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Ebitz, R. B., & Hayden, B. Y. (2021). The population doctrine in cognitive neuroscience. Neuron. https://doi.org/10.1016/j.neuron.2021.07.011

The concept of « neural manifold »

“Because activity of neurons tends to be correlated with each other, 
because the wiring between neurons constrains what patterns of 
neural activity are possible, neural states often only vary along a small 
number of dimensions in the neural subspace. 

To put it another way, there is a lot of white space in our state space 
diagrams: neural activity tends to occupy fewer neural states than it 
would if each neuron made an independent, random contribution to 
population activity. 

The part of the neural state space that contains the states that we 
observe is called the neural manifold”
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The neural representation of faces 
in inferotemporal face patches
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each face is a vector

each neuron has a preferred axis
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The brain seems to act as an auto-encoder that compresses incoming information

An auto-encoder is an artificial neural network that 
performs dimensionality reduction.

It is similar in logic to principal component analysis, 
but uses several non-linear stages to discover a 
multidimensional compressed representation that 
suffices to reconstruct the input.
A beta variational autoencoder (Beta-VAE) has an 
additional term that forces individual representational 
units to encode semantically meaningful dimensions.

The compressed, low-dimensional representation 
learned by a Beta-VAE provide an excellent fit to the 
neurons recording by Doris Tsao.

Higgins, I., Chang, L., Langston, V., Hassabis, D., Summerfield, C., Tsao, D., & Botvinick, M. (2021). Unsupervised deep learning identifies semantic 
disentanglement in single inferotemporal face patch neurons. Nature Communications, 12(1), 6456. https://doi.org/10.1038/s41467-021-26751-5



A few questions raised by the audience

1. Isn’t is surprising that monkey face neurons respond to human faces?
The monkeys that were tested have considerable experience with human faces.
- Is there an innate component to face recognition ? Yes: Conspec/Conlearn + responses to faces in newborns.
2. Do face vectors activate only when we perceive a face, or also when we think of a face, or imagine one?

Imagination has been studied in humans
(e.g. by Nancy Kanwisher) and clearly suffices
to activate the FFA.

Cf Arcaro, M. J., Ponce, C., & Livingstone, M. 
(2020). The neurons that mistook a hat for a 
face. Elife, 9, e53798.

Also the FFA activity correlates with 
subjective perception, for instance during
binocular rivalry.



A mini-glossary of some key concepts of vector spaces
Concept Definition Application in neuroscience

Vector space A vector space is a set of “vectors” with two operations:
- Addition of two vectors to yield a third one

- Multiplication by a scalar (a number)

See https://en.wikipedia.org/wiki/Vector_space
for a full list of mathematical requirements

- Neural activity of n neurons 
= vector in n dimensions

- Addition = superposition of 
two neural assemblies

- Scalar multiplication = 
amplification of activity

- Average = prototype

Vector subspace Each vector can be expressed by a linear combination of 
base vectors:

𝑉 =  𝛼 �⃗�  



ୀଵ

A subset of vectors �⃗� , i = 1 … m define, by their linear 
combinations, a vector subspace of the original space. 

A vector subspace can be used 
to encode
- a subset of the total 
information (e.g. just color)
- only the information that will 
be communicated downstream

Dimension The number of base vectors in the main space (n).
It can contain a subspace of lower dimension (m).

For a manifold, intrinsic dimensionality is the number of 
coordinates needed to specify a position 

(e.g. 2 for a torus or a folded surface)

n = total number of neurons in 
the population considered
m = size of a given coding 
subspace

Orthogonality Vector spaces can be endowed with an inner product 
(dot product or
scalar product)

Independent encoding and 
decoding of multiple 
dimensions of a given stimulus
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Lehky, S. R., Sereno, M. E., & Sereno, A. B. (2013). Population Coding and the Labeling Problemௗ: Extrinsic Versus Intrinsic Representations. Neural 
Computation, 25(9), 2235-2264. https://doi.org/10.1162/NECO_a_00486
Elmoznino, E., & Bonner, M. F. (2022). High-performing neural network models of visual cortex benefit from high latent dimensionality (p.
2022.07.13.499969). bioRxiv. https://doi.org/10.1101/2022.07.13.499969

Measuring the dimensionality of a neural representation

The responses of multiple neurons are generally not  independent of each other.
 The multi-neuron data “lives” in a smaller space than the full n-dimensional space of n neurons.
Here for instance:
- The original neural space is 3-dimensional
- The data occupy a plane in that space (global dimension D=2)
- The data actually lie on a 1-D manifold (local dimension D=1)

Various techniques are available
to “unfold” a manifold. 

E.g. Multidimensional scaling, 
Isomap, UMAP, tSNE…



Grid cells in entorhinal cortex

Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). 
Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 
801-806. https://doi.org/10.1038/nature03721



Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N. A., Dunn, B. A., Moser, M.-B., & Moser, E. I. (2022). Toroidal topology of population activity in grid cells. Nature, 
602(7895), 123-128. https://doi.org/10.1038/s41586-021-04268-7

From single grid cells to ensemble coding : A toroidal neural manifold

This paper is designed as a test of the “attractor network” hypothesis:

“The invariance of the correlation structure of this population code across
environments and behavioural states, independent of specific sensory inputs,
has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) 
as a possible substrate of the grid pattern”

Dimensionality reduction: 3-dimensional embedding of the data, using a 6-dimensional 
PCA followed by UMAP (uniform manifold approximation and projection).

Result : a torus is visible with the naked eye!

Recording from entorhinal cortex using NeuroPixels.
Massive increase in the number of simultaneously recorded cells.
Here, 2460 cells of which 483 are grid cells, of which 149 belong 
to the same “module” in entorhinal cortex.



Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N. A., Dunn, B. A., Moser, M.-B., & Moser, E. I. (2022). Toroidal topology of population activity in grid cells. Nature, 
602(7895), 123-128. https://doi.org/10.1038/s41586-021-04268-7

From single grid cells to ensemble coding : A toroidal neural manifold

Firing of 3 grid cells, plotted on the torus – here when the animal is navigating a square room



Kang, L., Xu, B., & Morozov, D. (2021). Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System. Frontiers in Computational Neuroscience, 
15. https://www.frontiersin.org/articles/10.3389/fncom.2021.616748

Persistent (co)homology analysis can determine the shape of a neural manifold

The torus interpretation can be 
confirmed by “persistent cohomology” 
analysis – “a method for computing 
topological features of a space at 
different spatial resolutions” 
(Wikipedia):
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Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N. A., Dunn, B. A., Moser, M.-B., & Moser, E. I. (2022). Toroidal topology of population activity in grid cells. Nature, 
602(7895), 123-128. https://doi.org/10.1038/s41586-021-04268-7

From single grid cells to ensemble coding : A toroidal neural manifold

The torus interpretation can be confirmed by “persistent 
cohomology” analysis – “a method for computing 
topological features of a space at different spatial 
resolutions” (Wikipedia):

The cell firing is better predicted by its location on the torus 
than by the animal’s physical location.
It is even present during sleep.
“the population activity in an individual grid-cell module 
resides on a toroidal manifold
- independently of behavioural tasks and states
- and decoupled from the position of the animal in 

physical space.”
The invariance of the correlation structure of this 
population code suggest an internal attractor.

Firing of 3 grid cells, plotted on the torus – here when the animal is navigating a square room

Firing of the same 3 grid cells when the animal is navigating a wheel-shaped track.



Høydal, Ø. A., Skytøen, E. R., Andersson, S. O., Moser, M.-B., & Moser, E. I. (2019). Object-vector coding in the medial entorhinal cortex. Nature, 568(7752), Art. 7752. 
https://doi.org/10.1038/s41586-019-1077-7

Object-vector cells: a very different form of spatial representation

These cells fire only when the animal is at a certain 
distance and position relative to an object.

Unlike grid cells, they shift their firing when the 
object moves, but the room stays the same.

And conversely, they keep their object-vector 
properties regardless of the room or the identity of 
the object.



Why the separation of grid cells and object vector cells?
Non-negative factorization can predict it

Whittington, J. C. R., Dorrell, W., Ganguli, S., & Behrens, T. E. J. (2022). Disentangling with 
Biological Constraintsௗ: A Theory of Functional Cell Types (arXiv:2210.01768).

The authors train a network with a non-negative constraint (ReLu units) to perform a 
spatial navigation task with movable objects. Task = predict where the animal is 
(space), whether it will hit an object (object), and what its next action will be.
Result of the simulation : the network units separate into two “modules”:
- Units that encode spatial position
- Units that encode position relative to the objects
These separate modules do not appear if the units are not ReLu, or if objects are fixed 
in space.

Real neurons Simulation



Can we predict when dimensions stay entangled, and when they don’t?

“we mathematically prove that simple biological 
constraints on neurons, namely nonnegativity and 
energy efficiency in both activity and weights, 
promote such sought after disentangled 
representations by enforcing neurons to become 
selective for single factors of task variation.”

“We demonstrate these constraints lead to 
disentangling in a variety of tasks and 
architectures, including variational autoencoders. ”

Example: Training of a beta-VAE on the Shape3D 
data set : individual units capture unique 
dimensions of variation in the data set.

Whittington, J. C. R., Dorrell, W., Ganguli, S., & Behrens, T. E. J. (2022). Disentangling with Biological Constraintsௗ: A Theory of Functional Cell Types 
(arXiv:2210.01768). arXiv. https://doi.org/10.48550/arXiv.2210.01768

https://twitter.com/i/status/1577770627099987997



Factorized representations and vector arithmetic
Eslami, S. M. A., Jimenez Rezende, D., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruderman, A., Rusu, A. A., Danihelka, I., Gregor, K., Reichert, D. P., Buesing, L., 
Weber, T., Vinyals, O., Rosenbaum, D., Rabinowitz, N., King, H., Hillier, C., Botvinick, M., … Hassabis, D. (2018). Neural scene representation and rendering. 
Science, 360(6394), 1204-1210. https://doi.org/10.1126/science.aar6170



Lehky, S. R., Sereno, M. E., & Sereno, A. B. (2013). Population Coding and the Labeling Problemௗ: Extrinsic Versus Intrinsic Representations. Neural 
Computation, 25(9), 2235-2264. https://doi.org/10.1162/NECO_a_00486
Elmoznino, E., & Bonner, M. F. (2022). High-performing neural network models of visual cortex benefit from high latent dimensionality (p.
2022.07.13.499969). bioRxiv. https://doi.org/10.1101/2022.07.13.499969

Measuring the effective dimensionality of a neural representation

The “effective dimensionality” of a given neural representation (or CNN layer) can be measured by how fast its 
eigenvalues decrease.
Intuition behind this formula : 
Imagine that m values are large (L), and the others negligibly small. Then ED = (m L)² / (m L²) = m.
Thus the equation approximates the number of values that are larger than the others.

Neural activity evoked by 
a number of stimuli



Elmoznino, E., & Bonner, M. F. (2022). High-performing neural network models of visual cortex benefit from high latent dimensionality (p.
2022.07.13.499969). bioRxiv. https://doi.org/10.1101/2022.07.13.499969

Measuring the effective dimensionality of a neural representation

Measure the “effective dimensionality” of artificial 
neural networks (c,d) and compare it with how well they 
predict brain activit (b).
Networks with higher effective dimensionality are better 
predictors in forward modelling of IT activity.
This is also true when fitting a forward model for high-
resolution fMRI data:

This is true:
- regardless of how the network is trained
- regardless of the actual size of the network  (ie. for a 

full rank matrix, it is the dimensionality that counts) 
[because the R² is cross-validated]



Elmoznino, E., & Bonner, M. F. (2022). High-performing neural network models of visual cortex benefit from high latent dimensionality (p.
2022.07.13.499969). bioRxiv. https://doi.org/10.1101/2022.07.13.499969

Training increases the effective dimensionality of neural representations in CNNs

Effective dimensionality is primarily driven by learning:

It is low and decreases across successive layers for 
untrained networks. 

It is higher and increases across successive layers when 
the same network is trained.

Note : dimensionality is computed after the max pooling 
operation of the CNN, otherwise dimensionality would 
be exceedingly large at lower layers.



Recanatesi, S., Farrell, M., Advani, M., Moore, T., Lajoie, G., & Shea-Brown, E. (2019). Dimensionality compression and expansion in Deep Neural 
Networks (arXiv:1906.00443). arXiv. https://doi.org/10.48550/arXiv.1906.00443

Does dimensionality only increase, or does it also decrease (compression) ?

“we apply state-of-the-art techniques for intrinsic dimensionality estimation to show that neural networks learn low-
dimensional manifolds in two phases: first, dimensionality expansion driven by feature generation in initial layers, and 
second, dimensionality compression driven by the selection of task-relevant features in later layers.”

This conclusion seems radically different from the above – but this is because they measure 
dimensionality differently: they attempt to estimate the “local” dimension of the manifold.

Global dimension (3)   vs    local dimension (2)

These dimensions can be estimated by evaluating the 
growth, as a function of a local radius r, of the 
number of neighboring points
(intuitively, for instance, this number should grow as 
r² for a surface) 

Findings :

Global dimension increases 
massively with training, as found 
by Elmoznino et al.

Local dimension, however, 
increases and then decreases: 
- Expansion of the number of 

encoding features
- Compression to a small 

number of task-relevant 
features.



Fast learning of object categories

An example of very fast induction or « few-shot learning » (Tenenbaum, Science, 2011):
The objects in red are « tufa ». 



This paradigm is well captured by Bayesian induction : Bayes rule automatically selects the 
smallest branch of the similarity tree that is compatible with all observations.

But how do subjects encode images in such a space?



A theory of dimensionality and concept learning
Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119. 

Here, the authors propose a general theory of “few shot learning” for image recognition. 
1. Prior training has resulted in a tuned high-dimensional vector space for images, which 

can be used to perform one-shot or few-shot learning of new concepts.
2. Each example image (possibly 1) is encoded in this high-dimensional vector space
3. The barycenter of examples defines a prototypical vector for the new concept.
4. Classification of new images, or discrimination between two possibilities, is based on 

the nearest prototype



A theory of dimensionality and concept learning

Empirical explorations of this scheme:
- Train networks on ImageNet (1000 image categories)
- Test on binary classification of all possible pairs of 1000 

new images from ImageNet21k
Results: 
With just 5 examples, prototype learning manages to 
accurately classify new concepts, with an average of 98.6% 
correct ! (1-shot learning = 92 %)
All sorts of trained networks work, and their performances are 
intercorrelated with each other.
Untrained networks, however, do not perform well 

 the vector space must be tuned to pictures.

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119. 



Geometry explains why some concepts are easier to discriminate than others

In this vector space, the images for each 
new concept trace a manifold, which the 
authors approximate with a high-
dimensional ellipsoid.
Four sources of errors in classification
(m is number of training examples):
a. The pairwise separation between the 
two manifolds (signal) may be weak 
relative to the noise level.
b. One manifold may have a larger 
variance than the other, resulting in 
generalization errors and even worse-
than chance performance.
c. The dimensionality of the manifolds 
may vary – and here, surprisingly, 
performance is better in higher 
dimensions (blessing of dimensionality).
d. Noise may vary in the same direction 
as the signal (the centroid separation 
vector). Note that here, the asymptote 
does not go to zero… unless a more 
optimal classifier is used. The dark line shows a fit of the author’s equation to simulations of ellipsoid categories

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry 
underlies few-shot concept learning. PNAS, 119(43), e2200800119. 



Conclusions
Considering neural responses as a manifold, a subspace within 
the huge space of potential neural responses, leads to 
interesting analyses:
- What is the dimensionality and topology of the neural 

manifold ? E.g. a torus for grid cells
- When are neural assemblies disentangled? During data 

compression, it may be advantageous to assign distinct 
neurons to distinct dimensions, e.g. grid cells versus object 
cells

In the case of faces or objects in IT cortex, the vector view 
leads to the following conclusions
- A low-dimensional representation emerges with learning

(e.g. 50 for faces): data compression
- It can support very fast encoding of new categories
- The decision boundaries can explain the psychophysics of 

conscious and unconscious decision making

Next week
- Dynamics of decision making in vector spaces
- How to use vector spaces to communicate between areas


