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A theory of dimensionality and concept learning
Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119. 

Here, the authors propose a general theory of “few shot learning” for image recognition. 
1. Prior training has resulted in a tuned high-dimensional vector space for images, which 

can be used to perform one-shot or few-shot learning of new concepts.
2. Each example image (possibly 1) is encoded in this high-dimensional vector space
3. The barycenter of examples defines a prototypical vector for the new concept.
4. Classification of new images, or discrimination between two possibilities, is based on 

the nearest prototype



Which « neural vectors » are we talking
about? A reminder of past courses

Laminar 
electrodesUtah arrays

The hypothesis is that the “neural code” is supported specifically by the 
discharges of projecting nerve cells (neurons) and their joint activity.
Neurons can be measured one by one, or (increasingly) in parallel across 
thousands of sites

Neuropixels



Yang Xie          Peiyao Hu          Bin Min 

DLPFC, GCaMP6s, Field of view of 0.5X0.5mm, 32f/s

Xie, Y., Hu, P., Li, J., Chen, J., Song, W., Wang, X.-J., Yang, T., Dehaene, S., Tang, S., Min, B., & Wang, L. (2022). 
Geometry of sequence working memory in macaque prefrontal cortex. Science, 375(6581), 632-639. 

Shiming Tang (PKU) 

Optical imaging: recording from thousands of identified cells 

2- or even 3-photon imaging, combined with genetically encoded Calcium fluorescent indicators 
(usually GCaMP), allows to visualize (and not just record) hundreds or even thousands of neurons, 
in awake behaving monkeys, and to capture their spikes with a reasonable time resolution.
Here: over several days, total of 5325 neurons in 2 monkeys !

Liping 
Wang



Electro- and 
magneto-encephalography EEG and 3T fMRI (soon 7T) are applicable to young children

Human MRI
at 3T, 7T, and 11.7 T

In humans: methods for measuring neural 
vectors are much more limited 

fMRI : thousands of voxels of one or a few millimeters aside 
(sometimes less).
1 mm² of cortical surface = ~92,000 neurons

MEG or EEG: a few hundreds of sensors.

For more details, please see my 2020 course on this topic:
https://www.college-de-france.fr/agenda/cours/progres-recents-en-
imagerie-cerebrale-et-decodage-des-representations-mentales 



Routing of neural information using neural subspaces
Kaufman, M. T., Churchland, M. M., Ryu, S. I., & Shenoy, K. V. (2014). Cortical activity in the null spaceௗ: Permitting preparation without movement. Nature Neuroscience, 17(3), 
440-448. https://doi.org/10.1038/nn.3643
Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through
a Communication Subspace. Neuron, 102(1), 249-259.e4. https://doi.org/10.1016/j.neuron.2019.01.026

Key proposal : “The ability of a source area to communicate only certain 
activity patterns while keeping others ‘‘private’’ could be a means for the 
selective routing of signals between areas.”
 Completely different mechanism than the “communication through 
coherence” hypothesis (no need to set-up oscillations jointly in both areas)
 More flexibility: different subspaces could be used to route information to 

different areas.
“The selective routing allowed by the communication subspace could be 

adjusted dynamically, allowing moment-to-moment modulation of 
interactions between cortical areas. Dynamic routing could be 
accomplished by altering the structure of population activity in a source 
area; it need not involve changing the communication subspace itself”

What the authors mean here is that a projection or rotation could be used to 
bring information to the appropriate subspace, thus opening or closing 
communication channels at will.

Meanwhile, the private dimensions (the “null space” or “kernel” for the 
projection to other areas) could be used to perform covert computations. 



Movement preparation in the null space

During movement preparation, the null space 
for muscle activity in M1 and premotor cortex 
seems to be used to prepare the upcoming 
movement.
For instance, in the graph at right, each gray dot 
represents one average condition of movement 
through the maze. Along the blue axis, all of their 
preparatory activity projects identically – but 
during the movement, their activity vectors 
rotate and predict movement.
Note that preparatory activity is far from random 
or noisy – it is predictive of the amplitude and 
orientation of the upcoming movement.

Kaufman, M. T., Churchland, M. M., Ryu, S. I., & Shenoy, K. V. (2014). Cortical activity in the null spaceௗ: Permitting preparation without movement. Nature 
Neuroscience, 17(3), 440-448. https://doi.org/10.1038/nn.3643

How can we identify the output space and null space?
First, perform data reduction using principal component 
analysis, thus reducing muscle activity 𝑀 to 𝑀෩ (with 3 
dimensions), and neural activity 𝑁 to 𝑁෩ (with 6 
dimensions). 
Then use regression to solve for 𝑊෩ such that 𝑀෩ = 𝑊෩𝑁෩

And finally project the entire trajectory onto (1) the null 
space of 𝑊෩ , and (2) the other orthogonal space.

Results: potent preparatory activity in the output-null dimensions of PMd and 
M1 (left), 3 to 8 times larger than in the output-potent dimensions (right).



Chenonceaux project
Image by Cyril Poupon
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Area MT

Area MT

Strong
myelination

After Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van Essen, D. C. (2016). 
A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171-178. https://doi.org/10.1038/nature18933



Context :  in the human brain, there are ~16 billion cortical neurons (92,000 neurons per mm² of cortex) ;  ~10,000 synapses per neuron.
« As the number of cortical neurons increases, maintaining the same probability of connectivity between neurons would require that 
axon number increase approximately with the square of neuron number, and this would require too much volume, impose an 
unsustainable metabolic load [6], and actually decrease computational power due to conduction delays [7]. The consequent imperative 
to minimize long distance cortico-cortical fibers has been posited to be reflected in exponential decline in cortical connectivity with 
distance [8], and to be partially compensated for with a small-world graph architecture [9], granting special properties to rare long-
distance fibers in a log-normal neural physiology and anatomy [10].”
R&H estimate that there 370,000 axons per mm² of corpus callosum, and use such estimates to calibrate diffusion tensor images. 
The result is that each of the HCP parcels 
receives a very small number
of axons from other areas:

For instance, “the connections between Wernicke’s and Broca’s areas are thought to integrate receptive and expressive aspects of 
language, but we estimate that there are only ~58,000 axons between the core cortical parcels in these regions”
This is “fewer than two for each word in an average university student’s vocabulary” ! [the comparison is absurd!]

What is the size of the communication channel between human cortical areas ?
Rosen, B. Q., & Halgren, E. (2022). Human cortical areas are sparsely connected࣯: Combining histology with diffusion MRI to 
estimate the absolute number of axons (p. 2021.06.07.447453). https://doi.org/10.1101/2021.06.07.447453



Rosen, B. Q., & Halgren, E. (2022). Human cortical areas are sparsely connected࣯: Combining histology with diffusion MRI to 
estimate the absolute number of axons (p. 2021.06.07.447453). https://doi.org/10.1101/2021.06.07.447453

Conclusion: areas must talk to each other using a sparse set of axons, in the order of 100,000 output axons between any two cortical 
regions. 

Only 100,000 neurons in a given area are output cells projecting onto a given target area  communication bottleneck.
Given ~180 areas in each hemisphere, each must contain ~50 million neurons, of which about 1/500 can communicate with another

area.
Implications :
 Actually, no difficulty for a distributed code :

– A single-cell code would have a very low chance of getting transmitted outside the area (roughly 1/500)
– But a distributed code would have a much larger chance of contacting at least one or several of those output cells. 
– The number of communicable codes remains huge: 2^50,000 binary states, or 50,000 superimposable (factorized) dimensions

 Existence of a vast null space capable of processing information which is not transmitted to other areas.

The authors also draw the following, much more debatable conclusions :
 Most of the computations must be done locally (?)
 Information is heavily compressed during transmission (?) – or else it must be lost.

Constraints on human cortical interactions



How many samples suffice to communicate a neural manifold ? Example of IT

Using the theory of random projections, the authors manage to compute the effect of subsampling a small number of neurons (M).
“subsampling causes distortions in the manifold geometry that decrease both the SNR and the estimated dimensionality, as a function of 
the number of recorded neurons M”:

“These distortions are negligible when M is large 
compared to the asymptoƟc dimensionality D∞. 
In both macaque IT and a trained DNN model (Fig. 6), a 
downstream neuron receiving inputs from only about 
200 neurons performs essentially similarly to a 
downstream neuron receiving inputs from all available 
neurons.
With recordings of about 200 IT neurons, the estimated 
dimensionality approaches its asymptoƟc value (D∞ ≈ 
35 in the trained DNN and D∞ ≈ 12 in macaque IT).”

These small dimensionalities are compatible with Doris 
Tsao’s work on faces, where D=50 suffices to encode any 
face.

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800119. 



Mots écrits
« Luke Skywalker » 

dit par une voix d’homme
« Luke Skywalker » 

dit par une voix de femme

And for word meanings? Is the neural vector hypothesis still appropriate?
Quiroga, R. Q. (2012). Concept cellsௗ: The building blocks of declarative memory functions. Nature Reviews Neuroscience, 13(8), 587-597. Quiroga, R. Q., 
Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435(7045), 1102-1107. 



The geometry of ideas and concepts : an old idea in cognitive science
Shepard, R. N. (1980). Multidimensional Scaling, Tree-Fitting, and Clustering. Science, 210(4468), 390-398. https://doi.org/10.1126/science.210.4468.390

First insight: ideas and concepts are like points in an abstract space. 

Isaac Newton (1704) already conceived of colors as a circle.

Shepard produced a variety of mathematical algorithms to objectivity find 
the optimal way to plot concepts in space, such that their proximities 
reflect psychological similarity.

Non-metric multidimensional scaling is an algorithm that starts with a 
similarity matrix between some items, and places them in space such that 
their similarities are a monotonic function of Euclidean distance.



The geometry of ideas and concepts : an old idea in cognitive science
Shepard, R. N. (1980). Multidimensional Scaling, Tree-Fitting, and Clustering. Science, 210(4468), 390-398. https://doi.org/10.1126/science.210.4468.390

Non-metric multidimensional scaling of the Morse code



The geometry of ideas and concepts : an old idea in cognitive science
Shepard, R. N. (1980). Multidimensional Scaling, Tree-Fitting, and Clustering. Science, 210(4468), 390-398. https://doi.org/10.1126/science.210.4468.390

Extension of the idea to tree structures: 
automatic construction of a tree whose distances 
explain the similarities among 30 animal species

Application of multi-dimensional scaling to number concepts

Shepard, R. N., Kilpatrick, D. W., & Cunningham, J. P. (1975). The 
internal representation of numbers. Cognitive Psychology, 7, 82-138.



Second insight: words can be defined by their neighboring words

Multi-dimensional scaling (MDS) requires the dissimilarity between any two concepts.
 we need a huge matrix of similarity ratings (n²)
Others have tried to define concepts by a list of their features (e.g. « has feathers », « can be 

found in the kitchen »)
 Linear in the number of concepts, but requires a list of human-generated features.
Latent semantic analysis (LSA) uses a different idea: « You shall know a word by the company it 

keeps » (John Rupert Firth, 1957)
 words with a similar meaning tend to occur in similar contexts 

In LSA, a word is represented as a semantic vector in a high-dimensional space, where similarity 
between word vectors reflects similarity of the contexts in which those words appear

Method = Count how often each given word occurs in a given context (here a given article of the 
Grollier encyclopedia)

“The text data were cast into a matrix of 30,473 columns, each column representing one text 
sample, by 60,768 rows, each row representing a unique word type that appeared in at least 
two samples”

Then perform dimensionality reduction on that matrix, keeping e.g. only the first 300 dimensions.
TOEFL test: for each word, the model was given one synonym and 4 unrelated words.
 Cosine similarity was able to pick the synonym ~50% of time.
Numbers: the cosine distances, once processed with MDS, yield a main dimension of magnitude.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problemௗ: The latent semantic analysis theory of 
acquisition, induction, and representation of knowledge. Psychological Review, 104, 211-240. 



Word2vec embedding
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed 

representations of words and phrases and their compositionality. Advances in neural 
information processing systems, 26.

Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic regularities in continuous space word 
representations. Proceedings of the 2013 conference of the north american chapter of the 

association for computational linguistics: Human language technologies, 746-751.
https://www.tensorflow.org/tutorials/text/word2vec?hl=en

https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes01-wordvecs1.pdf

A whole family of methods whose main advantage is that we no longer 
need to compute with huge matrices.

The algorithm finds a vector encoding for words by analyzing the other
words that surround it in the corpus (within a certain window size).

e.g. “Je heure me bonne suis longtemps”
 couché

There are two version: Continuous bag of words (CBOW) and Skip-
Gram. Either the model uses the current word to try to predict its 
neighbors, or the converse.

Several variants of the training method (cost function) are available, 
including negative sampling (~estimate the probability that the sample 
came from the training set) and hierarchical softmax (first introduced by 
Morin and Bengio).



Implicit learning of many interesting relationships (vector subspaces)



Word2vec embeddings comprise lots of specific syntactic and semantic vectors
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space



“The training objective of GloVe is to learn word vectors such that their dot product equals the logarithm of the words' 
probability of co-occurrence”. More precisely: 

Owing to the fact that the logarithm of a ratio equals the difference of logarithms, this objective associates (the logarithm of) ratios 
of co-occurrence probabilities with vector differences in the word vector space. Because these ratios can encode some form of 
meaning, this information gets encoded as vector differences as well.”

Glove embedding: a more principled, mathematical approach to word vectors
Pennington, J., Socher, R., & Manning, C. D. (2014). GloVeௗ: Global Vectors for Word Representation. Empirical Methods 

in Natural Language Processing (EMNLP), 1532-1543. https://nlp.stanford.edu/projects/glove/

“ The main intuition underlying the model is the simple observation 
that ratios of word-word co-occurrence probabilities have the 
potential for encoding some form of meaning. For example, consider 
the co-occurrence probabilities for target words ice and steam with 
various probe words from the vocabulary. Here are some actual 
probabilities from a 6 billion word corpus:

“As one might expect, ice co-occurs more frequently with solid than it does with gas, whereas steam co-occurs more frequently 
with gas than it does with solid. Both words co-occur with their shared property water frequently, and both co-occur with the 
unrelated word fashion infrequently. Only in the ratio of probabilities does noise from non-discriminative words 
like water and fashion cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and small 
values (much less than 1) correlate well with properties specific of steam. In this way, the ratio of probabilities encodes some crude 
form of meaning associated with the abstract concept of thermodynamic phase.”



Glove embeddings also discover syntactic and semantic relations among words
Pennington, J., Socher, R., & Manning, C. D. (2014). GloVeௗ: Global Vectors for Word Representation. Empirical Methods 

in Natural Language Processing (EMNLP), 1532-1543. https://nlp.stanford.edu/projects/glove/



Can vector semantics account for human similarity judgments?
Pereira, F., Gershman, S., Ritter, S., & Botvinick, M. (2016). A comparative evaluation of off-the-shelf distributed semantic representations for modelling 
behavioural data. Cognitive Neuropsychology, 33(3-4), 175-190. https://doi.org/10.1080/02643294.2016.1176907

Pereira et al. examine whether a variety of vector representations of word meaning can explain 7 databases on human word 
similarity judgments.
Glove and Word2vec representations achieve similarly high degrees of prediction of human judgments.



Recovery of linear dimensions by « semantic projection » from a large semantic space
Grand, G., Blank, I. A., Pereira, F., & Fedorenko, E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word 

embeddings. Nature Human Behaviour, 1-13. https://doi.org/10.1038/s41562-022-01316-8

Can we recover multiple features of objects or 
concepts by projection on a linear dimension?

Here, no need to train a linear decoder – the authors 
merely « down-project the embedding space onto a 
line that corresponds to some psychologically-relevant 
semantic feature, like size” (the line connecting the 
vectors for “small” and “large”)

Video : https://twitter.com/i/status/1514676729578725380



Recovery of linear dimensions by « semantic projection » from a large semantic space
Grand, G., Blank, I. A., Pereira, F., & Fedorenko, E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word 

embeddings. Nature Human Behaviour, 1-13. https://doi.org/10.1038/s41562-022-01316-8



Recovery of linear dimensions by « semantic projection » from a large semantic space
Grand, G., Blank, I. A., Pereira, F., & Fedorenko, E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word 

embeddings. Nature Human Behaviour, 1-13. https://doi.org/10.1038/s41562-022-01316-8

Semantic projection is
predictive of human
judgments on the same
concepts.

Semantic projection recovers multiple dimensions for the same concept

Semantic projection recovers a given dimension across many distinct categories.



Experiential and Word2vec embeddings predict the fMRI response to words
Tong, J., Binder, J. R., Humphries, C., Mazurchuk, S., Conant, L. L., & Fernandino, L. (2022). A Distributed Network for Multimodal 

Experiential Representation of Concepts. Journal of Neuroscience, 42(37), 7121-7130. https://doi.org/10.1523/JNEUROSCI.1243-21.2022

The authors measured the fMRI response to individual 
words (with a task of « rating  how often they 
encountered the corresponding entity in their daily lives, 
on a scale from 1 to 3 »).
Experiment 1: 320 nouns (160 nouns of various categories 
[40 each of animals, foods, tools, and vehicles], 160 event 
nouns [social, verbal, non-verbal sound, and negative] )
Experiment 2: 300 nouns (50 each of animals, body parts, 
food/plants, human traits, quantities, and tools).
Each word is presented 6 times, using 3T fMRI 2x2x2 mm 
voxels (3 sessions/subject) and surface extraction.
Each local patch of 5 mm radius is extracted, its 
representation similarity matrix is computed as the 
Pearson correlation of fMRI vectors.
Each local brain similarity matrix is then modelled by 
- Word2Vec similarity
- 10 other potential confound matrices : number of 

letters, of phonemes, of syllables; mean bigram 
frequency, mean trigram frequency, orthographic 
neighborhood density, phonological neighborhood 
density, phonotactic probability for single phonemes, 
phonotactic probability for phoneme pairs, and word 
frequency

This is the cross-subject map for Word2vec similarity, after regressing the confounds.



Experiential and Word2vec embeddings predict the fMRI response to words
Tong, J., Binder, J. R., Humphries, C., Mazurchuk, S., Conant, L. L., & Fernandino, L. (2022). A Distributed Network for Multimodal 

Experiential Representation of Concepts. Journal of Neuroscience, 42(37), 7121-7130. https://doi.org/10.1523/JNEUROSCI.1243-21.2022

The authors, however, test whether a better prediction 
can be obtained with a more subjective measure of 
semantic features, i.e.
Multimodal “experiential semantic similarity”: ratings of 
relevance for 65 sensory, motor, affective, and other 
experiential dimensions.
The matrices are indeed quite correlated:

Experiential

Word2Vec

This is the cross-subject map for experiential similarity, after regressing the confounds.



Experiential and Word2vec embeddings predict the fMRI response to words
Tong, J., Binder, J. R., Humphries, C., Mazurchuk, S., Conant, L. L., & Fernandino, L. (2022). A Distributed Network for Multimodal 

Experiential Representation of Concepts. Journal of Neuroscience, 42(37), 7121-7130. https://doi.org/10.1523/JNEUROSCI.1243-21.2022

Although the word2vec model provides some degree 
of fit, there are many brain regions where the fit is 
better with the experiential model.

Searchlight RSA results for the multimodal experiential model after controlling for word2vec similarity

Categories alone (animals, tools, quantities, etc) do not 
suffice to explain the similarities)



Complete coverage of semantic space
Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., … Fedorenko, E. (2018). Toward a universal decoder of linguistic meaning 

from brain activation. Nature Communications, 9(1), 963. https://doi.org/10.1038/s41467-018-03068-4

Motivation = Train a « brain decoder » with 
the brain activation evoked by individual 
words, and which could generalize to (1) novel 
words, based on the similarity of their 
semantic vectors (2) entire sentences or 
passages.

First challenge = achieve good coverage of 
semantic space (~30,000 words in a basic 
vocabulary) by presenting only a few hundred 
well-selected words.

Method = 
- Get 300-d GloVe vectors for 30,000 words.
- Use Spectral clustering to group them into 

200 regions.
All but 20 regions were semantically 
interpretable: locations, body parts, numbers
The authors then hand-selected 180 words 
representative of each of the 180 regions.



“We scanned 16 participants in three 
paradigms, all aimed at highlighting the 
relevant meaning of each of 180 words 
(128 nouns, 22 verbs, 29 adjectives and 
adverbs, and 1 function word). 
In the first paradigm, the target word 
was presented in the context of a 
sentence that made the relevant 
meaning salient. 
In the second, the target word was
presented with a picture that depicted 
some aspect(s) of the relevant meaning.
In the third, the target word was 
presented in a “cloud”, surrounded by 
five representative words from the 
cluster.
These paradigms were chosen over a 
simpler paradigm where the target 
word appears in isolation because 
words are highly ambiguous, especially 
outside the realm of concrete nouns. 
These paradigms ensure that the 
subject is thinking about the relevant 
(intended) meaning of each word.” 
In Experiment 2, subjects read 
sentences that cover a subtopic of the 
main topic (e.g. musical instruments)



The authors use whole-brain activation 
pattern to
(1) Train a decoder, using 170 concepts, to 
recover the single-word semantic vector from 
the activation pattern
(2) Test generalization to the remaining 10 
concepts and to new conditions.

Chance level is 50 % -- the authors do better 
than chance, but this is more of a proof of 
concept.

In particular, sentences “hover” around the 
same semantic vector space as individual 
words.

For much better decoding results, including a 
reconstruction of sentences from MEG see 
e.g.
Défossez, A., Caucheteux, C., Rapin, J., Kabeli, 
O., & King, J.-R. (2022). Decoding speech 
from non-invasive brain recordings 
(arXiv:2208.12266). arXiv. 
https://doi.org/10.48550/arXiv.2208.12266

https://twitter.com/JeanRemiKing/status/156
4964019965927424



Intracranial information about the neural codes for language
Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A., Feder, A., Emanuel, D., Cohen, A., Jansen, A., Gazula, H., Choe, G., 
Rao, A., Kim, C., Casto, C., Fanda, L., Doyle, W., Friedman, D., … Hasson, U. (2022). Shared computational principles for language processing in humans
and deep language models. Nature Neuroscience, 25(3), Art. 3. https://doi.org/10.1038/s41593-022-01026-4

Glove encodings can also be used to predict intracranial 
ECOG signals from 9 patients with ECOG.
Interestingly, the signals arise even before word onset 
(and many additional analyses show that the brain 
anticipates the upcoming word)
Indeed, “autoregressive” models such as GPT2, which 
are trained to predict the upcoming word, provide a 
better match to brain signals.



Conclusions
Words can be represented as vectors in a high-dimensional 
semantic space, by several techniques (behavioral, introspective 
judgments, or distributional statistics of large text corpuses).

It is often surprising how deep semantic relations between 
words can be discovered automatically in those vectors through 
distributional statistics (gender, capitals, etc).

Experimental validations of the proposed vectors include
- Behavioral measures of conceptual similarity
- Capacity of those vectors to model brain activity

It should be noted that, at the brain level, there are few if any 
demonstrations of fine-grained vectors within an area – most of 
the work indicates that different semantic dimensions are 
attributed to different regions, and therefore to different neural 
populations.

Future work should try to clarify under which conditions the 
brain learns to assign dimensions to distinct neurons, and under 
which conditions the neural code is fully distributed.


