

Chaire Galaxies et Cosmologie

Origine des disques, des sphéroides Relations d'échelle

Simulations Horizon

Françoise Combes

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Les grandes lignes

1- Galaxies à grand z: observations Morphologies, Barres Fraction de gaz et formation d'étoiles

2- Disques et sphéroides: simulations Comment atteindre la séquence de Hubble Comment stopper la formation d'étoiles

3- Relations d'échelle -- Processus

Formation des disques/sphéroides Evolution séculaire, Fusions de galaxies

Images JWST: Identification des redshifts

SMACS 0723

4265 galaxies observées à 1.5 < z < 8 20 fois plus que les études précédentes!

Surprise: le HST montraient des galaxies irrégulières, « clumpy » en morceaux

JWST montre des spirales, des disques jusqu'à z=6 (1 Gyr après le Big-Bang)

Principales images de Hubble

Fraction de disques, sphéroides, Peculiars, avant JWST

Downsizing:

Mortlock et al 2013

Ce sont les plus massives qui évoluent plus vite et forment la séquence de Hubble

Classification automatique CAS

Conselice 2014

Correspondance CAS $\leftarrow \rightarrow$ type de Hubble

Conselice 2014

Exemples de morphologies, avec JWST

9 ν N 0

> z=5.3 z=5.3 z=7.5

> > z=5.7

z=5.3

Il existe des disques à z > 4 non détectés auparavant Pour 2 < z < 5, galaxies beaucoup moins clumpy (plus de sensibilité que HST, plus de couleurs)

Identification des morphologies

Les sphéroides croissent avec z, mais leur taille diminue

Plus de galaxies spirales à grand z

4265 galaxies observées avec JWST à 1.5 < z < 8

Les galaxies "clumpy" par morceaux sont souvent dues au filtre UV ou visible du HST

Finalement, les galaxies spirales dominent jusqu'à z=6 au moins alors que l'on pensait que les irégulières dominaient dès z>3

La sequence de Hubble était en place 1 Gyr après le Big-Bang

Ferrari et al 2015

 $H(I) = -\sum_{k}^{K} p(I_{k}) \log[p(I_{k})]$

4265 galaxies observées avec JWST à 1.5 < z < 8

Plus de galaxies spirales à grand z

4265 galaxies observées avec JWST à 1.5 < z < 8Plus de disques à grand z

« other »: sources ponctuelles, ambigues, inclassifiables

Contribution à la masse et au SFR

Contribution des fusions

galaxies à 1.5 < z < 8

« other »: sources ponctuelles, ambigues, inclassifiables

Evolution de la séquence de Hubble

En remontant le temps, la séquence de Hubble disparaît peu à peu Plus instable, plus de gaz \rightarrow galaxies irrégulières, en grumeaux Mais, lumière ultra-violette (UV), à cause du redshift

Le JWST voit V et NIR → barres, spirales jusqu'à z=3-4

4 galaxies, dans les bandes du HST (à gauche) et celle du JWST (à droite). *Ferreira et al 2022*

Spirales barrées tôt dans l'Univers

Impressionnants effets du changement de longueur d'onde sur une galaxie barrée au redshift z= 2.136 Gauche: Hubble (HST) à 1.6 micron Droite: JWST NIRCam à 1.15, 1.5 2.77 et 4.44 micron. Le cercle bleu en bas à droite: résolution spatiale, barre horizontale= 0,5"

Fraction de galaxies barrées

Galaxies barrées dans TNG50

Les barres commencent à se former à z=4 (t=1.5 Gyr) Elles se renforcent et s'allongent comme les disques →Avec la résolution du HST, on ne les voit plus au-delà de z=1 Les barres aident les disques à se former plus tôt

Pas d'évolution dans la force de la barre, mais dans son rayon

Rosas-Guevara et al 2022

Fraction de barres en fonction du temps

Rosas-Guevara et al 2022

19. broken law

z = 0.0 (TNG100)

--- Erwin 19 ---- z = 0.0

R_{bar}

Création et destruction des barres (EAGLE)

CNN sur 35 000 images, \rightarrow 4000 galaxies de la simulation \rightarrow E, S0, Sp, Irr Fraction de barres constante z=0-0.5, puis décroît. Plus de barres à faible M< 10^{10.5} M_☉ Durée de vie moyenne 2.24 Gyr

20755899

P(bar)=0.370

20755897

20755898

P(bar) = 0.790

20755896

0.990

0.10

z=0.87

0.62

0.37

0.18

0.00

z=1.00

Cavanagh et al 2022

Rôle du gaz dans la destruction des barres

Le gaz est amené au centre par les couples de la barre Le moment angulaire est **pris par la barre**

→ Ceci détruit la barre, car son moment est négatif à l'intérieur de la corotation

1-2% de chute de gaz suffit à détruire/affaiblir la barre

Une galaxie accrète du gaz → 2 ou 3 épisodes barrés

(Bournaud & Combes 2002)

Evolution des tailles de galaxies

Fusions mineures à z=1, mais problème à z=2 (Newman et al 2012)

Problème résolu avec d'autres populations de galaxies « Progenitor bias »

Simulations TNG50 des disques de galaxies

Les disques épais évoluent le plus vite -- dûs à la grande turbulence du gaz au départ

Zana et al 2022

Fraction de galaxies barrées (simulations TNG50)

Zana et al 2022

Simulations de la formation des galaxies à z=6, 4, 2

Tous les modèles ont des barres, même si < 1kpc (invisibles avec JWST)

Feedback vent stellaire: CW Constant Wind, VW Variable Wind Fraction de gaz supérieure avec VW

Bi, Shlosman, Romano-Diaz 2022

Ages des étoiles

Pic de SFR entre z=4 et 2

CW Constant Wind, VW Variable Wind

Bi, Shlosman, Romano-Diaz 2022

Processus physiques du « quenching »

Arrêt de la formation d'étoiles en

Coupant l'arrivée de gaz froid: Lent (2-4 Gyr)
 Gravité du halo massif, Effets de l'environnement (étouffement des galaxies, balayage du gaz)
 Ejectant le gaz présent: Rapide (<~0.1 Gyr)
 Feedback des supernovae, des AGN (vents, jets)

Chauffant le gaz (transitoire) Rapide
 Turbulence par interactions de galaxies, starburst
 Le gaz revient, se refroidit, après qques 100Myr
 Stabilisant le gaz: Lent
 Formation bulbe massif, transformation morphologique

Halo quenching

Dépend de la masse du halo (pas de M_∗)
Peut arrêter l'arrivée du gaz
Déjà pour les groupes → formation de sphéroides

Dekel & Birnboim 2005

Transformation morphologique, bulbe

Disques seuls sont plus instables

Les bulbes et condensations centrales Stabilisent les disques

Paramètre de Toomre $Q = \sigma/\sigma crit$

 σ crit= 3.36 G Σ / κ

Le bulbe fait croître κ , et Q Stabilise avec σ et Σ constants

Martig et al 2009

Evolution des morphologies, avec HST

50 000 galaxies CANDELS Machine learning

Croissance des systèmes DISK+SPH autour de z~2 Pas de disque sans SF → Sphéroide nécessaire pour stopper SF

La couleur rouge domine alors au centre L'arrêt de SF progresse du centre au bord

Huertas-Company et al 2016

Epoques de formation

Encore trop de Irr à z=3 (HST) sans doute disques avec JWST

Entre 1 < z < 2, quenching des disques en ETG Reformation de disques par accretion de gaz

Huertas-Company et al 2016

Formation d'étoiles dans les disques à z=2.2

Tacchella et al 2015

Formation d'étoiles dans les disques

Corrigé de la PSF

Tacchella et al 2015

Arrêt de SF du centre au bord

Tacchella et al 2015

$$\begin{split} \Sigma_{M^*} & (1 \text{kpc}) \text{ quantifie la concentration} \\ ----- & \text{SDSS } z = 0 \text{ (Fang et al 2013)} \\ \Sigma_{M^*} & (1 \text{kpc}) \sim M \quad \Sigma_{M^*} & (1 \text{kpc}) \sim M^{0.7} \\ \text{Les points } z = 2.2 \text{ suivent } \Sigma_{M^*} & (\text{SF}) \end{split}$$

sSFR(1kpc) diminue avec M_{*}

Formation des bulbes par compaction

Ceverino et al 2015

 $\mathbf{\Gamma}$

La séquence de Hubble: simulation Argo

Simulation d'un halo correspondant à un groupe Forme les galaxies M= $10^{8-11} M_{\odot} \rightarrow z=3$

La séquence de Hubble est déjà en place

Bulbes et sphéroides par des fusions Même processus qu'à z=0

22 galaxies, morphologieidentifiée,Courbe de rotationReliée à la morphologie

Simulation Argo

This work, $z \simeq 3$

 10^{11}

 10^{11}

Moment angulaire

Moment spécifique $j^* = J/M$ Disques Bulbes

Gradient de sE, dE, Sa, Sb, Sc.. A z=3, encore assez peu de J*

Selon la fraction de J gardée par le disque Evolution estimée, quantifiée par des fléches

$$\frac{j_{\star,\mathrm{d}}(z=0)}{j_{\star,\mathrm{d}}(z=3)}\bigg|_{M_{\star}} = \left(\frac{\Delta(z=0)}{\Delta(z=3)}\right)^{-1/6} \left(\frac{H(z=0)}{H(z=3)}\right)^{-1/3} \sim 2$$

Galaxies isolées: V_{rot} reste plat En groupe, starburst \rightarrow plus piquée

 $Vc(r_{max}) / Vc(r_{h})$

Marche au hasard de l'évolution de Vc Pic à 3.7 avec une fusion/starburst Entre temps, dépend de la barre, et évolution séculaire

Courbes de rotation

Le starburst forme des étoiles au centre, et Vrot augmente, avec B/T

Masse stellaire sur matière noire

Les galaxies obtenues dans les simulations sont bien au-dessus des prédictions du modèle ΛCDM

Abundance matching (Moster et al 2013) L'écart semble même croître avec le temps

Pas seulement insuffisance de feedback→ Effet de l'environnment

Cercles= satellites Carrés= galaxies centrales

Scénarios possibles: lent et rapide

Deux pistes d'evolution et de formation de galaxies passives

(1) tôt (z>2), galaxies où SF arrêtée
 Rapidement → cSFGs
 deviennent galaxies passives, et
 croissant en taille

(2) Arrivée tardive (z<2) où des galaxies SF plus grandes forment Des galaxies passives plus étendues sans passer pas un état compact

Barro et al 2013

Compaction

Barro et al 2017

Evolution et arrêt de la formation d'étoiles

Processus de quenching et transformation morphologique découplés?

Simulations TNG50

Park et al 2022

Quenching: -- satellites – manque de gas – AGN feedback --Mass -- environnement

Disques quiescents, et sphéroides formant des étoiles

Park et al 2022

Fusion et galaxies à coquilles

Petersson et al 2022

Histoire de la formation d'étoiles

Dans l'interaction, les étoiles sont chauffées, se diluent, et la force sur le gaz est moindre

→ Moins de SF

Après le starburst de la fusion

Petersson et al 2022

Gas et formation d'étoiles

Petersson et al 2022

Formation des sphéroides et disques

Pas lié à la forme ou J du halo

Mais surtout à L'alignement des baryons

Une galaxie accrète du gaz froid non aligné → sphéroide

Sales et al 2012

кrot fraction énergie cinétique ordonnée

f(SFR) issue de gaz chaud 0.6 $\bigcirc f_{acc}^{>}>0.1$ Spheroid dominated ($\kappa_{\rm rot} < 0.50$) Intermediate $(0.50 < \kappa_{rot} < 0.70)$ Disk dominated ($\kappa_{\rm rot} > 0.70$) 0.5 July 10.4 0.3 0.2 12 8 10 t^{*} [Gyr] Temps (SFR) médian

Sphéroides et disques

κrot fraction énergie cinétique ordonnée

Morphologie non liée au moment angulaire des halos de matière noire

Mais plus à l'accrétion des baryons Lorsqu'elle est alignée, avec un J cohérent →Plus de disques

Accrétion du gaz chaud des halos
→ Disques
Accrétion désordonnée de filaments
→ sphéroides

Sales et al 2012

Assemblée de la masse par fusion

A faible et forte masse, Mouvements désordonnés dominent

M (intermédiaire) →rotation

A forte masse, Les fusions dominent

Tacchella et al 2019

0.14 < z < 1 HST

Les structures plus anciennes (bulbe ou disque) sont plus compactes -- Formation du centre au bord, 2 vagues

Costantin et al 2022

Sphéroides et disques 1< z < 5

« Peculiar » lorsque JWST ne résoud pas

Jacobs et al 2022

Formation d'étoiles à z=2

Galaxies sub-mm z=2, spirales, avec bulbe non-dominant, et signes d'interactions \rightarrow starbursts

Pre-JWST [HST / Spitzer]

JWST NIRCam

 $M_* [M_{\odot}]$

Spirales et barres

Rbulbe ~0.7kpc Sersic n=0.7

> Chen et al 2022

Résumé

1- Galaxies à grand z: révolution du JWST Morphologies régulières, disques Evolution des barres

2- Disques et Sphéroides: simulations La séquence de Hubble apparaît dès z=6 Arrêt de la formation d'étoiles?

3- Relations d'échelle -- Processus Evolution des disques en sphéroides Evolution séculaire, Fusions de galaxies

