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Perceptrons

HOW TO UNDERSTAND A LEARNING MACHINE?



Two computing paradigms in the XXth

Frank 
Rosenblatt

Turing, von Neuman, 
McCarthy, Minsky, …

Wiener, Rosenblatt,
Widrow, Kohonen, …



Two computing paradigms in the XXth

§Digital computers (the kind one programs) could do immensely 
useful things: scientific calculus, accounting, etc.
§Machines were not fast enough to make Perceptrons useful!

Frank 
RosenblattWinner

Pragmatic 
reasons



Perceptrons (1969)

Perceptrons by Minsky and Papert (1969)

§How do we decide whether something works?
§They have a clear position.



Order-k Perceptron

Metaphor for parallel computation
-Targets what can be computed by Rosenblatt’s perceptron. 
-Also describes what can be computed by a convnet with a final pooling layer.
-Similar techniques could characterize what can be computed with map/reduce

At most k Boolean 
inputs per feature

Linear threshold 
function

Unlimited 
features



Perceptrons:  A method.
Take simple Boolean predicates
and establish their order requirements.
Focus on group invariant predicates:
◦ Parity has “infinite” order.

Geometrical predicates:
◦ Connectedness has infinite order.
◦ Euler number has low order.
◦ Etc. with caveats

This part is 
brilliant!



Perceptrons: impossibility theorem(s)
A predicate: “Connectedness”
Is a shape made of a single connected component?

Theorem: No small-order perceptron can say.



Perceptrons: possibility theorem(s)

Theorem:
A simple program can
provably compute “connectedness”



Perceptrons: and that’s it!



Is connectedness easy for us?



What is easy for us?

This shape 
represents a 

mouse

This shape 
represents a 

piece of cheese



Are there provable algorithms for

§“Connectedness” has a clear and compact mathematical specification.
§“Mousiness” and “cheesiness” do not.

Whether we mathematically understand the method does not help us prove 
anything because we do not have a mathematical specification of the task.

“Mouseness?” “Cheesiness?”



Perceptrons: weak spot



The taxi driver analogy

How do we trust the taxi driver ?

§ Proving the function
- open brain, check wiring, …

§ Past performance:
- driving license  (a performance test)
- taxi license (a knowledge test)
- police record (past performance)



How to trust the operation of a system?

§ The “positivist” approach
- obtain a mathematic model 
of the internal mechanisms.

- use this knowledge to prove the 
function against its specification.

§ The “behaviorist” approach
- record the past performance of the system
- use the past performance

to obtain statistical guarantees.



Return to the taxi driver analogy
Trusting the past performance
of a robot taxi driver …

§ Is it the same for a human and a robot?

§ We interpret the human driver record
because we know a lot about humans.

For instance, if the record shows excessive
beer intake, we know what it means for
a human, not a robot…



Knowledge is always good!
Trusting the past performance
of a robot taxi driver …

§ Is it the same for a human and a robot?

§ We interpret the human driver record
because we know a lot about humans.

For instance, if the record shows excessive
beer intake, we know what it means for
a human, not a robot…

Anything we know about how a system works

helps us understand its past performance

and helps us drawing the right conclusions. 

“Nothing more practical than a good theory” (Vapnik)



Perceptrons, act II.

Perceptrons
Minsky & Papert
1968

back prop deep learningperceptrons
1960 1970 1980 1990 2000 2010 2020

We must first examine […] two branches 

of theory which could be called “theory of 

learning” and “theory of representation.”

[…] we really need to know a great deal more 

about the nature of those surfaces […]

we applaud those who bravely and 

romantically are applying hill-climbing 

methods to many new domains […]  new 

phenomena that are well worth understanding.



Perceptrons, act II.

Perceptrons
Minsky & Papert
1968

back prop deep learningperceptrons
1960 1970 1980 1990 2000 2010 2020

We must first examine […] two branches 

of theory which could be called “theory of 

learning” and “theory of representation.”

[…] we really need to know a great deal more 

about the nature of those surfaces […]

we applaud those who bravely and 

romantically are applying hill-climbing 

methods to many new domains […]  new 

phenomena that are well worth understanding.

Getting there…



Progress 1 : Statistical learning theory

“necessary in the construction of learning algorithms”

1968-98



Progress 1: Statistical learning theory
§ Under the assumption that training and testing data follow the same distribution.
§ Structural risk minimization gives a precise meaning to Occam’s razor.

Guaranteed testing error

Training error



Progress 2:  understanding deep nets

§ There are scaling limits for which 
deep nets can be described 
with convex mathematics.

§ These limits are not very 
interesting in practice, but
can be used as anchors
to analyze interesting networks
and make verifiable predictions.

That is, simultaneously scaling layer sizes, initial weights, 
step sizes, according to certain schedules.
- Neural Tangent Kernel limit  (2018; several groups)
- Mean Field limit (2018-2019; several groups)

Setting up networks according to these scaling laws
does not give high performance networks.  But one 
describe interesting networks as perturbations of these 
simple cases (and derive better scaling laws.)

2018-now



Progress 2: understanding deep nets

463 pages

Tensor Programs 0, I, II, II.b, III, IV, V

Greg Yang (and coauthors)

I am currently developing a framework called Tensor 

Programs for understanding large (wide) neural networks

428 pages and growing



Beyond statistics

DISTRIBUTION SHIFTS, CAUSALITY, AND FEATURES



Statistical machine learning
Data, present and future, is sampled from a same distribution.
à Rigorous evaluation is possible using held-out data. 



Statistical machine learning
Data, present and future, is sampled from a same unknown distribution.
à Rigorous evaluation is possible using held-out data. 

This single empirical 
paradigm has driven 
progress in machine 
learning for two or 
three decades.



Statistical machine learning
Data, present and future, is sampled from a same unknown distribution.
à Rigorous evaluation is possible using held-out data. 

This single empirical 
paradigm has driven 
progress in machine 
learning for two or 
three decades.

Not anymore



1- Statistical guarantees are brittle

What is the nature of this statement?
§ It does not mean that one rolls a dice for each picture.

§ It is tied to a specific image distribution.
The error guarantee is lost if the image distribution changes.

“DeepVisotron™,℠,® detects 
1000 object categories with 

less than 1% errors.”

Not anymore



2- Data collection bias
Training and testing on different datasets 
§E.g. : Torralba and Efros, Unbiased look at dataset bias, CVPR 2011.

Not anymore



3- Transfer learning
Not anymore

Several CVPR 2014 papers – figure from (Oquab, Bottou et al., 2014)

o Train on ImageNet
- millions of examples
- thousand of classes

o Copy trained features 
extraction layers
- millions of parameters

o Train on new task
- smaller data
- closer to our interests



3- Transfer learning

o Train on ImageNet
- millions of examples
- thousand of classes

o Copy trained features 
extraction layers
- millions of parameters

o Train on new task
- smaller data
- closer to our interests

So pervasive that 
large donor models

are now called:
Foundational models

o Vision : Imagenet models
o Language : BERT
o Machine translation : NLLB



4- Transfer across related tasks
Target task:  “Recognizing persons in images.”
§ Many good reasons to avoid collecting large databases of labeled persons.

Auxiliary task:  “Do these images represent the same person?”
§Two faces in the same picture usually are different persons.
§Two faces in successive video frames are often the same person.

(Matt Miller, NEC, 2006)

Not anymore



4- Transfer across related tasks
Tasks have an algebraic structure

Not a formal task specification but a formal connection between tasks!

Set of images

Set of 
identities

ℛ!"#$%!

Quotient

Equivalence relation
ℛ!#"&'(%#



4- Transfer across related tasks
Models mimic the algebraic structure of the tasks

See also: self-supervised learning

Set of 
images

Set of 
image 

represent
-tations

Set of 
identitiesP

C

D

𝐸!"#$%!

𝐸!#"&'(%#

(Bottou, 2011)



5 Causal inference (Pearl style)

This mechanism leads 
to a first data distribution

… leading to a new
data distribution.

Not anymore

An “intervention”
alters the mechanism …



5 Causal inference (Pearl style)

(Pearl, 2009)    (Bottou, Peters, et al. 2013)

Unknown

Unknown

§ Although parts of the mechanism can be unknown, there is an algebraic 
connection between data distributions before and after intervention!

§ Interventions on a graph in fact form a groupoid.



Causation is a rich topic



Many viewpoints on causation

1. Manipulative causation : Causation describes the outcome of interventions.

2. Causal invariance : Which properties are conserved when the system changes.

3. Causal reasoning : Making sense of causation without interventions.

4. Dispositional causation, affordances : Where do causal relations come from?

5. Causal intuition : Correlations do not imply causation, but data contains a lot of hints.

6. and many more..



Causal inference with DAGs (Pearl style)

Given observed conditional 
distribution for this model, …

… can we predict conditional 
distributions for that model ?

(Pearl, 2009)    (Bottou, Peters, et al. 2013)



Bayes’ 
rule

Causal inference with DAGs
Given observed conditional 

distribution on this model, …
𝑃!(𝐴, 𝐵|𝐶, 𝐷)

… can we predict conditional 
distributions on that model ?

𝑃"(𝑈, 𝑉|𝑅, 𝑆)

Knowledge about the 
intervention
𝑃"(𝑋, 𝑆|𝑅)

Bayes’ 
rule Invariant conditional 

distributions
𝑷𝟏 𝑿, 𝒀 𝒁, 𝑻 = 𝑷𝟐(𝑿, 𝒀|𝒁, 𝑻)



Invariance is the key

§ This process is formalized by Pearl’s do-calculus. 
The assumed graph structure informs us about the invariant conditionals

§ Although Rubin’s methods of potential outcomes is less formal, his
“ignorability” assumptions inform us about the invariant conditionals



How do we solve causal inference 
problems in physics

Method 1:  ODEs

§ Numerical integration scheme defines a DAG

§ Must predict all the trajectory to determine the final state. 

Method 2:  Use invariants directly

§ Write equations that describe the intervention

§ Write equations that describe invariants (local or universal)

§ Solve!

𝑚𝑥̈ = 𝑓(𝑥, 𝑥̇)



How do we solve causal inference 
problems in physics

Method 1:  ODE -> DAG

§ Numerical integration scheme defines a DAG

§ Must predict all the trajectory to determine the final state. 

Method 2:  Use invariants directly

§ Write equations that describe the intervention

§ Write equations that describe invariants (local or universal)

§ Solve!

𝑚𝑥̈ = 𝑓(𝑥, 𝑥̇)

Invariance ⇔ Causation

(Cartwright 2003) (Woodward 2005) 



Discovering invariances
from multiple environments

Following Peters et al. (2016), we consider that data from each 
environment 𝑒 comes with a different distribution 𝑃!.

𝑃!(𝑋", 𝑋#, … , 𝑋$, 𝑌) for  𝑒 = 1,2,3…
§Training sets 𝐷! = (𝑥"…𝑥#, 𝑦) ~ 𝑃! are provided for some 𝑒.

§ We want a predictor of 𝑌 that works for many 𝑒.

Find a subset 𝑆 = {𝑋5, 𝑋6 . . } of the variables 𝑋7
such that 𝑃8 𝑌 𝑆 does not depend on 𝑒. 

(Peters & Meinshausen, 2015)



Intuition

“If we find a representation in which 
all falling objects obey the same laws, 

then we possibly understand something useful.”

𝒚
𝒚̇

𝝓 𝒈



Invariant risk 
minimization

𝜙 𝑔

𝑓

𝑥 𝑓 𝑥 ≈ 𝑦

Find a representation 𝜙 𝑥
Such that the regression from 𝜙 𝑥 to 𝑦

is invariant across environments 

Martin
Arjovsky

Ishaan 
Gulrajani

David 
Lopez-Paz

(Arjovsky, Bottou, Lopez-Paz & Gulrajani, 2018)



Invariant representation

𝜙 𝑔

𝑓

𝑥 𝑓 𝑥 ≈ 𝑦

Find a representation 𝜙 𝑥
Such that the regression from 𝜙 𝑥 to 𝑦

is invariant across environments And also predicts well…



Invariant risk minimization (IRM)

Minimize a regularized cost

/
8

1
𝑛8

𝑌8 − 𝑓9(𝑋8) :

+𝜅/
8

Ω8(𝑤)

𝐶8(𝑤)Average error across 
all environments.

Penalty that favors 
invariant solutions



Colored MNIST
Digits with misleading  colors

Y=0 Y=1
{0,1,2,3,4} 0.75 0.25
{5,6,7,8,9} 0.25 0.75

Red Green
Y=0 1 − 𝑒 𝑒
Y=1 𝑒 1 − 𝑒

The optimal classification rate on 
the basis of the shape only is 75%.

Random guess is 50%.

During the training 𝑒 ∈ 0.1, 0.2 .
The color is a better indicator than 
the shape, but not a stable one.

Then we test with  𝑒 = 0.9.

(Arjovsky, Bottou, Gulrajani, Lopez-Paz, 2019)



Colored MNIST

§Network is a MLP with 256 hidden units on 14x14 images.
§Invariant regularization tuned high : regularization term is nearly zero.

Training with
𝒆 ∈ {𝟎. 𝟏, 𝟎. 𝟐}

Testing with
𝒆 ∈ {𝟎. 𝟏, 𝟎. 𝟐}

Testing with
𝒆 = 𝟎. 𝟗

Minimize empirical risk 
after mixing data from 

both environments
84.3% 10.1%

Minimize empirical risk 
with invariant 
regularization

70.8% 66.9%



Subsequent work

§ Alternate algorithms and constraints
• IGA (Koyama et al., 2020); Invariant Games (Ahuja et al. 2020);  vREX (Krueger at al. 2020); 

FISH (Shi et al., 2021); FISHr (Rame et al, 2021);  SD; RSC, LfF, CLOvE,  …

§ Theoretical issues
§ Linear (IRMv1) is often not good enough (Kamath & al,  2021)

§ Benchmarks and applications
§ Domainbed (Gulrajani et al., 2020)
§ Wildcam dataset (https://ff13.fastforwardlabs.com) 
§ Toxic language classification (Adragna et al., 2020)



And disappointments

Trying invariant learning on real OOD problems:
§ Invariant learning sometimes yields a small improvement.

§ But these results do not measure with our hopes…
§ And always come after a finicky optimization…

Various experiments shows that such cost
functions are just too hard to optimize reliably!



Rich features

Difficult optimization can often be helped by a good initialization

§ Initialize the network with a rich features set.
§ Let the learning algorithm pick the one it likes

David Lopez-PazJianyu Zhang

(Zhang, Bottou, Lopez-Paz  ICML2022)



Rich Feature Construction (RFC)
§ Train a network   

min
!,#

𝔼$[ℓ(𝑦, 𝑔 Φ 𝑥 ]

§ Freeze features and find pessimal data reweighting
max
%∈𝒬

min
#
𝔼%[ℓ(𝑦, 𝑔 Φ 𝑥 ]

§ Training again forces discovering new features Φ’
min
!(,#

𝔼%[ℓ(𝑦, 𝑔 Φ′ 𝑥 ]

§ Gather old and new features
Φ ∪Φ( → Φ)*+

§ Repeat 



Rich Feature Construction (RFC)
§ Train a network   

min
!,#

𝔼$[ℓ(𝑦, 𝑔 Φ 𝑥 ]

§ Freeze features and find pessimal data reweighting
max
%∈𝒬

min
#
𝔼%[ℓ(𝑦, 𝑔 Φ 𝑥 ]

§ Training again forces discovering new features Φ’
min
!(,#

𝔼%[ℓ(𝑦, 𝑔 Φ′ 𝑥 ]

§ Gather old and new features
Φ ∪Φ( → Φ)*+

§ Repeat 

Weight on subsets of 
examples

Distillation

And a duality trick to save distillation time 



Wilds / Camelyon17



Wilds / Camelyon17

Solvable if we model
§ imaging machines effects
§ and batch effects
Assume we don’t know that..

https://wilds.stanford.edu/datasets/#camelyon17



Wilds / Camelyon17

“While the camelyon17 dataset is small and fast to train on, we 
advise against using it as the only dataset to prototype methods 
on, as the test performance of models trained on this dataset 
tend to exhibit a large degree of variability over random seeds.”

Leaderboard best:   74.7% ± 7.1%

https://wilds.stanford.edu/datasets/#camelyon17



2RFC + ERM !

Frozen features !

Leaderboard best: 
74.7 ± 7.1 %

Everything works!



Wilds/Camelyon17



Is this all about the representations?
Everything works robustly after RFC!
§ We arrived there by trying to improve machine learning methods

that attempt to discover causation through invariances.

§ The nature of the internal representations might 
matter more than invariant training!

§ Remark: RFC constructs representations that are “richer” 
than those obtained by training with optimization.

Worth checking…



Supervised transfer (linear probing)



Supervised transfer (linear probing)
Concatenation of features obtained by training
the same network using the same data with the 

same algorithm and the same hyper-parameters. 
Only the random seed changes.

This is not an ensemble of models
with engineered diversity.



Fine-tuning representations

Traditional 
fine-tuning

Two stages 
fine-tuning



Supervised transfer

Note:  Two stage fine tuning (works)  vs single stage fine tuning (does not work well).



Vision transformers

Using snapshots from (Dosovitsky et al, 2020) (Steiner et al., 2021)



SSL transfer 

(Caron et al. 2020)
SSL training on 
Imagenet1.2M. 
Transfer to 
classification tasks

(Goyal et al. 2022)
SSL training on
Instagram1B.
Transfer to 
classification tasks



Learning features with optimization

§ Deep learning optimization seems able to construct diverse features.

§ Deep learning by optimization then prunes features that appear
redundant on the basis of the training data distribution.
GD/SGD algorithms in deep nets: implicit bias towards sparse solutions.

§ Sparsity is good for in-distribution generalization (Occam’s razor)

§ Features eliminated because they were redundant for the training distribution
might in fact be very informative for a new distribution. 



Optimization vs memorization

Feature optimization
§ Once a set of features appears

sufficient to deliver a good
training cost, there is no need
to find or collect new ones.
§ Implicit bias towards sparsity.

Feature memorization
§ Memorize every feature that

appears useful at any point, 
even if removing it later would
not penalize the training cost.

§ Deal with Occam’s razor later.

Prematurely pruning the representations might not be the 
best way to prepare for changing tasks and distributions.



The infinite library

MEMORIZATION AT INTERNET SCALE



Ongoing technological race 

Large language models (LLMs),
Approaching 1012 parameters
The human brain has ~1014 synapses

trained on inhumanly large datasets,
A couple terabytes (1012 bytes)
and increasingly multimodal

as a single optimization run.
This can be very costly.



Ongoing technological race 

Large language models (LLMs),
Approaching 1012 parameters
The human brain has ~1014 synapses

trained on inhumanly large datasets,
A couple terabytes (1012 bytes)
and increasingly multimodal

as a single optimization run.
This can be very costly.

Can we work around the
out-of-distribution problems 

by training on everything?

Maybe not a great idea!



Confusing competency claims

Are LLMs merely language models
Impressive language competencies:
o Ability to contextualize memorized sentences.
o Ability to compose memorized sentences to make meaningful new ones.

Are they growing into full blown artificial intelligences
Such a claim has clearly been made.
o First time we can converse with a machine.
o A tendency to produce nice sentences that poorly match reality.

We have much to 
understand about the 

underlying mechanisms.

How to evaluate this claim?.



What kind of uses?

This might change…



How to evaluate the AI claim?

§ We cannot offer a positive proof because 
we lack both a specification of the task and 
a model of the inner mechanisms.

§ The training/testing approach is compromised because
the testing data coverage is too small and because we 
cannot ensure the separation of training and testing data.

§ And we do not have enough understanding of the
mechanisms to enrich the behavioral evidence.



How to evaluate the AI claim?

§ We cannot offer a positive proof because 
we lack both a specification of the task and 
a model of the inner mechanisms.

§ The training/testing approach is compromised because
the testing data coverage is too small and because we 
cannot ensure the separation of training and testing data.

§ And we do not have enough understanding of the
mechanisms to enrich the behavioral evidence.

We are left with only anecdotal evidence,

Anecdotal evidence can be misleading.

Both ways.



Anecdotal evidence vs LLM AI claims

A language model constructs a probabilistic model of text.
§ This probabilistic model can be accessed by sampling continuations of a leading text.
§ Sampling the conditional 𝑃 𝑡𝑒𝑥𝑡 𝑝𝑟𝑜𝑚𝑝𝑡)
§ The prompt contains both user input and previously generated text, 

without explicit distinction.

A language model trained on everything that humans have written 
produces a distribution whose support contains 
everything humans could have written.



The Library of Babel (Borges, 1941)

Among other things, the library of everything contains

“the minutely detailed history of the future, the archangels' autobiographies, the faithful 
catalogues of the Library, thousands and thousands of false catalogues, the 
demonstration of the fallacy of those catalogues, the demonstration of the fallacy of the 
true catalogue, the Gnostic gospel of Basilides, the commentary on that gospel, the 
commentary on the commentary on that gospel, the true story of your death, the 
translation of every book in all languages, the interpolations of every book in all books.”

In the Library of Babel, nothing tells us what is true or what is beautiful …



The librarians

The most interesting part of Borges’ novel, maybe, is the description 
of the librarians and their supersititions:

§ The sect of the “Purifiers” intends to eliminate all books that 
either contain gibberish or  unacceptable contents. 
Their impact is “a drop in the ocean.”



The librarians

§ Some Librarians are in search of a “Vindication”, which tells
tells them who they are and give them a purpose.

Vindications are easy to find when one accesses the library
with prompts that contain both queries and answers.
o the prompt reveals what you want to read,
o or maybe what your experience suggests you expect.



...

From a famous professor



...

From a famous professor

The goal of this language model is to produce a likely dialog. When your 
half of the dialog resembles that of a teacher talking to a mediocre student, the 
language model will be more than happy to play the role of the mediocre student. 
There are lots of examples of that in the training set. You might have better 
chance to have good answers if you play the role of the student talking to a highly 
respected professor. You might have to tolerate pompous answers with no 
guarantee that they'll be right.

By the same token, if your half of the dialog suggests that you think the 
machine is sentient, the language model will be more than happy to play that part 
(lots of examples in the training set). And if your part of the dialog suggests that 
you are looking for bugs in the AI, the language model will equally be happy to 
provide the bugs (lots of examples in the training set).

We are the primitive men who see a mirror for the first time.



Conclusion

HOW TO GO FORWARD



Three new challenges

1. We need to sober up about anecdotal evidence.
2. We must develop a mathematical framework to describe 

how large language model can so effectively contextualize 
and compose knowledge

3. We must develop a mathematical framework to describe 
out-of-distribution problems and address causation.



A final remark

We want to build artificial intelligence.
This is not a permission to become idiots.

Instead, we will become smarter.


