Number Symbols in the Brain & Mind

Daniel Ansari Department of Psychology & Faculty of Education

How important are numerical skills?

- Low numeracy associated with unemployment, physical illness, depression & incarceration (Bynner & Parsons 2005)
- Improvements in mathematical competence are related to economic growth (OECD, 2010)
- Health Numeracy: Ability of patients & health professionals to use healthcare information (Golbeck et al., 2005)

How do numerical skills develop?

Foundational Competencies

Matthew Effects in Reading

Foundational Competencies

Achievement

A brain system for non-symbolic number

Libertus & Brannon (2009)

How are innate (ANS) and acquired (symbolic) systems related?

How do culture and biology interact?

Probing Developmental Dynamics

Longitudinal approach necessary

Repeatedly test the same children using the same methods

Allow for estimation of direction of relationship

Probing Developmental Dynamics

lan Lyons

531 children in senior kindergarten (mean age: 5 years and 2 months)

From 35 Schools in the Toronto District School Board

Tested in the fall (September/October) and spring (April/May)

Paper and pencil measures

Lyons et al. (2018), Developmental Psychology

Lyons et al. (2018), Developmental Psychology

Lyons et al. (2018), Developmental Psychology

© 2021 American Psychological Association ISSN: 0012-1649 Developmental Psychology

2021, Vol. 57, No. 4, 471–488 https://doi.org/10.1037/dev0001158

Kindergarteners' Symbolic Number Abilities Predict Nonsymbolic Number Abilities and Math Achievement in Grade 1

Added in additional time point: end of Grade 1

- Random intercept cross-lagged model
 - Better distinguish between within-subject vs. between-subject change

Lau et. al. (2021), Developmental Psychology

What developmental dynamics best fit the data?

Contrasting possible developmental models

Contrasting possible developmental models

Contrasting possible developmental models

Contrasting possible developmental models Refinement Model

Time

Lau et al. (2021), Developmental Psychology

Change in developmental dynamics? 8 2 **Developmental Time**

Directionality in the interrelations between approximate number, verbal number, and mathematics in preschool-aged children

Yi Mou¹ | Bo Zhang^{2,3} | Daniel C. Hyde³

- 2.9-4.3 year olds
- 1-year longitudinal study 3 time points
- Verbal number knowledge, general cognitive abilities, dot comparison (ANS precision)

CHILD DEVELOPMENT

Directionality in the interrelations between approximate number, verbal number, and mathematics in preschool-aged children

Developmental Dynamics

- Symbolic number knowledge influences non-symbolic number *from an early age*
- Symbolic number knowledge as an attentional filter?
- Symbolic number changes perception of and focus on nonsymbolic set?

Cognition 181 (2018) 35-45

Original Articles

Learning to focus on number

Manuela Piazza^{a,b,c,*}, Vito De Feo^d, Stefano Panzeri^d, Stanislas Dehaene^{a,b,e}

^a Cognitive Neuroimaging Unit, CEA DSV/12BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France ^b NeuroSpin Center, Institute of BioImaging, Commissariat à l'Energie Atomique, F-91191 Gif/Yvette, France

^c Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy

^d Center for Neuroscience and Cognitive Systems @UniTn, Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy ^e Collège de France, F-75005 Paris, France

A small experiment

A small experiment

You will see dot arrays

Say as quickly as you can how many dots you see!

What did you notice?
Research Article Does Subitizing Reflect Numerical Estimation?

Susannah K. Revkin,^{1,2,3} Manuela Piazza,^{1,2,3,4} Véronique Izard,^{1,2,3,5} Laurent Cohen,^{1,2,3,6,7} and Stanislas Dehaene^{1,2,3,8}

¹INSERM, U562, Cognitive Neuroimaging Unit, Gif/Yvette, France; ²CEA, DSV/I2BM, NeuroSpin Center, Gif/Yvette, France; ³Université Paris-Sud, IFR 49; ⁴Center for Mind/Brain Sciences, University of Trento; ⁵Department of Psychology, Harvard University; ⁶AP-HP, Hôpital de la Salpêtrière, Department of Neurology, Paris, France; ⁷Université Paris VI, IFR 70, Faculté de Médecine Pitié-Salpêtrière; and ⁸Collège de France, Paris

Different nonsymbolic number processing systems

 There are <u>two</u> distinct systems for non-symbolic number processing

1.**The ANS** – large numbers, approximate processing, estimation

2. Subitizing/Object File System – small numbers, exact enumeration

Differential developmental dynamics?

Differential developmental dynamics?

Large

- 540 children
- 4.6 5.7 years old
- Fall and Spring of Kindergarten

Hutchison et al (2019), Developmental Science

Cross-sectional results

Longitudinal results

Hutchison et al (2019),
Developmental Science

Hutchison et al (2019), Developmental Science

Differential developmental dynamics?

884 + nov

Translating to

education

NUMERACY SCREENER

HOME ABOUT THE TEST GET YOUR SCORE

USERS ABOUT US

Does the numeracy screener predict math scores?

Symbolic counts!

Outcome: Math grade					
Predictors	β	t	р	ΔR^2	Bayes Factor
Age	.11	1.32	.190	.10	.49
Gender	07	87	.386	.00	.31
Sentence Recall	.23	2.69	.008	.15	18.53*
Rapid Color Naming	02	18	.857	.05	.24
Arithmetic	.05	.58	.562	.01	.31
Number Line (PAE)	13	-1.69	.095	.02	.76
Non-symbolic Comparison	.01	.08	.936	.03	.21
Symbolic Comparison	.38	3.34	.001	.06	649.43***
$*BF_{10} = 3-20, **BF_{10} = 20-150, ***BF_{10} > 150$					

Is the Numeracy Screener a useful tool for educators?

Exploring the Implementation of Early Math Assessments in Kindergarten Classrooms: 47% **A Research-Practice** Collaboration 29% Jennifer A. McDonald¹, Rebecca Merkley², Jacqueline M² Hawes³, and Daniel Ansari⁴ MIND 12% 12% BRAIN. AND 0% EDUCATION Numeracy Screener the gennese on the sourt individual differences Gaund Editor Floor Grinsreeks his you Berges □ Not at all useful □ Slightly useful Moderately useful Very useful

Extremely useful

6 Continents, 13 Countries, 16 regions, 18 datasets

Data from Ghana

Sharon Wolf

372 Children

7-9 years old

Early Grade Math Assessment (EGMA)

Numeracy Screener (Symbolic & Non-symbolic)

Sharon Wolf

- Multiple regression:
 - Non-symbolic a significant predictor of math scores
 - Symbolic not
- Finding runs contrary to data from Western Countries (e.g. Hawes et al. 2019)
- Set out to replicate in Ivory Coast

Data from Ivory Coast

Sharon Wolf

355 Children

7-9 years old

Early Grade Math Assessment (EGMA)

Numeracy Screener (Symbolic & Non-symbolic)

Multiple regression revealed *non-symbolic* **but not** symbolic as unique predictor of math scores

Developmental Science

Developmental Science (2016), pp 1-16

DOI: 10.1111/desc.12372

PAPER

Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis

Michael Schneider,¹ Kassandra Beeres,¹ Leyla Coban,¹ Simon Merz,¹ S. Susan Schmidt,¹ Johannes Stricker¹ and Bert De Smedt²

1. Department of Psychology, University of Trier, Germany

2. Faculty of Psychology and Educational Sciences, Parenting and Special Education Research Group, KU Leuven, University of Leuven, Belgium

r=.24

The importance of context

Data from.

e contrary to data from Western Samples

How number knowledge is acquired differs across context

Need to take context into account

*

Go beyond White, Educated, Industrialized, Rich and Democratic (WEIRD) populations

Insights from Cognitive Neuroscience

(e.g. Bugden et al., 2015; Matejko & Ansari (2022)

CrossMark

Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis

H. Moriah Sokolowski^a, Wim Fias^b, Ahmad Mousa^a, Daniel Ansari^{a,*}

How differently are symbolic & non-symbolic represented in the brain within participants?

Sokolowski et al. (2021) Cerebral Cortex Communications

Parallel adaptation Deviants

Zack Hawes

А

X = -45

Y = -65

R

R

Moriah Sokolowski

Symbolic Distance Effect S4 > S1

Nonsymbolic Distance Effect N4 > N1

Physical Size Distance Effect P4 > P1

Z = 26

Sokolowski et al. (2021) Cerebral Cortex Communications
Cultural/symbolic number development influences preexisting non-symbolic number processing

Differs as a function of set size

Individual differences in symbolic & non-symbolic predict math scores

Relationship strongest for symbolic in Western Samples

Relationship strongest for non-symbolic in West African samples

Context matters

Summary and conclusion

