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Quel code neural pour les représentations mentales?
Vector codes and the geometry of mental representations
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Cours n°3

Exploiter la factorisation et les sous-espaces vectoriels
pour coder I'information et communiquer entre aires cérébrales

Course 3

Exploiting factorization and vector subspaces
for information encoding and inter-areal communication



The concept of « neural manifold »

Ebitz, R. B., & Hayden, B. Y. (2021). The population doctrine in cognitive neuroscience. Neuron. https://doi.org/10.1016/j.neuron.2021.07.011

“Because activity of neurons tends to be correlated with each other, : }
because the wiring between neurons constrains what patterns of
neural activity are possible, neural states often only vary along a small
number of dimensions in the neural subspace. -> excitation

—e inhibition

To put it another way, there is a lot of white space in our state space
diagrams: neural activity tends to occupy fewer neural states than it

would if each neuron made an independent, random contribution to
population activity. O on manifold

off manifold ” pool 2

%

The part of the neural state space that contains the states that we
observe is called the neural manifold”
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The brain seems to act as an auto-encoder that compresses incoming information

Higgins, I., Chang, L., Langston, V., Hassabis, D., Summerfield, C., Tsao, D., & Botvinick, M. (2021). Unsupervised deep learning identifies semantic
disentanglement in single inferotemporal face patch neurons. Nature Communications, 12(1), 6456. https://doi.org/10.1038/s41467-021-26751-5

An auto-encoder is an artificial neural network that
performs dimensionality reduction.

It is similar in logic to principal component analysis,
but uses several non-linear stages to discover a
multidimensional compressed representation that
suffices to reconstruct the input.

A beta variational autoencoder (Beta-VAE) has an
additional term that forces individual representational
units to encode semantically meaningful dimensions.

The compressed, low-dimensional representation
learned by a Beta-VAE provide an excellent fit to the
neurons recording by Doris Tsao.

e Encoder network: It translates the original high-dimension input into the latent low-
dimensional code. The input size is larger than the output size.
e Decoder network: The decoder network recovers the data from the code, likely with larger

and larger output layers.
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An compressed low dimensional
representation of the input.

Fig. 1. lllustration of autoencoder model architecture.

The encoder network essentially accomplishes the dimensionality reduction, just like how we

would use Principal Component Analysis (PCA) or Matrix Factorization (MF) for. In addition, the



A few questions raised by the audience

1. Isn’t is surprising that monkey face neurons respond to human faces?

The monkeys that were tested have considerable experience with human faces.

- Is there an innate component to face recognition ? Yes: Conspec/Conlearn + responses to faces in newborns.
2. Do face vectors activate only when we perceive a face, or also when we think of a face, or imagine one?
Imagination has been studied in humans

(e.g. by Nancy Kanwisher) and clearly suffices
to activate the FFA.

Cf Arcaro, M. J., Ponce, C., & Livingstone, M.
(2020). The neurons that mistook a hat for a
face. Elife, 9, e53798.

Also the FFA activity correlates with
subjective perception, for instance during
binocular rivalry.
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A mini-glossary of some key concepts of vector spaces

Concept Definition

Vector space A vector space is a set of “vectors” with two operations:
- Addition of two vectors to yield a third one
- Multiplication by a scalar (a number)

See https://en.wikipedia.org/wiki/Vector space
for a full list of mathematical requirements

Vector subspace Each vector can be expressed by a linear combination of

base vectors:
n

‘_/) = Z a; ﬁi

R i=1
A subset of vectors v;,i = 1 ...m define, by their linear
combinations, a vector subspace of the original space.

Dimension The number of base vectors in the main space (n).
It can contain a subspace of lower dimension (m).
For a manifold, intrinsic dimensionality is the number of
coordinates needed to specify a position
(e.g. 2 for a torus or a folded surface)

Orthogonality  Vector spaces can be endowed with an inner product
(dot product or
scalar product)

(x,y)=%x-y=zy1 + - +Toln

x -y = cos(£(x,y)) - [x] - |y]

Application in neuroscience

Neural activity of n neurons
= vector in n dimensions

- Addition = superposition of
two neural assemblies
Scalar multiplication =
amplification of activity

- Average = prototype

A vector subspace can be used
to encode

- a subset of the total
information (e.g. just color)

- only the information that will
be communicated downstream

n = total number of neurons in
the population considered

m = size of a given coding
subspace

Independent encoding and
decoding of multiple
dimensions of a given stimulus
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Vector addition and scalar
multiplication: a vector v (blue) is
added to another vector w (red,
upper illustration). Below, w is
stretched by a factor of 2, yielding
the sum v + 2w.
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Measuring the dimensionality of a neural representation

Lehky, S. R., Sereno, M. E., & Sereno, A. B. (2013). Population Coding and the Labeling Problem : Extrinsic Versus Intrinsic Representations. Neural
Computation, 25(9), 2235-2264. https://doi.org/10.1162/NECO a 00486

Elmoznino, E., & Bonner, M. F. (2022). High-performing neural network models of visual cortex benefit from high latent dimensionality (p.
2022.07.13.499969). bioRxiv. https://doi.org/10.1101/2022.07.13.499969

The responses of multiple neurons are generally not independent of each other.

- The multi-neuron data “lives” in a smaller space than the full n-dimensional space of n neurons.
Here for instance:

- The original neural space is 3-dimensional

- The data occupy a plane in that space (global dimension D=2)

- The data actually lie on a 1-D manifold (local dimension D=1)

Various techniques are available d. 1D manifold embedded in 3D space D. Extracted 1D representation
to “unfold” a manifold.
E.g. Multidimensional scaling,

Isomap, UMAP, tSNE...
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Grid cells in entorhinal cortex

Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005).
Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052),
801-806. https://doi.org/10.1038/nature03721




From single grid cells to ensemble coding : A toroidal neural manifold

Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N. A., Dunn, B. A., Moser, M.-B., & Moser, E. I. (2022). Toroidal topology of population activity in grid cells. Nature,
602(7895), 123-128. https://doi.org/10.1038/s41586-021-04268-7

This paper is designed as a test of the “attractor network” hypothesis:

Recording from entorhinal cortex using NeuroPixels.

Massive increase in the number of simultaneously recorded cells. “The invariance of the correlation structure of this population code across

Here, 2460 cells of which 483 are grid cells, of which 149 belong environments and behavioural states, independent of specific sensory inputs,

has pointed to intrinsic, recurrently connected continuous attractor networks (CANs)

as a possible substrate of the grid pattern”

-'-'n.l"-!u- Dimensionality reduction: 3-dimensional embedding of the data, using a 6-dimensional

PCA followed by UMAP (uniform manifold approximation and projection).

to the same “module” in entorhinal cortex.

Result : a torus is visible with the naked eye!

Trajectory
time (s)




From single grid cells to ensemble coding : A toroidal neural manifold

Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N. A., Dunn, B. A., Moser, M.-B., & Moser, E. |. (2022). Toroidal topology of population activity in grid cells. Nature,
602(7895), 123-128. https://doi.org/10.1038/s41586-021-04268-7

Firing of 3 grid cells, plotted on the torus — here when the animal is navigating a square room




Persistent (co)homology analysis can determine the shape of a neural manifold

Kang, L., Xu, B., & Morozov, D. (2021). Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System. Frontiers in Computational Neuroscience,
15. https://www.frontiersin.org/articles/10.3389/fncom.2021.616748
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Persistent (co)homology analysis can determine the shape of a neural manifold

Kang, L., Xu, B., & Morozov, D. (2021). Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System. Frontiers in Computational Neuroscience,
15. https://www.frontiersin.org/articles/10.3389/fncom.2021.616748
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From single grid cells to ensemble coding : A toroidal neural manifold

Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N. A., Dunn, B. A., Moser, M.-B., & Moser, E. |. (2022). Toroidal topology of population activity in grid cells. Nature,

602(7895), 123-128. https://doi.org/10.1038/s41586-021-04268-7

The torus interpretation can be confirmed by “persistent
cohomology” analysis — “a method for computing
topological features of a space at different spatial
resolutions” (Wikipedia):

R1 OF R2 OF R3 OF

E— = - -
E —a— g
= _
£ E |2
H .l' 1
t._ | :
F_= N k - v
- L] 5 *
= " T
0

17 0 20 0
Radius Radius Radius

The cell firing is better predicted by its location on the torus

than by the animal’s physical location.

It is even present during sleep.

“the population activity in an individual grid-cell module

resides on a toroidal manifold

- independently of behavioural tasks and states

- and decoupled from the position of the animal in
physical space.”

The invariance of the correlation structure of this

population code suggest an internal attractor.
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Firing of 3 grid cells, plotted on the torus — here when the animal is navigating a square room
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Familiar (A)

Novel (B)

Object-vector cells: a very different form of spatial representation

Hgydal, @. A., Skytgen, E. R., Andersson, S. O., Moser, M.-B., & Moser, E. |. (2019). Object-vector coding in the medial entorhinal cortex. Nature, 568(7752), Art. 7752.

https://doi.org/10.1038/s41586-019-1077-7

These cells fire only when the animal is at a certain
distance and position relative to an object.

Unlike grid cells, they shift their firing when the
object moves, but the room stays the same.

And conversely, they keep their object-vector
properties regardless of the room or the identity of
the object.
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Why the separation of grid cells and object vector cells?
Non-negative factorization can predict it

Whittington, J. C. R., Dorrell, W., Ganguli, S., & Behrens, T. E. J. (2022). Disentangling with
Biological Constraints : A Theory of Functional Cell Types (arXiv:2210.01768).

The authors train a network with a non-negative constraint (ReLu units) to perform a

spatial navigation task with movable objects. Task = predict where the animal is Internal representation
(space), whether it will hit an object (object), and what its next action will be. 00000000
Result of the simulation : the network units separate into two “modules”: / l \g

- Units that encode spatial position 000 000 000
- Units that encode position relative to the objects Space Object Action
These separate modules do not appear if the units are not Relu, or if objects are fixed

in space.

Real neurons

Real grid cells Real OVCS

Simulation

Task 2 Task 1 Task 2

Cell #1

Cell #2




Can we predict when dimensions stay entangled, and when they don’t?

Whittington, J. C. R., Dorrell, W., Ganguli, S., & Behrens, T. E. J. (2022). Disentangling with Biological Constraints : A Theory of Functional Cell Types
(arXiv:2210.01768). arXiv. https://doi.org/10.48550/arXiv.2210.01768

“we mathematically prove that simple biological

constraints on neurons, namely nonnegativity and

energy efficiency in both activity and weights,
promote such sought after disentangled
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representations by enforcing neurons to become
selective for single factors of task variation.” Make non-negative e
“We demonstrate these constraints lead to peaRey Nediha' Neuron 1
disentangling in a variety of tasks and
architectures, including variational autoencoders. ” b ¥ ¥

Figure 1: Proof intuition. Two uniformly distributed independent factors represented with two
entangled neurons (left). The representation can be made nonnegative at the expense of activity

Example: Training of a beta-VAE on the Shape3D
data set : individual units capture unique
dimensions of variation in the data set.

https://twitter.com/i/status/1377770627099987997




Factorized represe

ntations and vector arithmetic

Eslami, S. M. A., Jimenez Rezende, D., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruderman, A., Rusu, A. A., Danihelka, I., Gregor, K., Reichert, D. P., Buesing, L.,
Weber, T., Vinyals, O., Rosenbaum, D., Rabinowitz, N., King, H., Hillier, C., Botvinick, M., ... Hassabis, D. (2018). Neural scene representation and rendering.
Science, 360(6394), 1204-1210. https://doi.org/10.1126/science.aar6170
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Measuring the effective dimensionality of a neural representation
Lehky, S. R., Sereno, M. E., & Sereno, A. B. (2013). Population Coding and the Labeling Problem : Extrinsic Versus Intrinsic Representations. Neural
Computation, 25(9), 2235-2264. https://doi.org/10.1162/NECO a 00486

Elmoznino, E., & Bonner, M. F. (2022). High-performing neural network models of visual cortex benefit from high latent dimensionality (p.
2022.07.13.499969). bioRxiv. https://doi.org/10.1101/2022.07.13.499969

The “effective dimensionality” of a given neural representation (or CNN layer) can be measured by how fast its
eigenvalues decrease.

Intuition behind this formula :

Imagine that m values are large (L), and the others negligibly small. Then ED = (m L)? / (m L2) = m.
Thus the equation approximates the number of values that are larger than the others.

Neural activity evoked by
a number of stimuli

PCA

Effective dimensionality

Do A)?
S A




Measuring the effective dimensionality of a neural representation

Elmoznino, E., & Bonner, M. F. (2022). High-performing neural network models of visual cortex benefit from high latent dimensionality (p.
2022.07.13.499969). bioRxiv. https://doi.org/10.1101/2022.07.13.499969

Measure the “effective dimensionality” of artificial a Stimull Mulpie DNNS Layer activations
neural networks (c,d) and compare it with how well they i
predict brain activit (b).

Networks with higher effective dimensionality are better
predictors in forward modelling of IT activity.

This is also true when fitting a forward model for high-
resolution fMRI data:
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Training increases the effective dimensionality of neural representations in CNNs

Elmoznino, E., & Bonner, M. F. (2022). High-performing neural network models of visual cortex benefit from high latent dimensionality (p.
2022.07.13.499969). bioRxiv. https://doi.org/10.1101/2022.07.13.499969

Effective dimensionality is primarily driven by learning:

It is low and decreases across successive layers for
untrained networks.

It is higher and increases across successive layers when
the same network is trained.

Note : dimensionality is computed after the max pooling
operation of the CNN, otherwise dimensionality would
be exceedingly large at lower layers.
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Does dimensionality only increase, or does it also decrease (compression) ?

Recanatesi, S., Farrell, M., Advani, M., Moore, T., Lajoie, G., & Shea-Brown, E. (2019). Dimensionality compression and expansion in Deep Neural
Networks (arXiv:1906.00443). arXiv. https://doi.org/10.48550/arXiv.1906.00443

“we apply state-of-the-art techniques for intrinsic dimensionality estimation to show that neural networks learn low-
dimensional manifolds in two phases: first, dimensionality expansion driven by feature generation in initial layers, and
second, dimensionality compression driven by the selection of task-relevant features in later layers.”

This conclusion seems radically different from the above — but this is because they measure

dimensionality differently: they attempt to estimate the “local” dimension of the manifold.

Manifold unfolding

~ :ﬁ?@’fq

5 Nearest Neighbours graph

Unfolded manifold graph

Global dimension (3) vs local dimension (2)
These dimensions can be estimated by evaluating the
growth, as a function of a local radius r, of the
number of neighboring points

(intuitively, for instance, this number should grow as
r2 for a surface)

Findings :

Global dimension increases

massively with training, as found

by EImoznino et al.

Local dimension, however,
increases and then decreases:

Expansion of the number of
encoding features
Compression to a small
number of task-relevant
features.
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Fast learning of object categories

An example of very fast induction or « few-shot learning » (Tenenbaum, Science, 2011):
The objects in red are « tufa ».




This paradigm is well captured by Bayesian induction : Bayes rule automatically selects the
smallest branch of the similarity tree that is compatible with all observations.

But how do subjects encode images in such a space?




A theory of dimensionality and concept learning

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800

Here, the authors propose a general theory of “few shot learning” for image recognition.

1. Prior training has resulted in a tuned high-dimensional vector space for images, which
can be used to perform one-shot or few-shot learning of new concepts.

2. Each example image (possibly 1) is encoded in this high-dimensional vector space

3. The barycenter of examples defines a prototypical vector for the new concept.

4. Classification of new images, or discrimination between two possibilities, is based on
the nearest prototype
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A theory of dimensionality and concept learning

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119.
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Empirical explorations of this scheme: 1 wem Trained ResNet50 (mean: 98%)
- Train networks on ImageNet (1000 image categories) 40  mmm Untrained ResNet50 (mean: 56%) $ g5
- Test on binary classification of all possible pairs of 1000 wum Pixel layer (mean: 66%) =
new images from ImageNet21k = g
Results: S & %%
With just 5 examples, prototype learning manages to §
accurately classify new concepts, with an average of 98.6% -
correct ! (1-shot learning = 92 %) -
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Geometry explains why some concepts are easier to discriminate than others

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry 1 ” Axg ||2 s (RER;Q - 1)/m
underlies few-shot concept learning. PNAS, 119(43), e2200800119. SNRa = 5
—1
JDatm+ | Azo - Ul2/m+ Ao - U, 2
In this vector space, the images for each 5 b ¢ a4
new Concept trace a man|fo|d’ Wh|Ch the Slgnal Bias Dimension Signal'nOise overlap
authors approximate with a high- T—

dimensional ellipsoid.

Four sources of errors in classification
(m is number of training examples):

a. The pairwise separation between the
two manifolds (signal) may be weak
relative to the noise level.

LowD

b. One manifold may have a larger > Sg‘;;}l"!r_’ ‘—C"I;":S‘i’%fe
variance than the other, resulting in @  @Simulation = Theory g h

generalization errors and even worse-

than chance performance. . 03 — =i (sl '-—M"'
c. The dimensionality of the manifolds % — m=5 ™ —m=1 —m=5
may vary — and here, surprisingly, 5 024 =2} 024 —m=2 —m=eo
performance is better in higher 5

dimensions (blessing of dimensionality). € . | - o~

d. Noise may vary in the same direction é 0.061

as the signal (the centroid separation - _ —m— .

vector). Note that here, the asymptote 0505075 10 0 Too % 2o ob ob1  obz
does not go to zero... unless a more Signal Bias Dimension Signal-noise overlap

optimal classifier is used. The dark line shows a fit of the author’s equation to simulations of ellipsoid categories



Vendredi 6 Janvier

conclusions COURS Vectegrs neuronaux ou cellules grar.ldl—mére N
les représentations mentales sont-elles localisees ou distribuees ?
SEMINAIRE : Lintelligence artificielle peut-elle modéliser le langage

Considering neural responses as a manifold, a subspace within mathématique ? — Francois Charton (FAIR Paris)

the huge space of potential neural responses, leads to \Vandradl 15 Jarwicr

interesting analyses: COURS : Géométrie des représentations visuelles : chaque visage
- What is the dimensionality and topology of the neural est un'vecteur

. . SEMINAIRE : Commonsense Physical Reasoning in man and machine —
manifold ? E.g. a torus for grid cells Ernest Davis (NYVU, par zoom)

- When are neural assemblies disentangled? During data Ve 20 Jariiiar

compression, it may be advantageous to assign distinct COURS: Exploiter la factorisation et les sous-espaces vectoriels pour

neurons to distinct dimensions, e.g. grid cells versus object coder linformation et communiquer entre aires ceérebrales
SEMINAIRE : Number symbols in the brain and mind — Daniel Ansari

cells (University of Ontario)
) ) . Vendredi 27 Janvier
In the case of faces or objects in IT cortex, the vector view COURS : Comment prendre une décision ou faire des calculs avec
leads to the following conclusions des vecteurs dynamiques?
) T . . . . SEMINAIRE : Comment se développent les réseaux cérébraux
A low-dimensional representatlo.n emerges with learning associés aux concepts mathématiques ? — Marie Amalric (Université
(e.g. 50 for faces): data compression de Trento, Italie)
- It can support very fast encoding of new categories Vendredi 3 Février
- The decision boundaries can explain the psychophysics of COURS : La représentation vectorielle des mots et des concepts

SEMINAIRE : Les succes et les nouveaux défis de l'intelligence

conscious and unconscious decision making artificielle en mathématiques — Léon Bottou (FAIR, New York)

Vendredi 10 Février

Next week COURS : La représentation vectorielle du langage : Comment
- Dynamics of decision making in vector spaces représenter une phrase ?
- How to use vector spaces to communicate between areas SEMINAIRE : Intuitions of mathematics and their refinement with age

and education — Manuela Piazza (Université de Trento, ltalie)



