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A theory of dimensionality and concept learning
Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119. 

Here, the authors propose a general theory of “few shot learning” for image recognition. 
1. Prior training has resulted in a tuned high-dimensional vector space for images, which 

can be used to perform one-shot or few-shot learning of new concepts.
2. Each example image (possibly 1) is encoded in this high-dimensional vector space
3. The barycenter of examples defines a prototypical vector for the new concept.
4. Classification of new images, or discrimination between two possibilities, is based on 

the nearest prototype



A theory of dimensionality and concept learning

Empirical explorations of this scheme:
- Train networks on ImageNet (1000 image categories)
- Test on binary classification of all possible pairs of 1000 

new images from ImageNet21k
Results: 
With just 5 examples, prototype learning manages to 
accurately classify new concepts, with an average of 98.6% 
correct ! (1-shot learning = 92 %)
All sorts of trained networks work, and their performances are 
intercorrelated with each other.
Untrained networks, however, do not perform well 

 the vector space must be tuned to pictures.

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119. 



Geometry explains why some concepts are easier to discriminate than others

In this vector space, the images for each 
new concept trace a manifold, which the 
authors approximate with a high-
dimensional ellipsoid.
Four sources of errors in classification
(m is number of training examples):
a. The pairwise separation between the 
two manifolds (signal) may be weak 
relative to the noise level.
b. One manifold may have a larger 
variance than the other, resulting in 
generalization errors and even worse-
than chance performance.
c. The dimensionality of the manifolds 
may vary – and here, surprisingly, 
performance is better in higher 
dimensions (blessing of dimensionality).
d. Noise may vary in the same direction 
as the signal (the centroid separation 
vector). Note that here, the asymptote 
does not go to zero… unless a more 
optimal classifier is used. The dark line shows a fit of the author’s equation to simulations of ellipsoid categories

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry 
underlies few-shot concept learning. PNAS, 119(43), e2200800119. 



A theory of dimensionality and concept learning

More important: the SNR equation fits the 
binary classification of actual images.
The analysis therefore provides four different 
geometric quantities that characterize 
category learning: signal, bias, dimension, and 
signal-noise overlap.
Examples show how pairs of categories may 
differ on all those parameters, and explain 
why they are more or less difficult to separate. 

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry 
underlies few-shot concept learning. PNAS, 119(43), e2200800119. 



Elmoznino, E., & Bonner, M. F. (2022). High-performing neural network models of visual cortex benefit from high latent dimensionality (p.
2022.07.13.499969). bioRxiv. https://doi.org/10.1101/2022.07.13.499969

Coding in higher dimensions facilitates learning and generalization

Networks with higher “effective dimensionality” are better at learning to classify new categories according to a prototype rule.



A theory of dimensionality and concept learning

The theory also permits to analyze the intermediate layers of any artificial neural network for visual recognition.
All networks tested seem to improve image discrimination across successive layers (A) by
- Expanding the number of dimensions, then compressing it (C)
- Thereby dramatically enhancing the signal in the last layers (B)
- And progressively separately the signal from the noise (D), yet with a surprising increase at the end.

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119. 



A theory of dimensionality
and concept learning

The theory can also be used to analyze the geometry of 
representations in monkey visual cortex (V4 and IT).
It predicts how well a given concept can be discriminated 
from others.
The errors in classifying concepts from IT neurons and 
from various artificial CNNs are similar…
But surprisingly, the underlying parameters do not vary in 
the same way across the hierarchy: the strategy across 
layers, and in V4 in particularly, does not seem to match 
that of artificial neural networks.

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational 
geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119. 



The geometric theory of prototypes can 
even support zero-shot verbal learning

Suppose you only had a verbal description of the concepts.
The words in those descriptions can be assigned vector 
representations, based on their statistics of cooccurrence 
with other words (this will be detailed in course 5).
The average vector for this “bag of words” is taken as the 
verbal representation of the concept.
This verbal vector space can then be aligned onto the 
picture vector space by using the 1000 images used for 
training + their verbal descriptions (an isometry is learned 
using Procrustes alignment).
Prototypes for new concepts can then be acquired solely by 
their verbal description… and then used to classify pictures, 
with 93.4 % accuracy !
Remarkably, this figure is slightly better than that obtained 
with a single picture (m=1, 92% correct). Thus, it is not true 
that a picture is worth a thousand words – on the contrary!
We shall now examine two broad consequences of the 
same geometrical framework:
- Shepard’s exponential law of generalization
- King & Dehaene’s explanation of subliminal versus 

conscious processing.

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational 
geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119. 



Shepard, R. N. (1987). Toward a universal law of generalization for psychological 
science. Science, 237(4820), 1317-1323.

Towards a universal law of generalization

In an influential paper, Shepard shows how the generalization of a 
learned concept follows a universal exponential law.
Note that this is not true if performance is plotted as a function of 
distance in the original stimulus space, for instance:
- the psychological similarity between notes decreases as their 

difference in pitch increases, but increase again for octaves.
- The similarity of colors does not decrease with wavelength distance, 

but forms a circle, first discovered by Newton.
The key is to plot the data in psychological space.
The dimensionality and organization of that space can be determined 
by a mathematical procedure called non-metric multidimensional 
scaling, while solely supposes that the distance between points must 
be monotonically related to psychological similarity judgments.

Shepard finds that it is always possible to find a small vector space, 
such that increasing distance between concepts on that space (either 
L1 or L2) predicts an exponential decrease in similarity judgments.
The Sorscher et al. prototype theory can explain this law for pictures. It 
predicts that the decrease should be a specific function (the integral of 
a Gaussian) of distance, ponderated by bias and by the various noise 
terms.
The Shepard findings suggests that many other domains (e.g. pitch) 
may be explained by similar internal spaces.



King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space. 
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

When stimuli are flashed and masked, categorization can 
be above-chance even though the participants deny 
seeing the stimuli.
A geometrical vector view, extended with Bayesian 
decision making, can explain this paradox – indeed, it 
results from a perfectly rational strategy.

We can explain all of the following phenomena:

• Stimuli which are subjectively reported as ‘unseen’ can nevertheless be objectively discriminated above chance in a two-alternative 
forced-choice task.

• Discrimination performance is typically better on seen than on unseen trials, even when sensory stimuli are physically identical.
• Experimental paradigms can be designed in which objective discrimination performance is identical, while subjective visibility differs.
• Subjective reports vary nonlinearly as a function of sensory strength. For instance, brief or faint visual stimuli are generally reported as 

‘completely unseen’, but once their duration or contrast reaches a threshold level, subjects tend to report items as ‘clearly seen’.
• Prior knowledge increases the subjective visibility of physically identical stimuli.
• Attention generally increases subjective visibility but has also been found to decrease it.

Explaining the enigmas of subliminal processing and conscious access
as categorical decisions in a vast representational space



King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space. 
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

Explaining the mysteries of subliminal processing and conscious access
using vector spaces

Like Sorscher et al., we assume that each incoming stimulus 
is encoded in a high-dimensional vector space.
We suppose that increasingly visibility translates into a 
lengthening of the vector along some of its axes.
This vector space is huge, but we are going to simplify it by 
projecting it along two main axes (e.g. vectors X and Y).

Crucially, instead of supposing that subjects base their 
judgement on the closest of two prototypes (Sorscher et 
al.), we assumed a Bayesian decision-making system that
1. Has a set of task-driven categories of stimuli
2. Estimates the likelihood that the observed vector came 
from each possible category.
3. Combines this likelihood with a (possibly flat) prior to 
compute the posterior probability of each category, and 
4. chooses the most likely one (MAP strategy, maximum a 
posteriori).

This view generalizes to non-binary classification tasks. Note 
that while forced-choice tasks may be binary, conscious 
perception is a choice amongst a much richer array of 
possibilities (including “no stimulus was presented”).



King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space. 
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

Subliminal processing and conscious access : a perspective from vector spaces

Each task judgement corresponds to a 
different layout of the response 
categories. 

In particular, 
- conscious identification consists in 

finding the MAP category among all 
possible classes of responses, 
including “stimulus absent”.

- Forced-choice discrimination is a 
much simpler task which merely 
consists in deciding which is more 
likely, X or Y? (linear decision 
boundary, similar to choosing the 
nearest prototype).

- Visibility judgment is another 
binary task, but with a more 
complex decision boundary.

Note that confidence judgments are 
also distinct tasks, not reducible to 
visibility or conscious identification 
tasks.



King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space. 
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

Subliminal processing and conscious access : a perspective from vector spaces

• Stimuli which are subjectively reported as 
‘unseen’ can nevertheless be objectively 
discriminated above chance in a two-
alternative forced-choice task.

• Discrimination performance is typically better 
on seen than on unseen trials, even when 
sensory stimuli are physically identical.

• Experimental paradigms can be designed in 
which objective discrimination performance 
is identical, while subjective visibility differs.



King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space. 
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

Subliminal processing and conscious access : a perspective from vector spaces

Explaining the non-linear threshold for conscious 
perception 
• Subjective reports vary nonlinearly as a 

function of sensory strength.
• The non-linearity becomes less steep as the 

variance increases (or equivalently, as visibility 
decreases).

The non-linear threshold also varies according to 
the prior for present/absent or for X versus Y
• A higher frequency of absent trials reduces the 

subjective visibility of physically identical 
stimuli.

• If we manipulate the prior for just one of the 
stimuli, we see that its visibility increases, 
while the visibility of other stimuli does not 
change – mimicking e.g. hysteresis in 
conscious perception (Melloni et al. 2011).



King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space. 
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), 20130204. https://doi.org/10.1098/rstb.2013.0204

Subliminal processing and conscious access : a perspective from vector spaces

An empirical test of these ideas: subjective perception of 
masked digits, at the threshold of perception, while varying 
the evidence for one digit versus another.
The model predicts that the forced-choice discrimination 
profile of physically identical stimuli will become more 
nonlinear as visibility increases.
Results: sigmoidal functions that become increasingly steep 
and non-linear as subjective visibility increases from 1 to 10.
This experiment replicates and extends earlier work by De Gardelle, Charles and Kouider (2011): linear profile of forced-choice discrimination 
for masked stimuli, non-linear sigmoid for seen stimuli. 
But it also shows that there is no need to postulate two processes (unconscious analog versus conscious discrete).



Dynamics of decision making :
neuronal vectors change over time

1. Information is typically not encoded by a single fixed vector, but 
by multiple vectors, a neural code that changes over time.

2. Vector change over time may reflect 
- the passing of a neural representation from one area to the next
- A computation, i.e. a transformation of the content,

for instance from perception to decision
3. Computation is seen as a vector flow
4. The vector perspective helps to visualize such transformations, 
which would be very hard to see at the single neuron level.

Wong & Wang (2006) J. Neurosci model



Dynamics of decision making in prefrontal cortex
Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Context-dependent computation by recurrent 

dynamics in prefrontal cortex. Nature, 503(7474), 78-84. https://doi.org/10.1038/nature12742

Two monkeys were trained to 
perform two distinct tasks on 
the same stimuli: a color task 
and a motion task.
Behavior indicates that 
monkeys attend to the 
relevant dimension.

Question: how is the relevant 
dimension “routed” to 
output?
Is it “gated” by attention? 
No! both dimensions are 
coded, but only one is 
transmitted downstream.



Dynamics of decision making in prefrontal cortex
Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). 

Context-dependent computation by recurrent dynamics in 
prefrontal cortex. Nature, 503(7474), 78-84. 

The authors reduce their large recordings (388 
single-units and 1014 multi-unit) 
- First to 12 dimensions by PCA
- Then to 4 dimensions by regression onto 

choice, motion, color, and context.
Each curve shows the average dynamics on a 
given trial type, defined by stimulus strength 
and ultimate choice. What do we see?
1. Gradual accumulation of evidence along 

the choice axis (horizontal).
2. Relevant sensory dimensions (motion and 

color) produce very different dynamics, as 
shown by the curved trajectory. They 
indicate the strength of momentary 
evidence.

3. Irrelevant sensory dimensions are also 
represented in PFC, with very little or no 
reduction in activity !

4. The context axis (not shown here) shows 
an overall displacement in neural space, 
but perceptual and choice axes stay the 
same.



Dynamics of decision making in prefrontal cortex
Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). 

Context-dependent computation by recurrent dynamics in 
prefrontal cortex. Nature, 503(7474), 78-84. 

A simulation (with random synapses and 
backprop training) helps understand what is 
going on.
1. The model develops a “line attractor” 

with stable fixed points, along which the 
model accumulates evidence for a given 
choice.

2. Perceptual evidence sends the activity 
away from this line attractor, and then 
activity relaxes towards the appropriate 
decision (for the relevant dimension) or 
towards zero (for the irrelevant 
dimension).

3. The dynamics changes according to 
context. The projection towards the 
decision axis is always perpendicular to 
a selection axis, whose orientation 
varies with context.

This is a nice example of how the dynamics 
of vector states implements collective 
decision making – imagine trying to 
understand this at the single-neuron level!



Computing in the “null space”

The concept of “vector subspace” can shed light on a mystery:  
When monkeys are instructed to prepare a movement, there is 
considerable activity in premotor (PMd) and motor cortex (M1) – yet 
without any muscle activity until the go cue.
This is true even though there are direct projections from both of these
areas to the spinal chord.
Maybe the activity is “below threshold”? But preparatory activity is not a 
weaker version of motor activity, nor is there any sign of a “gate”.
Proposed solution: Motor activity M is some function of neural activity N 
– suppose for simplicity that this relation is linear: M = W N

Kaufman, M. T., Churchland, M. M., Ryu, S. I., & Shenoy, K. V. (2014). Cortical activity in the 
null spaceௗ: Permitting preparation without movement. Nature Neuroscience, 17(3), 
440-448. https://doi.org/10.1038/nn.3643

Then, because there are fewer muscles than neurons, there must be many combinations
of neural firing that do not change anything at the muscle level – the “null space”.
For instance, imagine that the only thing that affects the muscles is the sum of two neurons 
(green line). Then their difference (perpendicular blue line) does not matter, as long their 
sum stays constant. 
Neurons can change their activity along the blue line (null space) in order to prepare for 
movement, and then rotate or project this activity onto the output space in order to act.
Mathematically, the null space or kernel (“noyau”) of a linear transformation is the domain of 
the source space which is mapped to the zero vector: 
Two vectors have the same output iff they differ by a vector that belongs to the null space.



Movement preparation in the null space

Is this story true? To test it, the authors record 
from tens of neurons in PMd and M1.
It is possible to find weighted sums of those data 
such that the preparatory activity cancels out. 
For instance, in the graph at right, each gray dot 
represents one average condition of movement 
through the maze. Along the blue axis, all of their 
preparatory activity projects identically – but 
during the movement, their activity vectors 
rotate and predict movement.
Note that preparatory activity is far from random 
or noisy – it is predictive of the amplitude and 
orientation of the upcoming movement.

Kaufman, M. T., Churchland, M. M., Ryu, S. I., & Shenoy, K. V. (2014). Cortical activity in the null spaceௗ: Permitting preparation without movement. Nature 
Neuroscience, 17(3), 440-448. https://doi.org/10.1038/nn.3643

How can we identify the output space and null space?
First, perform data reduction using principal component 
analysis, thus reducing muscle activity 𝑀 to 𝑀෩ (with 3 
dimensions), and neural activity 𝑁 to 𝑁෩ (with 6 
dimensions). 
Then use regression to solve for 𝑊෩ such that 𝑀෩ = 𝑊෩𝑁෩

And finally project the entire trajectory onto (1) the null 
space of 𝑊෩ , and (2) the other orthogonal space.

Results: potent preparatory activity in the output-null dimensions of PMd and 
M1 (left), 3 to 8 times larger than in the output-potent dimensions (right).



Movement preparation in the null space

Remarkably, the same mechanism accounts for communication between PMd and M1.
Preparatory activity in PMd occurs primarily in the null space for activating M1.
This reduction (not complete cancellation) can explain why M1 activity is smaller 
during preparation than during movement.
Controls:
- The converse is not true (when analyzing in the M1 PMd direction)
- The conclusions do not depend on the choice of dimensionality
- The result is not due to a segregation of neurons specialized for preparation versus 

execution, but to different linear combinations of the same neurons.

Conclusion:

This could be a general mechanism for cortical communication – only a subpart of the 
activity is transmitted to another downstream area (or to muscles).

Kaufman, M. T., Churchland, M. M., Ryu, S. I., & Shenoy, K. V. (2014). Cortical activity in the null spaceௗ: Permitting preparation without movement. Nature 
Neuroscience, 17(3), 440-448. https://doi.org/10.1038/nn.3643



What happens during a fast movement? 
Parallel, independent subspaces for preparation, 

triggering and execution
Zimnik, A. J., & Churchland, M. M. (2021). Independent generation of sequence 
elements by motor cortex. Nature Neuroscience, 24(3), 412-424. 

Monkeys trained to performed either a single reach or a double reach 
(spaced or immediate).
Results: the same component subspaces for preparation, triggering and 
execution are activated, only faster and partially in parallel with each other.

The results allow to 
reject a model where 
speeded compound 
movements are 
generated by ad-hoc 
holistic neural activity.
Activity can be factorized 
into independent 
subspaces for 
preparation, then 
triggering and execution.



Routing of neural information using neural subspaces
Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through a Communication Subspace. Neuron, 102(1), 
249-259.e4. https://doi.org/10.1016/j.neuron.2019.01.026

Key proposal : “The ability of a source area to communicate only certain 
activity patterns while keeping others ‘‘private’’ could be a means for the 
selective routing of signals between areas.”
 Completely different mechanism than the “communication through 
coherence” hypothesis (no need to set-up oscillations jointly in both areas)
 More flexibility: different subspaces could be used to route information to 

different areas.
“The selective routing allowed by the communication subspace could be 

adjusted dynamically, allowing moment-to-moment modulation of 
interactions between cortical areas. Dynamic routing could be 
accomplished by altering the structure of population activity in a source 
area; it need not involve changing the communication subspace itself”

What the authors mean here is that a projection or rotation could be used to 
bring information to the appropriate subspace, thus opening or closing 
communication channels at will.

Meanwhile, the private dimensions could be used to perform covert 
computations. 



Neuronal subspaces for communication between visual areas
Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through a Communication 
Subspace. Neuron, 102(1), 249-259.e4. https://doi.org/10.1016/j.neuron.2019.01.026

Goal = measure the communication of dense 
information from V1 to V2, using 
simultaneous recordings

In V1: Recordings from layer 2-3 projection cells, 
88 to 159 neurons

In V2: movable tetrodes, recordings for middle 
layers, 24 to 37 neurons

V1 and V2 sites share overlapping receptive 
fields.

The monkey is anesthetized.
Gratings are presented.
The mean activity (PSTH = peri-stimulus time 

histogram) is subtracted, and they study the 
transmission of trial-by-trial variability.



Neuronal subspaces for communication between visual areas
Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through a Communication 
Subspace. Neuron, 102(1), 249-259.e4. https://doi.org/10.1016/j.neuron.2019.01.026

First finding:
The correlation between pairs of neurons is low and similar 

within V1 and between V1 and V2.
Single neurons can only explain ~1% of the variance in V2.

However, multivariate linear regression can explain ~13-15 
% of the variance

(a level of performance which, according to simulations, is 
in line with Poisson noise in V2, or with subsampling of 
the true causal population in V1)

 Populations of neurons in V1 influence V2. This is 
entirely expected, but…

• What is the size of the predictive population?
• Could a subset of V1 neurons suffice to predict V2 

activity?
• Can we distinguish private V1 activity from predictive 

(or public) activity?

r Cross-validated R²



Neuronal subspaces for communication between visual areas
Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through a Communication Subspace. 
Neuron, 102(1), 249-259.e4. https://doi.org/10.1016/j.neuron.2019.01.026

High-dimensional interactions Low-dimensional interactions

Key Idea: estimate how many dimensions suffice to account for V1-V2 interactions.
Reduced-rank regression, a variant of linear regression in which the regression dimensions are 

constrained to lie in a low-dimensional subspace, can find a subset of predictive dimensions 
that are equally good at predicting V2 activity.

Results:
A small number of V1 dimensions (2) suffices to explain V2 activity
A larger number (5) is needed to explain V1-V1 interactions.
This finding is not due to the intrinsic dimensionality, which is actually larger for V2 data than 

for V1 data  existence of a limited communication subspace between V1 and V2.
Similar findings for V1-V4 interactions in awake macaque monkeys.



Neuronal subspaces for communication between visual areas
Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through a Communication Subspace. Neuron, 102(1), 
249-259.e4. https://doi.org/10.1016/j.neuron.2019.01.026

Private and public spaces are different within area V1.
This can be seen by selectively removing some of the axes 

from the V1 population:
- Removing private V1 dimensions does not (fully) prevent 

predicting V2 activity, while removing public ones does.
- The converse is true for predicting V1 activity.
Additional controls:

- A similar communication subspace is found when analyzing responses to a single input grating. It is not identical, but generalizes to 
other gratings (75% of the original variance) and to movie-induced brain activity.

- The communication subspace cannot be identified by principal component analysis (PCA) – it does not correspond to the maximum 
variance of V1 activity (but V1-V1 predictive dimensions do)

- The article proves the existence of a restricted communication subspace, but probably does not correctly estimate its true number 
of dimensions (larger datasets, with more receptive fields, would probably lead to a larger number of dimensions).



Conclusions

A low-dimensional representation in inferotemporal cortex 
can support very fast encoding of new categories.

Decisions correspond to classifications in this space, which 
can be seen as the projection or rotation of the internal 
coding vector onto the response categorization axis.

The decision boundaries can explain the psychophysics of 
conscious and unconscious decision making

Only a small number of neurons may communicate their 
outputs to other brain regions.

This constraint creates an opportunity : 
- existence of a vast “null space” for covert internal 

computations.
- Selective communication between any two areas by 

projection onto the relevant subspace


