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Géométrie des représentations visuelles: chaque visage est un vecteur
Geometry of visual representations : every face is a vector



Large-scale neurophysiology is compatible with awake, behaving animals.
Urai, A. E., Doiron, B., Leifer, A. M., & Churchland, A. K. (2022). Large-scale neural recordings call for new insights to link brain and behavior. 
Nature Neuroscience, 1-9. https://doi.org/10.1038/s41593-021-00980-9



The first neuronal vector code: 
Research by Apostolos Georgopoulos (1980’s)



Ebitz, R. B., & Hayden, B. Y. (2021). The population doctrine in cognitive neuroscience. Neuron. https://doi.org/10.1016/j.neuron.2021.07.011

The concept of « neural manifold »

“Because activity of neurons tends to be correlated with each other, 
because the wiring between neurons constrains what patterns of 
neural activity are possible, neural states often only vary along a small 
number of dimensions in the neural subspace. 

To put it another way, there is a lot of white space in our state space 
diagrams: neural activity tends to occupy fewer neural states than it 
would if each neuron made an independent, random contribution to 
population activity. 

The part of the neural state space that contains the states that we 
observe is called the neural manifold”



DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends in Cognitive Sciences, 11(8), 333-341.
DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How Does the Brain Solve Visual Object Recognition? Neuron, 73(3), 415-434. 

The successive stages of processing in visual cortex may « untangle » a manifold 

The core problem of invariant object recognition Principle of vector 
coding in a high-

dimensional space

The visual space may “untangle” or “unfold” the neural 
manifold, thus making its axes more meaningful



DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends in Cognitive Sciences, 11(8), 333-341.
DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How Does the Brain Solve Visual Object Recognition? Neuron, 73(3), 415-434. 

The successive stages of processing in visual cortex may « untangle » a manifold 

Question for today: Does infero-temporal cortex contain a disentangled vector space for visual recognition?



With many thanks to Professor Doris Tsao (UC Berkeley)



Face coding in the ventral visual pathway

Bruce et al., 1981



The discovery of the human fusiform face area
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face areaௗ: A module in human 
extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302-4311.

Puce, A., Allison, T., Asgari, M., Gore, J. C., & 
McCarthy, G. (1996). Differential sensitivity of 
human visual cortex to faces, letterstrings, and 
texturesௗ: A functional magnetic resonance imaging 
study. Journal of Neuroscience, 16, 5205-5215.



The discovery of monkey face patches
Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B., & Tootell, R. B. (2003). Faces and objects in macaque cerebral cortex. Nat Neurosci, 
6(9), 989-995. https://doi.org/10.1038/nn1111



Face patches contain a majority of neurons exquisitely tuned to faces
Tsao, D. Y., Freiwald, W. A., Tootell, R. B., & Livingstone, M. S. (2006). A cortical region consisting entirely of face-selective cells. Science, 
311(5761), 670-674.



Example of a single unit recorded from ML

With special thanks to Professor Doris Tsao 



Face patches contain a majority of neurons exquisitely tuned to faces
Tsao, D. Y., Freiwald, W. A., Tootell, R. B., & Livingstone, M. S. (2006). A cortical region consisting entirely of face-selective cells. Science, 
311(5761), 670-674.

FSI = 0.92

Monkey 1 (182 visually responsive cells /241) Monkey 2 (138/164)



How are individual faces coded ? A study with cartoon faces
Freiwald, W. A., Tsao, D. Y., & Livingstone, M. S. (2009). A face feature space in the macaque temporal lobe. 
Nat Neurosci, 12(9), 1187-1196. https://doi.org/10.1038/nn.2363

Face cells respond well to cartoon faces … allowing to systematically study various parameters of face variation



Tuning to Features of an Example Face Cell

How are individual faces coded ? A study with cartoon faces
Freiwald, W. A., Tsao, D. Y., & Livingstone, M. S. (2009). A face feature space in the macaque temporal lobe. 
Nat Neurosci, 12(9), 1187-1196. https://doi.org/10.1038/nn.2363

88% of face cells are tuned to some dimension.

Each cell is tuned to an average of 2.88 dimensions
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Which dimensions are face cells tuned to ?
Freiwald, W. A., Tsao, D. Y., & Livingstone, M. S. (2009). A face feature space in the macaque temporal lobe. 
Nat Neurosci, 12(9), 1187-1196. https://doi.org/10.1038/nn.2363
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How are the units tuned? Monotonic coding of the main axes

Two models can be opposed:
1. Cells tuned to a specific exemplar value of the 

parameter
2. Cells monotonically tuned to a specific axis of 

the face space

Answer:
Most cells respond in a 
monotonic manner…
to such an extent that they fire 
maximally to a stimulus that 
cannot occur in reality !



We recognize (and enjoy!) caricatures because our face neurons
encode axes of face space and can respond beyond their normal values.

By Stéphane Lemarchand, Caricaturiste (from Wikimedia)



Caricatures activate monkey anterior 
inferotemporal neurons more than the original faces

Leopold, D. A., Bondar, I. V., & Giese, M. A. (2006). Norm-based face encoding by 
single neurons in the monkey inferotemporal cortex. Nature, 442(7102), Art. 7102. 
https://doi.org/10.1038/nature04951

Caricatures are super-stimuli for the brain’s face neurons:
- They are increasingly easier to recognize as the amount of 

caricaturization increases (100% = normal face, >100% = caricature)
- They induce increasingly greater firing in face neurons



A vector space for face recognition: an idea from computer and cognitive sciences 
Sirovich, L. & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A. 4 (3): 519–524.
Turk, M., & Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1), 71-86. https://doi.org/10.1162/jocn.1991.3.1.71

Doris Tsao et al.’s research suggest that the middle face patch may 
act as a vector space for faces :
- The neural code is distributed over many cells 
- Each cell encodes a few axes of variation of faces
 The firing of various cells may encode the coordinates of a given 

face in the space 

The idea of a face space has a long history in computer and cognitive 
science:
For automatic face recognition: it’s a good idea to compress the face 
space : start from many pictures of faces, and identify their main 
axes of variation to discover a basis set for faces.
https://en.wikipedia.org/wiki/Eigenface : “The eigenvectors are 
derived from the covariance matrix of the probability distribution 
over the high-dimensional vector space of face images. The 
eigenfaces form a basis set of all images used to construct the 
covariance matrix”.
In other words,  apply principal component analysis to discover the 
main axes.
Each individual face is characterized by its coordinates on those axes. 
Each face is a weighted sum of canonical face variations



Distance in face space predicts perceptual similarity
Jozwik, K. M., O’Keeffe, J., Storrs, K. R., Guo, W., Golan, T., & Kriegeskorte, N. (2022). Face dissimilarity judgments are predicted by representational 
distance in morphable and image-computable models. Proceedings of the National Academy of Sciences, 119(27), e2115047119. 

The Basel Face Model (BFM) is a formal 3D face space, 
with distinct axes for shape and for texture 
(here showing the first 3 principal components)

Does the Euclidean distance between two points in face space have any 
psychological reality? Does it predict human similarity judgments ?

232 pairs of faces were carefully selected to span the face space and test Euclidean 
distance as opposed to other parameters such as angle or radius.
The predictions of various neural network models of face recognition are also tested.



Distance in face space predicts perceptual similarity
Jozwik, K. M., O’Keeffe, J., Storrs, K. R., Guo, W., Golan, T., & Kriegeskorte, N. (2022). Face dissimilarity judgments are predicted by representational 
distance in morphable and image-computable models. Proceedings of the National Academy of Sciences, 119(27), e2115047119. 

Similarities for each pair are derived from a simple task of 
placing 8 randomly selected face pairs on a vertical axis 
from “identical“ (bottom) to “maximum difference” (top)

Results: Dissimilarity ratings increase 
as a sigmoidal function of Euclidean 
distance.

Euclidean distance is a marginally 
better predictor than angle or radius.

“Dissimilarity judgments are 
approximately isotropic in BFM face 
space” (whose axes are normally by 
the standard deviation of faces)
 The direction of the pair of face 

factors can be rotated in any 
direction, without changing the 
similarity judgments.

Conclusion : Humans may have 
compiled statistics of the main axes of 
face variation (in their environment) 
and use them to encode any face.
 Could explain the other-race effect.



Neural vectors for faces? Testing the face space at the neural level

Chang, L., & Tsao, D. Y. (2017). The Code for Facial Identity in the Primate Brain. Cell, 169(6), 1013-1028.e14. https://doi.org/10.1016/j.cell.2017.05.011

Taking seriously the idea that infero-temporal neurons implement a face space leads to many predictions:

- There should be a small number of axes (forming a basis set) that define the space and its 
dimensionality 

- Each face should correspond to a point in this vector space (and vice-versa)
- Each neuron should represent a direction in this vector space

- Each neuron should possess a preferred axis
- Each neuron should fire monotonically, only to the variations of faces along a certain axis 

(to the dot product of the face with its preferred axis)
- Variations along perpendicular directions should have no effect

- If the dimensionality is small, then a small number of neurons (forming a new basis set) should suffice 
to characterize any given face 

- And therefore, it should be possible to tell, from the votes of a sufficient number of neurons, which face 
was seen.



F = (s1, …, s25, a1, …, a25)

Average

(s1, …, s25)

Shape Appearance

(a1, …, a25)

Average + F

Cootes & Taylor, 2001
Chang & Tsao, Cell 2017

Changing appearance

A parametrization of faces by their shape and appearance

Chang, L., & Tsao, D. Y. (2017). The Code for Facial Identity in the Primate Brain. Cell, 169(6), 1013-1028.e14. https://doi.org/10.1016/j.cell.2017.05.011
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Average + F

Cootes & Taylor, 2001
Chang & Tsao, Cell 2017

F = (s1, …, s25, a1, …, a25)

Shape Appearance

Changing shape

A parametrization of faces by their shape and appearance

Chang, L., & Tsao, D. Y. (2017). The Code for Facial Identity in the Primate Brain. Cell, 169(6), 1013-1028.e14. https://doi.org/10.1016/j.cell.2017.05.011



Quantifying the response of each neuron to faces covering the entire space

Chang, L., & Tsao, D. Y. (2017). The Code for Facial Identity in the Primate Brain. Cell, 169(6), 1013-1028.e14. https://doi.org/10.1016/j.cell.2017.05.011
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Experiment: “bombard” the monkey with 2000 faces, whose precise coordinates in the 25+25 face space are known
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Characterize, for each neuron, the axes of variation to which it is responding.
Patch AM contains cells primarily tuned to appearance, patch ML/MF to shape



Prediction 1. If the relation betwen faces and neurons is linear, it can be inverted !
Chang, L., & Tsao, D. Y. (2017). The Code for Facial Identity in the Primate Brain. Cell, 169(6), 1013-1028.e14. https://doi.org/10.1016/j.cell.2017.05.011
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Actual Reconstruction (205 cells)



Prediction 2. Face metamers

Response of each face neuron = 
𝑠1 · 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1 + 𝑠2 · 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 + ⋯ 𝑠50 · 𝑓𝑒𝑎𝑡𝑢𝑟𝑒50

feature 3

feature 2

feature 1

Preferred axis

Each face has a preferred vector or preferred axis.
The model predicts that firing should only vary with the size of a face’s projection on that preferred axis.
Therefore, all faces in a place perpendicular to that axis (blue plane) should be metamers – they should 
induce exactly the same firing in the chosen cell, even though they look very different. 
Result: neurons do no show much, if any, variation in their firing for faces that vary along axes orthogonal to 
the preferred one. 
On those axes, the response curve is decidedly non-Gaussian. This finding is incompatible with exemplar 
models, but predicted by the vector space model.
The tuning is also better with this particular face space than with 
Eigenfaces computed from the raw images.

Distance along preferred axis

Normalized 
firing

Responses to 2000 faces



Prediction 2. Face metamers
This finding is so important that the authors 
replicated it with a dedicated experiment: 
For each cell
- Find the principal axis
- Find the main orthogonal axis.
- Generate 144 faces (12x12) that span 

both axes
- Test the variation along either axis.
The results show firing variations only along 
the principal axis! And a completely flat 
curve along the other axis.



Auto-encoders : an even better predictor of neural responses to faces

Can the dimensions of face variations be discovered
automatically? 
An auto-encoder is an artificial neural network that
performs dimensionality reduction.
It is similar in logic to principal component analysis, 
but uses several non-linear stages to discover a 
multidimensional compressed representation that
suffices to reconstruct the input.
A beta variational autoencoder (Beta-VAE) has an 
additional term that forces individual representational
units to encode semantically meaningful dimensions.
« If each variable in the inferred latent representation  
is only sensitive to one single generative factor and 
relatively invariant to other factors, we will say this 
representation is disentangled or factorized.”
Explanations :
https://lilianweng.github.io/lil-log/2018/08/12/from-
autoencoder-to-beta-vae.html

Higgins, I., Chang, L., Langston, V., Hassabis, D., Summerfield, C., Tsao, D., & Botvinick, M. (2021). Unsupervised deep learning identifies semantic
disentanglement in single inferotemporal face patch neurons. Nature Communications, 12(1), 6456. https://doi.org/10.1038/s41467-021-26751-5



Auto-encoders : an even better predictor of neural responses to faces

Higgins et al. used a beta-VEA to disentangle 2100 images of faces, and found that the dimensions were meaningful:

Higgins, I., Chang, L., Langston, V., Hassabis, D., Summerfield, C., Tsao, D., & Botvinick, M. (2021). Unsupervised deep learning identifies semantic
disentanglement in single inferotemporal face patch neurons. Nature Communications, 12(1), 6456. https://doi.org/10.1038/s41467-021-26751-5



Auto-encoders : an even better predictor of neural responses to faces
Higgins, I., Chang, L., Langston, V., Hassabis, D., Summerfield, C., Tsao, D., & Botvinick, M. (2021). Unsupervised deep learning identifies semantic
disentanglement in single inferotemporal face patch neurons. Nature Communications, 12(1), 6456. https://doi.org/10.1038/s41467-021-26751-5

Crucially, these new 
dimensions of face 
variation explained
better the 
variations in neural 
firing – and each
neuron now
responded to a 
smaller number of 
dimensions, 
typically 1 (as 
quantified by a 
measure of 
« alignment »).



Auto-encoders : an even better predictor of neural responses to faces
Higgins, I., Chang, L., Langston, V., Hassabis, D., Summerfield, C., Tsao, D., & Botvinick, M. (2021). Unsupervised deep learning identifies semantic
disentanglement in single inferotemporal face patch neurons. Nature Communications, 12(1), 6456. https://doi.org/10.1038/s41467-021-26751-5

The beta-VAE also provides a better basis set for reconstructing a novel face.
(Here AAM = Active Appearance Model = Chang & Tsao’s previous model).

Thus, during learning, infero-temporal cortex may disentangle the representation of visual objects such as faces, resulting in a 
compressed representation using a low-dimensional and orthogonal vector space.



Comparing artificial neural networks and real neuronal recordings
• Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., Kar, K., Bashivan, P., Prescott-Roy, J., Schmidt, K., Yamins, D. L. K., & DiCarlo, J. J. (2018). Brain-Scoreௗ: 

Which Artificial Neural Network for Object Recognition is most Brain-Like? BioRxiv, 407007. https://doi.org/10.1101/407007
• Schrimpf, M., Kubilius, J., Lee, M. J., Ratan Murty, N. A., Ajemian, R., & DiCarlo, J. J. (2020). Integrative Benchmarking to Advance Neurally Mechanistic Models of Human 

Intelligence. Neuron, 108(3), 413-423. https://doi.org/10.1016/j.neuron.2020.07.040

Artificial neural networks can be used as predictors of neural data, 
for instance using multiple regression or partial least squares.
 Definition of a Brain-Score: how good is the fit?

The best-performing AI models are not necessarily the ones with 
the highest “brain score”.

Empirically, one finds a correlation only up to a certain point, above 
which model architecture and parameters must be specifically 
optimized to fit the brain.



Artificial neural networks can help discover the “most exciting image” for real neurons
• Bashivan, P., Kar, K., & DiCarlo, J. J. (2019). Neural population control via deep image synthesis. Science, 364(6439), eaav9436.
• Ponce, C. R., Xiao, W., Schade, P. F., Hartmann, T. S., Kreiman, G., & Livingstone, M. S. (2019). Evolving Images for Visual Neurons Using a Deep Generative Network Reveals

Coding Principles and Neuronal Preferences. Cell, 177(4), 999-1009.e10. https://doi.org/10.1016/j.cell.2019.04.005
• Walker, E. Y., Sinz, F. H., Cobos, E., Muhammad, T., Froudarakis, E., Fahey, P. G., Ecker, A. S., Reimer, J., Pitkow, X., & Tolias, A. S. (2019). Inception loops discover what excites 

neurons most using deep predictive models. Nature Neuroscience, 22(12), 2060-2065. https://doi.org/10.1038/s41593-019-0517-x

Once a single unit or a neural population has been fit to a neural 
network (using a first set of training images), classical AI techniques 
can be used to optimize the image to achieve a certain predicted 
output.
Bashivan et al.: A ConvNet correctly predicted 89% of the explainable 
(image-driven) variance in the neural responses of 107 V4 neurons. 
Bashivan et al. then used gradient descent to find new pictures that 
were predicted to increase the firing of a given cell, either non-
specifically (stretch) or specifically (one-hot control)… it worked!



Artificial neural networks can help discover the “most exciting image” for real neurons
• Ponce, C. R., Xiao, W., Schade, P. F., Hartmann, T. S., Kreiman, G., & Livingstone, M. S. (2019). Evolving Images for Visual Neurons Using a Deep Generative Network Reveals

Coding Principles and Neuronal Preferences. Cell, 177(4), 999-1009.e10. https://doi.org/10.1016/j.cell.2019.04.005

Ponce et al. use a similar idea to discover new super-stimuli (or “most 
exciting images”) for a given cell in infero-temporal cortex.
But… those new images do not necessarily improve our comprehension 
of what IT cortex does.



Sensibility to adversarial attacks in brains and machines
Artificial neural networks are sensitive to adversarial 
attacks : from the detailed knowledge of the network 
connections, it is possible to minimally (differentially) 
change the image to drastically change the output.
This is called a white box attack, but it is also possible to 
perform “black box attacks” – designing pictures that are 
mislabeled by not just one network, but many networks, 
even with different architectures, that are trained with 
the same data set.
It is also possible to “poison” the training data set.



Sensibility to adversarial attacks in brains and machines
Guo, C., Lee, M. J., Leclerc, G., Dapello, J., Rao, Y., Madry, A., & DiCarlo, J. J. (2022). Adversarially trained neural representations may already be as robust as 
corresponding biological neural representations (arXiv:2206.11228). arXiv. https://doi.org/10.48550/arXiv.2206.11228

We typically assume that real biological 
neural networks cannot be “attacked” in 
the same way as artificial ones.

Is this true, however? 

Guo et al. find that they can easily find, for 
every neuron, images that are minimally 
(almost imperceptibly) changed and make 
the neuron fire to a seemingly unrelated 
category.

 It is even possible to find “super-stimuli” 
that make the neuron fire much more. 



Sensibility to adversarial attacks in brains and machines
Guo, C., Lee, M. J., Leclerc, G., Dapello, J., Rao, Y., Madry, A., & DiCarlo, J. J. (2022). Adversarially trained neural representations may already be as robust as 
corresponding biological neural representations (arXiv:2206.11228). arXiv. https://doi.org/10.48550/arXiv.2206.11228

How is this possible?
Use a model (here ResNet) to predict the responses of real monkey infero-temporal neurons i.
Use the model to generate a plausible adversarial attack.
Check how good it is.
Improve the attack over several days.
The result is much better than just adding Gaussian noise or linearly mixing two images.



Sensibility to adversarial attacks in brains and machines
Guo, C., Lee, M. J., Leclerc, G., Dapello, J., Rao, Y., Madry, A., & DiCarlo, J. J. (2022). Adversarially trained neural representations may already be as robust as 
corresponding biological neural representations (arXiv:2206.11228). arXiv. https://doi.org/10.48550/arXiv.2206.11228

The authors propose a nice way to quantify the minimal amount of image change needed to drastically change the response
Sensitivity is expressed in standard deviations of the response over a large range of normal (“clean”) images.
Results: IT neurons are less sensitive than an artificial neural network, but  more sensitive than adversarially trained networks (AT).
The effects can be large: 1 to 3 standard deviations, even for very small image changes – thus creating “super-stimuli” for the neuron.
It is possible that we overestimate the robustness of our vision – or that downstream areas perform further error correction.



Conclusions

At least for faces, the infero-temporal cortex (IT) in monkeys 
seems to be organized as a vector space :
- about ~50 axes sufficing to determine the identity of a face
- Each cell cares only about a few of those axes

- Perhaps even one, if the axes are determined by an 
auto-encoder

- It is therefore possible to speak of “orthogonal faces” and 
“face metamers”

- IT cells for object recognition can be nicely modeled by 
artificial convolutional neural networks,  to such an extent 
that such networks help

- Find better stimuli for each cell
- Find adversarial attacks


