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A theory of dimensionality and concept learning

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational geometry underlies few-shot concept learning. PNAS, 119(43), e2200800

Here, the authors propose a general theory of “few shot learning” for image recognition.

1. Prior training has resulted in a tuned high-dimensional vector space for images, which
can be used to perform one-shot or few-shot learning of new concepts.

2. Each example image (possibly 1) is encoded in this high-dimensional vector space

3. The barycenter of examples defines a prototypical vector for the new concept.

4. Classification of new images, or discrimination between two possibilities, is based on
the nearest prototype
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Which « neural vectors » are we talking
about? A reminder of past courses

The hypothesis is that the “neural code” is supported specifically by the Microelectrode~" |\

discharges of projecting nerve cells (neurons) and their joint activity.
Neurons can be measured one by one, or (increasingly) in parallel across
thousands of sites
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Optical imaging: recording from thousands of identified cells

Xie, Y., Hu, P, Li, J., Chen, J., Song, W., Wang, X.-J.,, Yang, T., Dehaene, S., Tang, S., Min, B., & Wang, L. (2022).
Geometry of sequence working memory in macaque prefrontal cortex. Science, 375(6581), 632-639.

2- or even 3-photon imaging, combined with genetically encoded Calcium fluorescent indicators

(usually GCaMP), allows to visualize (and not just record) hundreds or even thousands of neurons,
in awake behaving monkeys, and to capture their spikes with a reasonable time resolution. |
Here: over several days, total of 5325 neurons in 2 monkeys ! YangXie  PeiyaoHu  BinMin  Shiming Tang (PKUi
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Two-photon microscope

)

AAV1.Syn.GCaMP6S.WPRE.SV40

vt WL L L Lo Lol AL
Neuron2_J\NL,J.M,lb\w_,,,_n WA Lh ,,M

DLPFC, GCaMP6s, Field of view of 0.5X0.5mm, 32f/s



. A X \ o o
In humans: methods for measuring neural T T T T T o i i e

. . 1,000 4 2014 PET imaging E 1,900
vectors are much more limited Brain [ . - :
Lobe 100 ' | 5100
anng q Ma -
fMRI : thousands of voxels of one or a few millimeters aside R R e B = Lo
Brain
(sometimes |ess)_ Nucleus imaging 2.0G lesions
. £ 1 imaging - 1
1 mm? of cortical surface = ~92,000 neurons Layer § g
% 0.1 %0.1
MEG or EEG: a few hundreds of sensors. Newron
. . . Dendrite " J
For more details, please see my 2020 course on this topic: 0.001 -
https://www.college-de-france.fr/agenda/cours/progres-recents-en- Synapse -
imagerie-cerebrale-et-decodage-des-representations-mentales ot e 5 —
o g ot et e 1988
Time (s)
Human MRI Electro- and Millisecond Gk Miele

at 3T, 7T,and 11.7 T magneto-encephalography




Routing of neural information using neural subspaces

Kaufman, M. T., Churchland, M. M., Ryu, S. I., & Shenoy, K. V. (2014). Cortical activity in the null space : Permitting preparation without movement. Nature Neuroscience, 17(3),

440-448. https://doi.org/10.1038/nn.3643
Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas Interact through
a Communication Subspace. Neuron, 102(1), 249-259.e4. https://doi.org/10.1016/j.neuron.2019.01.026

Key proposal : “The ability of a source area to communicate only certain
activity patterns while keeping others “private’” could be a means for the
selective routing of signals between areas.”

- Completely different mechanism than the “communication through
coherence” hypothesis (no need to set-up oscillations jointly in both areas)

- More flexibility: different subspaces could be used to route information to
different areas.

“The selective routing allowed by the communication subspace could be
adjusted dynamically, allowing moment-to-moment modulation of
interactions between cortical areas. Dynamic routing could be
accomplished by altering the structure of population activity in a source
area; it need not involve changing the communication subspace itself”

What the authors mean here is that a projection or rotation could be used to
bring information to the appropriate subspace, thus opening or closing
communication channels at will.

Meanwhile, the private dimensions (the “null space” or “kernel” for the
projection to other areas) could be used to perform covert computations.
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Movement preparation in the null space

Kaufman, M. T., Churchland, M. M., Ryu, S. |., & Shenoy, K. V. (2014). Cortical activity in the null space : Permitting preparation without movement. Nature

Neuroscience, 17(3), 440-448. https://doi.org/10.1038/ Monkey J, array Monkey N, array

During movement preparation, the null space
for muscle activity in M1 and premotor cortex

seems to be used to prepare the upcoming N 0.5 7 - B

movement. = =

For instance, in the graph at right, each gray dot %’ |5 -

represents one average condition of movement  § 0 .%

through the maze. Along the blue axis, all of their g s

preparatory activity projects identically — but a * o5
—0.5 -

during the movement, their activity vectors
rotate and predict movement.

Note that preparatory activity is far from random e : i . 3 Sk

or noisy — it is predictive of the amplitude and Projection onto dim, Projection onto dim,

orientation of the upcoming movement.
Results: potent preparatory activity in the output-null dimensions of PMd and

M1 (left), 3 to 8 times larger than in the output-potent dimensions (right).
First, perform data reduction using principal component —

How can we identify the output space and null space?

— 1= 14 Output-potent
analysis, thus reducing muscle activity M to M (with 3 AR~
::2222:223, and neural activity N to N (with 6 % /%\\\‘, N
' _ 3 /'/\\\\ "%
Then use regression to solve for W suchthat M = WN ¢ AN
And finally project the entire trajectory onto (1) the null | Test epoch Regression epc _ | data set JA
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Chenonceaux project
Image by Cyril Poupon
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Strong
myelination

After Glasser, M. F.,, Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F.,, Jenkinson, M., Smith, S. M., & Van Essen, D. C. (2016).
A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171-178. https://doi.org/10.1038/nature18933




What is the size of the communication channel between human cortical areas ?

Rosen, B. Q., & Halgren, E. (2022). Human cortical areas are sparsely connected : Combining histology with diffusion MRI to
estimate the absolute number of axons (p. 2021.06.07.447453). https://doi.org/10.1101/2021.06.07.447453

Context : in the human brain, there are ~16 billion cortical neurons (92,000 neurons per mm? of cortex) ; ~10,000 synapses per neuron.

« As the number of cortical neurons increases, maintaining the same probability of connectivity between neurons would require that
axon number increase approximately with the square of neuron number, and this would require too much volume, impose an
unsustainable metabolic load [6], and actually decrease computational power due to conduction delays [7]. The consequent imperative
to minimize long distance cortico-cortical fibers has been posited to be reflected in exponential decline in cortical connectivity with
distance [8], and to be partially compensated for with a small-world graph architecture [9], granting special properties to rare long-
distance fibers in a log-normal neural physiology and anatomy [10].”

R&H estimate that there 370,000 axons per mm? of corpus callosum, and use such estimates to calibrate diffusion tensor images.

The result is that each of the HCP parcels A Intra-hemispheric D
receives a very small number visual
of axons from other areas:
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For instance, “the connections between Wernicke’s and Broca’s areas are thought to integrate receptive and expressive aspects of
language, but we estimate that there are only ~58,000 axons between the core cortical parcels in these regions”

This is “fewer than two for each word in an average university student’s vocabulary” ! [the comparison is absurd!]



Constraints on human cortical interactions

Rosen, B. Q., & Halgren, E. (2022). Human cortical areas are sparsely connected : Combining histology with diffusion MRI to
estimate the absolute number of axons (p. 2021.06.07.447453). https://doi.org/10.1101/2021.06.07.447453

Conclusion: areas must talk to each other using a sparse set of axons, in the order of 100,000 output axons between any two cortical
regions.

Only 100,000 neurons in a given area are output cells projecting onto a given target area 2 communication bottleneck.

Given ~180 areas in each hemisphere, each must contain ~50 million neurons, of which about 1/500 can communicate with another
area.

Implications :
- Actually, no difficulty for a distributed code :

— Asingle-cell code would have a very low chance of getting transmitted outside the area (roughly 1/500)

— But a distributed code would have a much larger chance of contacting at least one or several of those output cells.

— The number of communicable codes remains huge: 250,000 binary states, or 50,000 superimposable (factorized) dimensions
- Existence of a vast null space capable of processing information which is not transmitted to other areas.

The authors also draw the following, much more debatable conclusions :
- Most of the computations must be done locally (?)
- Information is heavily compressed during transmission (?) — or else it must be lost.



How many samples suffice to communicate a neural manifold ? Example of IT

Sorscher, B., Ganguli, S., & Sompolinsky, H. (2022). Neural representational gecometry underlies few-shot concept learning. PNAS, 119(43), e2200800119.

Using the theory of random projections, the authors manage to compute the effect of subsampling a small number of neurons (M).
“subsampling causes distortions in the manifold geometry that decrease both the SNR and the estimated dimensionality, as a function of
the number of recorded neurons M”:

SNR
00 = <1 —i
SNR(M) = ., DY M)=DZl+M
V/1+ Do /M
0.15 A0

“These distortions are negligible when M is large —Theory | i ke R

K . . . o ® Random projection 30-
compared to the asymptotic dimensionality Deo. 9 0.10+ Random subsample =
In both macaque IT and a trained DNN model (Fig. 6), a \ % 20 -
downstream neuron receiving inputs from only about E &0 S _ E’;igg’m et
200 neurons performs essentially similarly to a - s = === .- Random subsample
downstream neuron receiving inputs from all available ' 100 200 300 400 500 0 100 200 300 400 500
neurons. b Number of neurons M d Number of neurons M
With recordings of about 200 IT neurons, the estimated 0.4 15-
dimensionality approaches its asymptotic value (Dee= (|
35 in the trained DNN and Dee = 12 in macaque IT).” 2 10-

]
. . . , , , o, B Q

These small dimensionalities are compatible with Doris G 5+
Tsao’s work on faces, where D=50 suffices to encode any “

face.
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And for word meanings? Is the neural vector hypothesis still appropriate?

Quiroga, R. Q. (2012). Concept cells : The building blocks of declarative memory functions. Nature Reviews Neuroscience, 13(8), 587-597. Quiroga, R. Q.,
Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435(7045), 1102-1107.
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The geometry of ideas and concepts : an old idea in cognitive science

Shepard, R. N. (1980). Multidimensional Scaling, Tree-Fitting, and Clustering. Science, 210(4468), 390-398. https://doi.org/10.1126/science.210.4468.390

First insight: ideas and concepts are like points in an abstract space.

Isaac Newton (1704) already conceived of colors as a circle.

Shepard produced a variety of mathematical algorithms to objectivity find
the optimal way to plot concepts in space, such that their proximities

reflect psychological similarity.

Non-metric multidimensional scaling is an algorithm that starts with a
similarity matrix between some items, and places them in space such that

their similarities are a monotoni? function
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The geometry of ideas and concepts : an old idea in cognitive science

Shepard, R. N. (1980). Multidimensional Scaling, Tree-Fitting, and Clustering. Science, 210(4468), 390-398. https://doi.org/10.1126/science.210.4468.390

Non-metric multidimensional scaling of the Morse code pashes

Morse code
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The geometry of ideas and concepts : an old idea in cognitive science

Shepard, R. N. (1980). Multidimensional Scaling, Tree-Fitting, and Clustering. Science, 210(4468), 390-398. https://doi.org/10.1126/science.210.4468.390

Extension of the idea to tree structures:
automatic construction of a tree whose distances
explain the similarities among 30 animal species
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Application of multi-dimensional scaling to number concepts

Shepard, R. N., Kilpatrick, D. W., & Cunningham, J. P. (1975). The
internal representation of numbers. Cognitive Psychology, 7, 82-138.
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Second insight: words can be defined by their neighboring words i .
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem : The latent semantic analysis theory of E
acquisition, induction, and representation of knowledge. Psychological Review, 104, 211-240. o 04
Multi-dimensional scaling (MDS) requires the dissimilarity between any two concepts. § s
- we need a huge matrix of similarity ratings (n?) g
Others have tried to define concepts by a list of their features (e.g. « has feathers », « can be ‘: 0.2
found in the kitchen ») %
- Linear in the number of concepts, but requires a list of human-generated features. §. o
Latent semantic analysis (LSA) uses a different idea: « You shall know a word by the company it = um i
keeps » (John Rupert Firth, 1957) ! 10 100 1,000 10,000
—> words with a similar meaning tend to occur in similar contexts Number of Dimensions in LSA (log)
In LSA, a word is represented as a semantic vector in a high-dimensional space, where similarity 10
between word vectors reflects similarity of the contexts in which those words appear £
Method = Count how often each given word occurs in a given context (here a given article of the 'g:_ =
Grollier encyclopedia) 5 "
“The text data were cast into a matrix of 30,473 columns, each column representing one text :g
sample, by 60,768 rows, each row representing a unique word type that appeared in at least 2
two samples” E; 0
Then perform dimensionality reduction on that matrix, keeping e.g. only the first 300 dimensions. E -
TOEFL test: for each word, the model was given one synonym and 4 unrelated words. §
- Cosine similarity was able to pick the synonym ~50% of time. 0.0

1 2 3 45678 9

Numbers: the cosine distances, once processed with MDS, yield a main dimension of magnitude.
Diglt



Word2vec embedding

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in neural
information processing systems, 26.

Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic regularities in continuous space word
representations. Proceedings of the 2013 conference of the north american chapter of the
association for computational linguistics: Human language technologies, 746-751.
https://www.tensorflow.org/tutorials/text/word2vec?hl=en
https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes01-wordvecsl.pdf

A whole family of methods whose main advantage is that we no longer
need to compute with huge matrices.

The algorithm finds a vector encoding for words by analyzing the other
words that surround it in the corpus (within a certain window size).

e.g. “Je heure me bonne suis longtemps”
- couché

There are two version: Continuous bag of words (CBOW) and Skip-
Gram. Either the model uses the current word to try to predict its
neighbors, or the converse.

Several variants of the training method (cost function) are available,
including negative sampling (~estimate the probability that the sample
came from the training set) and hierarchical softmax (first introduced by
Morin and Bengio).
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Implicit learning of many interesting relationships (vector subspaces)

Country and Capital Vectors Projected by PCA
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Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.



Word2vec embeddings comprise lots of specific syntactic and semantic vectors

https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
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Glove embedding: a more principled, mathematical approach to word vectors

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe : Global Vectors for Word Representation. Empirical Methods
in Natural Language Processing (EMNLP), 1532-1543. https://nlp.stanford.edu/projects/glove/

“The main intuition underlying the model is the simple observation Probability and Ratio & = solid k = gas &= wiarer
that ratios of word-word co-occurrence probabilities have the -
potential for encoding some form of meaning. For example, consider P(klice) 19x 107" 6.6x107 3.0x107
the co-occurrence probabilities for target words ice and steam with P(k|steam) 22x107% 78x107% 22x1073
various probe words from the vocabulary. Here are some actual P(k|ice) / P(k|steam) 8.9 8.5 x 102 1.36

probabilities from a 6 billion word corpus:

“As one might expect, ice co-occurs more frequently with solid than it does with gas, whereas steam co-occurs more frequently
with gas than it does with solid. Both words co-occur with their shared property water frequently, and both co-occur with the
unrelated word fashion infrequently. Only in the ratio of probabilities does noise from non-discriminative words

like water and fashion cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and small
values (much less than 1) correlate well with properties specific of steam. In this way, the ratio of probabilities encodes some crude
form of meaning associated with the abstract concept of thermodynamic phase.”

“The training objective of GloVe is to learn word vectors such that their dot broduct equals the logarithm of the words'

probability of co-occurrence”. More precisely: T - P;

F ((Wi — wj) Wk) =
ij

The solution to Eqn. (4) is F = exp, or,

whg = log(Pir) = log(X;x) — log(X;)

Owing to the fact that the logarithm of a ratio equals the difference of logarithms, this objective associates (the logarithm of) ratios
of co-occurrence probabilities with vector differences in the word vector space. Because these ratios can encode some form of
meaning, this information gets encoded as vector differences as well.”



0.5

0.4

0.3

0.2

0.1

Glove embeddings also discover syntactic and semantic relations among words

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe : Global Vectors for Word Representation. Empirical Methods

in Natural Language Processing (EMNLP),
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Can vector semantics account for human similarity judgments?

Pereira, F., Gershman, S., Ritter, S., & Botvinick, M. (2016). A comparative evaluation of off-the-shelf distributed semantic representations for modelling
behavioural data. Cognitive Neuropsychology, 33(3-4), 175-190. https://doi.org/10.1080/02643294.2016.1176907

Pereira et al. examine whether a variety of vector representations of word meaning can explain 7 databases on human word
similarity judgments.

Glove and Word2vec representations achieve similarly high degrees of prediction of human judgments.
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Figure 1. Performance of predictions generated from various vector representations across all tasks available, using cosine similarity
(left) or euclidean distance (right).



Recovery of linear dimensions by « semantic projection » from a large semantic space

Grand, G., Blank, I. A., Pereira, F., & Fedorenko, E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word
embeddings. Nature Human Behaviour, 1-13. https://doi.org/10.1038/s41562-022-01316-8
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Recovery of linear dimensions by « semantic projection » from a large semantic space

Grand, G., Blank, I. A., Pereira, F., & Fedorenko, E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word
embeddings. Nature Human Behaviour, 1-13. https://doi.org/10.1038/s41562-022-01316-8
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Recovery of linear dimensions by « semantic projection » from a large semantic space

Grand, G., Blank, I. A., Pereira, F., & Fedorenko, E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word
embeddings. Nature Human Behaviour, 1-13. https://doi.org/10.1038/s41562-022-01316-8
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Experiential and Word2vec embeddings predict the fMRI response to words

Tong, J., Binder, J. R., Humphries, C., Mazurchuk, S., Conant, L. L., & Fernandino, L. (2022). A Distributed Network for Multimodal
Experiential Representation of Concepts. Journal of Neuroscience, 42(37), 7121-7130. https://doi.org/10.1523/JINEUROSCI.1243-21.2022

The authors measured the fMRI response to individual

words (with a task of « rating how often they

encountered the corresponding entity in their daily lives,

on a scale from 1 to 3 »).

Experiment 1: 320 nouns (160 nouns of various categories

[40 each of animals, foods, tools, and vehicles], 160 event

nouns [social, verbal, non-verbal sound, and negative] )

Experiment 2: 300 nouns (50 each of animals, body parts,

food/plants, human traits, quantities, and tools).

Each word is presented 6 times, using 3T fMRI 2x2x2 mm

voxels (3 sessions/subject) and surface extraction.

Each local patch of 5 mm radius is extracted, its

representation similarity matrix is computed as the

Pearson correlation of fMRI vectors.

Each local brain similarity matrix is then modelled by

- Word2Vec similarity

- 10 other potential confound matrices : number of
letters, of phonemes, of syllables; mean bigram
frequency, mean trigram frequency, orthographic
neighborhood density, phonological neighborhood
density, phonotactic probability for single phonemes,
phonotactic probability for phoneme pairs, and word
frequency

Experiment 1 Experiment 2
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Experiential and Word2vec embeddings predict the fMRI response to words

Tong, J., Binder, J. R., Humphries, C., Mazurchuk, S., Conant, L. L., & Fernandino, L. (2022). A Distributed Network for Multimodal
Experiential Representation of Concepts. Journal of Neuroscience, 42(37), 7121-7130. https://doi.org/10.1523/INEUROSCI.1243-21.2022

The authors, however, test whether a better prediction
can be obtained with a more subjective measure of Experiment 1 Experiment 2
semantic features, i.e.

Multimodal “experiential semantic similarity”: ratings of
relevance for 65 sensory, motor, affective, and other
experiential dimensions.

The matrices are indeed quite correlated:
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Experiential and Word2vec embeddings predict the fMRI response to words

Tong, J., Binder, J. R., Humphries, C., Mazurchuk, S., Conant, L. L., & Fernandino, L. (2022). A Distributed Network for Multimodal
Experiential Representation of Concepts. Journal of Neuroscience, 42(37), 7121-7130. https://doi.org/10.1523/JINEUROSCI.1243-21.2022

Experiment 1 Experiment 2

anterior anterior

Although the word2vec model provides some degree
of fit, there are many brain regions where the fit is
better with the experiential model.

dorsal view
anterior

Experiment 1 Experiment 2

0.03

[} =]
E € 002
& 0.02 z
14 o
w© 0.01 = 0.01
e €
3 0.00 3
& £ 0.00
@ -0.01 @
002 Experiential word2vec =001 Experiential word2vec

Categories alone (animals, tools, quantities, etc) do not
suffice to explain the similarities)

Semipartial RSA rho

Experiment 1 Experiment 2 medial view
posterior posterior posterlor
0.03 o
€ 002
0.02 <
4
0.01 T 0.01
§ ventral view
0.00 E-
@ 0.00
~0.01 n 3.1 5.07 7.03 9.0 9.0
L t - . R t _. _
=00z Experiential Categorical =0.01 Experiential Categorical

Searchlight RSA results for the multimodal experiential model after controlling for word2vec similarity



Complete coverage of semantic space

Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., ... Fedorenko, E. (2018). Toward a universal decoder of linguistic meaning
from brain activation. Nature Communications, 9(1), 963. https://doi.org/10.1038/s41467-018-03068-4
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“We scanned 16 participantsin three
paradigms, all aimed at highlighting the
relevant meaning of each of 180 words
(128 nouns, 22 verbs, 29 adjectives and
adverbs, and 1 function word).

In the first paradigm, the target word
was presented in the context of a
sentence that made the relevant
meaning salient.

In the second, the target word was
presented with a picture that depicted

some aspect(s) of the relevant meaning.

In the third, the target word was
presented in a “cloud”, surrounded by
five representative words from the
cluster.

These paradigms were chosen over a
simpler paradigm where the target
word appears in isolation because
words are highly ambiguous, especially
outside the realm of concrete nouns.
These paradigms ensure that the
subject is thinking about the relevant
(intended) meaning of each word.”

In Experiment 2, subjects read
sentences that cover a subtopic of the
main topic (e.g. musical instruments)

Experiment 1:

Bird

1. The bird flew around the cage.

2. The nest was just big enough for the bird.
3. The only bird she can see is the parrot.
4. The bird poked its head out of the hatch.
5. The bird holds the worm in its beak.

6. The bird preened itself for mating.

Nest
Flock

Bird

Beak Mating

Winged

AN

Experiment 2:
Musical instruments (clarinet)

A clarinet is a woodwind musical instrument.
Itis a long black tube with a flare at the bottom.

The player chooses notes by pressing keys and holes.

The clarinet is used both in jazz and classical mu

Musical instruments (accordion)

An accordion is a portable musical instrument
with two keyboards. One keyboard is used for
individual notes, the other for chords. Accordions
produce sound with bellow that blow air through
reeds. An accordionist plays both keyboards
while opening and closing the bellows.

Musical instruments (piano)

The piano is a popular musical instrument
played by means of a keyboard. Pressing a
piano key causes a felt-tipped hammer to hit a

vibrating steel string. The piano has an enormous

note range, and pedals to change the sound
quality. The piano repertoire is large, and
famous pianists can give solo concerts.

Wash Unaware

1. To make the counter sterile, wash it. 1. She was unaware of how oblivious he really was.
2. The dishwasher can wash all the dishes. 2. She was unaware of her status.
3. He likes to wash himself with bar soap. 3. Unprejudiced and unaware, she went full throttle.
4. She felt clean after she could wash herself. 4. Unaware of current issues, he is a terrible candidate.
5. You have to wash your laundry beforehand. 5. He was unaware of how uninterested she was.

6

6. The maid was asked to wash the floor. . He was unaware of the gravity of the situation.

— ML, iﬁ
1

ra ~

Clean Unprepared

Unprotected
Shower
Sink Wash Unaware
i Inexperienced
Unwillin
Soap Laundry g
L Unconcerned

Experiment 3:
Skiing (passage 1)
| hesitantly skied down the steep trail
that my buddies convinced me to try.
| made a bad turn, and | found myself
sic. tumbling down. | finally came to a stop
at a flat part of the slope. My skis were
nowhere to be found, and my poles
were lodged in a snow drift up the hill.
Skiing (passage 2)
A major strength of professional skiers
is how they use ski poles. Proper use of
ski poles improves their balance and
adds flair to their skiing. It minimizes
the need for upper body movements
to regain lost balance while skiiing.

Gambling (passage 1)

When | decided to start playing cards, things
went from bad to worse. Gambling was
something | had to do, and | had already
spent close to $10,000 doing it. My friends
were sick of watching me gamble my savings
away. The hardest part was the horror of leaving
a casino after losing money | did not have.
Gambling (passage 2)
Good data on the social and economic effects
of legalized gambling are hard to come by.
Some studies indicate that having a casino
nearby makes gambling problems more likely.
Gambling may also be associated with personal
bankruptcies and marriage problems.

Gambling (passage 3)

Over the past generation, there has been

a dramatic expansion of legalized gambling.
Most states have instituted lotteries, and
many have casinos as well. Gambling has
become a very big but controversial business.

Skiing (passage 3)
New ski designs and stiffer boots let
skiers turn more quickly. But faster and
tighter turns increase the twisting force
on the legs. This has led to more injuries,
particularly to ligaments in the skier's knee.



The authors use whole-brain activation
pattern to

(1) Train a decoder, using 170 concepts, to
recover the single-word semantic vector from
the activation pattern

(2) Test generalization to the remaining 10
concepts and to new conditions.

Chance level is 50 % -- the authors do better
than chance, but this is more of a proof of
concept.

In particular, sentences “hover” around the
same semantic vector space as individual
words.

For much better decoding results, including a
reconstruction of sentences from MEG see
e.g.

Défossez, A., Caucheteux, C., Rapin, J., Kabeli,
0., & King, J.-R. (2022). Decoding speech
from non-invasive brain recordings
(arXiv:2208.12266). arXiv.
https://doi.org/10.48550/arXiv.2208.12266

https://twitter.com/JeanRemiKing/status/156
4964019965927424
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Intracranial information about the neural codes for language

Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A,, Feder, A., Emanuel, D., Cohen, A,, Jansen, A., Gazula, H., Choe, G.,
Rao, A., Kim, C., Casto, C., Fanda, L., Doyle, W., Friedman, D., ... Hasson, U. (2022). Shared computational principles for language processing in humans
and deep language models. Nature Neuroscience, 25(3), Art. 3. https://doi.org/10.1038/s41593-022-01026-4

Glove encodings can also be used to predict intracranial
ECOG signals from 9 patients with ECOG.

Interestingly, the signals arise even before word onset
(and many additional analyses show that the brain
anticipates the upcoming word)

Indeed, “autoregressive” models such as GPT2, which
are trained to predict the upcoming word, provide a
better match to brain signals.
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Conclusions

Words can be represented as vectors in a high-dimensional
semantic space, by several techniques (behavioral, introspective
judgments, or distributional statistics of large text corpuses).

It is often surprising how deep semantic relations between
words can be discovered automatically in those vectors through
distributional statistics (gender, capitals, etc).

Experimental validations of the proposed vectors include
- Behavioral measures of conceptual similarity
- Capacity of those vectors to model brain activity

It should be noted that, at the brain level, there are few if any
demonstrations of fine-grained vectors within an area — most of
the work indicates that different semantic dimensions are
attributed to different regions, and therefore to different neural
populations.

Future work should try to clarify under which conditions the
brain learns to assign dimensions to distinct neurons, and under
which conditions the neural code is fully distributed.

Vendredi 6 Janvier

COURS : Vecteurs neuronaux ou cellules grand-mere :

les représentations mentales sont-elles localisées ou distribuées ?
SEMINAIRE : Lintelligence artificielle peut-elle modéliser le langage
mathématique ? — Francois Charton (FAIR Paris)

Vendredi 13 Janvier

COURS : Géométrie des représentations visuelles : chaque visage
est un vecteur

SEMINAIRE : Commonsense Physical Reasoning in man and machine —
Ernest Davis (NYU, par zoom)

Vendredi 20 Janvier
COURS: Exploiter la factorisation et les sous-espaces vectoriels pour
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SEMINAIRE : Number symbols in the brain and mind — Daniel Ansari
(University of Ontario)

Vendredi 27 Janvier
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de Trento, Italie)
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COURS : La représentation vectorielle du langage : Comment
représenter une phrase ?

SEMINAIRE : Intuitions of mathematics and their refinement with age
and education — Manuela Piazza (Université de Trento, ltalie)



