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Cours n°1

Cellules grand-mère ou vecteurs neuronaux : 
Les représentations mentales sont-elles localisées ou distribuées ?

Grand-mother cells or neuronal vectors:
Are mental representations localized or distributed ?



How do neurons 
encode our 
thoughts?

What is the code?

And if we 
understood it, could 

we decode it, or even 
manipulate it?



We need to identify 
bridging laws between 

psychology and 
neuroscience.

The bridge is unlikely 
to have a single arch, 

directly from 
individual concepts to 

individual neurons
One concept 
≠ one neuron 

In this course, we will 
explore the 

hypothesis that:
- Neural populations 

encode vector spaces
- Mental 

representations are 
points in high-

dimensional space



Single neuron electrophysiology

http://newton.umsl.edu/tsytsarev_files/Lecture02.htm



Single-cell electrophysiology : the gold standard for decades of discoveries in neuroscience

Neurons are « feature detectors ».
Hubel and Wiesel in area V1 : simple, 

complex, hypercomplex cells.
Area V4: shape or color detectors.
Area V5/MT: motion detectors.
Infero-temporal cortex: face detectors.
Etc. etc.



Sensitivity to higher-level features in ventral visual cortex

Hegdé, J., & Van Essen, D. C. (2007). A comparative study of shape representation in macaque visual areas v2 and v4. Cerebral Cortex (New York, N.Y.: 1991), 
17(5), 1100-1116. https://doi.org/10.1093/cercor/bhl020



Characterizing neurons along the ventral visual pathway:
An emphasis on highly selective responses

Gross, Tanaka, Logothetis, Poggio, Perrett, Orban, Rolls, etc.

From Tamura, H., & Tanaka, K. (2001). Cerebral Cortex.

From Rolls, Neuron 2000



Tsunoda, … & Tanifuji, Nature Neuroscience 2001

A search for the defining features for a given cell

Tanaka, 1996

Tanaka, Annual Rev. Neurosci. 1996



Mots écrits
« Luke Skywalker » 

dit par une voix d’homme
« Luke Skywalker » 

dit par une voix de femme

Concept cells in human anterior medial temporal lobe
Quiroga, R. Q. (2012). Concept cellsௗ: The building blocks of declarative memory functions. Nature Reviews Neuroscience, 13(8), 587-597. Quiroga, R. Q., 
Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435(7045), 1102-1107. 



« Grand mother » cells and arguments against them

Pushing things to the limit, some neuroscientist have entertained  “the hypothesis that a single cell might respond to one and only one 
object or person, independently of, for example, its angle of gaze, location on the retina or facial expression.” 
 ‘grandmother cells’, as named by Jerry Lettvin ; a.k.a. as ‘pontificial cells’ (Sherrington), ‘gnostic cells’ (Konorski) or ‘cardinal cells’ 

(Barlow)

But note that a “grandmother” code is not Rodrigo Quian-Quiroga’s interpretation : he argues for a sparse distributed code for concepts.   

Arguments against a grandmother code:
- If a concept was coded by a single neuron, the probability of finding it would be vanishingly small. The fact that, by random recording, 

we find such a cell implies that there must be tens of thousands of them
- In Quiroga’s work, only ~200 pictures are explored  we cannot exclude that each neuron responds to more than one picture…

and indeed this does occur.

Quiroga, R. Q., Kreiman, G., Koch, C., & Fried, I. (2008). Sparse but not ‘Grandmother-cell’ coding in the medial temporal 
lobe. Trends in Cognitive Sciences, 12(3), 87-91. https://doi.org/10.1016/j.tics.2007.12.003



A neuron that jointly responds to the Pisa tower and the Eiffel tower
Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435(7045), 1102-1107. 



More arguments against « grand mother » cells

Pushing things to the limit, some neuroscientist have entertained  “the hypothesis that a single cell might respond to one and only one 
object or person, independently of, for example, its angle of gaze, location on the retina or facial expression.” 
 ‘grandmother cells’, as named by Jerry Lettvin ; a.k.a. as ‘pontificial cells’ (Sherrington), ‘gnostic cells’ (Konorski) or ‘cardinal cells’ 

(Barlow)

Arguments against a grandmother code:
- If a concept was coded by a single neuron, the probability of finding this neuron would be vanishingly small. The fact that, by random 

recording, we find such a cell implies that there must be tens of thousands of them
- Only ~200 pictures are explored  we cannot exclude that each neuron responds to more than one picture, and indeed this does occur.
- The fact that ~200 pictures suffice to find one that makes a given neuron fire, implies that each neuron may respond to as many as 50-

150 concepts.
- Only 40% of medial temporal lobe cells respond in this way – others may have a different, possibly more distributed coding scheme.

Other arguments:
- Even if a neuron responds very selectively, it owes its selectivity to ~10,000 synaptic inputs that collectively suffice to characterize a 

given concept  a pre-synaptic distributed code.
- Single-cell coding makes learning extremely difficult. How could the brain keep a list of “unused” or “unaffected” cells and assign a new 

one to each new concept ?
- Problem of compositionality: There are simply not enough neurons to encode all the concepts or images that we can process.

Quiroga, R. Q., Kreiman, G., Koch, C., & Fried, I. (2008). Sparse but not ‘Grandmother-cell’ coding in the medial temporal 
lobe. Trends in Cognitive Sciences, 12(3), 87-91. https://doi.org/10.1016/j.tics.2007.12.003



Philip K Dick : “The electrical ant” (1968)

In this novel, the hero learns that he is not a human, but an organic robot. 
Furthermore, his subjective perception is entirely pre-programmed in a punched 
tape located inside his chest – each hole corresponds to a percept or concept!
He discovers this by plugging some of the holes – and, for a short period, the 
corresponding parts of his subjective world vanish.
He reasons that, if all the holes were uncovered at the same time, he would 
experience all possible perceptions at once.

“He saw apples, and cobblestones, and 
zebras. He felt warmth, the silky texture of 
cloth; he felt the ocean lapping at him and a 
great wind, from the North, plucking at him 
as if to lead him somewhere. 
(…) Butter relaxed into liquid on his tongue, 
and at the same time hideous odors and 
tastes assailed him: the bitter presence of 
poisons and lemons and blades of summer 
grass. He drowned; he fell; he lay in the 
arms of a woman in a vast white bed…”

Of course, the space of our perceptions is too 
large to be encoded by individual punches –
unless the code is vastly combinatorial.



Laminar 
electrodesUtah arrays

From single neurons to population recordings



The revolution of NeuroPixels
Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., … Harris, T. D. 
(2017). Fully integrated silicon probes for high-density recording of neural activity. Nature, 
551(7679), 232–236. 



NeuraLink : towards an industrialization of the brain-computer link

The neuralink chip is able to record 
wirelessly from 1024 electrodes, implanted 
in the motor cortex, and sealed, with very 
low power.

Here, they implanted two chips, one in each 
motor cortex, and used them to decode 
motor intentions (more on this later!) and 
control various computer games.



The rise of brain-computer interfaces for paralyzed patients
Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., … Andersen, R. A. (2015). Decoding motor imagery from the posterior parietal 
cortex of a tetraplegic human. Science (New York, N.Y.), 348(6237), 906–910. https://doi.org/10.1126/science.aaa5417

A 32-year-old tetraplegic patient was implanted with 
two arrays, each comprising 100 microelectrodes.

Those electrodes can be used to decode various 
parameters of the intended movement, but also to 
give the patient some tactile feedback.



Imagination allows the patient to take control over a single neuron
Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., … Andersen, R. A. (2015). Decoding motor imagery from the posterior parietal 
cortex of a tetraplegic human. Science (New York, N.Y.), 348(6237), 906–910. https://doi.org/10.1126/science.aaa5417

The patient reports being 
able to control this 
particular neuron by 
imagining different 
activities:
- Activating = rotating his 

shoulder
- Inhibiting = touching his 

nose



Thousands of electrophysiology channels in the human brain
Tchoe, Y., Bourhis, A. M., Cleary, D. R., Stedelin, B., Lee, J., Tonsfeldt, K. J., Brown, E. C., Siler, D. A., Paulk, A. C., Yang, J. C., Oh, H., 
Ro, Y. G., Lee, K., Russman, S. M., Ganji, M., Galton, I., Ben-Haim, S., Raslan, A. M., & Dayeh, S. A. (2022). Human brain mapping 
with multithousand-channel PtNRGrids resolves spatiotemporal dynamics. Science Translational Medicine. 
https://doi.org/10.1126/scitranslmed.abj1441

The vector field and streamlines represent the propagating beta
waves, and green scattered dots represent the high gamma activity. 



Towards a restoration of fine vision through brain-computer interfaces

Roelfsema, P. R., Denys, D., & Klink, P. C. (2018). Mind Reading and Writing: The Future of 
Neurotechnology. Trends in Cognitive Sciences, 22(7), 598–610. 
https://doi.org/10.1016/j.tics.2018.04.001
Chen, X., Wang, F., Fernandez, E., & Roelfsema, P. R. (2020). Shape perception via a high-channel-
count neuroprosthesis in monkey visual cortex. Science, 370(6521), 1191-1196. 
https://doi.org/10.1126/science.abd7435 



Yang Xie          Peiyao Hu          Bin Min 

DLPFC, GCaMP6s, Field of view of 0.5X0.5mm, 32f/s

Xie, Y., Hu, P., Li, J., Chen, J., Song, W., Wang, X.-J., Yang, T., Dehaene, S., Tang, S., Min, B., & Wang, L. (2022). 
Geometry of sequence working memory in macaque prefrontal cortex. Science, 375(6581), 632-639. 

Shiming Tang (PKU) 

Optical imaging: recording from thousands of identified cells 

2- or even 3-photon imaging, combined with genetically encoded Calcium fluorescent indicators 
(usually GCaMP), allows to visualize (and not just record) hundreds or even thousands of neurons, 
in awake behaving monkeys, and to capture their spikes with a reasonable time resolution.
Here: over several days, total of 5325 neurons in 2 monkeys !

Liping 
Wang



An example trial



Large-scale neurophysiology is compatible with awake, behaving animals.
Urai, A. E., Doiron, B., Leifer, A. M., & Churchland, A. K. (2022). Large-scale neural recordings call for new insights to link brain and behavior. 
Nature Neuroscience, 1-9. https://doi.org/10.1038/s41593-021-00980-9



An exponential growth in the scale of neurophysiological recordings
Urai, A. E., Doiron, B., Leifer, A. M., & Churchland, A. K. (2022). Large-scale neural recordings call for new insights to link brain and behavior. 
Nature Neuroscience, 1-9. https://doi.org/10.1038/s41593-021-00980-9

Such large-recordings “call for 
new insights”:

- Analysis tools for dimension 
reduction

- Visualization: new graphics
- Theoretical tools to 

characterize how a population 
of neurons responds and how 
it can encode features and 
concepts.



• Ebitz, R. B., & Hayden, B. Y. (2021). The population doctrine in cognitive neuroscience. Neuron. https://doi.org/10.1016/j.neuron.2021.07.011
• Chung, S., & Abbott, L. F. (2021). Neural population geometryௗ: An approach for understanding biological and artificial neural networks. Current 

Opinion in Neurobiology, 70, 137-144. https://doi.org/10.1016/j.conb.2021.10.010
But also 

• Hebb, D. O. (1949). The organization of behavior. Wiley.
• Braitenberg, V. (1978). Cell assemblies in the cerebral cortex. In G. Palm (Éd.), Theoretical approaches to complex systems. (p. 171-188). 

Springer.
• Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. PNAS, 79(8), 2554-2558.
• Amit, D. (1989). Modeling brain functionௗ: The world of attractor neural networks. Cambridge University Press.

and many others!

Two « doctrines » for neuroscience :
Single neurons versus population coding

Five key concepts (from Ebitz & Hayden)
(1) the neural states that provide a snapshot of a pattern of activity across the population
(2) the manifold that encompasses the neural states that are possible (Manifold) or at least observed (manifold)
(3) the coding dimensions
(4) the subspaces that link neural states to behavior and cognition
(5) the dynamics that map activity from neural state to neural state, guiding how trajectories evolve through time 
and across the state space.

Consequence of this framework:
A “zoo” of individual cells with highly variable properties gets reinterpreted as 

a vector with a dynamic trajectory



Main differences between the single-cell and the population view

Single-cell

Each cell is dedicated to a single feature or concept.

Composite states can only be encoded by co-
activating several cells (e.g. for color, motion, and 
location).

Learning requires the dedication of specific, previous 
unused cells, or the splitting of an existing 
population.

Neural population

Each cell can participate in multiple cell assemblies.
Each cell can have distinct weights, corresponding to its 
variable (up or down) activation in response to various 
concepts.

Composite states can be encoded by superposition of 
orthogonal vectors. A very large number of vectors can be 
superimposed, thus yielding a factorial code.

Learning requires either 
- the allocation of a new, possibly random coding vector, 

orthogonal to previous ones (those are in very large 
supply).

- Or (at a slower time scale?) the reorganization of the 
entire manifold.



The first neuronal vector code: 
Research by Apostolos Georgopoulos (1980’s)



Each neuron exhibits directional tuning: 
a sinusoidal tuning curve with a 
preferred direction of upcoming 
movement of the hand.

𝐹𝑖𝑟𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 =  𝑓௜

=  𝑘௜ 𝑉௣௥௘௙௘௥௥௘ௗ(௜) ȉ 𝑉௠௢௩௘௠௘௡௧ ௜

= 𝑘௜  cos 𝜃௠௢௩௘௠௘௡௧ − 𝜃௜

or equivalently :
𝐹𝑖𝑟𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 =  𝑓௜

= 𝑎௜  cos 𝜃௠௢௩௘௠௘௡௧ + 𝑏௜  sin 𝜃௠௢௩௘௠௘௡௧

= 𝑎௜ 𝑚௫ + 𝑏௜ 𝑚௬

Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population 
coding of movement direction. Science, 233(4771), 1416-1419. 
https://doi.org/10.1126/science.3749885

Macaque monkeys are asked to make 
movements in each of 8 possible 
directions, while single neurons are 
recorded in motor cortex.



Notion of “population vector”

Cell vectors

Population vector
        direction

0o

90o

Each neuron is ambiguous and noisy.
The direction of movement can be reconstituted by 
pooling over multiple neurons, each voting for a 
certain direction.
Each cell can be said to “point” in its preferred 
direction, its preferred vector.
The population vector is the vector sum (or 
average) of each neuron’s preference.
Its components are simply given by 

𝑉௫ =  ∑ 𝑎௜𝑓௜௜ and   𝑉௬ =  ∑ 𝑏௜𝑓௜௜



The population vector for movements in 3 dimensions
The idea can be generalized to movements in 3D: each neuron possesses a “weight” 
for its preference along the x, y and z directions of movement.

𝐹𝑖𝑟𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 =  𝑓௜

= 𝑎௜ 𝑚௫ + 𝑏௜ 𝑚௬ + 𝑐௜ 𝑚௭

= 𝑘௜  cos 𝜃௠௢௩௘௠௘௡௧,௣௥௘௙௘௥௥௘ௗ

And the population vector can again be reconstituted by averaging the coefficients, 
each weighted by the neuron’s firing:

𝑉௫ =  ∑ 𝑎௜𝑓௜௜ , 𝑉௬ =  ∑ 𝑏௜𝑓௜௜ , 𝑉௭ =  ∑ 𝑐௜𝑓௜௜

This simple idea works well because the preferred 
directions of the cells are roughly distributed 
equally across all directions.



Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B., & Massey, J. T. 
(1989). Mental Rotation of the Neuronal Population Vector. Science, 243(4888), 
234-236. https://doi.org/10.1126/science.2911737

The mental rotation hypothesis:
If the monkey changes its mind and decides to move in another 
direction, the neural population vector should reflect this 
internal change by rotating internally.













Shepard, R. N., & Metzler, J. (1971). 
Mental rotation of three-
dimensional objects. Science, 
171(972), 701–703.



Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B., & Massey, J. T. 
(1989). Mental Rotation of the Neuronal Population Vector. Science, 243(4888), 
234-236. https://doi.org/10.1126/science.2911737

Monkeys are trained to move to the direction of a light. 
On some trials, depending on the brightness of the light, 
they have to make a movement at an angle to the light.
Response time is proportional to angle:

The population vector first indicates the 
direction of the light, and then turns towards 
the final movement direction



The NeuraLink decoder uses some variant of the population vector

The neuralink blog suggests 
that they use a simple 
weighted-sum mechanism 
(with time delays and 
integration over multiple 
windows of 25 ms) to 
predict the intended speed 
on the x and y directions.

The video shows the 
weights assigned to each 
electrode where spikes are 
recorded.



Vector coding of goal direction in the bat
Sarel, A., Finkelstein, A., Las, L., & Ulanovsky, N. (2017). Vectorial representation of spatial goals in the hippocampus of bats. 
Science, 355(6321), 176-180. https://doi.org/10.1126/science.aak9589

Vector coding by a “bump” of activity over a bank of neurons appears to be a very 
general strategy in many brains. 
Here, bats were trained to land on a platform. in CA1 of the bat hippocampus, many 
neurons are tuned to the direction of the goal relative to the heading direction.

Distance is also encoded, often simply by 
increasing or decreasing the firing of the same 
neurons as a function of Euclidean distance.

… although a few neurons are tuned to 
intermediate distances as well:



Similar encoding of vector direction 
in the fly brain!

Lyu, C., Abbott, L. F., & Maimon, G. (2022). Building an 
allocentric travelling direction signal via vector 
computation. Nature, 601(7891), 92-97. 
https://doi.org/10.1038/s41586-021-04067-0

In drosophila, the 
complete connectome is 
available (EM).
Activity can be recorded 
using calcium reporters 
and 2P imaging, while 
moving in virtual reality!
Bumps of activity encode 
movement direction.
Cell activity is a sinusoidal 
function of direction.



Successive stages of the fly’s brain 
represent stimuli (e.g. optic flow, target 
location) in egocentric coordinates, then 
world-centered, then back to egocentric 
motor commands.

The main principles of vector coding and 
arithmetic are well understood:
1. A vector is coded by a “phasor”, a 

sinusoidal distribution of activity 
over a bank of neurons, whose 
amplitude represents vector size, 
and phase represents vector 
direction.

2. Vector rotation can be implemented 
by shifting the bump of activity left 
or right on this neural population

3. Vector addition is as simple as 
adding the activity of the two neural 
“phasor” populations

4. Vector projection can be encoded by 
non-linearities in the neural 
response to a combination of two 
inputs.

Vector coding and vector arithmetic in the fly

Lyu, C., Abbott, L. F., & Maimon, G. (2022). Building an allocentric travelling direction signal via vector computation. 
Nature, 601(7891), 92-97. https://doi.org/10.1038/s41586-021-04067-0



Conclusions

The concept of neuronal population vector is extremely 
useful:

- To summarize hundreds of recordings
- To pool over the variability and peculiarities of individual 

neurons
- Above all, to track covert cognitive computations (mental 

rotation)

Multiple questions remain open, which will be addressed in 
the next courses:
- How can vectors encode non-geometrical objects, such as a 

face?
- Do neurons make use of the full power of vector spaces: 

subspaces, null spaces, vector addition, etc
- Can vectors be used to track the dynamics of brain activity 

for instance during decision making?
- Can vectors encode concepts?
- Can vectors encode sentences and syntax?


