au_i \rangle - \langle A \rangle \right] \xrightarrow{m} \mathcal{N} \left(0, \langle |\hat{A}|^2 \rangle \right) + O(N^{-\epsilon'} \|\hat{A}\|)$$

in the sense of moments, where $\hat{A} := A - \langle A \rangle$ is the traceless part of A.

Similar result holds at the edge with a variance $\frac{\sqrt{2}}{3} \langle |\hat{A}|^2 \rangle$.

\implies Indication that $\langle u_i, \hat{A}u_i \rangle, \langle u_j, \hat{A}u_j \rangle$ are asymptotically independent for $i \neq j$.

This CLT is a special case of our general functional CLT: $\langle f(W)A \rangle \approx \mathcal{N}$ for any fn. of the Wigner matrix W; unlike usual tracial CLT in random matrices, this involves eigenvectors as well!

Averaged CLT uses resolvent method.

Second, CLT for each $\langle u_i, Au_i \rangle - \langle A \rangle$ without averaging?
Theorem (Cipolloni, E, Schröder (2022))

For the bulk eigenvectors u_i of an $N \times N$ Wigner matrix W and for any deterministic hermitian observable (matrix) A with $1 \gtrsim \langle \hat{A}^2 \rangle \geq N^{-1+\delta} \|\hat{A}\|^2$ it holds:

$$\sqrt{\frac{N}{2 \langle \hat{A}^2 \rangle}} \left[\langle u_i, Au_i \rangle - \langle A \rangle \right] \to \mathcal{N}(0, 1)$$ \hspace{1cm} (1)

in the sense of moments, where $\hat{A} := A - \langle A \rangle$ is the traceless part of A.

Remark: $\langle \hat{A}^2 \rangle \geq N^{-1+\delta} \|\hat{A}\|^2$ implies A not finiterank. (1) is not true for finiterank: for $A = \hat{A} = |e_x\rangle\langle e_x| - |e_y\rangle\langle e_y|$ we have $\langle u_i, \hat{A} u_i \rangle = |u_i(x)|^2 - |u_i(y)|^2$ (difference of independent χ^2) [Bourgade-Yau (2017)].

To prove this theorem we need DBM method on top of the resolvent method.
Theorem (Cipolloni, E, Schröder (2022))

For the bulk eigenvectors u_i of an $N \times N$ Wigner matrix W and for any deterministic hermitian observable (matrix) A with $1 \gtrsim \langle \hat{A}^2 \rangle \geq N^{-1+\delta} \|\hat{A}\|^2$ it holds:

$$\sqrt{\frac{N}{2 \langle \hat{A}^2 \rangle}} \left[\langle u_i, A u_i \rangle - \langle A \rangle \right] \to \mathcal{N}(0, 1)$$

(1)

in the sense of moments, where $\hat{A} := A - \langle A \rangle$ is the traceless part of A.

Remark: $\langle \hat{A}^2 \rangle \geq N^{-1+\delta} \|\hat{A}\|^2$ implies A not finite rank.

(1) is not true for finite rank: for $A = \hat{A} = |e_x\rangle\langle e_x| - |e_y\rangle\langle e_y|$ we have $\langle u_i, \hat{A} u_i \rangle = |u_i(x)|^2 - |u_i(y)|^2$ (difference of independent χ^2) [Bourgade-Yau (2017)].
CLT for individual overlaps

Theorem (Cipolloni, E, Schröder (2022))

For the bulk eigenvectors u_i of an $N \times N$ Wigner matrix W and for any deterministic hermitian observable (matrix) A with $1 \gtrsim \langle \hat{A}^2 \rangle \geq N^{-1+\delta} \|\hat{A}\|^2$ it holds:

$$\sqrt{\frac{N}{2 \langle \hat{A}^2 \rangle}} \left[\langle u_i, A u_i \rangle - \langle A \rangle \right] \to \mathcal{N}(0, 1)$$

in the sense of moments, where $\hat{A} := A - \langle A \rangle$ is the traceless part of A.

Remark: $\langle \hat{A}^2 \rangle \geq N^{-1+\delta} \|\hat{A}\|^2$ implies A not finite rank.

(1) is not true for finite rank: for $A = \hat{A} = |e_x \rangle \langle e_x | - |e_y \rangle \langle e_y |$ we have

$$\langle u_i, \hat{A} u_i \rangle = |u_i(x)|^2 - |u_i(y)|^2$$

(differece of independent χ^2) [Bourgade-Yau (2017)].

To prove this theorem we need DBM method on top of the resolvent method.
Comparison with previous results

\[\sqrt{\frac{N}{2\langle A^2 \rangle}} \langle u_i, \hat{A} u_i \rangle \to \mathcal{N}(0, 1), \quad \hat{A} = A - \langle A \rangle \]

Previous results:

- Joint (squared) Gaussianity for finitely many \(N|u_{\alpha l}(i_k)|^2 \) under the additional four moment matching assumption for bulk eigenvectors (only two moments at the edge). [Knowles-Yin (2011)] [Resolvent method]

- Rank 1: \(N|\langle u_i, q \rangle|^2 \) is asymptotically (squared) Gaussian [Bourgade-Yau (2013)] [DBM]

- Finite rank: Joint (squared) Gaussianity for finitely many \(u \)'s and \(q \)'s [Marcinek-Yau (2020)] [DBM]

- (Almost) full rank: Gaussianity for \(1 \gtrsim \langle \hat{A}^2 \rangle \gtrsim \delta \|\hat{A}\|^2 \) [Cipolloni, E, Schröder (2021)] [DBM]
Comparison with previous results

\[
\sqrt{\frac{N}{2 \langle \hat{A}^2 \rangle}} \langle u_i, \hat{A}u_i \rangle \rightarrow \mathcal{N}(0, 1), \quad \hat{A} = A - \langle A \rangle
\]

Previous results:

- **Joint (squared) Gaussianity** for finitely many \(N|u_{\alpha l}(i_k)|^2 \) under the additional four moment matching assumption for bulk eigenvectors (only two moments at the edge). [Knowles-Yin (2011)] [Resolvent method]

- **Rank 1**: \(N|\langle u_i, q \rangle|^2 \) is asymptotically (squared) Gaussian [Bourgade-Yau (2013)] [DBM]

- **Finite rank**: Joint (squared) Gaussianity for finitely many \(u \)’s and \(q \)’s [Marcinek-Yau (2020)] [DBM]

- **(Almost) full rank**: Gaussianity for \(1 \gtrsim \langle \hat{A}^2 \rangle \gtrsim \delta \|\hat{A}\|^2 \) [Cipolloni, E, Schröder (2021)] [DBM]

Related independent result:

Gaussianity of \(\langle u_i, \hat{A}u_i \rangle \) for the special case \(A = \sum_{j \in I} |e_j\rangle \langle e_j | \) with \(N^\epsilon \leq |I| \leq N^{1-\epsilon} \), i.e. low rank (also at the edge) [Benigni-Lopatto (2021)] [DBM]
Proof of Gaussian fluctuation (via DBM)
GOAL: Let u_i be the eigenvectors of a Wigner matrix W, then

$$E \left[\sqrt{\frac{N}{2 \langle \hat{A}^2 \rangle}} \langle u_i, \hat{A} u_i \rangle \right]^n \rightarrow (n - 1)!! \mathbf{1}(n \text{ even}), \quad \hat{A} = A - \langle A \rangle.$$
GOAL: Let u_i be the eigenvectors of a Wigner matrix W, then

$$E \left[\sqrt{\frac{N}{2}} \left\langle u_i, \hat{A} u_i \right\rangle \right]^n \rightarrow (n - 1)!! 1 (n \text{ even}), \quad \hat{A} = A - \left\langle A \right\rangle.$$

We do it dynamically:

$$dW_t = \frac{dB_t}{\sqrt{N}}, \quad W_0 = W. \quad (2)$$

The flow (2) adds a Gaussian component of size \sqrt{t} to W_0.

$\text{DBM for eigenvectors}$
DBM for eigenvectors

GOAL: Let u_i be the eigenvectors of a Wigner matrix W, then

$$
E \left[\sqrt{\frac{N}{2 \langle A^2 \rangle}} \langle u_i, \hat{A} u_i \rangle \right]^n \to (n - 1)!! \mathbf{1}(n \text{ even}), \quad \hat{A} = A - \langle A \rangle.
$$

We do it **dynamically**:

$$
dW_t = \frac{d\hat{B}_t}{\sqrt{N}}, \quad W_0 = W. \quad (2)
$$

The flow (2) adds a Gaussian component of size \sqrt{t} to W_0.

Need only $t \sim N^{-1+\epsilon}$. This Gaussian component can later be removed by simple perturbation theory known as Green function comparison theorem (GFT).
GOAL: Let u_i be the eigenvectors of a Wigner matrix W, then

$$E \left[\sqrt{\frac{N}{2 \langle A^2 \rangle}} \langle u_i, \hat{A} u_i \rangle \right]^n \to (n - 1)!! \mathbf{1}(n \text{ even}), \quad \hat{A} = A - \langle A \rangle.$$

We do it dynamically:

$$dW_t = \frac{d\hat{B}_t}{\sqrt{N}}, \quad W_0 = W. \quad (2)$$

The flow (2) adds a Gaussian component of size \sqrt{t} to W_0.

Need only $t \sim N^{-1+\epsilon}$. This Gaussian component can later be removed by simple perturbation theory known as Green function comparison theorem (GFT).

The flow (2) induces the Dyson Brownian Motion (DBM) for eigenvalues and eigenvectors:

$$d\lambda_i(t) = \frac{d\hat{B}_{ii}(t)}{\sqrt{N}} + \frac{1}{N} \sum_{j \neq i} \frac{1}{\lambda_i(t) - \lambda_j(t)} \, dt$$

$$d\mathbf{u}_i(t) = \frac{1}{\sqrt{N}} \sum_{j \neq i} \frac{dB_{ij}(t)}{\lambda_i(t) - \lambda_j(t)} \mathbf{u}_j(t) - \frac{1}{2N} \sum_{j \neq i} \frac{\mathbf{u}_i(t)}{(\lambda_i(t) - \lambda_j(t))^2} \, dt.$$

(3)
GOAL: Let u_i be the eigenvectors of a Wigner matrix W, then

$$E \left[\sqrt{\frac{N}{2 \langle A^2 \rangle}} \langle u_i, \hat{A} u_i \rangle \right]^n \rightarrow (n - 1)!! \mathbf{1}(n \text{ even}), \quad \hat{A} = A - \langle A \rangle.$$

We do it dynamically:

$$dW_t = \frac{dB_t}{\sqrt{N}}, \quad W_0 = W. \quad (2)$$

The flow (2) adds a Gaussian component of size \sqrt{t} to W_0.

Need only $t \sim N^{-1+\epsilon}$. This Gaussian component can later be removed by simple perturbation theory known as Green function comparison theorem (GFT).

The flow (2) induces the Dyson Brownian Motion (DBM) for eigenvalues and eigenvectors:

$$d\lambda_i(t) = \frac{dB_{ii}(t)}{\sqrt{N}} + \frac{1}{N} \sum_{j \neq i} \frac{1}{\lambda_i(t) - \lambda_j(t)} \, dt$$

$$d\mathbf{u}_i(t) = \frac{1}{\sqrt{N}} \sum_{j \neq i} \frac{dB_{ij}(t)}{\lambda_i(t) - \lambda_j(t)} \mathbf{u}_j(t) - \frac{1}{2N} \sum_{j \neq i} \frac{\mathbf{u}_i(t)}{(\lambda_i(t) - \lambda_j(t))^2} \, dt. \quad (3)$$

Remark: The BMs $B_{ij}(t)$, for $i \neq j$, and $B_{ii}(t)$ are independent!
Example for $n = 2$

By Ito’s formula (from now on $\langle A \rangle = 0$, i.e. $A = \hat{A}$):

$$
\text{d} E \left[|\langle u_i, A u_i \rangle|^2 | \lambda \right] = \sum_{k \neq i} \frac{E \left[|\langle u_k, A u_i \rangle|^2 | \lambda \right] - E \left[|\langle u_i, A u_i \rangle|^2 | \lambda \right]}{N(\lambda_k - \lambda_i)^2} + \ldots
$$
Example for $n = 2$

By Ito’s formula (from now on $\langle A \rangle = 0$, i.e. $A = \hat{A}$):

$$
\frac{d}{dt} E [|\langle u_i, Au_i \rangle|^2 | \lambda] = \sum_{k \neq i} \frac{E [|\langle u_k, Au_i \rangle|^2 | \lambda] - E [|\langle u_i, Au_i \rangle|^2 | \lambda]}{N(\lambda_k - \lambda_i)^2} + \ldots
$$

Problem: The flow for diagonal overlaps $\langle u_i, Au_i \rangle$ depends on off-diagonal overlaps $\langle u_i, Au_j \rangle$!
Example for $n = 2$

By Ito’s formula (from now on $\langle A \rangle = 0$, i.e. $A = \hat{A}$):

$$d\mathbb{E} \left[|\langle u_i, Au_i \rangle|^2 | \lambda \right] = \sum_{k \neq i} \frac{\mathbb{E} \left[|\langle u_k, Au_i \rangle|^2 | \lambda \right] - \mathbb{E} \left[|\langle u_i, Au_i \rangle|^2 | \lambda \right]}{N(\lambda_k - \lambda_i)^2} + \ldots$$

Problem: The flow for diagonal overlaps $\langle u_i, Au_i \rangle$ depends on off-diagonal overlaps $\langle u_i, Au_j \rangle$!

However, for a special combination

$$f_t(i, j) = \mathbb{E} \left[2|\langle u_i, Au_j \rangle|^2 + \langle u_i, Au_i \rangle \langle u_j, Au_j \rangle | \lambda \right]$$

we have

$$\partial_t f_t(i, j) = \sum_{k \neq i} \frac{f_t(k, j) - f(i, j)}{N(\lambda_k - \lambda_i)^2} + \sum_{k \neq i} \frac{f_t(i, k) - f(i, j)}{N(\lambda_k - \lambda_j)^2}.$$
Example for \(n = 2 \)

By Ito’s formula (from now on \(\langle A \rangle = 0 \), i.e. \(A = \hat{A} \)):

\[
d E \left[|\langle \mathbf{u}_i, A\mathbf{u}_i \rangle|^2 | \chi \right] = \sum_{k \neq i} \frac{E \left[|\langle \mathbf{u}_k, A\mathbf{u}_i \rangle|^2 | \chi \right] - E \left[|\langle \mathbf{u}_i, A\mathbf{u}_i \rangle|^2 | \chi \right]}{N(\lambda_k - \lambda_i)^2} + \ldots
\]

Problem: The flow for diagonal overlaps \(\langle \mathbf{u}_i, A\mathbf{u}_i \rangle \) depends on off-diagonal overlaps \(\langle \mathbf{u}_i, A\mathbf{u}_j \rangle \)!

However, for a special combination

\[
f_t(i, j) = E \left[2|\langle \mathbf{u}_i, A\mathbf{u}_j \rangle|^2 + \langle \mathbf{u}_i, A\mathbf{u}_i \rangle \langle \mathbf{u}_j, A\mathbf{u}_j \rangle | \chi \right]
\]

we have

\[
\partial_t f_t(i, j) = \sum_{k \neq i} \frac{f_t(k, j) - f(i, j)}{N(\lambda_k - \lambda_i)^2} + \sum_{k \neq i} \frac{f_t(i, k) - f(i, j)}{N(\lambda_k - \lambda_j)^2}.
\]

For general \(n \): Closed equation for a certain lin. combination of overlaps \(f_t \) [Bourgade-Yau-Yin (2018)]

\[
\partial_t f_t = \mathcal{L}(t)f_t,
\]

for a certain operator \(\mathcal{L}(t) \).

We explain the basic construction from [Bourgade-Yau-Yin (2018)]
Particle representation 1

Representation: We can think of $f_t = f_t(i_1, \ldots, i_n)$ as a function of "n-particle configurations" on N.

$\begin{align*}
f_t(i,j) &= |\langle u_i, A u_j \rangle|^2 + |\langle u_i, A u_i \rangle \langle u_j, A u_j \rangle|^2 \\
\end{align*}$
Representation: We can think of \(f_t = f_t(i_1, \ldots, i_n) \) as a function of ”n-particle configurations” on \(N \).

Example for \(n = 2 \):

\[
\begin{align*}
\bullet & \quad \bullet \\
_ & \quad _
\end{align*}
\]

\(i \quad j \)

Figure 3: Particle configuration for \(n = 2, f_t = f_t(i, j) \).
Particle representation 1

Representation: We can think of $f_t = f_t(i_1, \ldots, i_n)$ as a function of "n-particle configurations" on N.

Example for $n = 2$:

![Figure 3: Particle configuration for $n = 2, f_t = f_t(i, j)$.](image)

$f_t(i, j) = 2|\langle u_i, Au_j \rangle|^2 + \langle u_i, Au_i \rangle \langle u_j, Au_j \rangle$ takes value in the "doubled space":

![Figure 4: $|\langle u_i, Au_j \rangle|^2 + |\langle u_i, Au_j \rangle|^2$](image)

![Figure 5: $\langle u_i, Au_i \rangle \langle u_j, Au_j \rangle$](image)
Particle representation 2

Representation: We can think of \(f_t = f_t(i_1, \ldots, i_n) \) as a function of ”n-particle configurations” on \(N \).
Particle representation 2

Representation: We can think of \(f_t = f_t(i_1, \ldots, i_n) \) as a function of "n-particle configurations" on \(\mathbb{N} \).

Example for \(n = 7 \):

Figure 6: Argument of \(f(i, j, k, k, l, l) \)

Figure 7:

\[
E\left[|\langle u_i, Au_j \rangle|^2 \langle u_k, Au_k \rangle |\langle u_k, Au_l \rangle|^4 \lambda \right]
\]
Particle representation 2

Representation: We can think of \(f_t = f_t(i_1, \ldots, i_n) \) as a function of "n-particle configurations" on \(N \).

Example for \(n = 7 \):

\[
\begin{align*}
\text{Figure 6: Argument of } f(i, j, k, k, k, l, l)
\end{align*}
\]

\[
\begin{align*}
\text{Action of } L(t):
\end{align*}
\]

\[
\begin{align*}
\text{Figure 8: Argument of } Lf_t:
\end{align*}
\]

\[
\begin{align*}
\text{Figure 7: } E \left[| \langle u_i, Au_j \rangle |^2 \langle u_k, Au_k \rangle | \langle u_k, Au_l \rangle |^2 \lambda \right]
\end{align*}
\]

\[
\begin{align*}
\text{Figure 9: }
\end{align*}
\]

\[
\begin{align*}
E \left[| \langle u_i, Au_j \rangle |^2 \langle u_k, Au_k \rangle | \langle u_k, Au_l \rangle |^2 | \langle u_k, Au_{l_0} \rangle |^2 \lambda \right]
\end{align*}
\]
Recall: We have $\partial_t f_t = \mathcal{L}(t)f_t$. For $n = 2$:

$$\partial_t f_t(i,j) = \sum_{k \neq i} \frac{f_t(k,j) - f(i,j)}{N(\lambda_k - \lambda_i)^2} + \sum_{k \neq i} \frac{f_t(i,k) - f(i,j)}{N(\lambda_k - \lambda_j)^2}.$$
Recall: We have $\partial_t f_t = \mathcal{L}(t)f_t$. For $n = 2$:

$$\partial_t f_t(i,j) = \sum_{k \neq i} \frac{f_t(k,j) - f(i,j)}{N(\lambda_k - \lambda_i)^2} + \sum_{k \neq i} \frac{f_t(i,k) - f(i,j)}{N(\lambda_k - \lambda_j)^2}.$$

• Here

$$\mathcal{L}(t) = \sum_{r=1}^{n} \mathcal{L}_r(t), \quad \mathcal{L}_r(t)f_t(i_1,\ldots,i_n) = \sum_{k \neq i_r} \frac{f(i_r \rightarrow k) - f_t(i_1,\ldots,i_n)}{N(\lambda_k - \lambda_{i_r})^2}.$$
Sketch of the proof II

Recall: We have $\partial_t f_t = \mathcal{L}(t)f_t$. For $n = 2$:

$$\partial_t f_t(i, j) = \sum_{k \neq i} \frac{f_t(k, j) - f(i, j)}{N(\lambda_k - \lambda_i)^2} + \sum_{k \neq i} \frac{f_t(i, k) - f(i, j)}{N(\lambda_k - \lambda_j)^2}.$$

- Here

$$\mathcal{L}(t) = \sum_{r=1}^{n} \mathcal{L}_r(t), \quad \mathcal{L}_r(t)f_t(i_1, \ldots, i_n) = \sum_{k \neq i_r} \frac{f(i_r \rightarrow k) - f_t(i_1, \ldots, i_n)}{N(\lambda_k - \lambda_{i_r})^2}.$$

\mathcal{L}_r acts on the location index of the r-th particle; it has a kernel

$$\frac{1}{N(\lambda_k - \lambda_{i_r})^2} \sim \frac{N}{|i_r - k|^2}.$$
Sketch of the proof II

Recall: We have $\partial_t f_t = \mathcal{L}(t)f_t$. For $n = 2$:

$$
\partial_t f_t(i, j) = \sum_{k \neq i} \frac{f_t(k, j) - f(i, j)}{N(\lambda_k - \lambda_i)^2} + \sum_{k \neq i} \frac{f_t(i, k) - f(i, j)}{N(\lambda_k - \lambda_j)^2}.
$$

• Here

$$
\mathcal{L}(t) = \sum_{r=1}^{n} \mathcal{L}_r(t), \quad \mathcal{L}_r(t)f_t(i_1, \ldots, i_n) = \sum_{k \neq i_r} \frac{f(i_r \rightarrow k) - f_t(i_1, \ldots, i_n)}{N(\lambda_k - \lambda_{i_r})^2}.
$$

\mathcal{L}_r acts on the location index of the r-th particle; it has a kernel

$$
\frac{1}{N(\lambda_k - \lambda_{i_r})^2} \sim \frac{N}{|i_r - k|^2}.
$$

Note that this is the discretisation of the $\sqrt{-\Delta} = |\rho|$ operator in 1d

$$
\implies \partial_t f_t = \mathcal{L}(t)f_t \text{ is a (discrete) heat equation with fractional Laplacian}
$$
Sketch of the proof III

- For $\partial_t f_t = \mathcal{L}(t)f_t$, want: heat kernel $e^{-\mathcal{L}(t)}$ averages in all directions.

Have (recall $f_t(k,j) = 2|\langle u_k, Au_j \rangle|^2 + \langle u_k, Au_k \rangle \langle u_j, Au_j \rangle$):

$$\sum_{k \neq i} \frac{f_t(k,j)}{N(\lambda_k - \lambda_i)^2} \approx \sum_k \frac{f_t(k,j)\eta}{(\lambda_k - \lambda_i)^2 + \eta^2} = \langle u_j, A\mathcal{G}(\lambda_i + i\eta)Au_j \rangle + \ldots,$$

with $\eta \sim N^{-1}$ and $G(z) := (W - z)^{-1}$.

Want: average also in the j index!
Sketch of the proof III

• For $\partial_t f_t = \mathcal{L}(t)f_t$, want: heat kernel $''e^{-\mathcal{L}(t)}''$ averages in all directions.

Have (recall $f_t(k, j) = 2|\langle u_k, Au_j \rangle|^2 + \langle u_k, Au_k \rangle \langle u_j, Au_j \rangle)$:

$$\sum_{k \neq i} \frac{f_t(k, j)}{N(\lambda_k - \lambda_i)^2} \approx \sum_k \frac{f_t(k, j)t}{(\lambda_k - \lambda_i)^2 + \eta^2} = \langle u_j, A\mathcal{G}(\lambda_i + i\eta)Au_j \rangle + \ldots,$$

with $\eta \sim N^{-1}$ and $G(z) := (W - z)^{-1}$.

Want: average also in the j index!

Why averages? Because they can be understood by local laws!
For $\partial_t f_t = \mathcal{L}(t)f_t$, want: heat kernel $e^{-\mathcal{L}(t)}$ averages in all directions.

Have (recall $f_t(k,j) = 2|\langle u_k, Au_j \rangle|^2 + \langle u_k, Au_k \rangle \langle u_j, Au_j \rangle$):

$$\sum_{k \neq i} \frac{f_t(k,j)}{N(\lambda_k - \lambda_i)^2} \approx \sum_k \frac{f_t(k,j)\eta}{(\lambda_k - \lambda_i)^2 + \eta^2} = \langle u_j, A\Im G(\lambda_i + i\eta)Au_j \rangle + \ldots,$$

with $\eta \sim N^{-1}$ and $G(z) := (W - z)^{-1}$.

Want: average also in the j index!

Why averages? Because they can be understood by local laws!

Local law: Approximation of the resolvent $G(z)$ by a deterministic object, i.e.

$$\langle G(z) \rangle = m(z) + O\left(\frac{1}{N\Im z}\right), \quad m(z) := \frac{1}{2\pi} \int_{-2}^{2} \frac{\sqrt{4 - x^2}}{x - z} \, dx = O(1).$$
For $\frac{\partial}{\partial t} f_t = \mathcal{L}(t) f_t$, want: heat kernel $e^{-\mathcal{L}(t)}$ averages in all directions.

Have (recall $f_t(k, j) = 2|\langle u_k, Au_j \rangle|^2 + \langle u_k, Au_k \rangle \langle u_j, Au_j \rangle$):

$$\sum_{k \neq i} \frac{f_t(k, j)}{N(\lambda_k - \lambda_i)^2} \approx \sum_k \frac{f_t(k, j) \eta}{(\lambda_k - \lambda_i)^2 + \eta^2} = \langle u_j, A \Im G(\lambda_i + i\eta)Au_j \rangle + \ldots,$$

with $\eta \sim N^{-1}$ and $G(z) := (W - z)^{-1}$.

Want: average also in the j index!

Why averages? Because they can be understood by local laws!

Local law: Approximation of the resolvent $G(z)$ by a deterministic object, i.e.

$$\langle G(z) \rangle = m(z) + \mathcal{O} \left(\frac{1}{N \Im z} \right), \quad m(z) := \frac{1}{2\pi} \int_{-2}^{2} \frac{\sqrt{4 - x^2}}{x - z} \ dx = O(1).$$

By spectral decomposition

$$\langle \Im G(E + i\eta) A \Im G(E' + i\eta') A \rangle = \frac{1}{N^2} \sum_{ij} N|\langle u_i, Au_j \rangle|^2 \frac{\eta}{|\lambda_i - E|^2 + \eta^2} \frac{\eta'}{|\lambda_j - E'|^2 + (\eta')^2}.$$

$$\implies \text{Av}_{ij} [N|\langle u_i, Au_j \rangle|^2] \approx \langle \Im G(E + i\eta) A \Im G(E' + i\eta') A \rangle.$$
Sketch of the proof III

- For $\partial_t f_t = \mathcal{L}(t)f_t$, want: heat kernel $e^{-\mathcal{L}(t)}$ averages in all directions.

 Have (recall $f_t(k,j) = 2|\langle u_k, Au_j \rangle|^2 + \langle u_k, Au_k \rangle \langle u_j, Au_j \rangle$):

 $$\sum_{k \neq i} \frac{f_t(k,j)}{N(\lambda_k - \lambda_i)^2} \approx \sum_k \frac{f_t(k,j)\eta}{(\lambda_k - \lambda_i)^2 + \eta^2} = \langle u_j, A\Im G(\lambda_i + i\eta)Au_j \rangle + \ldots,$$

 with $\eta \sim N^{-1}$ and $G(z) := (W - z)^{-1}$.

 Want: average also in the j index!

 Why averages? Because they can be understood by local laws!

Local law: Approximation of the resolvent $G(z)$ by a deterministic object, i.e.

$$\langle G(z) \rangle = m(z) + \mathcal{O} \left(\frac{1}{N\Im z} \right), \quad m(z) := \frac{1}{2\pi} \int_{-2}^{2} \frac{\sqrt{4 - x^2}}{x - z} \, dx = O(1).$$

By spectral decomposition

$$\langle \Im G(E + i\eta)A\Im G(E' + i\eta')A \rangle = \frac{1}{N^2} \sum_{ij} N|\langle u_i, Au_j \rangle|^2 \frac{\eta}{|\lambda_i - E|^2 + \eta^2} \frac{\eta'}{|\lambda_j - E'|^2 + (\eta')^2}.$$

$$\Rightarrow \text{Av}_{ij} \left[N|\langle u_i, Au_j \rangle|^2 \right] \approx \langle \Im G(E + i\eta)A\Im G(E' + i\eta')A \rangle.$$

$$\Rightarrow \text{Need local law } \langle \Im G A\Im G A \rangle \approx \Im m \Im m' \langle A^2 \rangle \text{ with error in terms of } \langle A^2 \rangle!$$
Sketch of the proof III

- For $\partial_t f_t = \mathcal{L}(t)f_t$, want: heat kernel $e^{-\mathcal{L}(t)}$ averages in all directions.

Have (recall $f_t(k, j) = 2|\langle u_k, Au_j \rangle|^2 + \langle u_k, Au_k \rangle \langle u_j, Au_j \rangle$):

$$\sum_{k \neq i} \frac{f_t(k, j)}{N(\lambda_k - \lambda_i)^2} \approx \sum_k \frac{f_t(k, j) \eta}{(\lambda_k - \lambda_i)^2 + \eta^2} = \langle u_j, A \mathcal{G}(\lambda_i + i\eta)Au_j \rangle + \ldots,$$

with $\eta \sim N^{-1}$ and $G(z) := (W - z)^{-1}$.

Want: average also in the j index!

Why averages? Because they can be understood by local laws!

Local law: Approximation of the resolvent $G(z)$ by a deterministic object, i.e.

$$\langle G(z) \rangle = m(z) + \mathcal{O} \left(\frac{1}{N\Re z} \right), \quad m(z) := \frac{1}{2\pi} \int_{-2}^{2} \frac{\sqrt{4 - x^2}}{x - z} \, dx = O(1).$$

By spectral decomposition

$$\langle \mathcal{G}(E + i\eta) A \mathcal{G}(E' + i\eta') A \rangle = \frac{1}{N^2} \sum_{ij} N|\langle u_i, Au_j \rangle|^2 \frac{\eta}{|\lambda_i - E|^2 + \eta^2} \frac{\eta'}{|\lambda_j - E'|^2 + (\eta')^2}. $$

$$\Rightarrow Av_{ij}[N|\langle u_i, Au_j \rangle|^2] \approx \langle \mathcal{G}(E + i\eta) A \mathcal{G}(E' + i\eta') A \rangle.$$

$$\Rightarrow \text{Need local law } \langle \mathcal{G} A \mathcal{G}' A \rangle \approx \mathcal{G}m \mathcal{G}' \langle A^2 \rangle \text{ with error in terms of } \langle A^2 \rangle!$$

Gain: $\langle \mathcal{G} A \mathcal{G}' A \rangle$ much easier to understand than $\langle u_j, A \mathcal{G}(\lambda_i)Au_j \rangle$!
Recall: We consider $\partial_t f_t = \mathcal{L}(t)f_t$ (discrete heat equation with fraction Laplacian on N).

Want heat kernel $" e^{-\mathcal{L}(t)}"$ averages in all directions.

Why averages? Because only they can be understood by local laws!

- **Heuristically:***

 $$\mathcal{L}(t) = \sum_{r=1}^{n} \mathcal{L}_r(t), \quad \mathcal{L}_r(t) \approx |p_r| := \sqrt{-\Delta_r},$$

 i.e. $\mathcal{L}(t)$ (=infinitesimally the heat kernel) averages only in one coordinate direction. One direction is not enough, local laws require averaging in ALL directions.
Recall: We consider $\partial_t f_t = \mathcal{L}(t)f_t$ (discrete heat equation with fraction Laplacian on \mathbb{N}).

Want heat kernel $"e^{-\mathcal{L}(t)}"$ averages in all directions.

Why averages? Because only they can be understood by local laws!

- **Heuristically:**
 $$\mathcal{L}(t) = \sum_{r=1}^{n} \mathcal{L}_r(t), \quad \mathcal{L}_r(t) \approx |p_r| := \sqrt{-\Delta_r},$$
 i.e. $\mathcal{L}(t)$ (=infinitesimally the heat kernel) averages only in one coordinate direction. One direction is not enough, local laws require averaging in ALL directions.

- **To get more averaging:** Replace $\mathcal{L}(t) = \sum_r |p_r|$ by the regularised product
 $$\mathcal{A}(t) := \frac{1}{\eta} \prod_{r=1}^{n} (1 - e^{-\eta|p_r|}) \left(\sim \eta^{n-1} \prod_{r=1}^{n} |p_r| \text{ morally} \right)$$
 with $\eta \sim N^{-1} \implies$ Average in any direction.
 The replacement is possible on the level of Dirichlet form, $D(f) := \langle f, \mathcal{L}f \rangle$.

Sketch of the proof V

Replace $\mathcal{L}(t) \approx \sum_r |p_r| \ (\text{average in one direction})$ by the regularised product

$$\mathcal{A}(t) := \frac{1}{\eta} \prod_{r=1}^{n} \left(1 - e^{-\eta |p_r|} \right) \left(\sim \eta^{n-1} \prod_{r=1}^{n} |p_r| \text{ morally} \right)$$

with $\eta \sim N^{-1} \implies \text{Average in any direction.}$

• Indeed heuristically:

$$\mathcal{L}(t)f_t = \sum_{r=1}^{n} \sum_{k \neq i_r} f(i_r \rightarrow k) - f_t(i_1, \ldots, i_n) \frac{N(\lambda_k - \lambda_{i_r})^2}{N},$$

$$\mathcal{A}(t)f_t = \frac{1}{N^{n-1}} \sum_{k_1 \neq i_1} \cdots \sum_{k_n \neq i_n} \frac{f(i_r \rightarrow k_r \ \forall r) - f_t(i_1, \ldots, i_n)}{N^n(\lambda_{k_1} - \lambda_{i_1})^2 \cdots (\lambda_{k_n} - \lambda_{i_n})^2}.$$
Replace $\mathcal{L}(t) \approx \sum_r |p_r|$ (average in one direction) by the regularised product

$$
\mathcal{A}(t) := \frac{1}{\eta} \prod_{r=1}^n \left(1 - e^{-\eta |p_r|} \right)
\begin{pmatrix}
\sim \eta^{n-1} \prod_{r=1}^n |p_r| & \text{morally}
\end{pmatrix}
$$

with $\eta \sim N^{-1} \implies$ Average in any direction.

- Indeed heuristically:

$$
\mathcal{L}(t)f_t = \sum_{r=1}^n \sum_{k \neq i_r} \frac{f(i_r \to k) - f_t(i_1, \ldots, i_n)}{N(\lambda_k - \lambda_{i_r})^2},
$$

$$
\mathcal{A}(t)f_t = \frac{1}{N^{n-1}} \sum_{k_1 \neq i_1} \cdots \sum_{k_n \neq i_n} \frac{f(i_r \to k_r \, \forall r) - f_t(i_1, \ldots, i_n)}{N^n(\lambda_{k_1} - \lambda_{i_1})^2 \cdots (\lambda_{k_n} - \lambda_{i_n})^2}.
$$

The replacement is possible on the level of Dirichlet form, $D(f) := \langle f, \mathcal{L}f \rangle$.

- Main technical steps:
 (i) the energy method for DBM [Marcinek-Yau (2020)] analysing

$$
\partial_t \|f_t\|_2^2 = -2D_t(f_t) \leq 0.
$$

(ii) local laws for $\langle GAGA \ldots \rangle$ with $\langle A \rangle = 0$ and $\langle A^2 \rangle$ errors [Cipolloni, E, Schröder (2022)].
Multi-resolvents local laws with $\langle A^2 \rangle$ errors

Theorem (Cipolloni, E, Schröder 2022)

For any deterministic observable A, with $\langle A \rangle = 0$, it holds:

$$\left| \langle G(z_1)AG(z_2)A \rangle - m(z_1)m(z_2) \langle A^2 \rangle \right| \leq \frac{\langle A^2 \rangle}{\sqrt{N_\eta}} \ll \langle A^2 \rangle$$

(5)

for any $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$ such that $\eta := \mathbb{S}z_1 \sim \mathbb{S}z_2 \geq N^{-1+\epsilon}$.

Remark: (6) is a special case of a general multi-resolvents local laws for $G_1A_1 \ldots G_kA_k$ with optimal dependence on A – we call it rank uniformity.
Theorem (Cipolloni, E, Schröder 2022)

For any deterministic observable A, with $\langle A \rangle = 0$, it holds:

$$
\left| \langle G(z_1)AG(z_2)A \rangle - m(z_1)m(z_2) \langle A^2 \rangle \right| \leq \frac{\langle A^2 \rangle}{\sqrt{N\eta}} \ll \langle A^2 \rangle
$$

(5)

for any $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$ such that $\eta := \Im z_1 \sim \Im z_2 \geq N^{-1+\epsilon}$.

Significant improvement compared to

$$
\left| \langle G(z_1)IG(z_2)I \rangle - \frac{m(z_1)m(z_2)}{1 - m(z_1)m(z_2)} \right| \lesssim \frac{1}{N\eta^2} \sim N^{1-2\epsilon},
$$

for $\eta = \Im z_1 \sim \Im z_2 \sim N^{-1+\epsilon}$.
Multi-resolvents local laws with $\langle A^2 \rangle$ errors

Theorem (Cipolloni, E, Schröder 2022)

For any deterministic observable A, with $\langle A \rangle = 0$, it holds:

$$\left| \langle G(z_1)AG(z_2)A \rangle - m(z_1)m(z_2) \langle A^2 \rangle \right| \leq \frac{\langle A^2 \rangle}{\sqrt{N\eta}} \ll \langle A^2 \rangle$$

(5)

for any $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$ such that $\eta : = \Im z_1 \sim \Im z_2 \geq N^{-1+\epsilon}$.

Significant improvement compared to

$$\left| \langle G(z_1)IG(z_2)I \rangle - \frac{m(z_1)m(z_2)}{1 - m(z_1)m(z_2)} \right| \lesssim \frac{1}{N\eta^2} \sim N^{1-2\epsilon},$$

for $\eta = \Im z_1 \sim \Im z_2 \sim N^{-1+\epsilon}$. Gain almost an N-factor due to $\langle A \rangle = 0$!!
Multi-resolvents local laws with \(\langle A^2 \rangle \) errors

Theorem (Cipolloni, E, Schröder 2022)

For any deterministic observable \(A \), with \(\langle A \rangle = 0 \), it holds:

\[
\left| \langle G(z_1)AG(z_2)A \rangle - m(z_1)m(z_2) \langle A^2 \rangle \right| \leq \frac{\langle A^2 \rangle}{\sqrt{N\eta}} \ll \langle A^2 \rangle
\]

(5)

for any \(z_1, z_2 \in \mathbb{C} \setminus \mathbb{R} \) such that \(\eta := \Im z_1 \sim \Im z_2 \geq N^{-1+\epsilon} \).

Significant improvement compared to

\[
\left| \langle G(z_1)IG(z_2)I \rangle - \frac{m(z_1)m(z_2)}{1 - m(z_1)m(z_2)} \right| \lesssim \frac{1}{N\eta^2} \sim N^{1-2\epsilon},
\]

for \(\eta = \Im z_1 \sim \Im z_2 \sim N^{-1+\epsilon} \). Gain almost an \(N \)-factor due to \(\langle A \rangle = 0 \)!!

Remark: (6) is a special case of a general multi-resolvents local laws for \(G_1A_1 \ldots G_kA_k \) with optimal dependence on \(A \) – we call it rank uniformity.
Previous local laws for the resolvent $G(z)$ of Wigner matrices

\[
\langle (G(z) - m(z))A \rangle \lesssim \frac{\|A\|}{N\eta}, \quad \eta := \Im z \quad \text{(averaged)}
\]

\[
\langle x, (G(z) - m(z))y \rangle \lesssim \sqrt{\frac{\rho}{N\eta}} \|x\| \|y\|, \quad \rho := \Im m \quad \text{(isotropic)}
\]

Note: $A = |y\rangle \langle x|$ for the averaged law gives an isotropic estimate off by a huge factor $\sqrt{N/\rho\eta}$ because $\|A\|$ is far from optimal for lower rank observables.
Rank uniform local law

Previous local laws for the resolvent $G(z)$ of Wigner matrices

$$\langle (G(z) - m(z))A \rangle \lesssim \frac{\|A\|}{N\eta}, \quad \eta := \Im z \quad \text{(averaged)}$$

$$\langle x, (G(z) - m(z))y \rangle \lesssim \sqrt{\frac{\rho}{N\eta}} \|x\| \|y\|, \quad \rho := \Im m \quad \text{(isotropic)}$$

Note: $A = |y\rangle \langle x|$ for the averaged law gives an isotropic estimate off by a huge factor $\sqrt{N/\rho\eta}$ because $\|A\|$ is far from optimal for lower rank observables.

Theorem [Rank-uniform local law (single resolvent)] (Cipolloni, E, Schröder 2022)

For any deterministic observable A and for any $N\eta\rho \gg 1$.

$$\left| \langle (G(z) - m(z))A \rangle \right| \lesssim \frac{|\langle A \rangle|}{N\eta} + \frac{\sqrt{\rho} \langle |\hat{A}|^2 \rangle^{1/2}}{N\sqrt{\eta}}, \quad \hat{\hat{A}} = A - \langle A \rangle.$$ \hspace{1cm} (6)

Unifies and extends the isotropic and averaged local laws. Multi-resolvent versions also hold.
Rank uniform local law

Previous local laws for the resolvent $G(z)$ of Wigner matrices

$$\langle (G(z) - m(z))A \rangle \lesssim \frac{||A||}{N\eta}, \quad \eta := \Im z \quad \text{(averaged)}$$

$$\langle x, (G(z) - m(z))y \rangle \lesssim \sqrt{\frac{\rho}{N\eta}} ||x|| ||y||, \quad \rho := \Im m \quad \text{(isotropic)}$$

Note: $A = |y\rangle \langle x|$ for the averaged law gives an isotropic estimate off by a huge factor $\sqrt{N/\rho\eta}$ because $||A||$ is far from optimal for lower rank observables.

Theorem [Rank-uniform local law (single resolvent)] (Cipolloni, E, Schröder 2022)

For any deterministic observable A and for any $N\eta\rho \gg 1$.

$$\left| \langle (G(z) - m(z))A \rangle \right| \lesssim \frac{||A||}{N\eta} + \frac{\sqrt{\rho} \langle |\hat{A}|^2 \rangle^{1/2}}{N\sqrt{\eta}}, \quad \hat{A} = A - \langle A \rangle. \quad (6)$$

Unifies and extends the isotropic and averaged local laws. Multi-resolvent versions also hold.

Method: A nonlinear hierarchy of *master inequalities* for the quantities

$$\psi_k := \max \frac{N^{(3-k)/2}}{\sqrt{\rho}} \frac{1}{\prod_i \langle |A_i|^2 \rangle^{1/2}} \left| \langle G(z_1)A_1G(z_2) \ldots A_k - \prod_i m(z_i)A_i \rangle \right|,$$

where \max runs over all z_i, $\Im z_i = \eta$ and deterministic A_i’s with $\langle A_i \rangle = 0$, AND a *reduction inequality* stating roughly $\psi_{2k} \ll (\psi_k)^2$ to close the hierarchy.
We proved:

- Eigenstate Thermalisation Hypothesis for Wigner matrices: eigenvector overlaps with deterministic A are $\lesssim N^{-1/2}$.
- Gaussian fluctuations for eigenvector overlaps for all A.
We proved:

- **Eigenstate Thermalisation Hypothesis for Wigner matrices**: eigenvector overlaps with deterministic A are $\lesssim N^{-1/2}$.
- **Gaussian fluctuations for eigenvector overlaps** for all A.

Main technical steps:

- Energy estimates for multi indexed DBM.
- Dramatically improved local law for traceless observables.
- New hierarchy of master inequalities and its closure for ψ_k.
THANK YOU VERY MUCH FOR YOUR ATTENTION!