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Comment reconnaitre une image, prendre une décision,
ou communiquer une information avec des vecteurs neuronaux dynamiques?
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A theory of dimensionality and concept learning

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800

Here, the authors propose a general theory of “few shot learning” for image recognition.

1. Prior training has resulted in a tuned high-dimensional vector space for images, which
can be used to perform one-shot or few-shot learning of new concepts.

2. Each example image (possibly 1) is encoded in this high-dimensional vector space

3. The barycenter of examples defines a prototypical vector for the new concept.

4. Classification of new images, or discrimination between two possibilities, is based on
the nearest prototype
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A theory of dimensionality and concept learning

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119.
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Geometry explains why some concepts are easier to discriminate than others

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry 1 ” Axg ||2 s (RER;Q - 1)/m
underlies few-shot concept learning. PNAS, 119(43), e2200800119. SNRa = 5
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Coding in higher dimensions facilitates learning and generalization

Elmoznino, E., & Bonner, M. F. (2022). High-performing neural network models of visual cortex benefit from high latent dimensionality (p.
2022.07.13.499969). bioRxiv. https://doi.org/10.1101/2022.07.13.499969

Networks with higher “effective dimensionality” are better at learning to classify new categories according to a prototype rule.
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Figure 4: The computational benefit of high effective dimensionality in generalization to new object
categories. We examined the hypothesis that high-dimensional representations are better at learning to classify
new object categories (Sorscher et al.l 2021). a. We tested this theory using a transfer learning paradigm, where
our pre-trained model representations were fixed and used to classify novel categories through a prototype
learning rule. b. Our high-dimensional models achieved substantially better accuracy on this transfer task, as
measured using the mean reciprocal rank (MRR).




A theory of dimensionality and concept learning

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational gecometry underlies few-shot concept learning. PNAS, 119(43), e2200800119.

The theory also permits to analyze the intermediate layers of any artificial neural network for visual recognition.
All networks tested seem to improve image discrimination across successive layers (A) by

Expanding the number of dimensions, then compressing it (C)

Thereby dramatically enhancing the signal in the last layers (B)

And progressively separately the signal from the noise (D), yet with a surprising increase at the end.
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A theory of dimensionality
and concept learning

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational
geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119.

The theory can also be used to analyze the geometry of
representations in monkey visual cortex (V4 and IT).

It predicts how well a given concept can be discriminated
from others.

The errors in classifying concepts from IT neurons and
from various artificial CNNs are similar...

But surprisingly, the underlying parameters do not vary in
the same way across the hierarchy: the strategy across
layers, and in V4 in particularly, does not seem to match
that of artificial neural networks.
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The geometric theory of prototypes can
even support zero-shot verbal learning

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational
geometry underlies few-shot concept learning. PNAS, 119(43), €2200800119.

Suppose you only had a verbal description of the concepts.

The words in those descriptions can be assigned vector

representations, based on their statistics of cooccurrence

with other words (this will be detailed in course 5).

The average vector for this “bag of words” is taken as the

verbal representation of the concept.

This verbal vector space can then be aligned onto the

picture vector space by using the 1000 images used for

training + their verbal descriptions (an isometry is learned

using Procrustes alignment).

Prototypes for new concepts can then be acquired solely by

their verbal description... and then used to classify pictures,

with 93.4 % accuracy !

Remarkably, this figure is slightly better than that obtained

with a single picture (m=1, 92% correct). Thus, it is not true

that a picture is worth a thousand words — on the contrary!

We shall now examine two broad consequences of the

same geometrical framework:

- Shepard’s exponential law of generalization

- King & Dehaene’s explanation of subliminal versus
conscious processing.
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Towards a universal law of generalization

Shepard, R. N. (1987). Toward a universal law of generalization for psychological
science. Science, 237(4820), 1317-1323.

In an influential paper, Shepard shows how the generalization of a

learned concept follows a universal exponential law.

Note that this is not true if performance is plotted as a function of

distance in the original stimulus space, for instance:

- the psychological similarity between notes decreases as their
difference in pitch increases, but increase again for octaves.

- The similarity of colors does not decrease with wavelength distance,
but forms a circle, first discovered by Newton.

The key is to plot the data in psychological space.

The dimensionality and organization of that space can be determined

by a mathematical procedure called non-metric multidimensional

scaling, while solely supposes that the distance between points must

be monotonically related to psychological similarity judgments.

Shepard finds that it is always possible to find a small vector space,
such that increasing distance between concepts on that space (either
L1 or L2) predicts an exponential decrease in similarity judgments.

The Sorscher et al. prototype theory can explain this law for pictures. It
predicts that the decrease should be a specific function (the integral of
a Gaussian) of distance, ponderated by bias and by the various noise
terms.

The Shepard findings suggests that many other domains (e.g. pitch)
may be explained by similar internal spaces.
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Explaining the enigmas of subliminal processing and conscious access
as categorical decisions in a vast representational space

King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space.
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

When stimuli are flashed and masked, categorization ca~
be above-chance even though the participants deny

seeing the stimuli. 271ms 29ms

Time (ms) ,, oms  500ms

29ms target

mask

A geometrical vector view, extended with Bayesian mask mask prime
decision making, can explain this paradox — indeed, it %%8% RADIO
results from a perfectly rational strategy. [% O

O

We can explain all of the following phenomena:

Stimuli which are subjectively reported as ‘unseen’ can nevertheless be objectively discriminated above chance in a two-alternative

forced-choice task.

* Discrimination performance is typically better on seen than on unseen trials, even when sensory stimuli are physically identical.

* Experimental paradigms can be designed in which objective discrimination performance is identical, while subjective visibility differs.

* Subjective reports vary nonlinearly as a function of sensory strength. For instance, brief or faint visual stimuli are generally reported as
‘completely unseen’, but once their duration or contrast reaches a threshold level, subjects tend to report items as ‘clearly seen’.

* Prior knowledge increases the subjective visibility of physically identical stimuli.

* Attention generally increases subjective visibility but has also been found to decrease it.



Explaining the mysteries of subliminal processing and conscious access
using vector spaces

King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space.
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

Like Sorscher et al., we assume that each incoming stimulus objective stimuli
is encoded in a high-dimensional vector space. -.....
We suppose that increasingly visibility translates into a

lengthening of the vector along some of its axes.

This vector space is huge, but we are going to simplify it by
projecting it along two main axes (e.g. vectors X and Y).

subjective representations . .
J pre likelihood

Crucially, instead of supposing that subjects base their
judgement on the closest of two prototypes (Sorscher et
al.), we assumed a Bayesian decision-making system that
1. Has a set of task-driven categories of stimuli

2. Estimates the likelihood that the observed vector came
from each possible category.

3. Combines this likelihood with a (possibly flat) prior to

numberzﬁ

compute the posterior probability of each category, and pOSteI‘iOI‘

4. chooses the most likely one (MAP strategy, maximum a probability
posteriori). many features

This view generalizes to non-binary classification tasks. Note %
that while forced-choice tasks may be binary, conscious c?/(,f‘

perception is a choice amongst a much richer array of
possibilities (including “no stimulus was presented”).



Subliminal processing and conscious access : a perspective from vector spaces

King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space.
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

Each task judgement corresponds to a

different layout of the response identification discrimination visibility
categories.
. choose
In particular,
present

- conscious identification consists in ﬁrst—
finding the MAP category among all
possible classes of responses,

order
choose

including “stimulus absent”. choice Ckﬁbse m
- Forced-choice discrimination is a ab@y U
much simpler task which merely
consists in deciding which is more
likely, X or Y? (linear decision

A
absent K_/

<

boundary, similar to choosing the confident Y confident
nearest prototype).
resent
- Visibility judgment is another p
binary task, but with a more
complex decision boundary. order ...

A 4

Note that confidence judgments are estimate \
also distinct tasks, not reducible to Conﬁk@//

visibility or conscious identification absent
tasks.
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Subliminal processing and conscious access : a perspective from vector spaces

King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space.
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

Stimuli which are subjectively reported as ®) Feen

‘unseen’ can nevertheless be objectively
discriminated above chance in a two-
alternative forced-choice task.

Discrimination performance is typically better
on seen than on unseen trials, even when
sensory stimuli are physically identical.
Experimental paradigms can be designed in
which objective discrimination performance
is identical, while subjective visibility differs.
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Subliminal processing and conscious access : a perspective from vector spaces

King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space.
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

Explaining the non-linear threshold for conscious

perception

* Subjective reports vary nonlinearly as a
function of sensory strength.

* The non-linearity becomes less steep as the
variance increases (or equivalently, as visibility
decreases).

The non-linear threshold also varies according to

the prior for present/absent or for X versus Y

* A higher frequency of absent trials reduces the
subjective visibility of physically identical
stimuli.

* If we manipulate the prior for just one of the
stimuli, we see that its visibility increases,
while the visibility of other stimuli does not
change — mimicking e.g. hysteresis in
conscious perception (Melloni et al. 2011).
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(a)

Subliminal processing and conscious access : a perspective from vector spaces

King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space.
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

An empirical test of these ideas: subjective perception of

masked digits, at the threshold of perception, while varying
the evidence for one digit versus another.

The model predicts that the forced-choice discrimination
profile of physically identical stimuli will become more

nonlinear as visibility increases.

Results: sigmoidal functions that become increasingly steep

and non-linear as subjective visibility increases from 1 to 10.
This experiment replicates and extends earlier work by De Gardelle, Charles and Kouider (2011): linear profile of forced-choice discrimination
for masked stimuli, non-linear sigmoid for seen stimuli.

But it also shows that there is no need to postulate two processes (unconscious analog versus conscious discrete).
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Dynamics of decision making :
neuronal vectors change over time

1. Information is typically not encoded by a single fixed vector, but
by multiple vectors, a neural code that changes over time.

2. Vector change over time may reflect

- the passing of a neural representation from one area to the next

- A computation, i.e. a transformation of the content,
for instance from perception to decision

3. Computation is seen as a vector flow

4. The vector perspective helps to visualize such transformations,

which would be very hard to see at the single neuron level.
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Dynamics of decision making in prefrontal cortex

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Context-dependent computation by recurrent
dynamics in prefrontal cortex. Nature, 503(7474), 78-84. https://doi.org/10.1038/nature12742
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Dynamics of decision making in prefrontal cortex

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013) Motion context
Context-dependent computation by recurrent dynamics in a b c
prefrontal cortex. Nature, 503(7474), 78-84. Sort by
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Dynamics of decision making in prefrontal cortex

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Input Context Output

Context-dependent computation by recurrent dynamics in ;i 0 1 Motion context
prefrontal cortex. Nature, 503(7474), 78-84. Sensory avidenod 1 0 Colour context

A simulation (with random synapses and

backprop training) helps understand what is

going on.

1. The model develops a “line attractor” Motion

Motion
context

Choice

+1

Choice 1

model accumulates evidence for a given
choice.

2. Perceptual evidence sends the activity
away from this line attractor, and then
activity relaxes towards the appropriate
decision (for the relevant dimension) or

Colour

with stable fixed points, along which the H I

context

_ Pulse  Selection Relaxation
Motion Colour NN N Kvector N\

:C10 NN NN
pulse pulse . \§o° 'Li\ne\‘ N el NS
N @ N a\ttract‘or NN NN NN

towards zero (for the irrelevant Motion

dimension). context AR N NN Y RO R
3. The dynamics changes according to ® ‘%(/f o B N R M RRR W R

context. The projection towards the LR attiaatte LIs Bt WM MO OO M N T X R Ny

decision axis is always perpendicular to

a selection axis, whose orientation Motion Colour ¥ ¥ X agn ¥ ¥ 4 ¥V s K ¥
varies with context. pulse pulse /\:\\/y (gl # ; ; ,; //f//
This is a nice example of how the dynamics ~ Colour /attractor 2N\ e

. . Vd . Vo A
of vector states implements collective GRIENES - 5o & e / P ? 3 ¥ ; ; ;
decision making —imagine trying to o 153'5&2?”, A A A

understand this at the single-neuron level! Line attractor Line attractor

Choice 2
Colour

.

X
Attractor

¥  Motion
7/ context

‘ Selection

Colour ¥
context \



Computing in the “null space”

Kaufman, M. T., Churchland, M. M., Ryu, S. |., & Shenoy, K. V. (2014). Cortical activity in the
null space : Permitting preparation without movement. Nature Neuroscience, 17(3),
440-448. https://doi.org/10.1038/nn.3643

The concept of “vector subspace” can shed light on a mystery:

When monkeys are instructed to prepare a movement, there is
considerable activity in premotor (PMd) and motor cortex (M1) — yet
without any muscle activity until the go cue.

This is true even though there are direct projections from both of these
areas to the spinal chord.

Maybe the activity is “below threshold”? But preparatory activity is not a
weaker version of motor activity, nor is there any sign of a “gate”.
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(green line). Then their difference (perpendicular blue line) does not matter, as long their g
sum stays constant. g

Neurons can change their activity along the blue line (null space) in order to prepare for
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movement, and then rotate or project this activity onto the output space in order to act.

Mathematically, the null space or kernel (“noyau”) of a linear transformation is the domain of
the source space which is mapped to the zero vector:

Two vectors have the same output iff they differ by a vector that belongs to the null space.
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Movement preparation in the null space

Kaufman, M. T., Churchland, M. M., Ryu, S. |., & Shenoy, K. V. (2014). Cortical activity in the null space : Permitting preparation without movement. Nature
Neuroscience, 17(3), 440-448. https://doi.org/10.1038/

Monkey J, array Monkey N, array

Is this story true? To test it, the authors record
from tens of neurons in PMd and M1.

It is possible to find weighted sums of those data _ %°7] - O
such that the preparatory activity cancels out. £ I

4 2
For instance, in the graph at right, each graydot  § | 2 04
represents one average condition of movement  § B

(&} ey
through the maze. Along the blue axis, all of their & 2
preparatory activity projects identically — but o - 05~

during the movement, their activity vectors
rotate and predict movement.

I T 1 I T 1

Note that preparatory activity is far from random 05 0 05 05 0 05
or noisy — it is predictive of the amplitude and Projection onto dim, Projection onto dim,

orientation of the upcoming movement. e . .
P 8 Results: potent preparatory activity in the output-null dimensions of PMd and

M1 (left), 3 to 8 times larger than in the output-potent dimensions (right).
First, perform data reduction using principal component § Output-null 15 Olitgiut-potent

How can we identify the output space and null space?

analysis, thus reducing muscle activity M to M (with 3 _ ”

dimensions), and neural activity N to N (with 6 - s

dimensions). 5 g o %

Then use regression to solve for W such that M = WN g g2

And finally project the entire trajectory onto (1) the null ;| Test epoch Regressionepc | data set JA

7y, T T
space of W, and (2) the other orthogonal space. 400 Targ 400  -300 Move 400 Targ 400 300 Move 600



Movement preparation in the null space

Kaufman, M. T., Churchland, M. M., Ryu, S. |., & Shenoy, K. V. (2014). Cortical activity in the null space : Permitting preparation without movement. Nature
Neuroscience, 17(3), 440-448. https://doi.org/10.1038/nn.3643

a Output-null
Remarkably, the same mechanism accounts for communication between PMd and M1. " i
Preparatory activity in PMd occurs primarily in the null space for activating M1. 2
This reduction (not complete cancellation) can explain why M1 activity is smaller g
during preparation than during movement. gi
Controls: *
- The converse is not true (when analyzing in the M1=> PMd direction) o e arachoon il
- The conclusions do not depend on the choice of dimensionality ~400 T;fg 400 30  Move 600
- Theresultis not due to a segregation of neurons specialized for preparation versus b

14 Output-potent

execution, but to different linear combinations of the same neurons.

Conclusion:

From
data set NA

This could be a general mechanism for cortical communication — only a subpart of the
activity is transmitted to another downstream area (or to muscles).

Projection (a.u.)
o
|

st
1
-400 Targ 400 -300 Move 600



What happens during a fast movement? X G Q

- . \ \_\\ ‘\\ ] ; o 5 ,
Parallel, independent subspaces for preparation, 9| |0 "\ .
A\ \ / o
. L] 3 i. ik
triggering and execution — ——\ =
100 mm I N
Zimnik, A. J., & Churchland, M. M. (2021). Independent generation of sequence Single 0-1,000ms _
elements by motor cortex. Nature Neuroscience, 24(3), 412-424. wgh (unprediotabis) : , s ma
. . . Target Go Reach Reach
Monkeys trained to performed either a single reach or a double reach on starts ends
(spaced or immediate).
. . . Delayed D—‘I,G'Q-CI ms ) BO_IJ ms Second reach
Results: the same component subspaces for preparation, triggering and ol (unpredictable) . _Fistreach  (predictable) .
execution are activated, only faster and partially in parallel with each other. Targets Go Reach Reach Go Reach Reach
on start ends starts ends
Fig. 4: Time-course of activity in preparatory dimensions. e T
reach (unpredictable) First reach Second reach
" Monkey B h Monkey H ' | ; ‘ :
Targets Go Reach Reach Reach Reach
on starts ands starts ends

The results allow to
reject a model where
speeded compound
movements are
generated by ad-hoc
holistic neural activity.
Activity can be factorized “\
into independent

subspaces for \ |
preparation, then
triggering and execution.

J




Routing of neural information using neural subspaces

Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through a Communication Subspace. Neuron, 102(1),

249-259.e4. https://doi.org/10.1016/j.neuron.2019.01.026

Key proposal : “The ability of a source area to communicate only certain
activity patterns while keeping others “private’”’ could be a means for the
selective routing of signals between areas.”

- Completely different mechanism than the “communication through
coherence” hypothesis (no need to set-up oscillations jointly in both areas)

- More flexibility: different subspaces could be used to route information to
different areas.

“The selective routing allowed by the communication subspace could be
adjusted dynamically, allowing moment-to-moment modulation of
interactions between cortical areas. Dynamic routing could be
accomplished by altering the structure of population activity in a source
area; it need not involve changing the communication subspace itself”

What the authors mean here is that a projection or rotation could be used to
bring information to the appropriate subspace, thus opening or closing
communication channels at will.

Meanwhile, the private dimensions could be used to perform covert
computations.

A Communication subspace

Source
Neuron 3 population

fluctuations Activity in source area

/ New\/\/*

Regression
— dimensions

Neuron 1
Neuron 2

Cc Full interaction

Activity in area A
Neuron 1

Neuron 2

Ay i

Activity in area B

O Neuron 1




Neuronal subspaces for communication between visual areas

Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through a Communication
Subspace. Neuron, 102(1), 249-259.e4. https://doi.org/10.1016/j.neuron.2019.01.026

Goal = measure the communication of dense A B
information from V1 to V2, using Tetrodes 100 ms —11-1LL
simultaneous recordings Neuron1 Ll 11
- JTRTITE p—_s
In V1: Recordings from layer 2-3 projection cells, 3 A
88 to 159 neurons AA Ta\r/g1et
In V2: movable tetrodes, recordings for middle A AA
layers, 24 to 37 neurons A A
. . . A A
V1 and V2 sites share overlapping receptive A A A
fields. A Al V2
The monkey is anesthetized. Source V1
Gratings are presented. 1
The mean activity (PSTH = peri-stimulus time LLLLI

histogram) is subtracted, and they study the
transmission of trial-by-trial variability.



Neuronal subspaces for communication between visual areas

Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through a Communication
Subspace. Neuron, 102(1), 249-259.e4. https://doi.org/10.1016/j.neuron.2019.01.026

First finding: A B
The correlation between pairs of neurons is low and similar 5000, ¥ Vi-v2 19; N v Predicting V2
within V1 and between V1 and V2. il - Single
= neuron Ll
Single neurons can only explain ~1% of the variance in V2. e 7]
g g
()]
However, multivariate linear regression can explain ~13-15 ] _r]_l
% of the variance 0i= —_—— 0- r _—
(a level of performance which, according to simulations, is
in line with Poisson noise in V2, or with subsampling of 5000, ¥ V1-V1 IEATEN V Predicting target V1
. Singl
the true causal population in V1) @ el e
£ g
- Populations of neurons in V1 influence V2. This is g %
entirely expected, but... . a |_ |
*  What is the size of the predictive population? 0 — 0 1 .
, , 0 0.2 04 0 0.1 0.2 0.3
* Could a subset of V1 neurons suffice to predict V2 Pairwiss corralation Parformanice
activity? .
r Cross-validated R?

* Can we distinguish private V1 activity from predictive
(or public) activity?
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Neuronal subspaces for communication between visual areas - FORaIEtingT e
. E A
Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through a Communication Subspace. § Full
Neuron, 102(1), 249-259.e4. https://doi.org/10.1016/i.neuron.2019.01.026 30-12 model
Key Idea: estimate how many dimensions suffice to account for V1-V2 interactions. £ 0.1
()

Reduced-rank regression, a variant of linear regression in which the regression dimensions are 0-0 -

constrained to lie in a low-dimensional subspace, can find a subset of predictive dimensions '

that are equally good at predicting V2 activity. = Predicting target V1

0.14 .
Results: .
. : : : - 2 Full

A small number of V1 dimensions (2) suffices to explain V2 activity 20-12- dee
A larger number (5) is needed to explain V1-V1 interactions. % 0.1
This finding is not due to the intrinsic dimensionality, which is actually larger for V2 data than o

for V1 data - existence of a limited communication subspace between V1 and V2. e > A M 3
Similar findings for V1-V4 interactions in awake macaque monkeys. Predictive dimensions
A L B High-dimensional interactions C Low-dimensional interactions

Vs, Vi, Vi, private dimension

one regression dimension
for each V2 neuron

o regression dimension
for one V2 neuron

—

V1, Vi, V1,

V1, Vi,



Neuronal subspaces for communication between visual areas

Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through a Communication Subspace. Neuron, 102(1),

249-259.e4. https://doi.org/10.1016/j.neuron.2019.01.026

Private and public spaces are different within area V1.

This can be seen by selectively removing some of the axes
from the V1 population:

- Removing private V1 dimensions does not (fully) prevent
predicting V2 activity, while removing public ones does.

- The converse is true for predicting V1 activity.
Additional controls:

Norm. performance =

o

—
1

o
&

Predicting V2 c Predicting target V1
1.
V2 dims
0.51
V1 dims
V2 dims 5 V1 dims
o 1 2 3 4 5 0o 1 2 3 4 5

Number of predictive dimensions removed

- A similar communication subspace is found when analyzing responses to a single input grating. It is not identical, but generalizes to
other gratings (75% of the original variance) and to movie-induced brain activity.

- The communication subspace cannot be identified by principal component analysis (PCA) — it does not correspond to the maximum
variance of V1 activity (but V1-V1 predictive dimensions do)

- The article proves the existence of a restricted communication subspace, but probably does not correctly estimate its true number
of dimensions (larger datasets, with more receptive fields, would probably lead to a larger number of dimensions).



Conclusions

A low-dimensional representation in inferotemporal cortex
can support very fast encoding of new categories.

Decisions correspond to classifications in this space, which
can be seen as the projection or rotation of the internal
coding vector onto the response categorization axis.

The decision boundaries can explain the psychophysics of
conscious and unconscious decision making

Only a small number of neurons may communicate their
outputs to other brain regions.

This constraint creates an opportunity :

existence of a vast “null space” for covert internal
computations.

Selective communication between any two areas by
projection onto the relevant subspace

Vendredi 6 Janvier

COURS : Vecteurs neuronaux ou cellules grand-mere :

les représentations mentales sont-elles localisées ou distribuées ?
SEMINAIRE : L'intelligence artificielle peut-elle modéliser le langage
mathématique ? — Francois Charton (FAIR Paris)

Vendredi 13 Janvier
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(University of Ontario)
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