	Observatoire		astronomique
		de Strasbourg ObAS	

Les galaxies de la séquence principale au cours du temps

Jonathan Freundlich

Tout commence par un univers très homogène, il y a 13.7 milliards d'années...

Inhomogénéités de l'ordre de $10^{-5} = 1/100\ 000$

...pour aboutir à une grande diversité de galaxies aujourd'hui

La séquence de Hubble

- ✦ E: elliptiques
- ♦ S: spirales (éventuellement avec barres et bulbes)
- ◆ S0: lenticulaires
- ✦ Irrégulières

Expansion accélérée par l'énergie noire

Illustris simulation

La formation des étoiles

Les étoiles se forment dans des nuages de gaz moléculaires géants du milieu interstellaire

- ◆ Surtout composés d'hydrogène, avec des masses ~10⁵-10⁷ M_☉, des tailles de quelques dizaines de parsecs
- Effondrement gravitationnel, fragmentation en coeurs denses
- ✦ Réactions de fusion nucléaire et nucléosynthèse stellaire

(1 parsec = 3.09 10¹⁶ m)

La formation des étoiles

 N_{H2} (cm⁻²)

Les nuages moléculaires sont fragmentés en un réseau de structures filamentaires

- ✦ Milieu interstellaire turbulent, champs magnétiques, instabilités gravitationnelles
- Effondrement gravitationnel, fragmentation en coeurs denses
- ◆ La plupart (75%) des coeurs pré-stellaires se trouvent le long des filaments

 $(1 \text{ parsec} = 3.09 \ 10^{16} \text{ m})$

P. André & D. Arzoumanian, Konyves et al. (2015)

2 10²¹

3 10²¹

10²¹

La formation des étoiles

Guszejnov et al. (2020) lien video : <u>https://mikegrudic.github.io/movies.html</u>

L'évolution de la formation des étoiles

Aujourd'hui (redshift z=0) SFR ~ 3 M_o/year

Il y a 8 milliards d'années (z=1) SFR ~ 50 M_☉/year

L'évolution de la formation des étoiles

Densité du taux de formation d'étoiles (par Mpc³)

La séquence principale

Taux de formation d'étoiles (M_☉/an)

- ✦ Près de 90% de la formation des étoiles des 10 derniers milliards d'années, depuis z~2
- Le SFR à sur la séquence principale a diminué d'un facteur \sim 20 depuis z \sim 2
- ✦ Faible dispersion : évolution due à des processus continues plutôt que des fusions violentes
- ✦ Peu de galaxies entre les deux séquences : passage vers la séquence rouge rapide

La séquence principale

- ✦ Près de 90% de la formation des étoiles des 10 derniers milliards d'années, depuis z~2
- ✦ Le SFR à sur la séquence principale a diminué d'un facteur ~20 depuis z~2
- ✦ Faible dispersion : évolution due à des processus continues plutôt que des fusions violentes
- Peu de galaxies entre les deux séquences : passage vers la séquence rouge rapide

La séquence principale

13/32

SFR

"- X-

H'HS

La croissance des galaxies

Dekel et al., dont Freundlich (2009)

Le gaz dans les galaxies

$$\dot{M}_{\rm gaz} = \dot{M}_{\rm gaz,in} - \dot{M}_{\star} - \eta \dot{M}_{\star} + R \dot{M}_{\star}$$

Accretion du gaz Formation des étoiles Ejection du gaz Recyclage

Tumlinson, Peebles & Werk (2017)

Lilly et al. (2013)

Un modèle pour expliquer la séquence principale

 $\dot{M}_{\rm gaz} = \dot{M}_{\rm gaz,in} - \dot{M}_{\star} - \eta \dot{M}_{\star} + R \dot{M}_{\star}$

L'accrétion du gaz

 $\dot{M}_{\rm gaz,in}$ proportionnel à l'accrétion cosmologique (baryons et matière noire) Seuils : pas d'accrétion quand le halo est trop petit ou trop grand $\dot{M}_{\rm gaz,in} \propto \epsilon_{\rm in} f_{\rm b} \dot{M}_{\rm halo}$ avec $\dot{M}_{\rm halo} \propto M_{\rm halo}^{1.1} (1+z)^{2.2}$ (Neistein & Dekel 08)

La formation des étoiles

 $\dot{M}_{\star} = \text{SFR}$ proportionnel à la quantité de gaz dans la galaxie

 $\dot{M}_{\star} = \text{SFR} = \epsilon_{\text{SFR}} M_{\text{gas}} / t_{\text{ff}}$ avec $\epsilon_{\text{SFR}} \sim 0.02$ et $t_{\text{ff}} \propto (1 + z)^{-1.5}$ le temps dynamique

Ejection et recyclage du gaz

 $\eta \dot{M}_{\star}$ et $R \dot{M}_{\star}$ proportionnels au taux de formation d'étoiles

Equilibre de la quantité de gaz $\dot{M}_{gas} = 0$

 $\dot{M}_{\text{gas}} = \dot{M}_{\text{gas,in}} - \frac{\epsilon_{\text{SFR}}(1 + \eta - K)}{t_{\text{ff}}} M_{\text{gas}} = 0$

Bouché et al. (2010)

Un modèle pour expliquer la séquence principale

$$\dot{M}_{\rm gaz} = \dot{M}_{\rm gaz,in} - \dot{M}_{\star} - \eta \dot{M}_{\star} + R \dot{M}_{\star}$$

Des prédictions en accord avec les observations :

21/32

Taux de formation d'étoiles et gaz moléculaire

Leroy et al. (2008)

La relation de Schmidt-Kennicutt

Densité surfacique du taux de formation d'étoiles

La relation de Schmidt-Kennicutt

24/32

Les relevés PHIBSS de l'IRAM

- ◆ Plus de la séquence principal
- ◆ Observations du gaz moléculaire CO (monoscele de carbone)
- ◆ Couvrent la mise en place (z=2-) (z=1-1.6) et la diminution (z=0.5₅0.8) de la formation des étoiles

Les relevés PHIBSS de l'IRAM IRAM Plateau de Bure HIgh-z Blue Sequence CO Surveys

26/32

Gaz et temps de déplétion dans la séquence principale

Interpretation en termes de contraction/consommation/ réapprovisionnement du gaz

Contraction du gaz

Due à un fort apport en gaz ou à une fusion (majeure ou mineure)

Blue Nugget

Gaz concentré au centre de la galaxie, augmentation du taux de formation d'étoiles, faible temps de déplétion, grande fraction de gaz

Interpretation en termes de contraction/consommation/ réapprovisionnement du gaz

Dekel et al., dont Freundlich (2020a,b), Lapiner, Dekel, Freundlich et al. (2023)

L'arrêt de la formation des étoiles au dessus d'une certaine masse

Masse du halo de matière noire

Dekel & Birnboim (2006), Ocvirk et al. (2008), Dekel et al., dont Freundlich (2009)

Les galaxies de la séquence principale^rsont pour la plupart des **disques en rotation**

La formation des étoiles dans la séquence principale implique un **apport régulier en gaz** le long de filaments de gaz froid

On peut expliquer la séquence principale par un **modèle d'équilibre du gaz,** à partir duquel se forment les étoiles

Le taux de formation d'étoiles est proportionnel à la masse de **gaz moléculaire**

L'évolution du taux de formation d'étoiles dans la séquence principale suit celle de la **fraction de gaz moléculaire**

L'**efficacité de la formation** des étoiles n'est que légèrement plus importante il y a 10 milliards d'années

Les galaxies de la séquence principale pourraient passer par des **cycles de contraction**, **consommation** et **réapprovisionnement** en gaz

ass inflow into halo gas inflow into galaxy system yatable gas rescurit formator bogslived stars