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Perceptrons

HOW TO UNDERSTAND A LEARNING MACHINE?




Two computing paradigms in the XXth
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Two computing paradigms in the XXth
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"Digital computers (the kind one programs) could do immensely
useful things: scientific calculus, accounting, etc.

*"Machines were not fast enough to make Perceptrons useful!




Perceptrons (1969)

R
. Perceptrons

Perceptrons by Minsky and Papert (1969)

"How do we decide whether something works?

=They have a clear position.
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Metaphor for parallel computation
-Targets what can be computed by Rosenblatt’s perceptron.

-Also describes what can be computed by a convnet with a final pooling layer.
-Similar techniques could characterize what can be computed with map/reduce




Perceptrons: A method.

Take simple Boolean predicates
and establish their order requirements.

Focus on group invariant predicates:
o Parity has “infinite” order.

This part is
Geometrical predicates: brilliant!
> Connectedness has infinite order.
o Euler number has low order.

o Etc. with caveats




Perceptrons: impossibility theorem(s)

A predicate: “Connectedness”
Is a shape made of a single connected component?

Theorem: No small-order perceptron can say.




Perceptrons: possibility theorem(s)

TRACE
Theorem: SV
A simple program can s SN
RN /AN
provably compute “connectedness” - /‘\/
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Theorem 9.2: For any e there is a 2-symbol Turing machine that
can verify the connectedness of a figure X on any rectangular
array R, using less than (2 + ¢) log; [R| squares of tape.




Perceptrons: and that’s it!

13.5 Why Prove Theorems? -
Why didy you prove all these complicated theorems? Couldn’t you

e . o
just take a perceptron and see if it can recognize V¥ CONNECTED -

No.




|s connectedness easy for us?




What is easy for us?
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This shape
represents a
mouse



Are there provable algorithms for
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“Mouseness?” “Cheesiness?”

=“Connectedness” has a clear and compact mathematical specification.
=“Mousiness” and “cheesiness” do not.

Whether we mathematically understand the method does not help us prove
anything because we do not have a mathematical specification of the task.




Perceptrons: weak spot

13.3 Analyzing Real-World Scenes

One can understand why you, as mathematicians, would be inter-
ested in such clear and simple predicates as Yoy and
Yeonnecren- But what if one wants to build machines to recog-
nize chairs and tables or people? Do your abstract predicates have
any relevance to such problems, and does the theory of the simple
perceptron have any relevance to the more complex machines one
would use in practice?

This is a little like asking whether the theory of linear circuits
has relevance to the design of television sets. Absolutely, some
concept of connectedness is required for analyzing a scene with
many objects in it. For the whole is just the sum of its parts and

r
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The taxi driver analogy

How do we trust the taxi driver ?

" Proving the function
- open brain, check wiring, ...

= Past performance:
- driving license (a performance test)
- taxi license (a knowledge test)
- police record (past performance)




How to trust the operation of a system?

= The “positivist” approach
- obtain a mathematic model
of the internal mechanisms.
- use this knowledge to prove the
function against its specification.

= The “behaviorist” approach
- record the past performance of the system
- use the past performance
to obtain statistical guarantees.




Return to the taxi driver analogy

Trusting the past performance
of a robot taxi driver ...

= |s it the same for a human and a robot?

= We interpret the human driver record
because we know a lot about humans.

For instance, if the record shows excessive
beer intake, we know what it means for
a human, not a robot...




Knowledge is always good!

Trusting the past performance
of a robot taxi driver ...
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Perceptrons, act Il.

1960 1970
1980 1990
perceptrons 2000 201
back prop 0 , l 2020
eep learning
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Perceptrons
2”’”5/()/ & Papert [...] we really need to know a great deal more
968 about the nature of those surfaces [...]

we applaud those who bravely and
romantically are applying hill-climbing
methods to many new domains [...] new
henomena that are well worth understanding.
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Progress 1 : Statistical learning theory
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Progress 1: Statistical learning theory

= Under the assumption that training and testing data follow the same distribution.
= Structural risk minimization gives a precise meaning to Occam’s razor.

A

Best choice of F

Bound on :
HT Guaranteed testing error

ML

Training error

>
F (with increasing capacity)




Progress 2: understanding deep NO) oW

" There are scaling limits for which
deep nets can be described
with convex mathematics.

" These limits are not very
interesting in practice, but
can be used as anchors
to analyze interesting networks
and make verifiable predictions.

That is, simultaneously scaling layer sizes, initial weights,
step sizes, according to certain schedules.

- Neural Tangent Kernel limit (2018; several groups)

- Mean Field limit (2018-2019; several groups)

4

Setting up networks according to these scaling laws
does not give high performance networks. But one
describe interesting networks as perturbations of these
simple cases (and derive better scaling laws.)

4
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?2 Beyond statistics

DISTRIBUTION SHIFTS, CAUSALITY, AND FEATURES




Statistical machine learning

Data, present and future, is sampled from a same distribution.
-=> Rigorous evaluation is possible using held-out data.

(1) Set aside test examples l

(2) Estimate f using only the training set.
Using the test set is forbidden.

l

- P (3) Measure final performance
using the testing set.

Ideally this happens only once!




Statistical machine learning

Data, present and future, is sampled from a same unknown distribution.
—> Rigorous evaluation is possible using held-out data.

This single empirical
1) Set aside test | . .
iagan e st axampes l paradigm has driven
(2) Estimate f using only the training set. Progress in maChme
Using the test set is forbidden. lea rning for two or
l three decades.

P (3) Measure final performance
using the testing set.

Ideally this happens only once!




Statistical machine learning

Data, present and future, is sampled from a same unknown distribution.
—> Rigorous evaluation is possible using held-out data.

l This single emnirical

(1) Set aside test examples

(2) Estimate f using only the training set.
Using the test set is forbidden.

l

- P (3) Measure final performance
using the testing set.

Ideally this happens only once!




1- Statistical guarantees are brittle

“DeepVisotron™ " ® detects
1000 object categories with
less than 1% errors.”

What is the nature of this statement?

" |t does not mean that one rolls a dice for each picture.

= |t is tied to a specific image distribution.
The error guarantee is lost if the image distribution changes.




2- Data collection bias

Training and testing on different datasets

"E.g. : Torralba and Efros, Unbiased look at dataset bias, CVPR 2011.

task | feston: | gNO9 LabelMe PASCAL ImageNet Caltech10l MSRC
rain on.:

SUNO09 28.2 29.5 16.3 14.6 16.9 21.9
LabelMe 14.7 34.0 16.7 22.9 43.6 24.5

S | PASCAL 10.1 25.5 35.2 43.9 44.2 39.4
¥ | ImageNet 11.4 29.6 36.0 57.4 52.3 42.7

. & | Caltech101 75 31.1 19.5 33.1 96.9 42.1
S & | MSRC 9.3 27.0 24.9 32.6 40.3 68.4
* © | Mean others 10.6 28.5 22.7 29.4 394 34.1




3- Transfer learning

Training images I Source task | Source task labels
Convolutional layers Fully-connected layers gfdcancicphant O Tra in on I mage N Et
T . @) o - millions of examples

learning

C1-C2-C3-C4-C5 ] Fce | Fc7 preepm Lo =T
il — R - thousand of classes
\ [ o Copy trained features
2 : Feature Transfer
transfer t parameters = extractlon Iayers
} C“a" - millions of parameters

3;2?3?:;” C1-C2-C3-C4-C5 > Fce o Fc7 e Rl e il « Backeround O Train on new taSk

6144-dim Person

9216-dim 4096 or vector - Sma”er data
L vector 6%:;:""1 i TV/monitor | t e t t
A - s el B - closer to our Interests
T .
raining images Sliding patches I et Rk I La:t:;gt:l:ae;i Target task labels

Several CVPR 2014 papers — figure from (Oquab, Bottou et al., 2014)



3- Transfer learning

Trai | . So pervasive that
© ra.lr? 2l L e large donor models
- millions of examples

- thousand of classes are n?W called:
o Copy trained features Foundational models

extraction layers
- millions of parameters
o Train on new task

- smaller data
\-Closer to our interests




A- Transfer across related tasks

Target task: “Recognizing persons in images.”

= Many good reasons to avoid collecting large databases of labeled persons.

Auxiliary task: “Do these images represent the same person?”
=Two faces in the same picture usually are different persons.
sTwo faces in successive video frames are often the same person.

P
ﬁ <‘!>' y/n mp ] ' m e
B —

(Matt Miller, NEC, 2006)




A- Transfer across related tasks

Tasks have an algebraic structure

Equivalence relation

R z
tTanSfeT identities

Not a formal task specification but a formal connection between tasks!




A- Transfer across related tasks

Models mimic the algebraic structure of the tasks

T

Set of
image
represent
-tations

Set of
identities

Set of
images

See also: self-supervised learning Etarget

(Bottou, 2011)




5 Causal inference (Pearl style)
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This mechanism leads An “intervention” ... leading to a new
to a first data distribution alters the mechanism ... data distribution.




5 Causal inference (Pearl style)

query x ad_inventory v
_ fi(u, e1) M
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N et
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= Although parts of the mechanism can be unknown, there is an algebraic
connection between data distributions before and after intervention!
" |nterventions on a graph in fact form a groupoid.

(Pearl, 2009) (Bottou, Peters, et al. 2013)
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Causation is a rich topic

TYPES OF EXPLANATION

1.1 ARISTOTLE: FOUR

Stephen Mumford & Rani Lill Anjum

CAUSATION | A THeol

A Very Short Introduction

/MODELS., REASONI?
AND INFERENCE

JAMES WOODWARD



Many viewpoints on causation

Manipulative causation : Causation describes the outcome of interventions.

Causal invariance : Which properties are conserved when the system changes.

Causal reasoning : Making sense of causation without interventions.

Dispositional causation, affordances : Where do causal relations come from?

Causal intuition : Correlations do not imply causation, but data contains a lot of hints.

o & W bd PR

and many more..




Causal inference with DAGs (Pearl style)

user_intent u —| query x ad_inventory v

user_intent u > quer)
r = fi1(u,eq)
ads a bids b a = faz,v,e2) E
b = fs(z,v,e3)
scores ¢ g = Tl fa(z,a,eq) NEW Q=f |_/
s = f5(a'7 q, b, 6'5) \
slate s prices c c = fe(a,q,b,ep) slate s
M l y = fr(s,u,e7) /
clicks y »revenue z z = fsy,c,e8) clicks y
Given observed conditional ... can we predict conditional
distribution for this model, ... distributions for that model ?

(Pearl, 2009) (Bottou, Peters, et al. 2013)



Causal inference with DAGs

Given observed conditional ... can we predict conditional
distribution on this model, ... distributions on that model ?
P,(A,B|C,D) P,(U,V|IR,S)
Bayes’ Bayes’ ~

rule ( Invariant conditional ] rule ( Knowledge about the

distributions 'n;er)\éesn'gon
P1(X,Y|Z,T)=P2(X,Y|Z,T)J k 2(X,S|R)

J




Invariance is the key

k P:(A,B|C,D) j k P,(U,V|R,S) j

Bayes’ Bayes’

rule ( Invariant conditional W rule ( Knowledge about the

distributions intervention
LP1(X. Y|Z,T) = P,(X,Y|Z, T)J K P,(X,S|R)

= This process is formalized by Pearl’s do-calculus.
The assumed graph structure informs us about the invariant conditionals

= Although Rubin’s methods of potential outcomes is less formal, his
“ignorability” assumptions inform us about the invariant conditionals




How do we solve causal inference
problems in physics

Method 1: ODEs
" Numerical integration scheme defines a DAG

= Must predict all the trajectory to determine the final state.
v
B &
@

Method 2: Use invariants directly

" Write equations that describe the intervention

= Write equations that describe invariants (local or universal)

= Solve! K /




How do we solve causal inference
problems in physics

Method 1: ODE -> DAG

jon
R . Invariance < chic‘fwﬁd 2005)
- @ - (Cartwr'\ght 2003) {

lllllllllllllllllllllllll

at describe invariants (local or universal)




Discovering invariances
from multiple environments

Following Peters et al. (2016), we consider that data from each
environment e comes with a different distribution P,.

P, (X, X5,...,X,,Y) for e =1,2,3 ...

*Training sets D, = {(x1 ... xn,y) ~ P,} are provided for some e.

= We want a predictor of Y that works for many e.

~Q’ Find a subset S = {X3, X, ..} of the variables X;
such that P,(Y|S) does not depend on e.

(Peters & Meinshausen, 2015)



Intuition
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“If we find a representation in which
all falling objects obey the same laws,
then we possibly understand something useful.”




Invariant risk
minimization

2

Martin Ishaan David

Arjovsky Gulrajani Lopez-Paz

-

- ol

{Find a representation ¢ (x)

!
» g

N

flx) =y
/\

-

&

Such that the regression from ¢(x) to y
IS invariant across environments

~

J

(Arjovsky, Bottou, Lopez-Paz & Gulrajani, 2018)



Invariant representation

- {3 H

{Find a representation ¢ (x)




Invariant risk minimization (IRM)

Minimize a regularized cost

Ce(W)
Average error across p A N
all environments. 1 ,
> = IIYe = fu (X
e

[ Penalty that favors

e
invariant solutions / T z 2 (w)
e
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Colored MINIST EEANERARGRGE
Zlzlo[74[/[al#|6|o|d]=

Digits with misleading colors

{0,1,2,3,4} 0.75 0.25 Y=0 1—e e

{5,6,7,8,9) [PL: 0.75 e 1-e

During the training e € { 0.1,0.2 }.
The color is a better indicator than
the shape, but not a stable one.

The optimal classification rate on
the basis of the shape only is 75%.

Random guess is 50%.
Then we test with e = 0.9.

(Arjovsky, Bottou, Gulrajani, Lopez-Paz, 2019)



Colored MINIST

Training with Testing with Testing with
ec{0.1,0.2} ec€{0.1,0.2} e=0.9

Minimize empirical risk

after mixing data from 84.3% 10.1%
both environments

Minimize empirical risk

with invariant 70.8% 66.9%

regularization

*Network is a MLP with 256 hidden units on 14x14 images.

"Invariant regularization tuned high : regularization term is nearly zero.




Subsequent work

= Alternate algorithms and constraints

* |GA (Koyama et al., 2020); Invariant Games (Ahuja et al. 2020); vREX (Krueger at al. 2020);
FISH (Shi et al., 2021); FISHr (Rame et al, 2021); SD; RSC, LfF, CLOVE, ...

" Theoretical issues
= Linear (IRMv1) is often not good enough (Kamath & al, 2021)

" Benchmarks and applications
= Domainbed (Gulrajani et al., 2020)
= Wildcam dataset (https://ff13.fastforwardlabs.com)
= Toxic language classification (Adragna et al., 2020)




And disappointments

2 Trying invariant learning on real OOD problemes:
" Invariant learning sometimes yields a small improvement.
= But these results do not measure with our hopes...

= And always come after a finicky optimization...

Various experiments shows that such cost
functions are just too hard to optimize reliably!




Rich features ﬁ»’

Jianyu Zhang  David Lopez-Paz

Difficult optimization can often be helped by a good initialization

N
:@- = |nitialize the network with a rich features set.
\.‘3 = Let the learning algorithm pick the one it likes

(Zhang, Bottou, Lopez-Paz ICML2022)




Rich Feature Construction (RFC)

= Train a network

rggl E, k462 g(CI)(x))]

= Freeze features and find pessimal data reweighting D

max min Eq[£(y, g (@(0)]

" Training again forces discovering new features @’

min Eq[£(y, 9(P'(0)]

= Gather old and new features
dUP - D,

= Repeat




Rich Feature Construction (RFC)

*= Train a network

Weight on subsets of

min examples

D,g

= Freeze features and find pe a reweighting —

ICTIlEaQ gln IIEzq 1£(y, g(CI)(x))]

" Training again forces discovering new feature=®’
min E,[2(y, g(®'(x) Distillation }

dr,g

= Gather old and new features
dUP - D,

= Repeat

ﬁ And a duality trick to save distillation time i




Wilds / Camelyonl17

Train Val (OOD) Test (OOD)
d = Hospital 3 d = Hospital 4 d = Hospital 5
. <1 :*:.v‘:';. ~A -n\' Yhies




Wilds / Camelyonl17
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Train Val (OOD) Test (OOD)
d = Hospital 1 d = Hospital 2 d = Hospital 3 d = Hospital 4 d = Hospital 5
4 “ - ’ at*® r & =g ‘.: " -“. . -:,,,
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= and batch effects
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https://wilds.stanford.edu/datasets/#camelyon17



Wilds / Camelyonl17

Val (OOD) Test (OOD)

“While the camelyon17 dataset is small and fast to train on, we
advise against using it as the only dataset to prototype methods
on, as the test performance of models trained on this dataset
tend to exhibit a large degree of variability over random seeds.”

Leaderboard best: 74.7% * 7.1%

https://wilds.stanford.edu/datasets/#camelyon17



Network Methods Test Acc
Initialization IID Tune | OOD Tune
X ERM 66.61+9.8 70.2+8.7
ERM IRMv1 68.61+6.8 68.51+6.2
ERM VREX 69.1+£8.1 | 69.1+13.2
ERM CLOvVE 71.74£10.2 | 69.0+£12.1
2-RFC ERM 72.8+3.2 74.7+4.3
2-RFC IRMv1 71.61+4.2 75.3+4.8
2-RFC VREXx 73.4+3.3 76.4+5.3
2-RFC CLOVE 74.0+4.6 76.6+5.3
2-RFC ERM(cf) 78.2+2.6 78.61+2.6
2-RFC IRMv1(cf) 78.01+2.1 79.1+£2.1
2-RFC VREXx(cf) 77.9+2.77 79.5+2.77
2-RFC CLOvVE(cf) | 77.842.2 78.61+2.6

|

Leaderboard best;

74.7 7.1 %

|

2 2RFC + ERM !

Frozen features !

( Everything works!

AN

|




Wilds/Camelyon17

IID Tune OOD Tune
0.8 - 0.8 - o
Ll * ey ke ool ~
> { e = = — e > A SN
o N7 ) .
€ 0.7 - —_— K C 0.7 e « N
= ~, / - : ~=\ [/
9] S \ O J \ \
2 v g 7 N7
\ i \
2 0.6 - . £ 0.6 - ;
@ —:= ERM : VREX \ 12 —-= ERM : VREX \
-==- 2-RFC: vREX \ wee: 2<RFCW VREX \
0.51 —— 2-RFC : VREx(cf) Stz 0.51 —— 2-RFC : VREx(cf) e
10° 10! 102 103 10° 101 102 103
Penalty Weights Penalty Weights




s this all about the representations?

Everything works robustly after RFC!

= We arrived there by trying to improve machine learning methods
that attempt to discover causation through invariances.

" The nature of the internal representations might
matter more than invariant training!

= Remark: RFC constructs representations that are “richer”
than those obtained by training with optimization.

Worth checking...




Supervised transfer (linear probing)

ID Linear Probing (OOD)
method architecture params | IMAGENET | INAT18 CIFAR100 CIFARI1O
ERM RESNETS0 23.5M 75.58 37.91 90.57 73.23
ERM RESNETS0wW2  93.9M 77.58 37.34 90.86 72.65
ERM RESNET50w4 375M 78.46 38.71 92.13 74 .81
ERM 2XRESNETS0 47TM 75.03 39.34 90.94 74.36
ERM 4 xRESNETS0 94M 75.62 41.89 90.61 74.06
CAT2 2XRESNETS0 47TM 77.57 43.26 91.86 76.10
CAT4 4 XxRESNETS50 94M 78.15 46.55 93.09 78.19
CATS 5XRESNETS0 118M 78.27 47.78 93.21 78.53
CAT10 I10XRESNETS50 235M 78.36 49.65 93.75 79.61




Supervised

Concatenation of features obtained by training

the same network using the same data with the

method

ERM
ERM
ERM RESNE

ERM
ERM

Only the random seed changes.

same algorithm and the same hyper-parameters.

CAT2 :

CAT4 4 XxRESNETS0 94M ) ) 78.19

CATS 5XRESNETS50 118M 78.27 47.78 93.21 78.53

CAT10 I10XRESNETS50 235M 78.36 49.65 93.75 79.61
DISTILLS RESNETS0 23.5M 76.39 40.75 92.54 76.50




Fine-tuning representations

Pre-train each net Concatenate pre-trained Fine-tune representations
on auxiliary task representations and attach a b1, P2, 3 and classifier v
( \\ (random) classifier v. on target task

\ > . X

— —

¢ b2 s

Traditional
fine-tuning

(

1

Pre-train each net Fine tune each net Concatenate fine-tuned
on auxiliary task on target task representations and train

( ) ( \\ classifier v.

N A D -
|

A
¢2  ¢3

—

Two stages
fine-tuning

e
!

(




Supervised transfer

Imagenet Inaturalist1l8 Cifar1l00 Cifarl0
(1k target classes) (8k target classes) (100 target classes) (10 target classes)
50 -
78.5 - m50wg ~&- wide (Ip) 93.5 -
catl‘(.)" o o 48 —e— cat(lp)
S 46~ * distill (Ip) 93.0-
78.0 - o =X ensemble 925 *
& 44-
= 92.0 -
©
e 91.5-
1.1:5% =
> 91.0 -
©
5 90.5 -
9
g 77.0-
S
68 -
& distill5f; 7
76.5 Qistl
N I aE——— A
[ =
A4 '2 66 -
76.0- [/ -k- wide Q -k~ wide (ft)
/ —o— cat i ol —o— cat (2ft)
*  distill 65 - _e.-®- cat (ft)
50 -%- ensemble , == -l *  distill (ft)
75 e —— — - . .
108 108 108

Note: Two stage fine tuning (works) vs single stage fine tuning (does not work well).




Vision transformers

Imagenet(384px) Imagenet(384px) Imagenet(384px) Imagenet(384px)
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Figure 5: Supervised transfer learning from IMAGENET21K to IMAGENET on vision transformers.

Using snapshots from (Dosovitsky et al, 2020) (Steiner et al., 2021)




SSL transfer

Imagenet Inaturalist18 Cifar100 Cifarl0 Imagenet
79- cat?

-4~ wide (ft)
81.0- —®— cat(2ft)
-o- cat (ft)

cat8 50 -

(Caron et al. 2020)

SSL training on g, T cows 48 o .
58877 e £8 800 »
Imagenetl.2M. <agd 2
= 46 - - /
Transfer to i 22,55, /
] -4~ wide(lp)
classification tasks 75 e~ cat(ip) 780
M50 - ensemble
Chee e BT aee e e e e g e e
Imagenet Inaturalist18 Cifar100 Cifarl0 Imagenet (384px)
) 855" _a- wide&deep (ft)
(Goyal et al. 2022) "’ s
_ o 77- ’r9_2,.55'5% 85.0 -
SSL training on £, 2y
96 t®
Instagram1B. Heg” 23"
o+ _ .E"‘
Transfer to g7 i — 84.0-
classification tasks e 835

10°
#params #params




Learning features with optimization

" Deep learning optimization seems able to construct diverse features.

" Deep learning by optimization then prunes features that appear
redundant on the basis of the training data distribution.
GD/SGD algorithms in deep nets: implicit bias towards sparse solutions.

= Sparsity is good for in-distribution generalization (Occam’s razor)

" Features eliminated because they were redundant for the training distribution
might in fact be very informative for a new distribution.




Optimization vs memorization

Feature optimization Feature memorization

= Once a set of features appears = Memorize every feature that
sufficient to deliver a good appears useful at any point,
training cost, there is no need even if removing it later would
to find or collect new ones. not penalize the training cost.

" Implicit bias towards sparsity. = Deal with Occam’s razor later.

Prematurely pruning the representations might not be the
best way to prepare for changing tasks and distributions.




3 The infinite library

MEMORIZATION AT INTERNET SCALE




Ongoing technological race

Russian assets: freeze or seize?

T he Managing in a time of stagflation
Britain's growth problem

Economist - e
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Large language models (LLMs),

Approaching 1012 parameters
The human brain has ~10%* synapses

trained on inhumanly large datasets,

A couple terabytes (102 bytes)
and increasingly multimodal

as a single optimization run.

This can be very costly.




Ongoing technological race

The

| Economist

Large language models (LLMs),

Approaching 1012 parameters Can we work around the
The human brain has ~10'* synapses out-of-distribution problems

trained on inhumanly large datasets, by training on everything?

#

A couple terabytes (102 byte
and increasingly multimodal

as a single optimization run. Maybe not a great idea!

This can be very costly.




Confusing competency claims

We have much to
Are LLMS merely language models et e
Impresswe Ianguage competencies: underlying mechanisms.

o Ability to contextualize memorized sentences.
o Ability to compose memorized sentences to make meaningful new ones.

Are they growing into full blown artificial intelligences

Such a claim has clearly been made.
) ) ) ) How to evaluate this claim?.
o First time we can converse with a machine.

o A tendency to produce nice sentences that poorly match reality.




What kind of uses?

Using ChatGPT to Trying to Trick

This might change...




How to evaluate the Al claim?

= We cannot offer a positive proof because
we lack both a specification of the task and
a model of the inner mechanisms.

= The training/testing approach is compromised because
the testing data coverage is too small and because we
cannot ensure the separation of training and testing data.

* And we do not have enough understanding of the
mechanisms to enrich the behavioral evidence.




How to evaluate the Al claim?

* And we do not have enough understanding of the
mechanisms to enrich the behavioral evidence.




Anecdotal evidence vs LLM Al claims

A language model constructs a probabilistic model of text.

= This probabilistic model can be accessed by sampling continuations of a leading text.
= Sampling the conditional P(text | prompt)

= The prompt contains both user input and previously generated text,
without explicit distinction.

A language model trained on everything that humans have written
produces a distribution whose support contains
everything humans could have written.




The Library of Babel (Borges, 1941)

Among other things, the library of everything contains

“the minutely detailed history of the future, the archangels' autobiographies, the faithful
catalogues of the Library, thousands and thousands of false catalogues, the
demonstration of the fallacy of those catalogues, the demonstration of the fallacy of the
true catalogue, the Gnostic gospel of Basilides, the commentary on that gospel, the
commentary on the commentary on that gospel, the true story of your death, the
translation of every book in all languages, the interpolations of every book in all books.”

In the Library of Babel, nothing tells us what is true or what is beautiful ...




The librarians

The most interesting part of Borges’ novel, maybe, is the description
of the librarians and their supersititions:

" The sect of the “Purifiers” intends to eliminate all books that
either contain gibberish or unacceptable contents.

Their impact is “a drop in the ocean.”




The librarians

= Some Librarians are in search of a “Vindication”, which tells
tells them who they are and give them a purpose.

Vindications are easy to find when one accesses the library
with prompts that contain both queries and answers.
o the prompt reveals what you want to read,

o or maybe what your experience suggests you expect.




From a famous professor

From another discussion with GPT-3. It seems to try hard to be a mediocre
student. You can skip directly to the excuse on the last line.....

Q: Suppose that | toss a fair coin until | see a head. What is the expected number
of tosses needed?

A: The expected number of tosses needed is 2.

Q: Now let Y denote the number of fair coin tosses needed to see two
consecutive heads. What is the expectation of Y?

A: The expectation of Y is 5.

Q: No, that is incorrect. Suppose we run until the first head, then see if the next
coin toss is a head. If so, we are done, otherwise, we start over. Can you write a
linear equation for E(Y) from this?

Q: Finally! Why did it take you so long to solve such a simple linear equation?

A: | was making sure to double check my calculations and to think through the
equation carefully.
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The goal of this language model is to produce a likely dialog. When your
half of the dialog resembles that of a teacher talking to a mediocre student, the
language model will be more than happy to play the role of the mediocre student.
There are lots of examples of that in the training set. You might have better
chance to have good answers if you play the role of the student talking to a highly
respected professor. You might have to tolerate pompous answers with no
guarantee that they'll be right.

By the same token, if your half of the dialog suggests that you think the
machine is sentient, the language model will be more than happy to play that part
(lots of examples in the training set). And if your part of the dialog suggests that
you are looking for bugs in the Al, the language model will equally be happy to
provide the bugs (lots of examples in the training set).

We are the primitive men who see a mirror for the first time.

equation carefully.

U 4




/ Conclusion

)

HOW TO GO FORWARD




Three new challenges

1. We need to sober up about anecdotal evidence.

2. We must develop a mathematical framework to describe

how large language model can so effectively contextualize
and compose knowledge

3. We must develop a mathematical framework to describe
out-of-distribution problems and address causation.




A final remark

We want to build artificial intelligence.

This is not a permission to become idiots.

Instead, we will become smarter.




