

Chaire Galaxies et Cosmologie

Noyaux actifs et quasars primordiaux

Françoise Combes

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Les grandes lignes

➔ Propriétés et démographie des trous noirs super-massifs Spin des trous noirs et efficacité de l'accrétion

→Croissance des trous noirs en symbiose avec la croissance des galaxies, formation d'étoiles et feedback

➔Comment former les trous noirs tôt dans l'Univers?
Formation des trous noirs de masse intermédiaire

Première image de l'ombre d'un trou noir

_____1 semaine-lumière

10 Avril 2019 EHT « Event Horizon Telescope »

Evénement multi-échelle

Rayonnement synchrotron, radio \rightarrow optique \rightarrow rayons X $M = 6 \ 10^9 M_{\odot}$

Virg(

M87

M86

Pourquoi pas l'image de notre trou noir?

R(ombre) ~ 2.5 fois R(horizon)

 $R_h = 2GM/c^2$

$$\label{eq:GMR} \begin{split} \Omega^2 &= GM/R^3 \varpropto 1/M^2 \\ T &= 2\pi/\Omega \propto M \end{split}$$

M87 est ~2000 fois plus loin Mais de masse ~2000 fois plus grande!

→Même taille angulaire ! Ombre du trou noir de 40 µas

Mais la période est bien plus petite $T \propto M$ 30min au lieu de 50 jours

D=8kpc

 $R=26\mu as = 0.2UA = 1.6min-lum$

R_{horiz}=0.08 UA, R_{ombre}=0.2UA

Observé en Avril 2017 aussi Mais beaucoup plus difficile à interpréter, calculer

Interférométrie: combiner les données enregistrées, avec une horloge atomique

Anneau de photons

Dernière orbite stable du gaz, et des photons

 $R_h = 2GM/c^2$

Détection du redshift gravitationnel, GRAVITY Coll 2018

1.7µ, NACO-VLT+Chandra, Eckart 2006

Masse des trous noirs et bulbes

A grande distance, résolution spatiale insuffisante Carte de réverbération, disque d'accrétion, taille de la BLR $L_{AGN} \propto R_{BLR}^2$

AGN: on observe ΔV , $L \rightarrow R_{BLR} \rightarrow M_{BH} \propto \Delta V^2 R_{BLR}$

Masses mesurées dynamiquement Vitesses à ~10 pc du trou noir Vitesses des étoiles ou du gaz

Rayon d'influence Ri du trou noir $GM_{BH}/Ri \sim \sigma^2 \sigma$ dispersion de vitesse

NGC 4258: masers H₂O

Jets radio

Greenhill et al 1995

Co-habitation trou noir - Galaxie

 $M_{BH} \sim 0.5\% M_{bulbe}$

Qu'en est-il au début de l'Univers?

A grand z, on ne pourra pas distinguer bulbe et disque,

Relation entre MBH et Masse dynamique ou masse stellaire à défaut

$M_{trou noir}$ – Masse bulbe (ou σ_v), à z~6

Trous noirs précoces?

QSO à z=6 →La masse des trous noirs est plus grande que prévue

→ Trajectoires durant les
 50 prochains Myr

Venemans 2016

→ ALMA avec [CII] peut donner la morphologie, et les inclinaisons

Ecarts à la relation M. -M_{bulbe} à z=0

 $M_{\text{bulbe}} \sim 700 \ M_{\bullet}$

Parfois, M_{BH} arrive un peu au-dessus, dans les amas de galaxies

Galaxies cannibales au centre

Avalent le gaz chaud avant la formation d'étoiles?

McConnell & Ma 2013

NGC 1277: un trou noir obèse?

Galaxies reliques Formation stellaire stoppée

Age des étoiles > 10Gyr

Uniquement dans les amas, galaxies massives

Loin du centre, de la galaxie cannibale *Trujillo et al 2014*

 $M_{BH} = M_{bul}/2!$ Vitesses stellaires + bulbe sous-estimé contesté par *Emsellem (2013)*

Pourquoi une relation entre trou noir et bulbe?

Compétition pour accréter le gaz -- ou bien rétroaction du trou noir (feedback)

Rayon de la sphère d'influence du trou noir $GM_{\bullet}/r_{infl} = \langle V^2 \rangle$ $r_{infl} = GM_{\bullet}/\langle V^2 \rangle$

Corrélation observée M $_{\bullet} \sim 0.002 M_{bulbe}$ Masse du bulbe M_{bulbe} ~5 <V²> R_{bulbe} /G

 $r_{infl} \sim 10^{-2} R_{bulbe}$

→ Volume d'influence = 10^{-6} Volume du bulbe

Difficile d'imaginer des échanges gravitationnels d'information

Comment le trou noir influence le bulbe?

Energie renvoyée lors de la croissance du trou noir $\varepsilon \sim 0.1$

 $L = \varepsilon \ dm_{acc}/dt \ c^2 \qquad \qquad M_{\bullet}/ \ M_{bulbe} = 0.5\%$ $dM_{\bullet}/dt = (1-\varepsilon) \ dm_{acc}/dt$

Energie de croissance $E_c = \epsilon /(1-\epsilon) M_{\bullet} c^2$ Energie gravitationnelle du bulbe $E_{bulbe} \sim M_{bulbe} <V^2>$

$$E_c/E_{bulbe} = \epsilon /(1-\epsilon) (M_{\bullet}/M_{bulbe}) c^2/\langle V^2 \rangle \sim 400 !$$

→ Le noyau actif déploie assez d'énergie pour détruire le bulbe

Même si une grande partie de cette énergie est perdue dans l'espace intergalactique, cela suffit pour modérer la croissance du bulbe

Outflow moléculaire: Mrk231, N4258...

Couplage entre AGN et disque maximisé par l'orientation aléatoire des disques d'accrétion, et donc des jets

Mrk 231

AGN et aussi starburst Gaz éjecté 10^7 - $10^8 M_{\odot}$ Flot de $700 M_{\odot}/yr$

Masse dynamique et formation d'étoiles

Masse dynamique dans 2kpc, très incertaine

La croissance des trous noirs avec le temps

Le taux de croissance des trous noirs, déduit de la Luminosité = taux de formation d'étoiles /3300

Madau & Dickinson 2014

Problème au début de la croissance

Le taux de croissance est proportionnel à la masse Pression de radiation Prad ~gravité $\propto M$ $L_{Edd} = 3.3 \times 10^{12} L_{\odot} (M/10^8 M_{\odot}) = 0.1 \text{ c}^2 \text{ dM/dt}$

 $dM/dt = M/τ → M = M_0 \exp(t/τ) τ = 45 Myr$ Si M₀ = 10M_☉ il faut 860Myr pour atteindre 2 10⁹M_☉ Mais de z=20 à z=7; t= 600Myr → 6 10⁶M_☉

Solutions possibles

(1) Il est possible d'accréter efficacement avec $150 L_{Edd}$ \rightarrow Outflows 15-30% croissance en $\tau/10$, ou $\tau/100!$

(2) Effondrement direct en trou noir Partir d'une graine plus massive $10^{5-6} M_{\odot}$

Jiang, Stone & Davis (2019)

Les quasars sont présents très tôt

Les quasars les plus lointains connus, avec telescopes au sol et HST SDSS 1148+3251 à **z=6.4**, J1120+0641 à **z=7.1**, et avec le JWST, **z=7.2** (*Fujimoti et al 2022*) **z=7.7** (*Furtak et al 2022*)

Quasar z=7.7 avec JWST

Amplifié par Abell2744 z=0.3 3 images, μ =7-8, M_{*}=10⁸ M_{\odot}, 200Myr Ultra-compact re < 30pc

QSO avec ALMA à z=6

Neeleman et al 2021

WISSH (WISE-SDSS-Hyper) Bischetti et al 2021

Observation [CII], H₂O avec ALMA à z=6: J2310, isolé

Jiang et al 2011

Tripodi et al 2022

Simulations

Hôte de Quasar $M_h = 5 \times 10^{12} M_{\odot}$

Dépend de la masse supposée des premières graines

> Descendant $M_h = 2 \times 10^{15} M_{\odot}$

Les Quasars se retrouvent dans les galaxies cD au centre des amas riches de galaxies

Croissance des trous noirs massifs

- La coalescence domine *dM/dt* pour z<1
- Des halos aux trous noirs massifs
 - Physique du gaz
 - chauffage refroidissement, formation d'étoiles
 - Accrétiondomine à grand z

Variations de la masse initiale

Calcul semi-analytique à partir d'Illustris original (fseed=1) Graine 2 $10^5 M_{\odot}$ Puis modifiant fseed

 λ gas spin: si trop élevé, la stabilité empêche l'effondrement, Z métallicité doit être faible

Même avec DCBH, le nombre de trous noirs massifs est bien inférieur à Illustris fseed=1

Selon fseed, le nombre de fusions de trous noirs varie de plus d'un ordre de grandeur LISA et les pulsars (IPTA) devront trancher!

deGraf & Sijacki 2020

DCBH = Direct Collapse Effondrement direct

Comment former des trous noirs très tôt?

- Reste des super-étoiles Pop III
 - Des étoiles super-massives, car sans métaux
 - $-~M_{*}{\sim}10^{3}\,M_{\odot}$, explosent en supernovae
 - \rightarrow M $_{\circ}$ ~10² M $_{\odot}$

- Effondrement direct (DCBH)
 - Nuages de gaz massifs et denses s'accumulent au centre
 - Effondrement en étoile supermassive qui ne s'arrête pas de croître, jusqu'à l'effondrement en trou noir
 - $M_* > 10^6 M_{\odot}$
 - M $_{\odot}$ >10⁴ M $_{\odot}$

Formation des quasars à z=6

Possible avec des graines de 100 M_{\odot}, sans super-Edd, mais alors il faut commencer à z=30

Scénarios possibles

Eviter l'effet de fronde Ejection du 3ème trou noir

Begelman & Rees, "Gravity's Fatal Attraction" 2nd Edition, 2010

Effet de fronde: éjection d'un 3^{ème} trou noir

Un des trous noirs (type 1, BLR) à V~ 1200km/s Type 2, obscurci, NLR: variabilité

Soit 3 trous noirs → ou fusion d'un trou noir binaire peut reculer (ondes GW asymétriques) Évènement de qques Myr

2 noyaux distants de 2.5kpc La NLR et BLR en Hβ sont distants de 1200km/s Rayons-X absorption/emission ← Profil P-Cygni

HST-ACS NW SE CID42: HST rayons X z=0.36 Civano et al 2010

Trou noir éjecté de sa galaxie

3C386: quasar au centre d'un amas à z=1 L'AGN radio-loud (BLR) est offset de 1", et 2000km/s par rapport au centre de la galaxie (NLR + CO)

Fusion de trous noirs→ émission GW anisotrope et recul

0

Formation des étoiles Pop III

Le gaz primordial se refroidit grâce à H_2 et forme des étoiles dans des **mini-halos**

Pas de métaux, T élevée

Devient opaque et ne se fragmente plus

Masse des étoiles qq 100 M_{\odot}

Feedback?

Abel et al 2002

Effets du feedback

Luo et al 2022

2.0 pc t ~ 0 yr t ~ 1500 yr t ~ 425 vr H Ionization Fraction 50.0 pc H Ionization Fraction 1000.0 pc H Ionization Fraction Accretion schock

Début à z=16, formation d'une étoile super-massive SMS, $10^5 M_{\odot}$, puis SMBH

• 0.1pc

Galaxie CR7 z=6.6: Ly α , Hell

Emetteur Lyα intense 10⁴⁴erg/s Raie HeII-1640Å

Nécessite des étoiles PopIII T= 100 000 K

Couleur très bleue de A (β =-2.3) B+C rouges, contiennent toute la masse

→La formation des étoiles PopIII migre du centre (BC) vers le bord (A)

Spectre ne favorise pas AGN dans CR7 Ou bien DCBH (mais pas de X, ni BLR)

→Une onde de PopIII se forme en B, puis ionise l'espace sur 1 Mpc, l'onde PopIII se propage en A, permet au photons UV d'échapper et de mieux réioniser (100Myr)

Sobral et al 2015

Galaxie CR7: evidence d'un DCBH?

Différence de vitesse entre Lya et HeII de 160km/s Emission de Lya sur 16kpc

Les étoiles PopIII ionisent, mais ne peuvent pas créer l'outflow, CR7 extrêment pauvre en métaux

→ Doit y avoir un noyau actif, et un trou noir massif obscurci (Compton-thick)

Le trou noir a un rayonnement plus dur, il ionise moins, Les photons sont donc piégés, et une coquille de gaz peut se propager \rightarrow outflow de 160km/s

Mvir ~ $10^9 M_{\odot}$

Smith et al 2016

CR7 et les premiers trous noirs

L'effondrement direct du gaz dans une étoile géante (ou amas) forme un trou noir de 10^{5-6} M_{\odot} \rightarrow Permet les SMBH de 10⁹⁻¹⁰ M_{\odot}

Smith et al 2017

Coquille de gaz

 \rightarrow outflow

100

200

Pop III

MBH

300

Formation d'une "QUASI-STAR"

Avec un trou noir à l'intérieur \rightarrow Dès que le taux d'accretion $1M_{\odot}/yr$, z~10-15 (PopIII z > 15-20) Une enveloppe convective, soutenue par la pression Température photosphérique décroît avec la croissance du trou noir

A T~ 5 10^8 K, neutrinos refroidissent, causant **l'effondrement direct** \rightarrow M_= 10^{4-5} M_ \odot

Volonteri & Begelman 2010

Si l'enveloppe est 10 fois M_{BH} , elle peut s'évaporer, ou bien, après 100 Myr, explose en supernova $M_{BH} = 10^{4-6} M_{\odot}$

Des trous noirs massifs partout?

Spirales

© Anglo-Australian Observator

Naines

Amas globulaires?

Peut-être

??

Masse des trous noirs prop. masse du bulbe qq trous noirs mais pas toujours

Les trous noirs les plus massifs $10^8-10^{10} M_{\odot}$

 $10^{6}-10^{8} \mathrm{M}_{\odot}$ 1

 $10^4 - 10^5 {\rm M}_{\odot}$

IMBH: est-ce qu'ils existent?

IMBH= Trous noirs de masse intermédiaire $10^2-10^5 M_{\odot}$ Doivent exister, si on ne peut pas **directement** former un trou de $10^6 M_{\odot}$

Ces trous noirs prennent un temps très long à tomber au centre $t_{fric} \propto 1/M_{BH}$

Amas globulaires (M15?, G1 dans M31)

AGN dans les galaxies naines: NGC 4395 (*Filippenko 03, Merritt 13*) $M_{BH} \sim 3 \ 10^5 M_{\odot}$ (Seyf 1, pas de bulbe) Faible ionisation, $L_{bol}/L_E = 2 \ 10^{-2}$ - 2 10^{-3}

pb des naines: amas stellaires nucléaires de ~ $10^6 M_{\odot}$

Dans M33 < 10^{3} M_{\odot}, facteur 10 en-dessous de M- σ

Chilingarian et al 2018

Relation M_{BH}-Mbulbe

305 candidats IMBH 3 $10^4 \text{ M}_{\odot} < \text{M}_{BH} < 2 \ 10^5 \text{M}_{\odot}$

10 ont des rayons X Possibles AGN

Suivent la relation M- σ

Chilingarian et al 2018

ULX Sources X Ultra-lumineuses

Depuis les années 1980, on détecte des sources de rayons X de luminosité exceptionnelle $L > 10^{39} \text{ erg/s} = L_{Edd} (M=10 \text{ M}_{\odot})$

Il en existe en moyenne une par galaxie: $10^{39} < L < 10^{41}$ erg/s

Autres possibilités: --une binaire X avec un émission concentrée dans un faisceau vers l'observateur

Bachetti et al 2014: pulsar dans M82 --Luminosité supérieure à L_{Edd}

La plupart observées avec des pulsations \rightarrow pulsars, étoiles à neutron rayonnant à 100 L_{Edd}

Accrétion sur une étoile à neutron R $m' \quad \omega^2 = GM/a^3$ Exemple de la Lune

δ Positif \rightarrow m' est accélérée

Observer les pulses nécessite une coïncidence entre Rm et Rsph (sphérisation), où la pression de radiation éjecte le gaz

Pour R < Rm le champ magnétique entraîne les particules le long des lignes de champ

a

→Il se peut qu'une grande majorité des ULX soit des pulsars

Il faut que la matière s'approche à une distance telle **que** $\omega > \Omega$

Sinon la matière est repoussée par les couples de marée → Req lorsque ω=Ω Req~Rm

King & Lasota 2019

$log(M_{\rm BH}/M_{\odot})$ $R_e \propto M_*^{1/2}$ 0 log(R_e/kpc) 83 All (Dynamical M_{BH}; vdB16) 0 Dwarfs (Broadline AGN M_{BH}; MN21) cEs (this work) UCDs (this work) 12 10 11 9 $log(M_*/M_{\odot})$

UCD $10^{6-8} M_{\odot}$ CE $10^{8-10} M_{\odot}$ La luminosité X: certains sont

937 naines: 580 UCD et 357 cE

Trous noirs dans les galaxies naines?

des candidats AGN, 1.2% Une dizaine

Bien plus faible que les 10% des galaxies plus massives

Calcul de M_{BH}: dynamique? Mais aussi M/L croît vers le centre

→ Plan fondamental (R_e , M_* , M_{BH})

Ferré-Mateu et al 2021

IMBH ou bien SMBH ?

Ferré-Mateu et al 2021

Les trous noirs sont plus massifs qu'attendu → Ces UCD/cE pourraient provenir de galaxies plus massives qui ont été épluchées dans les amas de galaxies

HLX-1: le premier IMBH?

ULX dans ESO 243–49, D=95 Mpc, 10^{42} ergs/s, 10^{2} - 10^{5} M_{\odot} BH *Farell et al 2009, Webb et al 2010, Godet et al 2009*

Soria et al 2013: Ha même redshift, associée à ESO243-49

Variation 4-8 semaines Disque d'accrétion $R \sim 1AU$, e=0.95 Etoile compagnon perd de la masse au péricentre $10^{-5} M_{\odot}$ /an pourrait durer 0.1 - 1 MyrDans un amas nucléaire?

Sursauts X Peut-être dûs à une étoile en orbite autour du IMBH Godet et al 2014

Formation d'étoiles dans ESO243-49 (UV à 2000 Ang, asymétrique)

Hypothèse d'une naine épluchée de son enveloppe,

Ou bien trou noir éjecté?

$$\begin{split} \mathbf{M}_{\rm BH} &= 2.8 \ 10^6 \mathbf{M}_{\odot} \\ Cseh \ et \ al \ 2015 \end{split}$$

 M_{BH} (ESO 243-49)=10⁷⁻⁸ M_{\odot}

La formation d'étoiles est-elle associée à HLX1 ou juste en projection?

Les mécanismes de formation des IMBH

Trous noirs primordiaux? $(10^{-35}s)$

→ Amas denses d'étoiles: amas globulaires

Etoiles supermassives de Pop III
Accrétion de gaz, d'étoiles, comme les supermassifs

Effondrement du cœur d'un amas globulaire

Relaxation à deux corps $t_{relax} = 0.34 \frac{\sigma^3}{G^2 m \rho \ln \Lambda}$

Le transfert d'énergie du centre vers le bord produit l'effondrement du cœur, en 10 t_{relax}

Au centre, les collisions entre étoiles produisent un emballement, et la formation d'un trou noir \rightarrow Core Collapse

Formation des IMBH: GW190521

 $65 + 85 \text{ M}_{\odot} \rightarrow 142 \text{ M}_{\odot}$

Instabilité de création de paires e⁻ e⁺ Entre 60 et 130 M_o →Trous noirs de masse intermédiaire (IMBH) Rare <0.08 /Gpc³/yr

Amas globulaire

Amas d'étoiles

Evolution dynamique → collapse du cœur, capacité négative

Mais, les binaires réchauffent, et empêchent le collapse

Simulations: plus d'équipartition,
les objets massifs tombent au centre
→ effondrement du coeur

Il faut que Trelax < 100 Myr, boule de neige

Amas globulaires: sources possibles de IMBH: GW190521 Mais certains amas N6397: aucune évidence

NGC6397: amas globulaire: aucune évidence de trou noir

Vitral & Mamon 2021

CUO Central Unresolved Object

Comment détecter les IMBH?

Dynamique → perturbations de vitesses (galaxies naines, faible luminosité)

Accrétion: Rayons X → ULX

Lentilles gravitationnelles (micro-lensing MACHOS, EROS, LMC)

Progéniteurs, et produits → métaux, lumière de fond

Ondes gravitationnelles → LIGO-Virgo /LISA

Accrétion de gaz? Ségrégation?

Pas de gaz détecté Si jamais il existe du gaz → inefficace pour rayonner AGN en Radio, rayons X: limites supérieures Densité centrale en r^{-1.75}

Ségrégation en masse des étoiles un IMBH diffuserait les étoiles et supprimerait la segrégation Simulations avec ou sans IMBH

→ Observations de N2298: segrégation $M_{BH}/M_{amas} < 1\%$

Pasquato et al 2009

Ségrégation: les étoiles massives tombent au centre Equipartition mv²

Détection par la dynamique

Sphère d'influence du trou noir r < 1"

Amas G1 dans Andromède (*Gebhardt 2005*) Accroissement de la dispersion $\rightarrow M_{BH} = 1.8 \ 10^4 M_{\odot}$ Possible noyau d'une galaxie naine tronquée

Amas M15 dans notre Galaxie? Pas de rayons-X, pas de radio, forte rotation au centre ? **Omega-Cen**: noyau de galaxie détruite? Noyola et al 2008

Pas d'évidence de IMBH dans les amas
 GW190521: formation dans un amas d'étoiles ou disque nucléaire?

Résumé

➔ Trou noir supermassif (10⁶-10⁹M_☉) dans chaque galaxie croissent en symbiose

- ➔ Comment se forment les trous noirs super-massifs?
- -- Très tôt, très vite, z=6 T < 1 Gyr
- -- Effondrement direct de gaz (DCBH), ou bien quasi-star (PopIII), ou amas d'étoiles
- ➔On recherche activement les trous noirs de masse intermédiaire!

