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Example 3: Spin-photon and Maxwell-Bloch [1]

The one particle space is hc = {z € L2R3;C?),k.2(k) = 0} = hr ® hr . The total
system space is

Focky(ho)e (€)M | HE
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Electric field:

By 1 . -3/2 [ ik. —ik.
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Interaction term: Hj,; :Zﬁ’ilzﬁzl(ﬁj +Bj(x,1))®aj(x,1):Zﬁl(ﬁ+B(x,1)).6(x,1)
where x, is the position of spin 1 and 0;(x))=1d2®-®0;® - ®Idc2 .
Interacting Hamiltonian: H¢ = EdF(|k|)+ant .
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Correction terms can be computed.
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In Example 1 the Hamiltonian is quartic and the underlying dynamics is nonlinear.

Hartree 0z =-Az+(V *|z[?)z.

It is translation invariant. The interaction operator V(x—y)x is not compact.

s In Example 3, the Hamiltonian is at most quadratic. Exactly solvable in the

scalar case. Here it is a system.
The interaction term is localized in % (ultraviolet cut-off y) and in x. Trace-class

or Hilbert-Schmidt “interaction operator” at the Wick symbol level.
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Bosonic mean field asymptotics

Comparison between Example 1 and Example 3:
In Example 1 the Hamiltonian is quartic and the underlying dynamics is nonlinear.

Hartree i0;z=-Az+((V % |z|2)z.

It is translation invariant. The interaction operator V(x—y)x is not compact.

In Example 3, the Hamiltonian is at most quadratic. Exactly solvable in the
scalar case. Here it is a system.

The interaction term is localized in % (ultraviolet cut-off y) and in x. Trace-class
or Hilbert-Schmidt “interaction operator” at the Wick symbol level.

Consequences: In Example 3 observables can be propagated; in Example 1
observables cannot be propagated in any reasonnable pseudodifferential class.
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Non mean-field, non semiclassical problems

Example 1: Random homogeneization of wave propagation [2]

iediul, = —Agul, + V2V (x,0)us,

where 7 (x,w) is a centered real gaussian field sucht that
BV (x,0)7 (3,0) = F L (IF(V)1?) (x - y).

After using the invariance translation and interpreting gaussian random fields in
the bosonic Fock space it becomes

i€04fr = (E+dT(Dy)2 fr +V2ep(V)f:

with () epd <—:LZ(R?)®Fockb(L2(Rd,dy;C)).
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ey Example 1: Random homogeneization of wave propagation [2]
Francis iediul, = —Agul, + V2V (x,0)us,
LA

Univ. where 7 (x,w) is a centered real gaussian field sucht that
it E(V (x, )V (y,0) = F L (IF(V)2) (x - 3) .

After using the invariance translation and interpreting gaussian random fields in

::onl:leems the bosonic Fock space it becomes
ons igatf‘r =(&+ dr(Dy))2f5 4 \/%(P(V)ff
o With (F)ege eLP®D @ Fock, L2RY,dy;C).

The term v2ep(V) = Vea(V) + yea* (V) is semiclassical.

The main term (& +dT(D,))? is quartic and not semiclassical (mean-field) in the
field variable.

Pure semiclassical (mean-field) methods make sense only for macroscopic times
of order £2 (by far not enough) .
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Example 2: Bose-Einstein non interacting gas [3]

Consider a Gibbs state g, :Z;lrg(e‘ﬁ(H‘”(E)) :Zgle‘drf(ﬁ(H‘/‘(f») where
H=2(-Ay+x2-d) and Z, = Tr[T (e PH-1)]

The mean-field limit as e — 0 and 2 > 0 fixed, for d =2 and Bu(e) = —% says that
the p-th reduced density matrix converges weakly to

Y P = p Ry Py P |

2
where yo(x) =g W4~ *I%/2
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Example 2: Bose-Einstein non interacting gas [3]
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infinite H=%(-Ax+x%~d) and Z¢ = Tr[[e(e PH-1ED)]

sion The mean-field limit as e — 0 and 2 >0 fixed, for d =2 and Bu(e) = —% says that
Francis the p-th reduced density matrix converges weakly to

LA

Univ Y& = oWl Py wgP |

X1 9

where yo(x) =~ Y4172

::’o"l:fem The above weak convergence says that for all compact operator

. b:oPL2(RY) — 0P L2(R?) and b(z) = (z®P , 52®P)
Tr [ngWiCk’E] =0y [)/E)p)l;].
When p=1, b=1d; 5 gd,, b" ¥ =dT'e(Id) = Ne =N one gets

Tr [yé] =ve <1iénj(1)ﬁfTr [0eNe] .
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i where yo(x) =g W4~ *I%/2

When p=1, b= Isz(Rd) , bWick —gr.dd)=N, = eN1 one gets
cal Tr [}/(1)] =ve < liélli(l)’lfTr [0eNe] .

Missing mass: By taking a thermodynamic limit with e=eh)=h% and h—0,
physics tells us that there are two phases a condensate phase at the quantum
scale and a classical Gibbs gas.
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d‘:i“:"“' Consider a Gibbs state g, :Z;lrg(e‘ﬁ(H‘”(E)) :Zgle‘drf(ﬁ(H‘/‘(f») where
o H=2(-A,+x2-d) and Z = Tr[[ (e PH-pENy]
The mean-field limit as e — 0 and 2 > 0 fixed, for d =2 and Bu(e) = —% says that

LUA, ) the p-th reduced density matrix converges weakly to
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i where yo(x) = n’d/4e*\x|2/2 .

When p=1, b= Isz(Rd) , bWick —gr.dd)=N, = eN1 one gets
cal Tr [}/é] =ve < lifl_:lli(l)lfTr [0eNe] .

Missing mass: By taking a thermodynamic limit with e=eh)=h% and h—0,
physics tells us that there are two phases a condensate phase at the quantum
scale and a classical Gibbs gas.

Is there a mathematical translation of this 7 Are there mathematical objects
catching those two scales ?
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Example 3: Bose-Hubbard models and ETH [4][5][6]
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with ¢ =1/N is a pure mean-field (semiclassical) problem in finite dimension.
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Non mean-field, non semiclassical problems

Example 3: Bose-Hubbard models and ETH [4][5][6]
Hamiltonian for N-bosons on k-sites

. 1 AL
Hk,N:_él';lJija;aj+N Zlnj(nj—l) ) nj:a;.aj.
i—-jl= j=

Eigenstate Thermalization Hypothesis means that eigenvectors |Eq) with energy
Eq €[E - AE,E + AE] satisfy

(Eq,08p) ~84p5f B+ ¢ 52 f,(E Eq-EpRap

small factor

where S(E) is interpreted as or related to an entropy and (Rg p)a,p behave like a
random (gaussian) matrices.
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oo i Example 3: Bose-Hubbard models and ETH [4][5][6]
nfinite . . .
dimen Hamiltonian for N-bosons on k-sites
e , 1 . A E .
Hk,N:—é ' Z Jijaiaj*'ﬁ Z njnj-1) , nj=aia;.
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Eq €[E - AE,E + AE] satisfy
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(Ea,@Eﬁ)~5u’ﬁf(E)+ e SN2 fZ(E,Ea*Eﬁ)Ra,ﬂ

small factor

ol where S(E) is interpreted as or related to an entropy and (Rg p)a,p behave like a
random (gaussian) matrices.

The scaling of AE, therefore the observable & but also of £ = £(N) must be
specified. k(IN) = Cte finite dimensional semiclassical problem, £ =kyN
thermodynamic limit, or N — co and then 2 — oo. ..

All can be put in Fockb(ZZ(Z)) with some k(IN)-dependent mean-field
Hamiltonian. The scaling of the observables and % =£(N) lead to non exactly
mean-field or semiclassical asymptotics.
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Wick quantization

Polynomial symbols in z,z can always be e-Wick quantized.

b(z,2) = (z®9,b2°P) , b e L(H°P;h°9),

. Vn+p)ln+q)
bWLck,£|h®n+p = P2 pn! q

Sn+q(b®Idyon)Sn+p



Wick quantization

Francis Polynomial symbols in 2,z can always be e-Wick quantized.
b(z,2) = (z%9,b2%P) , be L(H°P;h°),
) Vn+pln+q)! 7
bWLck,e|h®n+p = gp+a)2 #S,ﬁ_q(b ®Idhon )Sn+p

When h=L2([R%, dx1) and b has the Schwartz kernel B(x,y)a?@’ym(ﬂ%d(q*ﬂ)),

-

Quantiza
and

robabili- . -
e pWicke :fRd(mq) b(x,y)ai(x1)-af(xg)ae(y1) - ac(yp)dxdy

makes sense as a weakly defined operator on @Zlgéﬂsym(Rd”).



Weyl and Anti-Wick quantizations

Sl In finite dimension they are both defined by using integrals with the Lebesgue
tech- measure.

infinite Weyl:

dimen-

sion
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Francis (2 )d
LJ\ : With z=x+i¢, Re(z1,22) =x1.x2 +{1.§2 and
Peris (Re (2, ()WIhE =0, () +a2() = V20D .
X1
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Weyl and Anti-Wick quantizations

Sl In finite dimension they are both defined by using integrals with the Lebesgue

tech- measure.

i Weyl:
e pWerle(y ) = [b(Vel2., Va2 )W erl (x, y) = f =) (\/j Y Vet (2 )d
Ni
LUA . With z=x+i¢, Re(z1,22) =x1.x2 +{1.§2 and
pe (Re (2, ()WViCkE = q () +ak () = V2¢e(0) .

i Wick,e — _i_ Weyl i
ﬁ(Re<z,()) te :e\/g(RMz,() ey :[e\/é(Rﬂz,()

Wo(() = e —

robabit By writing b(2) = fca €278 @O (Fb)() L(d0) with
ties (Fb)(():fa:d e~ 2inRe (2 by () L(dz) we get

pWerke L EOXOWe(V2n0) LO).



Weyl and Anti-Wick quantizations

Sl In finite dimension they are both defined by using integrals with the Lebesgue

tech- measure.

fnite. Weyl:
dir.nen-
sion pWeyl, £ (x,y) = [b( /E/ ) )]Weyl(x y)= f elt-(x-y) (‘/g/ ‘/ /28) (2 )d
Ni
'—UH ! With z=x+i¢, Re(z1,22) =x1.x2 +{1.§2 and
pe (Re (2,0)WI*E = ae(O)+af () = V2¢e(0) .
. i Wick,, i Weyl i vl
Wg(():el%(():eﬁ(Rﬂz’()) Eze\/g(Re(z,() y _ [e \/Q(Re<z,()
Quantizat| .
orebabili- By writing b(z) = fa 2R @O (FB)() L(d0) with
ties (Fb)(():fa:d e~ 2inRe (2 by () L(dz) we get
cal
pWerte = [ FoXOWe(2nD) Ldo.
Anti-Wick:
Ld ~lx2/2
pAWicke — [ b DWDWAT L vE=We w0 pow =
(me)d nd/4

) 1212
pAWicke ~ Gy x0)V Gy =h7AGUVR) Gl)=
b/



probabili-
ties

Probabilities 1: Reims group (Amour, Jager, Nourrigat...)

One idea consists in replacing Lebesgue measures by gaussian measures [1][7].

29 . . 2
p =272y g unitary from L2RY,dx) to L2(RE, n= 92~ 121" g )
Weyl quantization and Anti-Wick quantization are expressed with the Gaussian

.
measure (we)"%e” ¢ L(dz).
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extended Moyal products.



Probabilities 1: Reims group (Amour, Jager, Nourrigat...)

niques in One idea consists in replacing Lebesgue measures by gaussian measures [1][7].
infinite
" 2 . . _ —lx|2
d"'i“:"“' p =272y g unitary from L2RY,dx) to L2(RE, n= 92~ 121" g )
Weyl quantization and Anti-Wick quantization are expressed with the Gaussian
Fr 2
lz|
ey measure (1e) %e” ¢ L(dz).
U
P
X1
We can then extend the definition of e-Weyl quantization to the case of an
i infinite dimensional phase-space by using gaussian measures and Wiener spaces.
and This leads to some good semiclassical algebras with asymptotic expansions of
probabil- extended Moyal products.

Drawback: Two gaussian measures are quasi-equivalent when their covariance
matrix differ by a Hilbert-Schmidt operator.

Hilbert-Schmidt or trace-class conditions occur in many aspects of this
semiclassical calculus.

With a non linear flow a gaussian measure cannot remain gaussian.



Probabilities 2: Construction of nonlinear Gibbs measures
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For most nonlinear PDEs the dynamics cannot enter in a single gaussian

measured space. An alternative consists in constructing an invariant nonlinear
Gibbs measure for a given nonlinear PDE.
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the last decades. Among the many contributors: Bourgain, Burq, Tzvetkov...(see
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Probabilities 2: Construction of nonlinear Gibbs measures

For most nonlinear PDEs the dynamics cannot enter in a single gaussian
measured space. An alternative consists in constructing an invariant nonlinear
Gibbs measure for a given nonlinear PDE.

This problem has received a strong attention by the mathematical community in

the last decades. Among the many contributors: Bourgain, Burq, Tzvetkov...(see
[8] for a survey).

Although the microlocal analysis of finite dimensional nonlinear PDEs is
sometimes combined with specific nonlinear techniques, it is not really related
with the propagation of singularities, or of semiclassically quantized observables,
in an infinite dimensional given phase space.
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Probabilities 3 : Rennes group (Ammari, Breteaux, Falconi, N., ...

In finite dimension Wigner measures associated with a family of states (g¢)s>0,
0e € LYHLARY ,dx)), pe =0, Tr [0e] =1, with the additional uniform condition

Trlpe(1+Ne)%2]1< Cs for some 6> 0, are probability measures [9] characterized
after a subsequence extraction

v ecd, lim Tr e, We, (V210)| :f 2R gy ().
k—o0 cd

Notation: ye . #(pc,e€(0,9)) or {u} = M (oc), e € {ep, keN}).
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In finite dimension Wigner measures associated with a family of states (p¢)e>0,
O¢ e PYL2RY, dx)), 0e=0, Tr [pe] =1, with the additional uniform condition

Trlpe(1+Ne)%2]1< Cs for some 6> 0, are probability measures [9] characterized
after a subsequence extraction

V(eCd, lim Tr [st ng(\/in()] :f g2inRe <‘r’z>d;,t(z).
k—o0 cd

For any be S(1,dx? +d¢?), limy oo Tr [0V o, | = [0 b(2,2) du(z) and
Jea@+1212)°2dp < liminf,_o Tr[(1+Ne)*2pe].
Notation: u e .#(p¢,e€(0,9)) or {u} = M (o, e € {ep, keN}).
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Probabilities 3 : Rennes group (Ammari, Breteaux, Falconi, N., ...

In finite dimension Wigner measures associated with a family of states (g¢)e>0,
0e € LYHLARY ,dx)), pe =0, Tr [0e] =1, with the additional uniform condition

Trlpe(1+Ne)%2]1< Cs for some 6> 0, are probability measures [9] characterized
after a subsequence extraction

V(ECd, lim Tr [st WEk(\/Q”()] :f o2inRe (c’z>d;z(z).
k—o0 cd

Notation: ye . #(pc,e€(0,9)) or {u} = M (oc), e € {ep, keN}).

The same definition after a diagonal extraction works when €4 is replaced by an
infinite dimensional separable Hilbert space owing to

Focky(F®FL)=Focky(F)®Focky(F), dimF < +oco
Wg(f):Wg(f)@:IdFockb(Fi) for feF,

IIWe ()~ We(F)l(L + Ne) 2| < Co (1 +min(f 1, 1foDO)If — fol®
(1+N)” 2 (1+ Ne )" ©1dp 0, (o1
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Assumption: g =0, Tr [ge] =1, Tr(p:(1+N)%2)<Cy

e Mpe,e€8), 0€8,8cl0,0l can be reduced to 4 (pp,e€ &) ={u} after a
sequence extraction:
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Wigner measures in infinite dimension [9]

Assumption: g =0, Tr [ge] =1, Tr(p:(1+N)%2)<Cy
e —
,.;;._,e, in WUE M(pe,e€8), 0€8,8 10,0l can be reduced to (s, e€8)={u} after a

Semiclassi|

Jriinitg sequence extraction:
Fract V{eh, lim Tr [ggWg(\/ﬁn()] :f 2R G2) g y(z)
e€&,e—0 ]
LA
Unr
The property “fh (z)5dy(z) < +o00" ensures the Prokhorov criterion,
X (¥v>0,3Ry >0,VF, dimF < +00, p(np(2)|<Ry)>1-v)
Therefore u is a Borel probability measure on f.
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tech-
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Wigner measures in infinite dimension [9]

Assumption: g =0, Tr [ge] =1, Tr(p:(1+N)%2)<Cy

Semiclassi
tech-

niques in e Mpe,e€8), 0€8,8cl0,0l can be reduced to 4 (pp,e€ &) ={u} after a
Jriinitg sequence extraction:
Fract V{eh, lim Tr [ggWg(\/ﬁn()] :f 2R G2) g y(z)
ce8,e—0 ]
LA
Unr
The property “fh (z)5dy(z) < +o00" ensures the Prokhorov criterion,
il (¥v>0,3Ry >0,VF, dimF < +00, p(np(2)|<Ry)>1-v)
Therefore u is a Borel probability measure on f.
For all cylindrical function b (—:S(l,ldzlz), b=0b(npx),
Quantizat
and
robabili- : Weyl,e| _ =
ties EEAIF;,I:LO Tr [er ] fhb(z,z)du(z).

When & can take any positive value, the condition b€ £(H°P),b =0, implies
0<bWicke < p)|(1212P)Wicke = || N...(Ne —e(p ~ 1)) < 151+ Ne)P .
This allows to define Y’ € £1(H°P) by
¥be 2(4°P), Tr [peb"ehe| = Tr [yP].

Question: yi.p) e20 4



Wigner measure, Wick observables and reduced density matrices

niques in In finite dimension h:cg ~ [R{%d , 1+ed/2+ N, =(1+|X[2)Werle | For any
Timan polynomial b(z,2) of total degree p

- I(1+Np) PR [pWicke _pWerley1 4 NP2 = 6(e).

N

e When o, satisfies the assumptions with § =2p, then

X1 ; =~

lim Tr |peb"iche =f 2P b2°P) du(z)
celim ™ [ee a 778250 d
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Wigner measure, Wick observables and reduced density matrices

ech-
n_i;ue. in In finite dimension h:ttg ~ [R{%d , 1+ed/2+ N, =(1+|X[2)Werle | For any
i polynomial b(z,z) of total degree p
Francis 1L+ Ne)PRpWicke — pWerley+ Ny P2 = o(e).
oA When o, satisfies the assumptions with § =2p, then
li T bWick,E :f ®p,5 ®py g
jJm T o [P B2°P) dptz)
N In infinite countable dimension: When b € £°(h®P) is compact and g, satisfy the
and assumptions with § =2p, then
probabili-
ties
: Wick,e| _ ®p 7 _®p
al ealg}’rsxl0 Tr [ng ] 7fued &P b62°F) d(z)



Wigner measure, Wick observables and reduced density matrices

niques in In finite dimension h:cg ~ [R{%d , 1+ed/2+ N, =(1+|X[2)Werle | For any
e polynomial b(z,z) of total degree p

11+ Ny PR[pWicke _ pWerbeyq 4 Ny P2 = 6(e).

Fra

N

o When g, satisfies the assumptions with § =2p, then

XI1 ; -

lim Tr [gngwk’f = f (2®P , 52%P) du(z)
ce8,e—0 Rrd
In infinite countable dimension: When b € £*°(h®P) is compact and g satisfy the

Quantizat A ) e
and assumptions with § =2p, then
probabili-

ties

lim Tr [ngWiCk’E] :fd<z®p,l;z®p) du(z)
R

ce8,e—0

Counter-example: €= % , 0e = Wy (nep)QQ) Wy, (ne,)Q2| where Q is the vacuum
state and (en),ennoy i @ Hilbert basis of h. Then

M (e e € IINNOD) = {u=60} while Tr [ggNg]:|en|2:1"1°°1>0:fh|z|2du(z)



Wigner measure, Wick observables and reduced density matrices

dimen- . . . . .

sion Assuming the assumption for g with an arbitrarily large 6 >0, and #(p¢,c € &) ={u}.
G There is an equivalence between
Ty Condition (P):

Univ.

: ” op . Wick,e| _ =

X111 VpeN,Vbe LH®P), lim Tr [ng ] —f b(z,z) du(z).

c€8,e—0 )
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dimen- . . . . .

sion Assuming the assumption for g with an arbitrarily large 6 >0, and #(p¢,c € &) ={u}.
G There is an equivalence between
Ty Condition (P):

Univ.

: ” op . Wick,e| _ =

X111 VpeN,Vbe LH®P), lim Tr [ng ] —f b(z,z) du(z).

c€8,e—0 )

Condition (PI):

Quantizat|

and . PI_ 1 2p\Wick,e _f 2p
VpeN, I T Nz |= 1 T = d .
L [eeNe ] cebiem0 [p,;(lzl ) ] blzl K@
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Wigner measure, Wick observables and reduced density matrices

dimen- . . . .

sion Assuming the assumption for g with an arbitrarily large 6 >0, and #(p¢,c € &) ={u}.
G There is an equivalence between

Ty Condition (P):

Univ.

X111 Vp eN,Vbe L1HOP), hm OTr [ngW”k’E] :fh b(z,2) du(z).

Condition (PI):

Quantizat|
and : P _ : 2p\Wick,e| _ 2
probabili- Vpe N7£€(1g}g1ﬂ0 Tr [QE‘NS ] 766(15”1,214»0 Tr [Qf(lzl p) e E] *];J 2] P d:u(z)

ties
Norm convergence of y”): The reduced density matrices yP) converge in trace

norm to
Y = f 2P )(z®P | dp(z).



Wigner measure, Wick observables and reduced density matrices

Sl A defect of compactness can be solved by multiscale microlocal analysis (second or
tech- higher microlocalization). [3][10]
niques in

nfinite Reconsider the Bose-Einstein non interacting gas, g = Z; le AH-1E)
don ) =—3Eg, H=§(-Dp +2%~d).
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A defect of compactness can be solved by multiscale microlocal analysis (second or
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tech- higher microlocalization). [3][10]
niques in
dn_ﬁnite Reconsider the Bose-Einstein non interacting gas, g = Z; le AH-1E)
|r.r|en- _ _ h 2
sion H(E)—*ﬁ,H—g(*Ax+x -d).
Francis As long as eh™1 — 0 an explicit computation gives
Ui - ‘ZVO'2
X1 M Qe €10,e0D) = { — L(dz)®60(z) p z=zowgot 2
c
and o
uantiza ® ®
aanl . YOP :p!vg|W()p><wOp|
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A defect of compactness can be solved by multiscale microlocal analysis (second or
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tech- higher microlocalization). [3][10]
"i:m%" Reconsider the Bose-Einstein non interacting gas, g = Z; le AH-1E)
== ue) =355, H=4(-A+22=d).
F;\j : As long as eh~1 — 0 an explicit computation gives
En lzgl?
X111 M(pe, € €10,£0]) = mvc L(dzg)®80(z) } z=zoywpe 2z’
Quantizat and () _ P | ®Py . @D
L To “PRel¥Wo!
ties Consider the asymptotics e(h)=h%, h —0, and take
cal Wick,e (1)

Tim Tr [b," 0.4 | = lim Tr [B47 (G,

with by, € LLARY,dx)) is a second quantized semiclassical operator of the form
bWeyl(\/hx,VhD,,x,Dy) . After extraction this defines a triple (v,v7,yq) where
Ve MpRZEN{0}), vy € Mp ({0} x S2471) and yg € LHLERY)).
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A defect of compactness can be solved by multiscale microlocal analysis (second or
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tech- higher microlocalization). [3][10]
"i:m%" Reconsider the Bose-Einstein non interacting gas, g = Z; le AH-1E)
== ue) =355, H=4(-A+22=d).
F;\j : As long as eh~1 — 0 an explicit computation gives
e lzgl?
X111 M(pe, € €10,£0]) = mvc L(dzg)®80(z) } z=zoywpe 2z’
Quantizat and () _ P | ®Py . @D
L To “PRel¥Wo!
ties Consider the asymptotics e(h)=h%, h —0, and take
cal Wick,e (1)

Tim Tr [b," 0.4 | = lim Tr [B47 (G,

with by, € LLARY,dx)) is a second quantized semiclassical operator of the form
bWerl(vhx,VhDy,x,Dy) . After extraction this defines a triple (v,v7,yo) where
Ve MpRZEN{0}), vy € Mp ({0} x S2471) and yg € LHLERY)).
Here e(h)=h?, d=2,
ePXPR gx
V= ——m—
1—(BX12/2) 2)@

vi=0 , vyo=vclyo)wol.
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Second microlocalization picture

Macro

\ .
§8
o

Quantum -
Quan

b(\/};'% \/Enyx,Dx) , be chO(R2d X de;(]:)

suppb(.,Y) < B(0,Cy) cR?¢ for all Y e R24
limpg _. oo b(X,R0) = aoo(X, ) in €@ x $2d-1)



Semiclassical propagation in an infinite dimensional phase-space

Is there an Egorov theorem in infinite dimension ?

ons Measure transportation technique
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Is there an Egorov type theorem in infinite dimension 7

e Answer: No and Yes [4][9][11]

tech- All the known and apparently relevant classes of semiclassical operators
e associated with Focky(h), bh separable Hilbert space, rely on a rigid linear
dimen- structure:

sion

m cylindrical symbols b(z) = b(np(2)) with the asymptotic equivalence of quantizations
Fr in finite dimension.

m Wick quantized polynomials.
St m Pseudodifferential classes defined by gaussian measure integration.
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m Pseudodifferential classes defined by gaussian measure integration.
Already before considering a quantization, those classes of symbols are not
preserved by a nonlinear transformation.

However it is possible to prove the propagation of Wigner measures.



Is there an Egorov type theorem in infinite dimension 7

Answer: No and Yes [4][9][11]

tech- All the known and apparently relevant classes of semiclassical operators
associated with Focky(h), b separable Hilbert space, rely on a rigid linear
dimen- structure:

sion m cylindrical symbols b(z) = b(np(2)) with the asymptotic equivalence of quantizations
Fra in finite dimension.
Nier, m Wick quantized polynomials.
(el m Pseudodifferential classes defined by gaussian measure integration.
e Already before considering a quantization, those classes of symbols are not
’ preserved by a nonlinear transformation.
However it is possible to prove the propagation of Wigner measures.
Example: Consider HE = §Wick:e with
_ A 2(x)12|2(y)|2
g(z,z):f Ve@i? dot & [ EEEOE 0y
’3 2Jré  lx—yl
Semicl . _ .
p,e;fg:" where the Hartree flow ¢gryr¢ree associated with i0;z = —Az+1(ﬁ *|212)z is well
tion i . . . .
_a':"_m defined in H1(R3;C) which is a Borel subset of § =L2(R3;C).
fnfinite Take pe € L1 (Focky(h)) such that g =0, Tr [pe] =1 and
sianal Tr [0edl(1-8)"2] <C; . Then

(“”(9875 €8)= {:UO}) = (“”(e_%Hggse%He ),e€8) = {(/’Hartree(t)*ﬂ} .

Additionally if (p¢)cce satisfies the condition (PI), it is satisfied for any given
time teR.



Measure transportation technique, probabilities again [12]

One first checks after an Ascoli type argument that a sequence extraction allows
: to say
Nier, Mpe(t),e€8)={u@)} .
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to say
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Then one proves that u(t) is a weak solution to d;u+{&,u} =0, weak meaning
after testing on cylindrical functions on Ry x .
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Measure transportation technique, probabilities again [12]

One first checks after an Ascoli type argument that a sequence extraction allows
to say
M(pe(t),e€8) = {u(t)} .

Then one proves that u(t) is a weak solution to d;u+{&,u} =0, weak meaning
after testing on cylindrical functions on Ry x .

The projected measures ng , pi(t) solve a family of transport equations with non
Lipschitz continuous vector fields, but with some uniform LP-estimates. Using
the theory of generalized flows (probalistic trajectory picture) and a stability with
respect to dimF one can prove u(t) = ¢gartree(®)s -
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Measure transportation picture

y='n-"(x) Fd



Measure transportation picture

X1 T>
X | vl!X) >
ons t(x1)
d
Vily)
Semiclassi| y='n-d(x) Fd
propaga-
tion in XZ‘
finite VI(XQ)
iomal
phase-
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