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QuantumUnique Ergodicity



Quantization of classical systems: p → −i~∇x

Motto:

Eigenfunctions of the quantization of a chaotic classical dynamics are uniformly distributed.

Regular (integrable) billiard Chaotic billiard

Wavefunctions with symmetries Chaotic wavefunctions 2



Quantum (Unique) Ergodicity

Most prominent example:

ψi : efn’s of Laplace-Beltrami operator on a surface with ergodic geodesic flow, then

〈ψi, Aψj〉 → δij

∫
S∗
σ(A), i, j → ∞

holds for any appropriate pseudo-differential operator Awith symbol σ(A) (defined on the
unit tangent bundle).

Proven for most index pairs Quantum Ergodicity (Šnirel’man 1974), (Zelditch 1987),
(Colin de Verdière 1985).

Analogous discrete version on large regular graphs (Anantharaman, Le Masson 2015)

Quantum Unique Ergodicity (QUE) conjecture (Rudnick, Sarnak 1994): it holds for all pairs.

Physics prediction for generic systems (Feingold, Peres 1986), (Eckhardt et al. 1995)

Var
[
〈ψi, Aψi〉

]
∼ (local ev. spacing) ·

∫
S∗
σ(|A|2).
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Wigner matrices



Wigner matrices

E. Wigner’s vision: energy levels of large quantum systems can bemodelled by eigenvalues
of large randommatrices (e.g. by Wigner matrices)

Definition [Wigner matrix]: N × N Hermitian randommatrixW = W∗

• Independent identically distributed entries up to Hermitian symmetrywab = wba
• normalization: Ewab = 0 E |wab|2 = 1

N

−2 2

ρ(x) =
√

4−x2
2π

N−1

semicircular density of states ρ; Bulk level spacing∼ N−1

1 2 3

Nρ(λi)
[
λi+1 − λi

]
32x2
π2 e−4x2/π

Histogram of rescaled gaps and Wigner surmise

Wigner’s revolutionary observation: the gap statistics is very robust, it depends only on the
symmetry class (hermitian or symmetric), independent of the distribution.

Formulated as the Wigner-Dyson-Mehta conjecture in 60’s, ground-breaking step by
Johansson in 1998 (add Gaussian component); finally proven by DBM around 2010.
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Eigenstate Thermalisation Hypothesis for Wigner matrices

Extension of Wigner’s vision to Quantum Chaos: Randommatrices model chaotic quantum
systems, hence QUE is expected to hold for Wigner matrices with optimal speed.

Formulated as the Eigenstate Thermalisation Hypothesis by (Deutsch 1991).

We proved it:

Theorem [Cipolloni, E., Schröder 2022]
For the orthonormal eigenvectors ui of an N × NWigner matrixW and for any deterministic
observable (matrix) A

max
i,j∈bulk

∣∣∣〈ui, Auj〉 − δij〈A〉
∣∣∣ . Nε 〈|̊A|2〉1/2

√
N

with very high probability, where 〈A〉 := 1
N Tr A and Å := A− 〈A〉 is the traceless part of A.

Eigenbasis {ui} is asymptotically orthogonal to {Auj} for
〈A〉 = 0.

As if ui and Auj were independently distributed `2-bounded
N-vectors.

Two basic methods:

Resolvent method and Dyson Brownian Motion (DBM)

Auiuj
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Comparison with previous results

max
i,j∈bulk

∣∣〈ui, Åuj〉〉∣∣ ≤ Nε 〈|̊A|2〉1/2
√
N

, Å := A− 〈A〉 , with high prob.

Previous results:

• A = |q〉〈q| rank-1 observable= delocalization of evectors, |〈ui, q〉| . N−1/2+ε [E. et al.
(2009), Knowles-Yin (2011)][Resolvent method]

• 〈ui, Aui〉 → 〈A〉 in probability for each ui [Bourgade-Yau (2013)] [DBM]
• Simultaneously in i and j [in the bulk] — proven only for Wigner matrices with large

(almostO(1)) Gaussian component [Bourgade-Yau-Yin (2018)] [DBM]

• Uniformly in the spectrum if 〈|̊A|2〉1/2 replaced by ‖̊A‖ [Cipolloni, E, Schröder (2020)]
[Resolvent method].

Novelties of our results: [Resolvent method]

• Optimal N−1/2 speed of convergence. In physics: Eigenstate Thermalisation Hypothesis
• Limit is controlled in very high probability, and thus simultaneous in i, j.
• Optimal dependence of the error on A (HS is the correct norm – our newest result).

These are LLN-type results. Next: What about CLT for [〈ui, Aui〉 − 〈A〉]?
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Averaged CLT for overlaps

CLT (central limit theorem) for
[
〈ui, Aui〉 − 〈A〉

]
can be asked in two senses.

First, we proved CLT after averaging in the index i:

Theorem (Cipolloni, E., Schröder 2020)
For any bounded deterministic matrix A, i0 ∈ [δN, (1− δ)N] (i.e. bulk) and for any K ≥ Nε

1
√
2K

∑
|i−i0|≤K

√
N
[
〈ui, Aui〉 − 〈A〉

]
m
= N

(
0, 〈|̊A|2〉

)
+O(N−ε′ ‖̊A‖)

in the sense of moments, where Å := A− 〈A〉 is the traceless part of A.

Similar result holds at the edge with a variance
√

2
3 〈|̊A|2〉.

=⇒ Indication that 〈ui, Åui〉, 〈uj, Åuj〉 are asymptotically independent for i 6= j.

This CLT is a special case of our general functional CLT: 〈f (W)A〉 ≈ N for any fn. of theWigner
matrix W; unlike usual tracial CLT in randommatrices, this involves eigenvectors as well!

Averaged CLT uses resolvent method.

Second, CLT for each 〈ui, Aui〉 − 〈A〉without averaging?
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CLT for individual overlaps

Theorem (Cipolloni, E, Schröder (2022))
For the bulk eigenvectors ui of an N × NWigner matrixW and for any deterministic
hermitian observable (matrix) Awith 1 & 〈̊A2〉≥ N−1+δ ‖̊A‖2 it holds:√

N
2 〈̊A2〉

[
〈ui, Aui〉 − 〈A〉

]
→ N (0, 1) (1)

in the sense of moments, where Å := A− 〈A〉 is the traceless part of A.

Remark: 〈̊A2〉 ≥ N−1+δ ‖̊A‖2 implies A not finite rank.

(1) is not true for finite rank: for A = Å = |ex〉〈ex | − |ey〉〈ey |we have
〈ui, Åui〉 = |ui(x)|2 − |ui(y)|2 (difference of independent χ2) [Bourgade-Yau (2017)].

To prove this theoremwe need DBMmethod on top of the resolvent method.
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Comparison with previous results

√
N

2 〈̊A2〉
〈ui, Åui〉 → N (0, 1), Å = A− 〈A〉

Previous results:

• Joint (squared) Gaussianity for finitely many N|uαl (ik)|2 under the additional four
moment matching assumption for bulk eigenvectors (only twomoments at the edge).
[Knowles-Yin (2011)] [Resolvent method]

• Rank 1: N|〈ui, q〉|2 is asymptotically (squared) Gaussian [Bourgade-Yau (2013)] [DBM]

• Finite rank: Joint (squared) Gaussianity for finitely many u’s and q’s [Marcinek-Yau
(2020)] [DBM]

• (Almost) full rank: Gaussianity for 1 & 〈̊A2〉 ≥ δ‖̊A‖2 [Cipolloni, E, Schröder (2021)]
[DBM]

Related independent result:

Gaussianity of 〈ui, Åui〉 for the special case A =
∑

j∈I |ej〉〈ej|with Nε ≤ |I| ≤ N1−ε, i.e. low
rank (also at the edge) [Benigni-Lopatto (2021)] [DBM]
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Proof of Gaussian fluctuation (via DBM)



DBM for eigenvectors

GOAL: Let ui be the eigenvectors of a Wigner matrixW, then

E

[√
N

2 〈̊A2〉
〈ui, Åui〉

]n
→ (n− 1)!!1(n even), Å = A− 〈A〉 .

We do it dynamically:

dWt =
dB̂t√
N
, W0 = W. (2)

The flow (2) adds a Gaussian component of size
√
t toW0.

Need only t ∼ N−1+ε. This Gaussian component can later be removed by simple
perturbation theory known as Green function comparison theorem (GFT).

The flow (2) induces the Dyson Brownian Motion (DBM) for eigenvalues and eigenvectors:

dλi(t) =
dBii(t)√

N
+

1
N

∑
j 6=i

1
λi(t)− λj(t)

dt

dui(t) =
1

√
N

∑
j 6=i

dBij(t)
λi(t)− λj(t)

uj(t)−
1
2N

∑
j 6=i

ui(t)
(λi(t)− λj(t))2

dt.
(3)

Remark: The BMs Bij(t), for i 6= j, and Bii(t) are independent!
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We do it dynamically:

dWt =
dB̂t√
N
, W0 = W. (2)

The flow (2) adds a Gaussian component of size
√
t toW0.

Need only t ∼ N−1+ε. This Gaussian component can later be removed by simple
perturbation theory known as Green function comparison theorem (GFT).

The flow (2) induces the Dyson Brownian Motion (DBM) for eigenvalues and eigenvectors:

dλi(t) =
dBii(t)√

N
+

1
N

∑
j 6=i

1
λi(t)− λj(t)

dt

dui(t) =
1

√
N

∑
j 6=i

dBij(t)
λi(t)− λj(t)

uj(t)−
1
2N

∑
j 6=i

ui(t)
(λi(t)− λj(t))2

dt.
(3)

Remark: The BMs Bij(t), for i 6= j, and Bii(t) are independent!
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Example for n = 2

By Ito’s formula (from now on 〈A〉 = 0, i.e. A = Å):

d E
[
|〈ui, Aui〉|2

∣∣λ] =∑
k 6=i

E
[
|〈uk , Aui〉|2

∣∣λ]− E
[
|〈ui, Aui〉|2

∣∣λ]
N(λk − λi)2

+ . . .

Problem: The flow for diagonal overlaps 〈ui, Aui〉 depends on off-diagonal overlaps 〈ui, Auj〉!

However, for a special combination

ft(i, j) = E
[
2|〈ui, Auj〉|2 + 〈ui, Aui〉 〈uj, Auj〉

∣∣∣λ]
we have

∂t ft(i, j) =
∑
k 6=i

ft(k, j)− f (i, j)
N(λk − λi)2

+
∑
k 6=i

ft(i, k)− f (i, j)
N(λk − λj)2

.

For general n: Closed equation for a certain lin. combination of overlaps ft [Bourgade-Yau-Yin
(2018)]

∂t ft = L(t)ft , (4)

for a certain operatorL(t).

We explain the basic construction from [Bourgade-Yau-Yin (2018)]
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Particle representation 1

Representation: We can think of ft = ft(i1, . . . , in) as a function of ”n-particle
configurations” on N.

Example for n = 2:

Figure 3: Particle configuration for n = 2, ft = ft(i, j).

ft(i, j) = 2|〈ui, Auj〉|2 + 〈ui, Aui〉 〈uj, Auj〉 takes value in the ”doubled space”:

Figure 4: |〈ui, Auj〉|2 + |〈ui, Auj〉|2 Figure 5: 〈ui, Aui〉 〈uj, Auj〉
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Particle representation 2

Representation: We can think of ft = ft(i1, . . . , in) as a function of ”n-particle
configurations” on N.

Example for n = 7:

Figure 6: Argument of f (i, j, k, k, k, l, l) Figure 7: E
[
|〈ui, Auj〉|2 〈uk, Auk〉 |〈uk, Aul〉|4

∣∣∣λ]

Action ofL(t):

Figure 8: Argument ofLft :
f (i, j, k, k, k, l, l) → f (i, j, k, k, k, l, l0)

Figure 9:
E
[
|〈ui, Auj〉|2 〈uk, Auk〉 |〈uk, Aul〉|2|〈uk, Aul0 〉|

2
∣∣∣λ]
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Sketch of the proof II

Recall: We have ∂t ft = L(t)ft . For n = 2:

∂t ft(i, j) =
∑
k 6=i

ft(k, j)− f (i, j)
N(λk − λi)2

+
∑
k 6=i

ft(i, k)− f (i, j)
N(λk − λj)2

.

• Here

L(t) =
n∑

r=1
Lr(t), Lr(t)ft(i1, . . . , in) =

∑
k 6=ir

f (ir → k)− ft(i1, . . . , in)
N(λk − λir )

2 .

Lr acts on the location index of the r-th particle; it has a kernel

1
N(λk − λir )

2 ∼
N

|ir − k|2
.

Note that this is the discretisation of the
√
−∆ = |p| operator in 1d

=⇒ ∂t ft = L(t)ft is a (discrete) heat equation with fractional Laplacian

14
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Sketch of the proof III

• For ∂t ft = L(t)ft , want: heat kernel ”e−L(t)” averages in all directions.
Have (recall ft(k, j) = 2|〈uk , Auj〉|2 + 〈uk , Auk〉 〈uj, Auj〉):∑

k 6=i

ft(k, j)
N(λk − λi)2

≈
∑
k

ft(k, j)η
(λk − λi)2 + η2

= 〈uj, A=G(λi + iη)Auj〉+ . . . ,

with η ∼ N−1 and G(z) := (W − z)−1.
Want: average also in the j index!

Why averages? Because they can be understood by local laws!

Local law: Approximation of the resolvent G(z) by a deterministic object, i.e.

〈G(z)〉 = m(z) +O
(

1
N=z

)
, m(z) :=

1
2π

∫ 2

−2

√
4− x2

x − z
dx = O(1).

By spectral decomposition〈
=G(E + iη) A=G(E′ + iη′) A

〉
=

1
N2

∑
ij

N|〈ui, Auj〉|2
η

|λi − E|2 + η2
η′

|λj − E′|2 + (η′)2
.

=⇒ Avij
[
N|〈ui, Auj〉|2

]
≈
〈
=G(E + iη) A=G(E′ + iη′) A

〉
.

=⇒ Need local law
〈
=G A=G′ A

〉
≈ =m=m′ 〈A2〉with error in terms of 〈A2〉 !

Gain:
〈
=G A=G′ A

〉
much easier to understand than 〈uj, A=G(λi)Auj〉!

15



Sketch of the proof III

• For ∂t ft = L(t)ft , want: heat kernel ”e−L(t)” averages in all directions.
Have (recall ft(k, j) = 2|〈uk , Auj〉|2 + 〈uk , Auk〉 〈uj, Auj〉):∑

k 6=i

ft(k, j)
N(λk − λi)2

≈
∑
k

ft(k, j)η
(λk − λi)2 + η2

= 〈uj, A=G(λi + iη)Auj〉+ . . . ,

with η ∼ N−1 and G(z) := (W − z)−1.
Want: average also in the j index!
Why averages? Because they can be understood by local laws!

Local law: Approximation of the resolvent G(z) by a deterministic object, i.e.

〈G(z)〉 = m(z) +O
(

1
N=z

)
, m(z) :=

1
2π

∫ 2

−2

√
4− x2

x − z
dx = O(1).

By spectral decomposition〈
=G(E + iη) A=G(E′ + iη′) A

〉
=

1
N2

∑
ij

N|〈ui, Auj〉|2
η

|λi − E|2 + η2
η′

|λj − E′|2 + (η′)2
.

=⇒ Avij
[
N|〈ui, Auj〉|2

]
≈
〈
=G(E + iη) A=G(E′ + iη′) A

〉
.

=⇒ Need local law
〈
=G A=G′ A

〉
≈ =m=m′ 〈A2〉with error in terms of 〈A2〉 !

Gain:
〈
=G A=G′ A

〉
much easier to understand than 〈uj, A=G(λi)Auj〉!

15



Sketch of the proof III

• For ∂t ft = L(t)ft , want: heat kernel ”e−L(t)” averages in all directions.
Have (recall ft(k, j) = 2|〈uk , Auj〉|2 + 〈uk , Auk〉 〈uj, Auj〉):∑

k 6=i

ft(k, j)
N(λk − λi)2

≈
∑
k

ft(k, j)η
(λk − λi)2 + η2

= 〈uj, A=G(λi + iη)Auj〉+ . . . ,

with η ∼ N−1 and G(z) := (W − z)−1.
Want: average also in the j index!
Why averages? Because they can be understood by local laws!

Local law: Approximation of the resolvent G(z) by a deterministic object, i.e.

〈G(z)〉 = m(z) +O
(

1
N=z

)
, m(z) :=

1
2π

∫ 2

−2

√
4− x2

x − z
dx = O(1).

By spectral decomposition〈
=G(E + iη) A=G(E′ + iη′) A

〉
=

1
N2

∑
ij

N|〈ui, Auj〉|2
η

|λi − E|2 + η2
η′

|λj − E′|2 + (η′)2
.

=⇒ Avij
[
N|〈ui, Auj〉|2

]
≈
〈
=G(E + iη) A=G(E′ + iη′) A

〉
.

=⇒ Need local law
〈
=G A=G′ A

〉
≈ =m=m′ 〈A2〉with error in terms of 〈A2〉 !

Gain:
〈
=G A=G′ A

〉
much easier to understand than 〈uj, A=G(λi)Auj〉!

15



Sketch of the proof III

• For ∂t ft = L(t)ft , want: heat kernel ”e−L(t)” averages in all directions.
Have (recall ft(k, j) = 2|〈uk , Auj〉|2 + 〈uk , Auk〉 〈uj, Auj〉):∑

k 6=i

ft(k, j)
N(λk − λi)2

≈
∑
k

ft(k, j)η
(λk − λi)2 + η2

= 〈uj, A=G(λi + iη)Auj〉+ . . . ,

with η ∼ N−1 and G(z) := (W − z)−1.
Want: average also in the j index!
Why averages? Because they can be understood by local laws!

Local law: Approximation of the resolvent G(z) by a deterministic object, i.e.

〈G(z)〉 = m(z) +O
(

1
N=z

)
, m(z) :=

1
2π

∫ 2

−2

√
4− x2

x − z
dx = O(1).

By spectral decomposition〈
=G(E + iη) A=G(E′ + iη′) A

〉
=

1
N2

∑
ij

N|〈ui, Auj〉|2
η

|λi − E|2 + η2
η′

|λj − E′|2 + (η′)2
.

=⇒ Avij
[
N|〈ui, Auj〉|2

]
≈
〈
=G(E + iη) A=G(E′ + iη′) A

〉
.

=⇒ Need local law
〈
=G A=G′ A

〉
≈ =m=m′ 〈A2〉with error in terms of 〈A2〉 !

Gain:
〈
=G A=G′ A

〉
much easier to understand than 〈uj, A=G(λi)Auj〉!

15



Sketch of the proof III

• For ∂t ft = L(t)ft , want: heat kernel ”e−L(t)” averages in all directions.
Have (recall ft(k, j) = 2|〈uk , Auj〉|2 + 〈uk , Auk〉 〈uj, Auj〉):∑

k 6=i

ft(k, j)
N(λk − λi)2

≈
∑
k

ft(k, j)η
(λk − λi)2 + η2

= 〈uj, A=G(λi + iη)Auj〉+ . . . ,

with η ∼ N−1 and G(z) := (W − z)−1.
Want: average also in the j index!
Why averages? Because they can be understood by local laws!

Local law: Approximation of the resolvent G(z) by a deterministic object, i.e.

〈G(z)〉 = m(z) +O
(

1
N=z

)
, m(z) :=

1
2π

∫ 2

−2

√
4− x2

x − z
dx = O(1).

By spectral decomposition〈
=G(E + iη) A=G(E′ + iη′) A

〉
=

1
N2

∑
ij

N|〈ui, Auj〉|2
η

|λi − E|2 + η2
η′

|λj − E′|2 + (η′)2
.

=⇒ Avij
[
N|〈ui, Auj〉|2

]
≈
〈
=G(E + iη) A=G(E′ + iη′) A

〉
.

=⇒ Need local law
〈
=G A=G′ A

〉
≈ =m=m′ 〈A2〉with error in terms of 〈A2〉 !

Gain:
〈
=G A=G′ A

〉
much easier to understand than 〈uj, A=G(λi)Auj〉!

15



Sketch of the proof III

• For ∂t ft = L(t)ft , want: heat kernel ”e−L(t)” averages in all directions.
Have (recall ft(k, j) = 2|〈uk , Auj〉|2 + 〈uk , Auk〉 〈uj, Auj〉):∑

k 6=i

ft(k, j)
N(λk − λi)2

≈
∑
k

ft(k, j)η
(λk − λi)2 + η2

= 〈uj, A=G(λi + iη)Auj〉+ . . . ,

with η ∼ N−1 and G(z) := (W − z)−1.
Want: average also in the j index!
Why averages? Because they can be understood by local laws!

Local law: Approximation of the resolvent G(z) by a deterministic object, i.e.

〈G(z)〉 = m(z) +O
(

1
N=z

)
, m(z) :=

1
2π

∫ 2

−2

√
4− x2

x − z
dx = O(1).

By spectral decomposition〈
=G(E + iη) A=G(E′ + iη′) A

〉
=

1
N2

∑
ij

N|〈ui, Auj〉|2
η

|λi − E|2 + η2
η′

|λj − E′|2 + (η′)2
.

=⇒ Avij
[
N|〈ui, Auj〉|2

]
≈
〈
=G(E + iη) A=G(E′ + iη′) A

〉
.

=⇒ Need local law
〈
=G A=G′ A

〉
≈ =m=m′ 〈A2〉with error in terms of 〈A2〉 !

Gain:
〈
=G A=G′ A

〉
much easier to understand than 〈uj, A=G(λi)Auj〉!
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Sketch of the proof IV

Recall: We consider ∂t ft = L(t)ft (discrete heat equation with fraction Laplacian on N).

Want heat kernel ”e−L(t)” averages in all directions.

Why averages? Because only they can be understood by local laws!

• Heuristically:

L(t) =
n∑

r=1
Lr(t), Lr(t) ≈ |pr | :=

√
−∆r ,

i.e. L(t) (=infinitesimally the heat kernel) averages only in one coordinate direction.
One direction is not enough, local laws require averaging in ALL directions.

• To get more averaging: ReplaceL(t) =
∑

r |pr | by the regularised product

A(t) :=
1
η

n∏
r=1

(
1− e−η|pr |

) (
∼ ηn−1

n∏
r=1

|pr | morally

)

with η ∼ N−1 =⇒ Average in any direction.
The replacement is possible on the level of Dirichlet form, D(f ) := 〈f ,Lf 〉.
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Sketch of the proof V

ReplaceL(t) ≈
∑

r |pr | (average in one direction) by the regularised product

A(t) :=
1
η

n∏
r=1

(
1− e−η|pr |

) (
∼ ηn−1

n∏
r=1

|pr | morally

)

with η ∼ N−1 =⇒ Average in any direction.

• Indeed heuristically:

L(t)ft =
n∑

r=1

∑
k 6=ir

f (ir → k)− ft(i1, . . . , in)
N(λk − λir )

2 ,

A(t)ft =
1

Nn−1

∑
k1 6=i1

· · ·
∑
kn 6=in

f (ir → kr ∀r)− ft(i1, . . . , in)
Nn(λk1 − λi1 )

2 · · · (λkn − λin )
2 .

The replacement is possible on the level of Dirichlet form, D(f ) := 〈f ,Lf 〉.

• Main technical steps:
(i) the energy method for DBM [Marcinek-Yau (2020)] analysing

∂t‖ft‖22 = −2Dt(ft) ≤ 0.

(ii) local laws for 〈GAGA...〉with 〈A〉 = 0 and 〈A2〉 errors [Cipolloni, E, Schröder (2022)].

17



Sketch of the proof V

ReplaceL(t) ≈
∑

r |pr | (average in one direction) by the regularised product

A(t) :=
1
η

n∏
r=1

(
1− e−η|pr |

) (
∼ ηn−1

n∏
r=1

|pr | morally

)

with η ∼ N−1 =⇒ Average in any direction.

• Indeed heuristically:

L(t)ft =
n∑

r=1

∑
k 6=ir

f (ir → k)− ft(i1, . . . , in)
N(λk − λir )

2 ,

A(t)ft =
1

Nn−1

∑
k1 6=i1

· · ·
∑
kn 6=in

f (ir → kr ∀r)− ft(i1, . . . , in)
Nn(λk1 − λi1 )

2 · · · (λkn − λin )
2 .

The replacement is possible on the level of Dirichlet form, D(f ) := 〈f ,Lf 〉.
• Main technical steps:

(i) the energy method for DBM [Marcinek-Yau (2020)] analysing

∂t‖ft‖22 = −2Dt(ft) ≤ 0.

(ii) local laws for 〈GAGA...〉with 〈A〉 = 0 and 〈A2〉 errors [Cipolloni, E, Schröder (2022)].

17



Multi-resolvents local laws with 〈A2〉 errors

Theorem (Cipolloni, E, Schröder 2022)
For any deterministic observable A, with 〈A〉 = 0, it holds:

∣∣ 〈G(z1)AG(z2)A〉 −m(z1)m(z2) 〈A2〉
∣∣ ≤ 〈A2〉

√
Nη

� 〈A2〉 (5)

for any z1, z2 ∈ C \ R such that η := =z1 ∼ =z2 ≥ N−1+ε.

Significant improvement compared to∣∣∣∣〈G(z1)IG(z2)I〉 − m(z1)m(z2)
1−m(z1)m(z2)

∣∣∣∣ . 1
Nη2

∼ N1−2ε,

for η = =z1 ∼ =z2 ∼ N−1+ε. Gain almost an N-factor due to 〈A〉 = 0!!

Remark: (6) is a special case of a general multi-resolvents local laws for G1A1 . . . GkAk with
optimal dependence on A – we call it rank uniformity.
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Rank uniform local law

Previous local laws for the resolvent G(z) of Wigner matrices

〈(G(z)−m(z))A〉 .
‖A‖
Nη

, η := =z (averaged)

〈x, (G(z)−m(z))y〉 .
√

ρ

Nη
‖x‖‖y‖, ρ := =m (isotropic)

Note: A = |y〉〈x| for the averaged law gives an isotropic estimate off by a huge factor
√

N/ρη
because ‖A‖ is far from optimal for lower rank observables.

Theorem [Rank-uniform local law (single resolvent)] (Cipolloni, E, Schröder 2022)
For any deterministic observable A and for any Nηρ� 1.

∣∣ 〈(G(z)−m(z))A〉
∣∣ . | 〈A〉 |

Nη
+

√
ρ 〈|̊A|2〉1/2

N√η
, Å = A− 〈A〉 . (6)

Unifies and extends the isotropic and averaged local laws. Multi-resolvent versions also hold.

Method: A nonlinear hierarchy ofmaster inequalities for the quantities

ψk := max
N(3−k)/2√η

√
ρ

1∏
i 〈|Ai|2〉

1/2

∣∣ 〈G(z1)A1G(z2) . . . Ak −∏
i

m(zi)Ai〉
∣∣,

where max runs over all zi ,=zi = η and deterministic Ai ’s with 〈Ai〉 = 0, AND a reduction
inequality stating roughlyψ2k � (ψk)

2 to close the hierarchy.
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Summary

We proved:

• Eigenstate Thermalisation Hypothesis for Wigner matrices:
eigenvector overlaps with deterministic A are. N−1/2.

• Gaussian fluctuations for eigenvector overlaps for all A.

Main technical steps:

• Energy estimates for multi indexed DBM.
• Dramatically improved local law for traceless observables.
• New hierarchy of master inequalities and its closure for ψk.
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THANK YOU VERY MUCH FOR YOUR ATTENTION!
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