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Introduction

How to go from the simple to the complex, from the individual to the
collective, from the microscopic to the macroscopic? Does the knowledge
of the properties of the basic constituents of ordinary matter, atoms and
molecules, allow us to predict the behavior of an assembly of N >> 1 parti-
cles, be it gaseous, liquid or solid?

This question arose as soon as the formalism of statistical physics was
established. A famous example is the equation of state for a fluid of volume
V, pressure P and temperature T written' by Johannes Diderik van der
Waals in 1873 in his doctoral thesis, an equation which earned him the
Nobel Prize in Physics in 1910:

/]\[2 /
(P+a W) (V — NV) = NkgT. 1)

In this equation, the parameters a’ and b’ are supposed to describe the mi-
croscopic physical processes which induce a deviation from the ideal gas,
for which PV = NkgT : o’ characterizes the interactions between particles,
in particular the van der Waals interactions, and b’ the volume occupied by
each one, considered as a hard impenetrable sphere.

An important prediction of this equation is the universality of phenom-
ena characteristic of fluids described by classical physics, such as the ex-
istence of a liquid-gas transition and a critical point where the distinction
between liquid and vapor disappears?. The van der Waals equation of state
also provides relations between the properties of various fluids, as long as
reduced units are used that eliminate the microscopic parameters a’ and

I The variables used by van der Waals were the number of moles and the ideal gas constant
R. One passes from one notation system to the other by a multiplication by the Avogadro
number.

2Let us recall that this critical point is obtained by finding the inflection point of the set of

b'. If we denote P., T, and n. as the pressure, temperature and density
n = N/V at the critical point, we can put this equation in the form

P T n
Sl Y
. (Tn) ©)

where F' is an identical function for all fluids.

This universality, called the law of corresponding states, is illustrated
in figure 1 from the article by Guggenheim (1945). Here, the author has
plotted for eight different fluids the density of the gas and the density of
the liquid for a range of temperatures below the critical temperature. The
densities are measured in units of n. and the temperatures in units of 7T,
so that the universality expressed by (3) should lead to one and the same
curve for the different fluids. This is indeed what happens, to a good ap-
proximation, for the eight fluids considered.

The van der Waals equation and its generalization by Guggenheim
(1945) are entirely classical approaches. They are valid at high tempera-
ture, more precisely at low phase space density:

4)

ok \ /2
kaT> ’

A\ < 1 with A= (

where ) is the thermal wavelength.

In this course we will focus on the opposite point of view, in which
quantum effects play an essential role. This point of view is of course mo-

isothermal curves P(V) at a given T'. It is therefore necessary to solve

2p
Critical point: ( 8—P ) =0 (L) =0, 2)
oV ) ovz )

expressing in particular that the compressibility of the fluid is infinite at this point.
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Figure 1. The "universal” character of liquid-gas coexistence for a series of dif-
ferent fluids, represented here on a density-temperature diagram. The density of
the gas (left branch) and that of the liquid (right branch) are plotted on this graph.
The densities and temperatures are expressed in units of the critical values for each
fluid, n. (noted here p.) and T.. At the critical point, at the top of the graph, the
two curves meet. Note that the fits indicated by a solid line differ quantitatively
from the prediction for the van der Waals equation of state, even though the gen-
eral shape of the results is consistent with what is expected for (1). Figure from
Guggenheim (1945).

tivated by the considerable development of research in the physics of gases
at very low temperatures that has taken place over the last twenty years.
Thanks to the combination of laser and evaporative cooling of atoms, it
is possible to produce highly degenerate bosonic or fermionic fluids. For
these fluids, the interactions must be described by quantum physics. More
precisely, the collisions occur essentially in the partial wave of zero angular
momentum, the s-wave. They are therefore characterized by a number, the
scattering length a, whose value can, for some atomic species, be adjusted
to an arbitrary value, possibly a = oo, thanks to scattering resonances
called Fano-Feshbach resonances.

Our goal will be to understand to what extent we can find a quantum
universality, similar in principle to the one shown in figure 1. This univer-
sality should allow us to link the macroscopic properties of the fluid, such
as its energy, to the microscopic quantity a. We will proceed step by step
according to the following plan:

* Chapter 1 will be devoted to the weakly degenerate case, nA\*> < 1,
which can be approached by the virial expansion, i.e. an expansion of
the equation of state in powers of n\3.

¢ Chapters 2, 3 and 4 will be devoted to the case of the strongly degen-
erate Bose gas, n\3 > 1, but relatively weakly interacting in the sense
that na® < 1. We will start with a detailed presentation of the Bogoli-
ubov method, then we will study higher order corrections, such as
the Lee-Huang-Yang correction (Lee, Huang, et al. 1957). We will de-
scribe several recent experiments providing quantitative tests of these
theories. We will also explain how these corrections allow to stabilize
"liquid" states, i.e. states with density independent of the number of
particles (Petrov 2015).

¢ In chapters 5 and 6, we will discuss the case of strongly interacting
systems, in which a scattering resonance allows to realize a situation
such as na® > 1, while remaining in the dilute regime nb®> < 1 where
b is the range of the potential. We will present the contact concept in-
troduced by S. Tan (Tan 2008a; Tan 2008c) and show how it allows to
link one- or two-body physics, for example the momentum distribu-
tion n(k) and the spatial correlation function g2(r), to N-body physics
through thermodynamic functions.



In this course we will use a number of notions that were developed in
detail in last year’s course: s-wave collision and scattering length, Born
expansion, Fano-Feshbach resonances. We will recall as we go along the
essential ingredients to use these notions and we refer the reader to the
notes of the course 2020-21 to deepen them if needed.

I thank Jérdme Beugnon, Markus Holzmann, Raphael Lopes, Sylvain
Nascimbene, Félix Werner and Willi Zwerger for many discussions on the
points covered in this course.






Chapter I

Weakly degenerate quantum gases :

the virial expansion approach

In this chapter we discuss a first method to relate few-body physics and
macroscopic properties of a fluid. This method, which is called virial ex-
pansion, is usable for weakly degenerate fluids, i.e. a phase-space density
nA3 < 1, where n is the spatial density and A = /27h?/mkgT the thermal
wavelength, T’ denoting the temperature.

This virial approach consists in an expansion of a thermodynamic func-
tion of the macroscopic fluid, the pressure for example, in powers of the
density n or of the fugacity! z = exp(u/kgT), where p is the chemical po-
tential. This type of expansion was proposed by Kamerlingh Onnes at the
very beginning of the twentieth century for a fluid described by classical
thermodynamics, then extended to a quantum description by Uhlenbeck
& Beth (1936) and Beth & Uhlenbeck (1937). Remarkably, the coefficient of
the n-th order term (with in practice n from 2 to 5) is computable provided
that one knows how to treat exactly the n-body problem, thus a "small"
system, far from the macroscopic case [cf. figure 1].

We begin this chapter by recalling the basics of the thermodynamic de-
scription of an ideal quantum gas, obeying Bose or Fermi statistics. We
then find a first source of deviation of the coefficients of the virial expan-
sion with respect to a Boltzmann gas. In the second part, we are interested

For an expansion in powers of z, some authors prefer to use the term cluster expansion.
We will keep here the most common terminology, virial expansion.

11

in the first non-trivial virial coefficient, noted b,. We detail its calculation in
the case of "standard" interactions and we recover a famous result of Beth
& Uhlenbeck (1937). We then discuss the case of binary resonant interac-
tions. The third part is devoted to the case of the spin 1/2 Fermi gas in the
unitary regime, i.e. with resonant 1| interactions. This is a system which
currently plays a central role in quantum gas physics, as it allows to test
in a very fine way different theoretical approaches by confronting them
with experimental results. We describe these experiments and present the
different known results for the coefficients b3, by and b5 of the expansion.

1 The virial expansion

1-1 Equation of state of a fluid

The state of a fluid at thermodynamic equilibrium is characterized by the
value of a number of thermodynamic variables. For a gas of particles with-
out spin, we generally use the following three variables:

¢ the temperature T or its conjugate variable, the entropy S.

¢ the volume L3 or its conjugate variable, the pressure P.
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= b(T)z + by(T)Z* + by(T)Z> +

] |

ke T/ 13

Figure 1. Principle of virial expansion. We express the pressure P (in units
of kT /\3) as an expansion in powers of the fugacity z = exp(u/kgT). The
coefficient of order n, b, (T), is computed by solving the corresponding n-body
problem. We thus make the link between the macroscopic properties of the fluid
and the few-body problem (n typically ranging from 2 to 5), at least in the weakly
degenerate case: n\3 ~ z < 1.

¢ the number of particles N or its conjugate variable, the chemical po-
tential p

The equation of state of a fluid consists in expressing a thermodynamic
function, the energy E(S, L3, N) or the grand potential Q(T', L3, 11) for ex-
ample, in terms of a triplet formed from these variables. At first, we will
use the grand potential (T, L3, 1), whose total differential is written:

(0= -SdT — PdL® — Ndu| 1)

It is shown in statistical physics [see for example Landau & Lifshitz
(1975)] that €2 is related to the partition function in the grand-canonical set
Zac

0= 71€BT10g ZGC (2)
with
Zao =Y N2y, (©)
N=0

12

where we introduced the fugacity z = exp(u/kgT) and where Zy is the
partition function of the N-particle canonical ensemble, with Z; = 1 by
convention. Recall the definition of Zy:

Zn = Ze*Ej/kBT (4)
J

where the sum relates to all the ¢; states of the NV particle system. In prac-
tice, due to the Boltzmann factor e~ £i/#2T only the ground state of energy
Ey and the excited states of energy E; — Ey < some kg1 contribute signif-
icantly to Zy.

Once we know grand potential Q(L3, T, 1), we deduce the conjugate
thermodynamic quantities of the three variables, the entropy S, the pres-
sure P and the average number of particles N (or the spatial density n):

o0 o0 N 1 /09
5 <8T)L3,u <8L3>T,;L ! L3 L3 (8N)T,L3 ©

We consider here a fluid in which the range of interaction is sufficiently
short for the grand potential 2 to be an extensive function, i.e. proportional
to the volume when we keep T" and p constant. The interest of the choice
of the grand potential is then clear: the relation between €2 and P can only

be the linear relation
©

In other words, a possible equation of state for the fluid is the expression
of the pressure P in terms of the temperature and the chemical potential.
To work with dimensionless quantities, we can look at, for example

PX3
' 7
T @)
By Legendre transformation, we can then calculate other thermodynamic

potentials like the free energy F(L3, T, N) = Q+ uN or the internal energy
E(L3,S,N)=Q+TS + uN.

1-2 The classical ideal gas (Boltzmann)

The classical ideal gas corresponds to an assembly of particles of mass m,
non-interacting and uncorrelated, and it obeys the Boltzmann statistics. If
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we take periodic boundary conditions in the box of volume L3, a basis of
eigenstates for a particle is given by the plane waves

1 ik-r 2m

_ T 3
\/?e , k= 7 n, nez , (8)
of energy h”k?/2m The partition function at a particle is then
L3 2.2
7 = —h2k2/2kaT _ / —h*k*/2mksT d3k 9
o Co ©)
or
L3

Since the particles are not correlated, the N-particle partition function is
equal to the product of N functions Z;, up the 1/N! factor necessary for
the resolution of the Gibbs paradox. We thus have

ZGCZZM

M= exp(z21) (11)
N=0
and therefore
L3
Q= —kBT z Z1 = —kBT z F (12)

We deduce from (6) the expression of the pressure

Lo P)3
Classical ideal gas : T z (13)
The spatial density is deduced from (5):
nA3 = 2. (14)

For the classical ideal gas, the fugacity is equal to the phase-space density.

1-3 The Quantum Ideal Gases

In our physical world, the classical ideal gas studied above does not exist.
Even if the particles do not interact (ideal gas), the fact that they obey the

13

Bose or Fermi statistics introduces correlations between them. For exam-
ple, the Pauli principle forbids that two fermions of the same spin occupy
the same k state.

For quantum particles without interaction, the calculation (2) of the
grand potential €2 from the grand-canonical partition function Zgc is
treated in all the statistical physics books. Let us state here the result:

Ideal gas (Bose) : 0= kBTZ log (1 - ze_Ej/kBT> (15)
J

Ideal gas (Fermi) : Q= —k:BTZ log (1 + ze‘Ei/kBT) (16)
J
where the sum covers all single-particle states ¢; (spin and orbital), of en-
ergy Ej.
Let us take a gas of spinless or polarized particles, so that the spin de-
gree of freedom does not intervene. The ¢, states are the plane waves and
we find, by replacing the discrete sum over k by an integral:

LB
Q= kT —— / log (1 == ze—hzkz/MBT) a3k (17)

(2m)?
By using the series expansion
log(1 — z)

oo :L"
27 (18)

we arrive at

Ideal gas (polarized bosons) : P—)\S = io 1 2 19)
g p ) kT - = j5/2
and
) ) P)3 too (_1)j+1 ;
Ideal gas (polarized fermions): T = g e z (20)

The first term (j = 1) of the expansions (19) and (20) coincides with
the classical gas result (13). The appearance of the following terms (j >
2) in the case of bosons or fermions reflects the emergence of correlations
between particles due to quantum statistics.
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1-4 The principle of virial expansion

We now consider a gas of spinless or polarized particles, interacting with
each other and confined in a box of volume L. The virial expansion is
based on the series in powers of the fugacity z:

P & .
T > bi(T) & (21)
j=1

This expansion is useful when the fugacity z is small in front of 1, i.e. nega-
tive p with || > kgT. As we have seen in the case of the classical ideal gas
[¢f. (14)], this corresponds to a weakly degenerate gas, with a small phase-
space density nA3. We can then restrict ourselves to the first terms of the
expansion, which we assume to converge in the limit z < 1 (Lebowitz &
Penrose 1964).

Once the expansion of the pressure is known, we deduce from (5) the
other thermodynamic quantities such as the density n:

n= (8]3) , 22)
) p e
which leads to
nA? = " jb;(T) 2 (23)
j=1

The different coefficients b;(T’) are obtained by identifying term by term
the powers of z in the equality

PX3 )3
m e log Zac (24)
that is:
)\3
bi(T) 24 bo(T) 22 + ... = ﬁlog(l + 2214+ 222y + . .) (25)

We can then immediately see that the first virial coefficient b; (T") involves
only the one-body partition function Z; and therefore contains no contri-
bution from the interactions:

)\3

bi(T) = ﬁzl (26)

14

or by using the relation Z; = L3/\3:

b (T) =1 (27)

The second virial coefficient b3 (T") requires the knowledge of Z,, thus
of two-body physics:

1 Z3
bao(T) = Z <Z2 - ;) (28)
and we similarly find:
b(T)—l(Z—ZZ +Z§)) (29)
3 7, \Z3 A2t

More generally, the coefficient of order j, b;(T'), involves the solution of
problems with at most j bodies, and only them! We thus have the follow-
ing remarkable property: the virial expansion, when it converges, allows
us to link in a natural way the few-body physics and the macroscopic prop-
erties of the fluid. In the following paragraph, we will focus on two-body
processes, i.e. the first deviation from the ideal gas.

2 The second virial coefficient

According to the results stated in the previous paragraph, the second virial
coefficient bo(T") contains the first corrections to the classical ideal gas.
These corrections correspond to the emergence of correlations between
particles caused by

¢ the simple effects of quantum statistics, with

1

(0) _
b2 - i25/2

(30)

as we saw in (19) and (20). The superscript (0) indicates here that the
result is obtained for an ideal gas.
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e the interactions between particles, which we will focus on in the fol-
lowing paragraphs.

According to (28), the correction to b, related to the interactions is directly
proportional to the correction to Z, which we will note AZj.

The quantum effects for b,. Before turning to the role of interactions, it

is instructive to check that one can recover directly the coefficient béo). For
bosons, a basis of possible states is given by the pairs (k1, k2), counting
only once the pair (k1, k2) = (k2, k1) and without restriction for the state
k1 = k,. For polarized fermions, we also count only once each pair but the
ky = k, state is excluded. We can group the two cases by writing:

1 CR2(K24k2)/(2mksT) 4 L R mksT) _ 21 D
Z2—§kzke 1 2 B ii;e B —7im (31)
1,R2

with sign + for bosons and — for fermions. We thus recover

o _, 1
0 =t (32)

Ideal quantum gas:

2-1 "Center of mass" and "relative motion" separation

Let us consider a gas of polarized bosons with binary interactions through
the potential V(r), assumed to be isotropic. We rewrite here the two-
particle partition function Z; in the form:

Ty = <Z e—thz/(4kaT)> Ze—Ej/kBT ] (33)
J

K

We have separated the free motion of the center of mass, parametrized by
its momentum K = k;+k» associated to the total mass 2m, and the motion
of the relative variable, characterized by its eigenstates ¢;(r) of energy E;,
and associated to the reduced mass m, = m/2.

The center of mass part is calculated as before to give:

ZCdM — Z e_h2K2/(4mk’BT) — 23/221 (34)
K

15

The sum in the relative variable part

7 = Y e BT 35)
J

contains the contribution of all angular momentum states (partial waves)
¢=0,2,4,... allowed by the symmetrization principle:

7 ="z, (36)

L

We will assume here that the gas of bosons is cold enough for only the
s-wave interactions to play a role (recall that polarized fermions have no
interaction in this channel). The contribution of the partial waves ¢ # 0 to
this sum is therefore identical to that of an ideal gas and we will not write
it explicitly. Concerning the contribution Z:¢ of the angular momentum
channel ¢ = 0 (s wave), let us recall that it contains both the contribution
of the bound states (diatomic molecules) and of the asymptotically free
scattering states.

2-2 s wave interactions away from resonance

In this paragraph, we place ourselves in a "normal” situation of the interac-
tion between two atoms, i.e. a scattering length a comparable to the range
of the van der Waals potential2 b = Ryqw. This assumption simplifies the
calculation of the b coefficient, both for the contribution of scattering and
bound states [see figure 2]:

* The free states that contribute significantly to Zi¢! are such that
h%k?/2m < afew kpT, thatis, k < 1/). But the thermal energies kgT
of quantum gases are much lower than E,qw = h?/mR?2 , which is
of the order of a least a few ten microkelvin (or even more for light

2Recall that the van der Waals radius is defined from the mass of an atom and the coeffi-
cient C describing the van der Waals interaction by

N\ 1/4
Roaw = * (mC“) . 37)

2\ n?

For the atomic species used in the experiments, this van der Waals radius is of the order of a
few nanometers.
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>

V(r) 4

Figure 2. Scattering states and bound states for the two-body problem. In the
non-resonant case (|a| < \), we will focus essentially on the scattering states,
and more particularly on those whose energy does not exceed a few kgT. In the
resonant case (|a| > \), we will also take into account the contribution of the last
bound state, whose energy ~ —h? /ma® may be (in absolute value) small compared
to I{/’BT.

atoms). Actually, if this were not the case, collisions would not occur
only in the s wave channel. We have therefore a < ), that is to say for
all relevant k wave vectors the relation ka < 1.

¢ The interaction potential between two atoms generally contains many
bound states, and the energy of the last bound state in the absence
of a scattering resonance is of the order of —Ey4qw. As we have just
said, this binding energy is in absolute value large compared to kg7
If there were a collision process in the gas that established an equi-
librium between the populations of free and bound states, essentially
all atoms would be in the form of dimers (or trimers, tetramers, etc.).
Fortunately, this is not the case: the formation of dimers can occur, but
it is a marginal process on the time scale of the experiments. More-
over, as soon as they are formed, these dimers generally escape from
the trap confining the atoms because the energy released during their
formation is greater than the depth of the trap.

Thanks to these two remarks, we limit the calculation of Z}¢ to the
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Figure 3. Scattering states in a square well of depth Vi and width b, with a (nearly)
common node of the wave functions in r = a.

contribution of the s-wave scattering states, identified by their momen-
tum hk and their energy h*k?/2m, = h?k*/m. The only difficulty is to
count them correctly, knowing that the asymptotic behavior of their re-
duced wave function is for ka < 1 (see figure 3):

u(r) = sin[k(r — a)]. (38)

The presence of the —ka term in the sine does indeed modify their density
of states. Suppose that the relative particle is inserted in the center of a
sphere of radius R, with Dirichlet boundary conditions on the walls of the
sphere. The wave numbers k must then satisfy the quantization condition

T
R—a’

kn=n n positive integer, (39)
instead of k, = nw/R in the absence of interaction. The passage from a
discrete sum to an integral for the calculation of Z}¢!, then gives:

zed, =
£=0 T

+oo
oL mknT) _ B-ea / o= h7K2/(mksT)
" 0
R—a
= —. 40
NGE) (40)
The contribution in R/ would be present even in the absence of interac-
tions and it has to be added to that of the other partial waves to give, all
calculations done, the partition function Z, of the ideal quantum gas. The
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interesting term here is the one related to the interactions, in a/\. When
multiplied by ZCM = 23/27, [cf. (34)], this term leads to the contribution
of the interactions to the Z, partition function:

AZy = —221§ (41)

from which we deduce the second virial coefficient

1 2a
“wz | @2

Bosons out of resonance (a < \) : b (T)

with the two contributions bgo) = 27%/2 from quantum statistics and

by = —2a/ coming from the interactions.

2-3 Pressure and internal energy of gas

As we explained in z, the knowledge of the grand potential (at a given
order in z) allows to find the other thermodynamic potentials at the same
order. We will use here the virial expansion to order 2 to find the expression
of the interaction energy in the weakly degenerate regime.

We start from the expression of (2:

LS
QT, L%, p) ~ —kgT = [z + by (T)27] (43)

from which we deduce the average number of particles

o0 L3
N=—|— N — 2by 2> 44
(8M>L3,T A3 (Z+ bt ) @)

and entropy:

s o0 I3 [5 o B b o dby
(45)

At this order of calculation, the relationship (44) between the number
of particles and the fugacity can be inverted to give :

2~ nA3 — 2by(nA3)?, (46)
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which gives for the pressure-density relationship at this order:

3
P~ [nA% = 2b5(nA%)?] + ba(RA®)? = nA® — by(nA?)2. (47)
kgT

If we limit ourselves to the corrections linked to quantum statistics, by (T') =

+2-5/2 we see that there is, for a fixed density and temperature, a decrease

of pressure for bosons (b2 > 0) and an increase for fermions (b, < 0), com-
pared to the case of a classical ideal gas. This can be understood from the
postulate of (anti)symmetrization. For example, for fermions, preventing
two particles from being present at the same place constitutes in some way
a decrease of the accessible space, hence an increase of the pressure.

Let us now express the internal energy of the gas as a function of T, L?
and N (orn = N/L?):

B - 3. (b 3
E_Q+TS+MN_NkBT[2+n)\ (TdT 2)] 48)

We find of course the dominant term 2kgT corresponding to the kinetic en-
ergy of a classical ideal gas. Let us examine the corrections to this classical
model by reviewing the two contributions to b2(7’) found in (42).

® The term related to quantum statistics, béo) = 27%/2, does not depend
on the temperature. It corresponds to a lowering of the energy (for
bosons) given by

3
AE© = —WNkBT nA3. (49)
We would find the same contribution for a gas of polarized fermions,

up to a change of sign:

Bosons :

AEO = +iNkBT nA3. (50)

Fermions : 57/

Here, the small parameter of the expansion, the phase space density
nA3, appears explicitely.

* The term related to the interactions, coming from bgnt') = —2a/),
leads to the modification of the energy
: Amrh?
Bosons : AE™Y) — gn N with ¢ = Tva (51)
m




CHAPITRE I. THE VIRIAL EXPANSION

§2. The second virial coefficient

This term would be absent for a gas of polarized fermions (no s-wave
interaction).

The form found for AE(*) is interesting for at least two reasons. First,
it allows to verify that the scattering length « is indeed the only parameter
of the interaction potential V() that plays a role in the N-body problem,
at least in the weakly degenerate regime. This important result does not
require that the potential V' (r) is treated by the Born approximation.

Moreover, the numerical coefficient appearing in (51) is instructive. In
this course, we will frequently model the interaction potential by a contact
interaction (possibly regularized), leading to the same scattering length a
as the real potential. This means replacing the interaction Hamiltonian

~ 1
Hin = 5 //ﬁ(r)ﬁ(r’) V(jr—r'|) d®r a® (52)
where 7(r) is the operator associated with the density at the point r, by
2
Hipe = g / () & with g= 472: e (53)

For a homogeneous system, we expect for the average of the interaction
energy

AE(int.) — <-Hint> — g<n2(0)>L3 (54)

which leads, by comparison with (51), that we have in the weakly degen-
erate regime:

(n*(0)) = 2n>. (55)
We find here the bunching discovered by Hanbury-Brown & Twiss (1956)
for photons, characteristic of a classical field with Gaussian fluctuations .

2-4 The neighborhood of a scattering resonance

A scattering resonance is characterized by an abnormally large scattering
length q, i.e. |a| > b where b is the range of the potential. In the vicinity of
such a resonance, the evaluation of the by coefficient must be modified.

Let us first recall the nature of these resonances, assuming that one can
finely modify one of the parameters of the interaction potential V(r) by

A
Ebound

Figure 4. Appearance of a bound state and divergence of the scattering length a at
a scattering resonarnce.

making a new bound state appear in this potential®>. We have the following
general result, known as Levinson’s theorem [cf. figure 4]:

¢ Just before the bound state appears, the scattering length is large and
negative.

* At the threshold of the bound state, the scattering length is infinite.

¢ Just after the appearance of the bound state, the scattering length is
large and positive.

3The following description applies without modification to the case of a Fano-Feshbach
resonance, at least for the case of a broad resonance. For a study in the case of a narrow
resonance, one may consult Endo & Castin (2016b).
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Under these conditions, it is essential to take into account the contribu-
tion of this weakly bound state to the partition function because its wave
function is very large (~ a) and it can be significantly populated during
collisions between atoms. Moreover, its (negative) energy :

h2
Ebound ~ Y (56)
ma
can become very small in front of kg7" and a significant population of this
bound state is possible without the gas being entirely in dimer form.

Around the resonance, the phase shift §,(k) varies very quickly with k
and it is no longer legitimate to assume o (k) ~ —ka as we did in (38). We
must return to the expression

u(r) & sin [kr + do (k)] (57)
where the phase shift is deduced from the general expression

tan[dg (k)] = —ka. (58)

As in the non-resonant case, the interactions change the density of states
involved in the summation over all possible wave numbers. Taking again
Dirichlet boundary conditions in a spherical box of radius R, we now have
the quantization condition on k:

knR + do(ky) = nm, n positive integer (59)

so that the interval between two successive values of k verifies

(huss — k) (R + fﬁj) — . (60)

We can then resume the calculation of the partition function Z}¢, as in (40)
to find:

1 [T d§
Ziy = (...)+;/0 e T e - JemBue/WT ] (61)

In this expression, the first term (...) represents the contribution of the
sphere radius R: it is independent of the interactions and will thus be
omitted in what follows. The last term corresponds to the contribution

Bolk)
- 4
>0
L4
a <o
} t —> k
s l/’\ /b

Figure 5. Schematic representation of the variation of the s-wave phase shift oo (k)
in the vicinity of a scattering resonance (|a| > \).

of the possible bound state: this contribution must be taken into account
only on the a > 0 side, since this state does not exist when a is negative;
the brackets around this term indicate this restriction. In what follows, we
will multiply this contribution by the Heaviside function ©(a) to take into
account both possibilities.

Using the partition function expression for the center of mass, Z“4M =

2327, [cf. (34)], we then find the contribution of the interactions to the
second virial coefficient:

23/2 +oo %e—hzlf

b(int)_
2 T Jo dk

fmkeT qf 4 23/2e=Euc/FeTQ(q).  (63)

Let us explicitly compute the integral on k in the case of a scattering

4We find here a particular case of the general formula of Beth & Uhlenbeck (1937)

in 23/2 % 48 )
bg t) _ - S+ 1)/0 dT:e_ﬁ?kz/kaT dk + 23/2 Ze—Ej/kBT (62)
Y4 J

restricted here to the case of the s-wave, £ = 0. The discrete sum over j corresponds to the
bound states.
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resonance. We take the derivative of the relation tan[dy (k)] = —ka:
d60 —a
dk 1+ k2a? 64)

The variation of dy(k) with k is represented on figure 5. For a < 0, do(k)
is an increasing function which starts from the value 0 in ¥ = 0 to reach
a value close to 7/2 when k becomes greater than 1/a. For a > 0, do(k) is
a decreasing function, which starts from 7 in k£ = 0 to tend also to 7/2 at
large k.

If we define the resonance as the region where the scattering length |a|
is much larger than the thermal wavelength A, we see that in this case the
variations of the integrand of (63) are dominated by % and one can take
ek /mksT 1 in this integral. Moreover, the bound state when it exists
(a > 0) also has a very simple contribution to (63): e~ Frewna/keT ~ 1. So we
find (Ho & Mueller 2004):

93/2  ptoo —a

(int) o 2 ——— dk + 2°/2
s — | etk 20w (65)
that is:
a<0: bgnt) ~Vv2  (nobound state) (66)
and
a>0: "™~ V24232 = 2, (67)

The coefficient by related to the interactions does not present any disconti-
nuity at the passage to the resonance and it takes at this point a "universal"
value, i.e. independent of the temperature:

Bosons at resonance: bgnt) =2 (68)

We will find this same behavior, within a factor of 2, for the two-component
Fermi gas in the unitary regime. Adding the statistical contribution, we
have:

1

Bosons at resonance: bo
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Figure 6. A two-component Fermi gas, composed of T and |, spin atoms.

3 The unitary Fermi gas

We are interested in a gas of particles with spin (or pseudo-spin) equal to
1/2, sufficiently cold for the interactions to be in the s-wave regime (figure
6). This gas exhibits a scattering resonance so that the 1] interaction corre-
sponds to an infinite a scattering length (figure 4). Moreover, we assume
that the gas is sufficiently dilute so that the distance between particles re-
mains large in front of the range b of the potential (or its effective range ()
so that b and 7 are not involved in the physics of the problem. We then
speak of a unitary Fermi gas since the interactions reach the largest possible
value, given the constraint imposed by the unitarity of quantum physics.
Recall that there is no s wave interaction for a 11 or || pair, because of the
exchange antisymmetry between two fermions.

This paradigm of the unitary Fermi gas is found in several circum-
stances in nature, at least in an approximate way. It is found for example in
neutron stars: the scattering length « is of the order of 18 fm while the ef-
fective range 9 is only 2.8 fm. One can thus consider configurations where
the distance between particles is large in front of ry (thus a dilute system),
but small in front of a (thus a strong interaction). Other physical systems
approaching the regime of a unitary Fermi gas are the quark-gluon plasma
or some superconductors at high critical temperature.

The unitary Fermi gas is a universal system in that it has no length
scale associated with the interactions®. It is thus a remarkable testbed for

SFor the unitary Bose gas, effects related to the Efimov phenomenon (appearance of an
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the different approaches to systems of strongly correlated particles. For the
virial expansion that interests us here, this scale invariance is reflected by
the fact that the b,, coefficients of the expansion are pure numbers. We have
already noted this point in paragraph § 2-4 on the case of polarized bosons
for the b coefficient, but for the case of the unitary Fermi gas, it is in fact
valid for all b,, as we will explain in § 3-2.

Considerable efforts have been made over the last 15 years to go beyond
the by coefficient. We now have reliable theoretical values for b3 and for by,
validated (at least to some extent) by experiment. We will not detail here
the complex calculations that led to these predictions, but simply sketch
the progress that has been made during the last few years. The reader
wishing to go deeper into the question can consult the review articles of
Liu (2013) and Endo (2020).

3-1 Virial expansion for a spinor gas

To describe the thermodynamic equilibrium of a gas with two components,
we have to introduce a chemical potential for each of them, which we will
note ;14 and p_. We assume here that the two components have the same
mass and the same energy for the single-particle ground state k = 0. They
are at the same temperature and occupy the same volume L? so that the
grand-canonical partition function is now written

Zoc= Y 242 Zn N (70)
N4 ,N_

The canonical partition function Zy, n_ describes a system of V. particles
in the 1 state and N_ particles in the | state, both at temperature 7. The
relation between Zgc and the grand potential is unchanged:

Q= 7kBT log ch, (71)

infinite series of three-body bound states when |a| = +o00) introduce a specific length scale,
which breaks the scale invariance. We refer the interested reader to the article by Castin &
Werner (2013) which explains how to obtain the b3 coefficient in this case. A similar situation
occurs if the two (pseudo)spin states of the unitary Fermi gas have very different masses. We
will assume here that the two masses m4+ and m are equal; hence there is no Efimov effect,
hence the announced universality.

21

1 by =—2ali offres.

big=by; =1

o

by =by,

o by, :\/5 atres.

. .
¢ N

no interaction between polarized fermions,
only quantum statistics effects

Figure 7. The first coefficients of the virial expansion for a spin 1/2 gas.

so that we arrive at an expansion for

I3 o
Q= kT 15 > bija 2 (72)
2
which we assume to be convergent, at least at low densities in phase space.

The value of the first two coefficients b; o and by ; is obtained by putting
a single particle (1 or }) in the box of volume L? and is therefore unchanged
from the one-component case (cf. figure 7):

7

To evaluate the terms of order 2, let’s separate the two possible cases:

* The two particles are in the same spin state, N = 2, N_ = 0 or
Ni = 0,N_ = 2. We are then brought back to the previously stud-
ied case of polarized fermions, without interaction in the s wave. The
corresponding virial coefficient is only due to statistical effects and we
have [cf. (32)]

1
bao = b2 = ~ 352 (74)

* The two particles are in opposite spin states N, = 1, N_ = 1. We can
consider:

e Symmetric spin states, hence antisymmetric spatial states (odd
partial waves), for which there will be no s-wave interaction
and a contribution to b; ; due to quantum statistics in —9275/2 5
above.
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e Antisymmetric spin states, therefore symmetric spatial states
(even partial waves). We then find the same result as for polar-
ized bosons [cf. (42) and (68)] with a contribution due to quantum
statistics in +27°/2 and a contribution due to interactions equal
to —2a/\ off-resonance and to v/2 at resonance.

By summing up the contributions of these two classes of states, we
arrive at

2a

Out of resonance: by = Y Atresonance: by = V21 (75)

In the following, we will consider a balanced Fermi gas, for which z; =
z_ = z. Noting n, = 2 the number of spin states, the grand potential is
then written to order 2 included in fugacity:

3

L
O~ —ng, kT 5 [z + b222] (76)

with the effective coefficient bs:

1
bg = 5 (b270 + b()’z + bl,l) . (77)

We find then out of resonance :

1
Balanced Fermi gas out of resonance: by = — 5572 % (78)
and at resonance (Ho & Mueller 2004)
Resonant balanced Fermi gas: by = L + 1_3 (79)
gas: 2 5572 \/5 1 \/§

i.e. an effect of the interactions divided by 2 compared to the bosonic case:
each particle interacts only with half of the assembly of particles, namely
those which have a spin opposite to its own.

Internal energy. As we have done in the case of polarized bosons, it is
interesting to study the expression of the internal energy of the gas as a
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function of the densities n4 and n_. We place ourselves here in the non-
resonant case and we start from the grand potential at order two included

L3

Q~ _kBTF zy +2-

The calculation proceeds as in the bosonic case. We begin by evaluating

the average numbers of particles N and the entropy S by deriving Q with
respect to p4 and 7T'. In particular, we arrive at (Ho & Mueller 2004)

1 2
- W(zf_ +22) - Taz+z, . (80)

1 2 | 2a
~ 3 3 3 3
Zp ARngA” + 572 (n+>\ ) + BN (n+)\ ) (n,)\ ) (81)
and a similar result for z_, which gives the contribution of the interactions
to the internal energy:

drh’a

AEM™) —gn,n_L*  with ¢g= —. (82)

This result corresponds well to that expected for a contact interaction be-
tween the two components:

s =g [ ()i (r) &, (83)

with uncorrelated fluctuations in the spatial densities of the two compo-
nents.

3-2 The b3 coefficient

The calculation of the b3 coefficient (and the following ones) is notoriously
more difficult since it involves solving the (at least) three-body problem,
with the determination of all its eigenenergies (figure 8). We will concen-
trate in the following on the resonant case (Ja| = +o0) which is the most
discriminating situation with respect to the validity of the different possi-
ble approaches.

Because of the scale invariance that appears in the unitary regime, the
coefficient b3(7") — as well as all the other virial coefficients — can only be a
pure number. Indeed, b,,(T’) is by construction a function of the tempera-
ture only, and not of the chemical potential ;. Moreover, it is dimension-
less and the temperature can therefore only intervene in an adimensional
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® 4 é

Figure 8. The two situations to be taken into account for the calculation of the bz
coefficient. These two situations lead to identical results if my = m,.

way. When the scattering length is not infinite, it provides the energy scale
E, = h?/ma? and we can therefore find b,,(T) as a function of the variable
x = kgT/E,. This is indeed what happened when we arrived at the result
bgm) = —2qa/\ in the non-resonant case. On the other hand, in the reso-
nant case, the only possible dimensionless quantity that would allow us to
provide a variable for b,,(T') is kgT'/p, but it is not eligible since it depends
on . The coefficients b, (T") are therefore numbers independent of T in the
unitary regime.

The calculation of this coefficient b3 in the unitary regime has been done
only quite recently, with contradictory results at the beginning. The first
published result (Rupak 2007), b3 ~ 1.11, which is now known to be incor-
rect, used a "field theory" approach. Two years later, Liu, Hu, et al. (2009)
published the value now considered correct and confirmed by experiment

Balanced Fermi gas on resonance:
35/2

1
bs = —= —0.3551... = —0.2910...

(84)
They built on a previous work by Werner & Castin (2006), who had suc-
ceeded in calculating quasi-analytically the entire spectrum of three iden-
tical particles in an isotropic harmonic trap, for a zero range and resonant
interaction. Liu, Hu, et al. (2009) then calculated the three-body partition
function in a trap of frequency w and deduced the corresponding b3 trap, cO-
efficient. The case of a homogeneous gas was obtained via a local density
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SLi imaging

Figure 9. Imaging a unitary Fermi gas of lithium 6. The length of the trapped
gas along the x3 direction is a few hundred micrometers. Figure extracted from
Nascimbene, Navon, et al. (2010).

approximation which becomes exact in the w — 0 limit and leads to :

bn = 713/2 bn,trap (85)

The result of Liu, Hu, et al. (2009) was then confirmed theoretically by sev-
eral authors, either from methods using field theory (Kaplan & Sun 2011;
Leyronas 2011), or by a numerical solution of the three-body problem (Rak-
shit, Daily, et al. 2012). As we will see in the following paragraph, this
result is also in excellent agreement with the experiment.

3-3 Experimental Results

The first measurement of the thermodynamics of the Fermi gas in the uni-
tary regime was carried out in 2009-10 in the group of Christophe Salomon
and Frédéric Chevy at ENS (Nascimbéne, Navon, et al. 2010). The exper-
iment is carried out on an assembly of about 10° atoms of °Li, placed in
a magnetic field B = 834G (center of a large Fano-Feshbach resonance)
and prepared in an equilibrated mixture of the two lowest energy Zeeman
states. A 1/2 pseudospin system is thus realized. The temperature range
explored is from 150 nK to 1.3 4K. The atoms are confined in an elongated
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harmonic trap in the direction © z3 (cf. figure 9), with the potential:

1 1
Vix) = imch(x% + z2) + imwga:%. (86)
One measures the total density of the gas, 7i(z3) = 7iy(x3) + 7—(x3), inte-
grated along the axes x; and x:

n(xs) = //n(a:l,xg,xg) dz; dzs. (87)

The integration along the x5 imaging axis is a natural result of the imaging
procedure, and that along the z; axis is done numerically from the two-
dimensional images in the (z1,23) plane. This measurement provides the
pressure P(yu,T) thanks to an ingenious remark published by Ho & Zhou
(2010), and established independently by Sylvain Nascimbene:

e We use the relation between density and pressure, deduced from the
thermodynamic relations already mentioned:

P
n= (5 (58)
8/,L+ T
and idem for n_. Here, as the gas is balanced, we will take p1 = p—
and thus op
n= () . (89)
o )

e It is assumed that the gas is sufficiently large to be well described by
the local density approximation, i.e. that the equilibrium state at a
point z is that of a homogeneous gas of chemical potential p(x) =
pe — V(x), where . is the chemical potential at the center of the trap
(x = 0 with by convention V(0) = 0).

¢ We then transform the integral on the space of (87) into an integral
over the chemical potential:

_ *° 2 wzs) rop 2
aay) =25 [y rar = 25 [T (SR) = 2 P )

mw?

—0o0

(90)

6We note here the three space coordinates x1, x2, 3 rather than z, y, z to avoid confusion
with the fugacity z.
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Figure 10. Experimental measurement of the pressure P of a Fermi gas in the
unitary regime by the ENS group [cf. Nascimbéne, Navon, et al. (2010)]. We have
plotted here h = P/ Piqea) as a function of the inverse of the fugacity ¢ = 1/z. The
region of small fugacities (large () is fitted by a polynomial of degree 4 in z. The
result of this fit leads to by = —47°/2 +0.096 = 0.065. Figure extracted from
Sylvain Nascimbene’s thesis.

We have thus directly access to the expected pressure for a homoge-
neous gas of parameters [T, u(x3) = p. — mwiz3/2]. Given the scale
invariance, this quantity is in fact only a function of p(z3)/kgT so that
a single image is in principle sufficient to obtain the whole equation
of state from z = 0 (at the edges of the trap where p — —o0) to

z = exp(pe/ksT).

The gas temperature is measured by inserting a small fraction of im-
purities (a few thousand lithium 7 atoms) and measuring their velocity
distribution by a time-of-flight method (Spiegelhalder, Trenkwalder, et al.
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Figure 11. Determination of bz (see text). Figure extracted from Sylvain Nascim-
bene’s thesis.

2009a).

An example of this result is shown in figure 10, extracted from Sylvain
Nascimbene’s thesis. We plot the variations of the pressure, normalized
by the pressure of the ideal Fermi gas, h(z) = P(2)/Pideai(2), as a function
of the variable ( = 1/z. The applicability domain of the virial expansion
(z £ 1) corresponds therefore to the ¢ > 1 area. We show a fit of the data
with a polynomial of degree 4:

h(z) = byz + byz? + b3z 4 byzt, (91)
the first three coefficients being fixed at their known values at the time :
3
by =1 by = —— bs = —0.2910. 92
1 NG 3 92)

We then deduce from this fit a value of by: by = 0.065 (15).

The verification of the value of bs is detailed on the figure 11. We show
on the left the deviation of the pressure (in units of Piqeal) from the law
z + byz?, as a function of 23. The fit by a b32® function depends on the
Zeutof Value used. The gray rectangle indicates the values of b3 compatible
with the data.

Two years later, a new set of data was published by Martin Zwierlein’s
group at MIT, also from a lithium 6 gas (Ku, Sommer, et al. 2012). We will

25

wkgT

Figure 12. Pressure of a SLi Fermi gas in the unitary regime, normalized by the
ideal gas pressure. Red dots: data from the MIT group (Ku, Sommer, et al. 2012),
gray diamonds: data from the ENS group (Nascimbéne, Navon, et al. 2010). The
virial expansion at order 4 with the parameters given in (92) and by = 0.065 is
represented by the green continuous line. The other points or lines correspond
to theoretical predictions in the degenerate regime, not described in this chapter.
Figure extracted from Ku, Sommer, et al. (2012).

not go into the detailed description of this experiment, of which we give
one of the main results in figure 12. In the area of interest here, z < 1, the
agreement with the ENS data is excellent and leads to a compatible value
for by: by = 0.065 (10).

3-4 Beyond three-body effects

Once the value for by was deduced from the two experiments we have just
described, the ball was in the theorists’ court to refine the calculations of
this quantity. The challenge is of course considerable since it is a ques-
tion of determining the exact spectrum of 4 fermions interacting with two



CHAPITRE I. THE VIRIAL EXPANSION

§3. The unitary Fermi gas

configurations of different nature, 11/ and 111/ (or its symmetric).

The outcome of this series of work is described by Endo (2020):

* At the time the MIT experimental paper was published, only one pre-
diction was available: by = —0.047(4), in clear disagreement with the
experiment (Rakshit, Daily, et al. 2012). This work used the varia-
tional method to find the energy of particles in a harmonic trap and
then extrapolated the results to zero stiffness, corresponding to the
homogeneous gas.

* Ngampruetikorn, Parish, et al. (2015) used a field theory method in
the homogeneous case to arrive at by ~ 0.03.

* Endo & Castin (2016a) used a Fadeev ansatz, inspired by the solu-
tion of the three-body problem, to treat quasi-analytically the case of
trapped particles. At the cost of a conjecture” (not yet proven to our
knowledge), they arrived at a precise value of bs: by = 0.031(1).

* Yan & Blume (2016) used a Monte Carlo method based on the path
integral to numerically compute the spectrum of the trapped four-
particle Hamiltonian, and then proceeded to a zero-stiffness extrapo-
lation to find the value of b4 in the homogeneous case: by = 0.047 (18).

¢ Hou & Drut (2020) [see also Hou, Morrell, et al. 2021] have developed
a partially analytical method to evaluate the Boltzmann weights in-
volved in the partition function, using a Trotter decomposition (alter-
nating evolutions due to kinetic energy and interaction energy). They
confirmed the result (93) of Endo & Castin (2016a), while noting that
the result for b4 of Ngampruetikorn, Parish, et al. (2015), while broadly
consistent with (93), corresponds to notably different values for each
of the two components 71/ and 111|. In contrast, these individual
components have compatible values in both the Endo & Castin (2016a)
and Hou & Drut (2020) approaches. We will therefore retain the value:

"The calculation involves the integration in the complex plane of a function whose ana-
lytical properties are not completely known. The conjecture is necessary to apply the residue
theorem.
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Figure 13. Calculation of the density of a unitary Fermi gas as a function of its
fugacity. The calculation is done by summation of a series of Feynman diagrams,
associated with a diagrammatic Monte Carlo method up to order 9. Figure ex-
tracted from Rossi, Ohgoe, et al. (2018).

Balanced Fermi gas on resonance: by = +0.062 = 0.031(1)

T 45/2

(93)
Note that this value is significantly different from the one found ex-
perimentally (by = 0.065, see figure 10). Let us also note that Hou &
Drut (2020) propose a value for bs: bs = 57°/2 + 0.78 = 0.80 (6).

The determination of b, is thus clearly a difficult problem, and Endo
(2020) gives at least one reason for this difficulty on the theoretical level:
when this coefficient is first computed in a harmonic trap, the behavior of
bs(w) is not monotonous which makes the numerical passage to the w — 0
limit used by several authors very tricky. On the experimental side, a po-
tential difficulty is illustrated on figure 13, taken from Rossi, Ohgoe, et
al. (2018). This figure shows the deviation between the density calculated
by resummation of Feynman diagrams and the n(®) density calculated by
virial expansion to order 3. It shows an apparent plateau for values of the
fugacity between 0.6 and 1.1. An extrapolation of this plateau at zero fu-
gacity gives the value compatible with experimental results. However, the
data obtained for even smaller values of the fugacity seem rather compati-
ble with the value b, = 0.031 given by Endo & Castin (2016a).



Chapter I1

The Quantum Bogoliubov Approach

In this chapter we discuss the description of a powerful method for
treating the case of an interacting Bose gas, the Bogoliubov approach! (Bo-
goliubov 1947). This approach allows to describe the ground state of the
gas as well as its excitation spectrum at low energy, with a number of ap-
proximations that we will detail in the following lectures. This method
starts from a binary interaction potential between the particles

lA/:ZV(TAi—TAj), 1)

1<j

and is based on the assumption that the action of this potential "does not
change much" - in a sense that we will specify — the ground state of the
fluid compared to the case of the ideal gas.

The Bogoliubov method, although a commonly used tool, has some
subtleties that we will highlight in the following chapters. One of these
subtleties comes from the fact that it is difficult to use the Bogoliubov
method with the real interatomic potential. For all the atomic species used
in the laboratory, this potential contains many two-particle bound states.
The true ground state of the system is thus very different from the Bose-
Einstein condensate formed from the monoatomic gas found in the non-
interacting case, and also very far from the fluid prepared, in a metastable
state, in the cold atom experiments.

1We have already discussed this method in the context of a description in terms of classical
fields in the 2015-16 course, but the quantum aspect of the treatment changes the approach
very significantly, even if some results are similar.
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The Bogoliubov method is frequently used with a contact potential
V(r) = gd(r), thus of zero range b. The coupling g is then defined from
the scattering length a of the physical problem by:

drh*a
9= : ()

m

However, we know (cf. course 2020-21) that such a potential leads to diver-
gences already at order 2 of the Born series. A fortiori, it does not allow to
describe in a "safe way" the interaction between IV particles. Some expres-
sions, like the speed of sound or the quantum depletion, can be calculated
without difficulty while others, like the ground state energy, diverge. For
a mathematically well-established version of a zero-range potential, one
can use? the pseudo-potential V,,,, defined by its action on a wave function
¥(r) by:

Voo [07)] = 93(r) - [r25(r)] ©
This is the approach followed in the original article of Lee, Huang, et al.
(1957), but the calculations are then relatively subtle. Indeed, as we ex-
plained in the 2020-21 course, the use of the pseudopotential amounts to
changing the domain of the Hamiltonian. When using V},,, any two-body
wave function ¥ (71, r2) must not be regular when r = |r; — ro| — 0, but

2See Olshanii & Pricoupenko (2001) for a general class of such potentials.
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Figure 1. Bose gas ground state without interaction: all particles accumulate in
the state of zero momentum and zero energy (for periodic boundary conditions),
and No = N.

must vary as

U(ry,re) ~ (i - 1) P(R) with R=(r1+73)/2. (4

a

r—0:

We will describe the spirit of this approach in Chapter 3.

The approach we will explore here is to use a regular potential V(r), of
range b, whose Fourier transform V} is also regular for all k:

Vi = / V(r)e *T ddr. (5)

We will assume that the action of this two-body potential can be described
in the Born approximation. For the low energy regime of interest here,
this leads in particular to the following link between the zero momentum
Fourier transform, V, and the coupling g defined in (2):

Born approximation: Vo = / V(r)d®r =~ g. (6)

Recall that a condition for the validity of the Born approximation is that
the scattering length deduced from (6) is small in front of the range b of the
potential V(7).

In a Bose gas without interaction, the ground state is obtained by plac-
ing the IV particles in the single-particle ground state k = 0 (figure 1). In
other words, the population Ny of this k = 0 state is equal to V. In what
follows, we will start (§ 1) by using the fact that the potential can be treated
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as a weak perturbation to perform a systematic expansion of the N-body
Hamiltonian, assuming that the average population (Ny) of the k = 0 state
remains close to 1:

N — (No)

N

This will allow us to obtain an approximate expression of the Hamiltonian
containing only quadratic terms in aTk and ay, the creation and destruction
operators of a particle in the momentum state ik # 0. More precisely, the
structure of the Hamiltonian will show a sum of independent terms, each
of them dealing with a pair {+k, —k}. In §2, we will focus on a given pair
to detail the Bogoliubov method, which uses a canonical transformation to
diagonalize this Hamiltonian. Finally in §3, we will illustrate this diago-
nalization method on the case of a spinor gas in the single spatial mode
approximation.

< 1. )

The return to an infinite number of pairs {+k, —k}, with the problems
of convergence which may then arise, will be discussed in chapter 3, as will
the discussion of the validity of the expansion in powers of (N — (Ny))/N,
which we shall see amounts to imposing vna3 < 1.

1 The quadratic approximation for A

We consider here an assembly of particles with binary interactions. The
Hamiltonian written in the second quantization formalism using the ba-
sis of plane waves then involves products of four creation or annihilation
operators aj, or a,Tc (see appendix). In this form, it is not possible to find
analytically the eigenstates and the eigenenergies of the system. The Bo-
goliubov method consists in assuming that a particular mode, in this case
the plane wave k = 0, is macroscopically populated. Under these condi-
tions, one can neglect the operator character of ag and a), and then limit
oneself to terms involving only binary products of the other operators ay,
and a,Tc with £ # 0. The mathematical study of the resulting quadratic
Hamiltonian is then not difficult, as we will see in the following sections.

In what follows we will make the assumption that V' (r) is invariant by
rotation, V(r) = V(r), with r = |r[. This assumption is not necessary, but
will simplify the notations. It follows that the Fourier transform V}, is also
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invariant by rotation: Vie = Vi.

1-1 Preliminary : Hartree term, Fock term

Let us start by considering the case of two identical particles, prepared
in well-defined momentum states fik,, ik, with k, # k;. Let us assume
that these particles are spin-polarized so that the corresponding degree of
freedom does not play a role here. We are interested in the average of a
potential V (|r12]), depending only on the distance rio between the two
particles.

The two-particle state is written
1
V2

where the signs + and — are associated respectively to bosons and
fermions. The average value of V' in this state is a sum of four terms
1

(V) = (W[V|0) = 5(<1;ka, 2 ky V|1 ko, 22 k)

|T) (1:ke, 2: k) &£ |1:ky, 2: k) (8)

i(l:kb,2:ka|f/|1:ka,2:kb>+...) )

Using the definition of the plane wave of momentum /k in the quantiza-
tion volume L? with periodic boundary conditions:

1 2
(rlk) = ﬁelk'T, k = %n n ez’ (10)
the two terms written explicitly in this equation are calculated to give
. 1 -
<1:k:a,Z:kb|V|1:k,,,,2:k:b>:ﬁV0 (11)
and )
<1Zkb, 22ka|V|1Zka, 2:kb>:ﬁVka,kb. (12)
The two other terms intervening in (9) and represented by "..." are equal
to the two terms given above, so that the average sought is written:
1 /-~ -~
V) =7 (VO + Vk) k= ko — ks (13)
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Figure 2. Hartree term and Fock term involved in the calculation of the average
value (U|V'|U) of a two-particle state, with both plane waves k,, and k;, occupied
[cf. (13).

There are thus two contributions to (V'), the first is called Hartree’s term, the
second Fock’s term (figure 2).

The structure of this result is characteristic of a problem of indistin-
guishable particles in quantum mechanics. If the particles were discernible,
the initial state would be written

Discernible particles: [U) =11:k,, 2: kp) (14)
and only the first contribution to (13), the Hartree term still called direct
term, would be present in the average (V). The Fock term, also called ex-
change term, has its origin in the fundamental impossibility of knowing
whether the pair of particles (1, 2) is in the state (k,, kp) or (kp, kq).

Note that in the case of a pair of bosons prepared in the same momen-
tum state 7ik,, the initial state is |¥) = |1 : k, , 2 : k,) and the exchange
term also disappears from the result (13).

1-2 N body Hamiltonian in second quantization

We now consider an assembly of N bosons (spinless or polarized) with
two-body interactions described by the potential V (r). The Hamiltonian is
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Figure 3. Representation of the interaction term of (16), for which the conservation
of the total momentum appears explicitly.

written in first quantization for particles of mass m
N

= Z 5
i=1

and we can show with the definitions recalled in the appendix of this chap-
ter that its version in second quantization is

2

‘ 1 . .
- +§ZZV(|H—U|) (15)

i jF£

E[ = Z €k CLL Qg + Z V ak:/ QL// Q' Qpe’ . (16)
k k/ kl/

where we introduced the kinetic energy at a particle associated to the plane
wave of wave vector k

B2 k?

2m

A diagrammatic representation of the interaction term is given in figure 3.

€ = (17)

In particular, we can verify that we recover the Hartree and Fock terms
when we compute the average value of the interaction term in the |k,, k)
state. There are indeed 4 triples (k, k', g) which contribute in the sum in-
volved in (16):

 The choice ¢ = 0 with the two possibilities (k’, k") =
(K',K") = (ky, k,): we find the Hartree term of (13).

(ka, kp) and

* The choice ¢ = k" — k' with the two possibilities (k', k") =
and (k', k") = (ky, k,): we find the Fock term of (13).

(kavkb)

3To simplify the notations, we will not put“above the symbols ag, and a;rc although they
are operators.
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1-3 The assumptions of the Bogoliubov approach

The expression (16) of the Hamiltonian is valid whatever the regime of the
gas, weakly or strongly degenerate. We will now assume that a particular
state of the gas, the k = 0 zero momentum state, is strongly populated:

(No) > 1. (18)

An argument* introduced by Bogoliubov (1947) and taken up in practically
all approaches to this problem consists in positing that under these condi-
tions, the difference between the prefactor /N intervening for ag and the
prefactor /Ny + 1 intervening in a) should not play a significant role. We
can then neglect the fact that the commutator between ay and ag is nonzero,
and replace these operators by v/Np.

This approach consists therefore (with one subtlety for the canonical
point of view, see next paragraph) in treating the particle condensate in the
k = 0 state as a classical field. This field will be able to generate or absorb
in arbitrary numbers particles coming from the other k # 0 momentum
states.

Let us further assume that the number of particles outside the k = 0
state is small in front of NV:

N — (Ng) < N. (19)

We can then truncate the Hamiltonian (16) to keep in the interaction term

only the terms that are at least linear in IV, i.e. the terms a;rc tq aL_q QR Qg

involving at least two operators ag or ag. We then arrive at an approximate
Hamiltonian A’ quadratic with respect to ay, aL with k # 0:

- N

2L3

1 ~
+3 > noVi (aLaT_k + akafk)
k0

‘70 + Z [ek + nof/o + nof//@] GL%
k70 (20)

where we introduced the spatial density in the condensed mode ny =
No/L3.

4Bogoliubov cites Dirac’s book, The Principles of Quantum mechanics, as a source of inspira-
tion for this argument.
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Figure 4. Creation and annihilation of a pair {+k, —k} appearing in the second
line of (20).

The first line of this expression shows first the energy of the particles
occupying the k = 0 mode interacting with each other (no Fock term
since they are all in the same state), then a first contribution of the non-
condensed particles, with their kinetic energy ¢, and the Hartree and Fock
terms in V, and Vj. On the second line, we can see that the interaction
will induce in addition correlations between the k and —k modes, through
terms that create or annihilate pairs of particles in these modes. The corre-
sponding diagrams are shown in figure 4.

At this stage, there is no guarantee that the two hypotheses made above,
No > land N — Ny < N are legitimate. It will therefore be once the
analysis has been completed that we will be able to verify what constraints
these hypotheses impose on the potential V (r) or its Fourier transform V/,
in association with the total spatial density n = N/L>.

Non-conservation of the number of particles. An immediate counter-
part of the ag ~ ag ~ Ny approximation is that the total number of parti-
cles is no longer a conserved quantity for the Hamiltonian ' whereas it
was for the Hamiltonian H written in (16). Even if this point does not pose
a problem on the mathematical level, it can raise difficulties when inter-
preting certain results physically. Leggett (2001) [see also Leggett (2006)]
proposes for this an alternative approach, based on the variational method
with a N-particle test function (N is assumed here to be even)

N/2

W) o | abad = D" clk)ajaly | 0), 21)
k+#0
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the coefficients c(k) being parameters to be optimized in order to minimize
the average energy of the gas in the state |¥). Thanks to this ansatz, we
force the emergence of correlations between the k and —k modes. The cor-
responding calculations are carried out in detail in the complement Exvy11
of Cohen-Tannoudji, Diu, et al. (2021). The result of this approach is iden-
tical to that of the "standard" method that we will develop here. Let us
also mention the approaches of Gardiner (1997) and Castin & Dum (1998),
which also use Hamiltonians conserving the number of particles, these ap-
proaches being well adapted to the case of gases of non uniform density.

1-4 Grand canonical vs. canonical approach

In what follows, we are essentially interested in the ground state of the
Bose gas Hamiltonian, and we thus want to minimize the energy asso-
ciated with the Hamiltonian H’ written in (20). As always in statistical
physics, several statistical ensembles can be used for this. Two ensembles
are particularly relevant:

¢ The grand-canonical ensemble which corresponds to the case where
the gas (condensate + non-condensed part) is coupled to a reservoir of
particles which imposes its chemical potential y. It is then a question
of minimizing the quantity (H’ — uN) at p fixed. The value of 11 is then
adjusted to correctly describe the physical situation we are interested
in. This point of view is used for example by Noziéeres & Pines (1990).

® The canonical ensemble in which we consider that the gas (conden-
sate + non-condensed part) is isolated from the point of view of the
number of particles, even if an energy exchange with a reservoir re-
mains possible to impose a certain temperature. The total number of
particles NV is thus fixed and we must impose the constraint

N =Ny + Z a};ak (22)
k0

This leads us to (slightly) take up the assimilation of N, to a classical
field. This is the point of view used by Pethick & Smith (2008) and by
Pitaevskii & Stringari (2016).
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We take here the canonical point of view. The constraint on the number
of atoms written in (22) imposes to be vigilant towards the dominant term
of H’, Ng Vo/ 2L3. It would be inaccurate to treat Ny simply as a fixed num-
ber for this term because the error made would be comparable to the other
terms of H'. To perform an expansion in (N — Ny)/N, we must rewrite this
term in the form:

~ ~ 2 ~
N$Vo Vo i N2V, . i
5[5 — 515 N — Z apar | =~ 53 noVo Z a0 (23)
k#0 k#0

Once this approximation 1s made, the expression of the Hamiltonian H’
simplifies: the terms in V} akak are eliminated so that A’ is written:

~ 1 ~ ~
H' = 5nNVy + H" (24)

with

];AI// = Z [Gk + nd} (akak + a Q- k:) +7le (CLkCL]L k + agpa— k)

pairs
{k,—k}

(25)
In this sum, each pair {k, —k} (with k # 0) is counted only once. In an
equivalent way, we can sum over all k # 0 and multiply the result by 1/2.
Note that we have replaced in H” the condensed density ng by the total
density n, which is legitimate at this order of calculation.

2 The two-mode Bogoliubov Hamiltonian

The Hamiltonian (25) found in the previous paragraph is quadratic with
respect to the creation and annihilation operators a; and aL. It is always
possible to diagonalize exactly this kind of Hamiltonian, either for bosons
or fermions, by means of canonical transformations. In the 2017-18 course
(chapter 2), we had studied the problem for fermions in the framework of
the Kitaev model. In what follows, we will focus on the case of bosonic
particles.

32

In order to clarify the essential steps of the method to follow, we will
work here on a two-mode model, characterized by the operators (a!,a;)
and (ag, as), and consider the Hamiltonian

H=Hy+V (26)
with

fIO = hwy (aial + agag + 1) V = hr (aiaz + alag) , (27)
where the real parameters wy and « each have the dimension of a frequency.
The quantity w is assumed positive so that the spectrum of Hj is simply
(n1 4+ n2 + 1)Awy, with eigenstates |nq, n2). We have chosen here the origin
of the energies so that the ground state of H, has energy

EY) | = huw, (28)

i.e. the sum of the zero-point energies /v /2 for each of the modes a; and
as. This ground state is obtained for n; = ny = 0.

Note that this Hamiltonian is found in many quantum optics problems
and is the basis for the generation of two-mode squeezed vacuum states,
by populating modes 1 and 2 with rigorously equal numbers of photons
from a pump laser described as a classical field (Walls & Milburn 2007).
It can also be found in the description of superconducting circuits (Nation,
Johansson, et al. 2012) and in the description of the dynamics of spin gases,
where modes (1,2) correspond to different spin states, as we will see in 3.

In this section, we will treat exactly the V coupling between the two
modes but we start by addressing the problem by perturbation theory.

2-1 Perturbative approach

We are interested here in the ground state of the two-mode system. Starting
from the unperturbed ground state |¥y) = |0,0), we immediately see that
the average of V in this state is zero, so that the energy of the ground state
is unchanged at order 1:

AEWM = (T,|V|¥) = 0. (29)
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Figure 5. A diagram contributing to the ground state energy of the Hamiltonian
(26) at order 2 in k/wo. The thick horizontal line represents the "reservoir” from
which (1, 2) pairs can be created. Each disk represents the creation or destruction
of a pair under the influence of the potential V o k.

Let’s go to the second order in V. The general formula of the perturba-
tion theory is written

(0, |V|‘I’o
AE® — <
J; T (30)

where the sum carries a priori over all excited states. In this case, only one
excited state contributes, n; = ny = 1, this state having energy 3hw,. We
deduce:

Ap® — I (1)
20.)0

We have represented on the figure 5 the corresponding diagram. Starting
from the unperturbed ground state, represented by a thick line, we create
the pair of excitations n; = ny = 1 which is then destroyed.

One could continue to apply the perturbation theory to higher orders.
At order 2n in k/wo, one will in particular have to consider the coupling
between the ground state and the |n, n) state resulting from the application
of the operator V™ which creates n pairs of bosons. However, it is simpler
to use the formalism of canonical transformations, which amounts to re-
suming the infinite series provided by the perturbation theory pushed to
arbitrarily high orders.
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2-2 Canonical transformation

The principle of this method consists in introducing two new couples of
bosonic operators (b!, b1 ) and (b}, b), linear combinations of the initial op-
erators (a!,a;) with i = 1,2, so that the Hamiltonian H is "diagonal" with

respect to b;, i.e. it is written as a sum of bI b; and a constant term.

Given the particular form of the coupling V, we can look for the b; in
the form

by = uay +val, by = uay + val (32)

where u and v are real numbers. The bosonic character® of these new op-
erators imposes that:
bi,bl]=1 =  w?—02=1 (33)
which means that we can look for the numbers « and v in the form
u = cosh A v = sinh A (34)

where A is itself a real number. Moreover, the form chosen in (32) ensures
the independence of the two new modes:

[b1,b2] =0 [by,b}] =0. (35)

The relation (32) defining the b; is inverted to give
as = uby — vbJ{ (36)

a; = uby — vb£

so that the Hamiltonian H is written in terms of b;:

= o (w2 +0%) (b]br + 0§02 ) — 2uv (b0 + biba ) + 207 + 1]

+ he [—2uv (b{bl + b;bg) + (u? +v?) (bib; v blbg) - 2uu] . (37)

The choice of the numbers © and v is made in order to cancel the contri-
bution of b{ b; and b1b; to this expression. Using the form (34) for these
numbers, we have to impose

tanh(2)) = wi (38)
0

5The adjective "canonical" means precisely that the new operators b; satisfy the commuta-
tion relations associated to bosons.
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Figure 6. Spectrum of the unperturbed Hamiltonian Hy and the pair Hamiltonian
H = Hy +V given in (26-27) and (40).

which is only possible if

(39)

We will come back to this condition in a moment.

Once this choice is made, we obtain the desired form:

with w = /wg — K2 (40)

H = hw (b{bl +bhby + 1)

We obtain two independent bosonic modes, each with a frequency w
smaller than the initial frequency. We have thus succeeded in completely
diagonalizing the problem and found the spectrum of the Hamiltonian H,
which is written (n; + na + 1)hw [cf. figure 6]. We will detail the structure
of the ground state of energy /w in the following paragraph. The excited
states are obtained by acting with the operators b and b} on this ground
state.
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It will be useful to have the following expressions for w

W= \/wg — w2 tanh?(2)\) = 7005(;?2)\) (41)
and for the coefficients v and v:
uw?> = cosh’® \ = % [cosh(2X) + 1] = % (% + 1)
9 . 19 1 1 /wo (42)
v? = sinh“ )\ = 3 [cosh(2)) — 1] = 3 (; - 1)

Condition on |x|. The condition |k| < wy given in (39) reflects the insta-
bility that may appear when the coupling between the two initial modes
a1 and as is increased too much: when |k| — wy from below, the frequency
of the eigenmodes b; of the system tends to 0. The value of w given in (40)
would become purely imaginary if |x| were to exceed this value. The sys-
tem is in fact unstable for |k| > wy: starting from the |0, 0) state, the number
of pairs in the a; modes increases exponentially with time and the system
has no stationary state.

"Usual" coupling of two oscillators. We have found here the spectrum
(n1+n2+1)hw of two coupled oscillators via the term V = hi(alal+aras).
This spectrum is similar to the spectrum of the Hamiltonian H,, except for
the rescaling wy — w; in particular, it presents the same degeneracies. The

result is very different from the one obtained for the more usual coupling

Hy = hwo (a]{al + agag + 1) V= hm(a}ag + agal). (43)

In this case, the operators allowing the diagonalization are

1 1

b1 = ﬁ(al + CLQ), b2 = \ﬁ(al — a2)

and the frequencies of the two modes resulting from the coupling are no
longer degenerate :

(44)

w1 = wo + K, wo = Wy — K. (45)

The ground state of the system is then not modified and its energy remains
equal to hwy = $hwy + 3hws [cf. figure 7].
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S———— o

ﬁwo hwl hw2

Figure 7. Spectrum of the unperturbed Hamiltonian Hy and of the Hamiltonian
with the "usual” coupling H = Hy + V' given in (43). The ground state is not
modified in this case.

2-3 Ground state of the Hamiltonian

The ground state |¥) of the Hamiltonian H is obtained by placing the two
eigenmodes b; and b; in their ground state. Its energy

FEgma = hw with w=/wi — k2 (46)

corresponds to the sum of the zero-point energies fiw/2 of the modes b,
and b, [cf. figure 8]. It is lower than the energy hwy of the ground state of
Hy [cf. 28]:

Egrnd Eg(;?r)ld = h(w - wO) < Oa (47)

as one would expect given the average value of H in the unperturbed |¥,)
state (the eigenstate of Hy):

(WolH[Wo) = (Wo| Ho|Wo) + (Wo|V|¥o) = hup. (48)
Indeed, the theorem at the basis of the variational method entails that the

energy of the ground state of H is necessarily lower than this average
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IAE = —h(wp — w)

Figure 8. Lowering the ground state energy of the two-mode system due to the

1 2

coupling V = hx (alag + alaz), with w = \/w§ — k2.

1

2

Figure 9. The two diagrams contributing to the ground state energy of the Hamil-
tonian (26) at order 4 in k/wo.

value:

Link with perturbation theory. By performing an expansion of the gen-
eral expression (46) up to order 2 in x, we recover the result (31) obtained
by perturbation theory. As we have indicated, this general expression can
be seen as a resummation of the perturbation series at all orders in «. For
example, we find at order 4 in x/wy:

K2 k4

(50)

Eypngrwy——— —=
e 2wy 8wl

corresponding for order 2 to the diagram of the figure 5 and for order 4 to
the two diagrams of the figure 9.

Expansion of the ground state on the Fock basis. The ground state |¥)
of the Hamiltonian H can be decomposed on the eigenbasis |n1,n2) of Hy
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as

|¥) = Z c(n1,n2) |n1,na). (51)

ni,n2

The values of the coefficients ¢(n1, ng) are deduced from the relations:
bi| W) = 0 ba| W) = 0 (52)

which impose respectively

c(ng+1,na+1) _ v (nat1 1/2 (53)
c(n1,n2) T ouw \np+1
and
cni+1,ne+1) v (ng+1 1/2 (54)
c(ny,na) T uw \ng+1 '

We deduce that only the states with n; = ny are populated, which was
expected given the form of the coupling V which excites the two modes a;
and ay in pairs. We therefore rewrite this ground state as

[¥) = e(n) n,n) (55)
with the recursion relation on ¢,,:
1 U _ tanh \ (56)
Cn U
i.e.
cn = co (—tanh \)" . (57)

After normalization, the ground state is written:

1

\IJ =
) cosh A

> (—tanh \)" |n, n) (58)

This state is well known in quantum optics under the name Two-mode
squeezed vacuum state. It is generically written as

J N, . n 1
|\IJ):WTLZ:On |n,n)  with N:;vf T (59)
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N

K/ @y

Figure 10. Variation of the average number of pairs as a function of the ratio k/wo.

The probability law for observing the n-pair state |n,n) in an occupancy
number measurement is:

2n

n 2\ ,2n
Pn)=—-—=(1- . 60
( ) N ( n ) n (60)
The notion of squeezing comes from the fact that there is a perfect correla-
tion between the occupancies of the modes a; and as:

A (’fll — Tlg) =0 with ’fli = aICLZ‘. (61)

This absence of fluctuation of the variable n; — ng allows to design mea-
surements with a noise much lower than the one expected for two indepen-
dent coherent states for modes 1 and 2, which would lead to A%(n; —ng) =
A2(n1) + AQ(TLQ) =n1 + no.

When |k| < wy, i.e., |A] < 1, the ground state (58) is close to the ground
state |¥) = |0,0) of Hy. On the other hand, when || becomes comparable
to wp, A becomes arbitrarily large and many |n,n) states are significantly
populated. More precisely, we find the average number of pairs:

tanh \)2"
n an

This mean number is plotted as a function of the ratio x/wg = tanh(2)) in
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figure 10. The variance of this distribution is given by:

[An? =n(1+n)] (63)

so that we find the standard deviation An = 7 as soon as 7 becomes signif-
icantly larger than 1. Note that the statistical law for P(n) found in (60) is
formally identical to the one giving the occupancy of an individual quan-
tum state in the Bose—Einstein law at non-zero temperature.

3 Example: spin 1 gas in "zero dimension"

Before returning to the N-body problem of the three-dimensional Bose gas
in the next chapter, it is interesting to consider a direct application of the
two-mode model we have just described. We will consider the case of a col-
lection of spin-1 atoms strongly confined in a trap, so that the three spatial
degrees of freedom of the atoms are "frozen": only spin dynamics remains
possible, in particular through spin exchange collisions:

(m=0) +(m=0) S (m=+4+1) +(m=-1), (64)

where we introduced the quantum number m = 0,41 characterizing the
projection of the spin of an atom on a given axis. This process is formally
equivalent to the parametric conversion in optics (Walls & Milburn 1988)
and is also found in superconducting circuits (Nation, Johansson, et al.
2012). The squeezed two-mode vacuum state thus produced is among
those frequently considered for quantum metrology (Pezze, Smerzi, et al.
2018).

In the context of quantum gas experiments, this process was proposed
by Duan, Serensen, et al. (2000) and Pu & Meystre (2000), then highlighted
by Klempt, Topic, et al. (2010), Gross, Zibold, et al. (2010) and Bookjans,
Hamley, et al. (2011) (see also Sadler, Higbie, et al. (2006)). We will fo-
cus here on the recent experimental and numerical study by Evrard, Qu,
et al. (2021), which explored different regimes, from the reversible evolu-
tion predicted by the Bogoliubov approach to a chaotic regime allowing to
discuss the hypothesis that a (quasi-)arbitrary eigenstate can be seen as a
representation — in the micro-canonical sense — of the thermalized system
(Eigenstate thermalization hypothesis). The theoretical model that we will use
is directly inspired by the article of Mias, Cooper, et al. (2008).
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3-1 s-wave interactions between two spin-1 atoms

We consider here bosonic atoms whose total spin (electrons+nucleus) of
the ground state is s = 1. This is notably the case for several alkaline
species used in the laboratory: “Li, ?*Na, 3°K and *'K, 8"Rb. The value 1
of the spin is obtained in this case by coupling the spin 1/2 of the external
electron and the spin 3/2 of the nucleus.

During a collision between two identical atoms of spin s; = so = 1,
three channels are possible corresponding to the three possible values s =
0, 1,2 for the spin s = s1 + 83 of the pair of atoms. We can verify that® that
the spin state s = 1 is obtained by an antisymmetric combination of the two
spins s; and s,. Since we are dealing with bosons, the total orbital+spin
state must be symmetric by exchange of the two particles, which means
that the space wave function must be antisymmetric for a total spin s = 1.
As we are interested here in the very low temperature regime, where only
s-wave collisions are significant, this s = 1 channel does not contribute to
the interaction between particles.

The two remaining channels, s = 0 and s = 2, correspond to spin-
symmetric states and s-wave collisions are allowed. These channels are
therefore each characterized by a scattering length, ag and a;. We can then
model the interaction between atoms by a contact term:

~ . 4 h2ai
Vi, = 6(r1 = 72) @ (90Po + g2P2)  with g ==, (65)

where P; is the projector onto the total spin subspace s = i, with i = 0, 2.
Note that the Dirac distribution () must in fact be regularized in the form
of the pseudo-potential as shown in (3). This interaction can be written in
an equivalent way

Vint. = 6(r1 — 72) ® (91 + 9451 - 82) (Po + P2) (66)

6For m = +1 we find that:
V2|s =1,m) = [s1,m; s2,0) — |s1,0; s2,m)

and form =0
V2|s=1,0) = |s1,+1; s2,—1) — |s1, —1; s2,+1).
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where we have posed:

1

gs = = (92 — 90) - (67)

1
g == (90 +292) 3

3
To demonstrate the passage from (65) to (66), it is sufficient to note that the
scalar product

(8°—351-83) = %gQ —2 (68)

81'32:

DN =

is equal to —2 when it acts on a s = 0 spin state, and to +1 when it acts on
a s = 2 spin state.

We will consider in what follows the case of sodium atoms, for which
we find for the scattering lengths @ and a, associated respectively to g and
gs:

a=>5266a)=2.8nm  a,=1.88a, =98pm. (69)

The form of the interaction in §; - 5, is reminiscent of magnetic dipole
interactions, but it is important to emphasize that its origin is purely elec-
trostatic, since it results from van der Waals interactions. Magnetic inter-
actions are also present but they are much weaker, at least for alkali atoms,
and we will neglect them in what follows.

3-2 The single mode approximation

We now consider a condensate of N atoms confined in a trap of high stiff-
ness (figure 11); we note R the spatial size of the cloud and n the average
density of the gas. For simplicity, we consider an isotropic harmonic trap
of frequency w. We will assume in the following that the interaction en-
ergy, function of Ng and Ngs, is low enough for the atoms to accumulate
essentially in the ground state ¢)y(r) of the trap, the Gaussian function of
extension ap, = /h/mw (figure 12). The spatial dynamics is thus frozen
and only the spin dynamics can lead to an evolution of the system. This is
the single mode approximation (SMA); in other words, we have realized a
spin gas of "zero spatial dimension".

The Hamiltonian governing the spin dynamics from the interaction
term (66) is obtained by averaging the initial Hamiltonian over the den-
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Figure 11. Dipole trap obtained at the intersection of two detuned laser beams
on the red of the atomic resonance line. The atoms (sodium) are visible because
they are excited here by additional beams creating an optical molasses. This type
of trap ensures a confinement with similar frequencies along the three eigenaxes of
the trap. Figure extracted from David Jacob’s thesis.

sity distribution |t (7)|? :

: U. Us -2
SMA : s (
VSN :ﬁ_zlsi.sj:ﬁs + ... (70)
1,5 F1
where § = Z@IL 8, is the total spin operator, where ... represents a con-
stant additive term, and where we have posed:

U, = Ng, / o) [* d®r. 1)

In the following, it will be useful to express this interaction Hamilto-
nian in terms of the creation a],, and annihilation a,, operators of an atom
in the vy orbital state and in the m = —1,0,+1 spin state, with a given
quantization axis. We also introduce the occupation number operator of a
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7/2 ho
5/2 hw

3/2 ho

Figure 12. Single mode approximation: it is assumed here that the interactions
and the temperature are sufficiently low that the atoms essentially occupy the
ground state of the harmonic trap which confines them. Under these conditions,
only the dynamics related to the spin degree of freedom is relevant.

given m state: Nm = ajnam. The result is written after a somewhat tedious
calculation (Law, Pu, et al. 1998):

VA = 2(];[ [(NH —N_1)? +(2Ny — 1) (NH + N—l)}
+% [allailaoao + H.c.} : 72)

again up to an additive constant.

The expression (72) is instructive. The first line depends only on the
occupation numbers N, = al, a,, and therefore does not induce spin dy-
namics. This dynamics comes from the second line which describes the
spin exchange collision:

[(m=0) +(m=0)S (m=+1) +(m=-1)| (73)

From a pair of atoms initially in the m = 0 state, an elastic collision can
create a pair of atoms in the m = +1 and m = —1 states, and conversely.
This is an essential ingredient of Bogoliubov’s formalism, which we will
explore in the next paragraph.
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Remark. The large difference between g and g, for the sodium atoms (fac-
tor ~ 30 as shown in (69)) allows to relax somewhat the constraints on the
initial state for the single mode approximation. Even if the product Ng is
such that the initial condensate is described rather in the Thomas-Fermi
approximation and has an extension R > ay,, the single mode approxima-
tion is valid if
. 1

with &, = o (74)
&s is called then spin healing length. In general, for a scalar condensate of
density n and scattering length a, the healing length { = 1/v/8mna rep-
resents the shortest length scale on which the fluid can react to an exter-
nal perturbation (obstacle, impurity, ...). For a spin gas, the condition (74)
leads to the fact that it would be too energetically expensive to form spin
domains within the R size domain.

&> R

3-3 Zeeman effect and Bogoliubov Hamiltonian

In what follows, we will assume that the spinor gas is immersed in a mag-
netic field B of fixed z axis, which we take as the quantization axis. We
will further assume that the IV atoms are initially prepared in the m = 0
state. Under the effect of elastic collisions (73), the m = +1 states will be
populated under the constraint N;; = N_;.

Let us focus on the regime where the m = 0 state is sparsely populated,
ie. N11 < Ny = N. By treating Ny as a number equal to N, we can then
simplify the expression for the interaction Hamiltonian (72) to:

int.

VEMA 2 U, (N + Ny +algaly +anasy) (75)

Let’s now look at the magnetic energy of the gas (figure 13) :

® At order 1 in magnetic field, the two states m = +1 are displaced by
opposite quantities, +uB. A pair of atoms {m = +1,m = —1} has
therefore, at this order in magnetic field, the same energy as the initial
pair {m = 0,m = 0} : the linear Zeeman effect has no consequence on
the dynamics of the system and can be forgotten.
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m=+1 —— m=+1 )

AE AE+q
m=0 —t m=0 —

AE | AE — g
me — ] —t m=—1——

Figure 13. Zeeman effect for an atom of spin 1. On the left, only the linear Zeeman
effect with AE = uB; on the right, the quadratic Zeeman effect, characterized by
the energy q oc B2, has been added.

* At order 2 in a magnetic field, the m = *1 states are displaced by the
same amount’ ¢ > 0 proportional to B? compared to the m = 0 state.
This shift affects the pair creation process (73) since the energy of the
right-hand side member differs from that of the left-hand side by the
quantity 2q.

For the magnetic fields considered here, we can limit ourselves to the
second order in B and write the contribution of the Zeeman effect in the
form

Vzeem. = q (N+1 + N—1) ; (76)

which gives the total Hamiltonian:

H = (¢g+Us) (a:_la_ﬂ + aila_1> + U, (allail + a+1a_1) (77)

This is exactly the starting point for the Bogoliubov method. We deduce
from the analysis made in the previous section that in the approximation
of a weak depletion of the m = 0 mode, the spectrum of the N-body system
is composed of equidistant levels separated by the energy

o = [g+v0? - 2] = Valr 20 79)
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Figure 14. Measurement of the occupation numbers of the three Zeeman sub-levels
m = —1,0,+1. A Stern and Gerlach experiment followed by an optical molasses
phase allows to count the atoms with an accuracy of the order of one atom, by
analyzing the fluorescence light collected in the three spots. Figure extracted from
Bertrand Evrard’s thesis.

3-4 Response of the gas to a magnetic field jump

To test the predictions of the Bogoliubov approach, Evrard, Qu, et al. (2021)
started with a sodium condensate of N ~ 5000 atoms in the m = 0 state.
The condensate is initially placed in a large magnetic field (B ~ 1G, lead-
ing to ¢/h ~ 280Hz) and is confined in a trap such that U;/h = 17Hz.
Under these conditions, ¢ > U, and the number of pairs in the m = +1
states is notably less than 1. The experiment, which measures the popula-
tion of each spin state with a precision close to the single-atom level (figure
14), confirms this prediction. The magnetic field is then suddenly lowered
to a much lower value, corresponding to ¢ = 0.3 Hz (thus ¢ <« U;), and we
are interested in the evolution of the system.

On the theoretical side, as the Bogoliubov Hamiltonian is quadratic
with respect to the operators a,, and af,, the simplest way to study the
evolution of the system is to use the Heisenberg picture. We find for the

7For the sodium atom, the quadratic Zeeman effect is 277 Hz/ G2.
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; T
pair of operators a1, al ;:

d X

ih% = lay, H] = (q+ Uy)ay + Usal , 79)
o dal b t
ih el [a' 1, H] = —(q+ Us)a ; — Usaq (80)

or

Ld far ay . _ (q+Us Us
lh& (aT_1> n [M] <(IT_1) Wlth M N ( _Us _(Q+ Us)) (81)

and similar coupled equations for the pair a_1, ai. The eigenvalues of the
matrix [M] are +hw and solving this differential system gives the result:

( & ) (t) = (C Tl e C +i_(iqu-S(§f)OiS/hw) (511) 0

a_, iUsS/hw
where we put C = cos(wt) and S = sin(wt). Starting from the vacuum
(i.e. all the atoms in the state m = 0) at time ¢t = 0, we deduce the average
number of pairs (41, —1) at time t:

Ny(t) =5 3 Olahan®]0) =5 3 lan@OIP 6

m=-+1 m==1

or

~0 = (1) sin?(t) (54)

Note that it is also possible to use the Schrodinger point of view and to
compute the state vector of the system |U(¢)). It can be shown [see for
example Mias, Cooper, et al. (2008)] that this state is at each instant a two-
mode squeezed vacuum state as defined in (58), characterized by the mean
value N, (t) given in (84).

The experiment confirms the prediction of this reversible and oscillat-
ing evolution of a N-body system (figure 15, left). We verify that the num-
bers of atoms in m = %1 remain equal to each other in the course of time,
within the measurement uncertainties. The dependence of the frequency
w with the magnetic field (characterized by the value of the parameter ¢) is
also in agreement with the prediction (78) of the Bogoliubov theory (figure
15, right).
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Figure 15. Left, top: Mean value and standard deviation of the number of pairs
created in a spin 1 assembly, under the effect of spin exchange collisions (73). The
solid line is the prediction (84) obtained from the Bogoliubov approach. Left, bot-
tom: the magnetization S, = Ny — N_y remains zero during the evolution,
within measurement uncertainties. Right: variation of the frequency w of the os-
cillations with the parameter q characterizing the magnetic field. The continuous
line corresponds to the prediction (78). Figures extracted from Evrard, Qu, et al.
(2021).

Depletion of the m = 0 state. Bogoliubov’s method is based on the as-
sumption that the population of the m = 0 state remains close to the total
number of atoms. It is interesting to see what happens when this assump-
tion is no longer valid. In the case of the N-body problem, it is the problem
of quantum depletion, which we will address in the next chapter.

For the case of a spin 1 gas in the single mode approximation, the as-
sumption of weak depletion of the m = 0 state is verified if the amplitude
of the N,(t) oscillations written in (84) is small in front of N, which im-
poses g > Us/N. Recall that ¢ < Us is required for the number of pairs to
be greater than unity and for a signal to be detected.

When we take a final value of ¢ very small in front of Us/N, we leave
the Bogoliubov regime and the dynamics of the system which follows the
sudden change of magnetic field is no longer a reversible dynamics. It is
simple to model the ¢ = 0 case, for which the Hamiltonian is simply (still
in the single spatial mode approximation) H = 21]—]\5,32 [¢f. (70)]. The spec-
trum of this N-body Hamiltonian is no longer linear as in the Bogoliubov
regime, but ~ quadratic with energy levels in (U;/2N)S(S + 1). The evo-
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Figure 16. The "universal” evolution obtained in the ¢ < U, /N regime, for
which the population of the m = 0 state becomes strongly depleted. In this regime,

the Bogoliubov method does not apply anymore. The solid line corresponds to the
theoretical prediction (85). Figure extracted from Evrard, Qu, et al. (2021).

lution then becomes irreversible and characterized by a universal function
of time ¢:

No(t) = N[1—7D(7)] with 7= \/EU; (85)

where D(7) is the Dawson function (figure 16).

A last point studied by Evrard, Qu, et al. (2021) concerns the addition
of an extra term to the Hamiltonian (77) which allows to reach a chaotic
regime. It is then possible to test numerically if the dynamics leads to a
thermalization of the spin assembly, as predicted by the Eigenstate thermal-
ization hypothesis (ETH). We will not describe these results here because
they are not related to the general topic of Bogoliubov’s method and we
refer the interested reader to the article of Evrard, Qu, et al. (2021) and the
references therein.

Appendix : the formalism of the second quantization

In non-relativistic physics, the number of particles is conserved and it is in
principle possible to carry out the Bogoliubov analysis in the wave func-
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tion formalism. Nevertheless, the calculations become disproportionate,
because of the simple writing of the N! terms which result from the sym-
metrization of a N body wave function.

It is very preferable to use the formalism of the second quantization
which we recall here for bosons. We give ourselves a basis = {|a), |8), ...}
of the one-particle Hilbert space, noted £(!), for example the plane wave
basis characterized by the wave vectors k. A basis of the N-particle state
space, noted £(), is obtained by considering all states

) > na=N (86)

[Nasng, - .

The integer n, > 0 denotes the number of particles in the « state.

We work in the Fock space, direct sum of Hilbert spaces with a given
number of particles:

E=E0geMV g, . aeWMa. .. (87)

The space £ is the vacuum of particles; it is a space of dimension 1 cor-
responding to the state noted |0).

We introduce the creation operator of a particle in one of these states
aL L EWN) 5 gNHD)
D= nug+lna,ng...,n,+1,...)  (88)

and the associated destruction operator

+
a|noa,ngs My -

a, : EMN) — gWN-1)

aplna,ng, ... Np,...) = /g |na,ng,...,n,—1,...) ifn, #0
= 0 ifn, =0 (89)

The algebra thus obtained is formally identical to that of a harmonic oscil-
lator. In particular, the prefactors \/n,, + 1 and ,/n,, allow a considerable
simplification in the writing of the operators. They also lead to the value
of the commutators:

[af,,al] =0

[auv al/} =0 [am CLL] = 5uu~ (90)

In this course, we use the plane wave basis k to write the creation and
annihilation operators which thus become a],, ay.



Chapter III

Lee-Huang-Yang energy and quantum depletion

The previous chapter was devoted to the implementation of the Bogoli-
ubov formalism for a Bose gas. The interaction potential between the N
atoms is chosen of the form

V=Y V(i -7 1)

1<J

and the binary potential V (r), which is assumed to be spherically symmet-
ric to simplify the notations, has the Fourier transform

Vi = /V(r) e kT Q3 )

V(r) is assumed to be regular and sufficiently small for the Born expan-
sion to converge. Starting from the N-body Hamiltonian written in second
quantization,

H:Zek a,tak—kﬁ Z ‘/(la;rc%qa;,,fqaku ag’ 3)
k K k' .q
with e, = h?k?/2m, we made a quadratic approximation consisting (i) in
treating the condensate in k = 0 as a classical field and (ii) in keeping only
the terms of degree at most 2 in an expansion in powers of the creation and
destruction operators a}, and ay, for k # 0. After this approximation, the
Hamiltonian is written

N 1 - N
H'= SnNVo + H" @)
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with
' — Z (ek + nf/k) (a};ak + aika_k) +nVj (a};aik + aka_k) , (5)
pairs
{k7_k}

where n = N/L? denotes the spatial density of the gas.

The Hamiltonian A" consists of a sum of independent Hamiltonians,
each of them dealing with a pair {+k, —k}. We have shown that each of
these Hamiltonians can be diagonalized by a canonical transformation

b = upar + UkaT_k b_p = uga_p + ’Uka;rc (6)

with
tanh(2)) = Yk @)
e + Vi

U = cosh >\k Vi = sinh /\k

The Hamiltonian H” is then written in terms of the operators b}, by:

. 1
H'" = Z [hwk bLbk + ih(wk —Wo,k)] (8)
k40
with
N2 N2 1/2 - 1/2
hkdk = l:(ek + nd> — (nd) :| = (ﬁi + Qndek) (9)
hwor = €+ nVi. (10)
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We have thus reduced the problem to a collection of independent modes
of frequency wy. We immediately notice an effect of the pair creation and
destruction terms {+k, —k} in the Hamiltonian A" written in (5): it lowers
the energy of the ground state for each pair by the quantity hwy, —fwg 1 < 0.
The other important result from the previous chapter, which we will use to
evaluate the quantum depletion, concerns the structure of this ground state,
and in particular the average number of pairs {+k, —k} present in this
ground state:

Lok — @k (11)

We immediately notice that this average number of pairs can become large
when wy, — 0, i.e. according to (9) when the kinetic energy ¢, = h*k?/2m
is much smaller than nV},.

In this chapter, we will exploit this set of results to study the ground
state of the Bose gas. First, we will continue to work with a potential V (r)
for which the Born expansion is valid. We will discuss successively the ex-
citation spectrum of the system, the energy Ej of the ground state and the
quantum depletion, i.e. the fraction of atoms n’/n outside the condensate
k = 0. Concerning the quantum depletion, we will establish the following
result:

LS.
n " 37w
Recall that this fraction must be much smaller than 1 for the expansion
of the complete Hamiltonian (3) to the approximate Hamiltonian (4) to be
justified. Concerning the ground state energy, we will show that:

Vna3 (12)

drh%a

Ey, 1 , 128 -
—- == 1+ ——=Vna +...
B 29n +15ﬁ na° +

The first term is simply the mean field energy already encountered in the
previous chapter. The second term, which is small in front of the first one
because of the condition n//n <« 1, is the correction calculated for the first
time by Lee, Huang and Yang (Lee, Huang, et al. 1957) which is also writ-
ten, noting L? the volume occupied by the gas:

with ¢= (13)

Erpgy 1 , 128 8 m3/2( n)5/2

- net = e 5

_ Ll 128 14
2 27" T ayn (14
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It is important to note that the potential () enters in the energy E, only
through the scattering length! a (or the coupling coefficient g which is pro-
portional to it).

Once these results are established, we will turn to another type of in-
teraction, the pseudo-potential V;,,, which is of zero range. The results
obtained in the Born approximation and indicated above will remain for-
mally valid, but we will point out some difficulties specific to Vj,,. Let
us also mention the recent publication of Carlen, Holzmann, et al. (2021),
who develop a rigorous alternative approach to the Bose gas for the case of
a purely repulsive potential, both for the low and high density cases, and
who present detailed comparisons with Monte Carlo calculations. Finally,
we will describe a number of recent experiments which have provide pre-
cise measurements of the different physical quantities we have just men-
tioned.

1 Preliminary remarks

1-1 Preliminary 1: The Born expansion

As in the previous chapter, we consider in this section a regular two-body
interaction potential of range b. We assume that the interaction of two
atoms under this potential can be treated by the Born approach, the scat-
tering length being written as an expansion in powers of V"

a=a® +a® 4. . g=gW +4P 4. .. (16)

with g = 4h%a/m.

Let us briefly recall the nature of this approximation and its validity
criterion at low energy. In a binary collision, the scattering amplitude of

1The next term in the bracket expansion is (Wu 1959):

128 4
1+ ﬁ\/naﬁ’ + 8<?7r —\/g) na®In(na®) + ... (15)
and thus also depends only on the scattering length a. The term which follows in the ex-
pansion and represented by ... is proportional to n; it involves the effective range r. and a
three-body parameter computed by Tan (2008d).
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the relative particle from k; to ky is given by the matrix element of T(E)
between these two states, with Hy = p*/2m, and E = h%k?/2m, (p and
my, = m/2 represent the momentum and mass of the relative particle):

. 1 R

TE)=V+V———V +... (17)
E — Hy +i04

The Born approximation consists in keeping only the first term of this ex-

pansion:
- ‘716 —k;
(ks |T(E) ki) ~ i

We are interested in the regime of low energy collisions (s-wave collisions).
Taking the limit |k;| = |k¢| — 0, we find the result already used in the
previous chapter:

(ky|Vk:) = (18)

4rha®
W= —r-—"=" (19)

m
A necessary condition for this approximation to be valid is that the next
term in the Born expansion is small compared to the first-order contribu-

tion. The matrix element of the next term is easily calculated by introduc-
ing a closure relation in momentum space:

5 .
Ve Uk = - /<kf|V|IZ>kz<kIVIk> 3
E — Hy+1i04 (2m)3 E 4104
1 ka k Viek:
- k k. (20
(QW)SLS _ h2%k +10+ ( )

2my

Let’s take the limit |k;| = |k¢| — 0 in this equation, using m, = m/2:

. 1 N V2
kelV——VI/k;)) = -5 @3
sV g Ve 2W?,W/

= oo / V2dk, 1)

this integral converging as soon as |Vi| decreases faster than 1/+/k at infin-
ity. As |V| takes significant values for values of k£ up to ~ 1/b, the corre-
sponding value of the integral is, up to a numerical coefficient depending

45

on the precise shape of the potential:

N 1 N m ‘702
sV R 0 k) ~ ~ gy

(22)
E — Hy +i04

The contribution of this term (always negative) to the scattering length a is
small compared to the dominant contribution if

<< Vo e oY« (23)
This is the criterion needed for the Born approximation at low energy (19)
to be valid.

The above analysis allows us to give the first correction to the Born
approximation, which will be useful in the following:

Amch2a®) 1 \AE
@ = = PLa3k 24
g m (2m)3 2¢g, @4)

with as before €, = 1i?k?/2m, this correction ~ a!) x (a1 /b) being always
negative.

1-2 Preliminary 2: The different sectors for

The different physical quantities mentioned in the introduction, such as
the ground state energy or the quantum depletion, involve integrals over
the wave vector k. It is therefore important to identify now the behaviors
of the two main terms, nVj, and ¢, that will intervene in all these integrals
in order to compare them.

We have made the assumption that the potential V' (r) is regular of range
b. We will assume in what follows that its Fourier transform V}, is approx-
imately constant and equal to Vj as long as k < 1/b, then decreases and
tends to 0 when k becomes significantly larger than b. An example of vari-
ation for V(r) and V, is given in figure 1 in the case of a Gaussian potential.

In the expression (9) of the frequency of the mode associated with the
pair {+k, —k}, the sum .
€r + 2nV;, (25)



CHAPITRE III. LEE-HUANG-YANG ENERGY AND QUANTUM DEPLETION

§ 1. Preliminary remarks

V(r) 4 v, A

Lk
> : >
1/b

Figure 1. A potential V (r) of range b and its Fourier transform Vi, of range 1/b.

appears, with €, = h?k?/2m ; it is then useful to determine which of these
two terms is preponderant:

e When k — 0, ¢ — 0, while V. tends to the non-zero value V,. The
dominant term is nV; =~ nVj.

* When k — oo, ¢, diverges whereas Vi — 0. It is then ¢, which domi-
nates.

We must now evaluate the point from which ¢, becomes dominant with
respect to nVj. To do this, let’s start by defining the value ky for which ¢,
is equal to nVj:

27.2 ~ / Y
—F; :f =nVp = ko= 7272"‘/0. (26)

The question is to know if Vi is still close to V; for k = kg, or if it has
already strongly decreased. We will be in the first case if ky < 1/b and in
the opposite case if kg > 1/b. These two limiting cases are represented in
figure 2.

Using the link (19) between scattering length and Vj, the definition of
k() is

k() = V8mna = (27)

M|
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n \N/kA n \N/kA
nV, nV,
. k H
; A —lp
ko 1/b 17b kg

Figure 2. The two possible situations to reach the equality between the single-
particle kinetic energy e, = h*k?/2m (in red) and the interaction energy nVj, (in
blue).

where ¢ is called healing length. The condition kg < 1/b can then be written:

ko <1/b < S8rmnab® < 1. (28)

In all this paragraph, we will assume that the condition (28) is realized and
that one is thus in the case of the left diagram of figure 2. This assumption
can be seen as a low density condition. More precisely, we can write nab?
in the form

nab? = nb® x % (29)

We explained in the first chapter that we will consider here dilute gases
in the sense of nb® < 1, and the validity of the Born expansion requires
moreover that a/b < 1.

In the regime represented on the left-hand diagram of figure 2, we can

identify three distinct domains for & (see figure 3):

e Domain1, k < ko =1/ §~ : theNterm nVi. dominates the kinetic energy
€, and we can also take V;, =~ Vj,.

* Domain 2, kg < k < 1/b: the kinetic~energy ¢ is dominant and Vj,
remains close to its value at the origin V5.
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e <nVimnVy e >nVi~nVy @ > nVj, #* Vo

| domain 1 i domain 2 i domain 3 i
[ [ [

0 ko = 1/¢ 1/b

Figure 3. The three relevant domains for the wavenumber k when the low density
condition (28) is met.

e Domain 3, 1/b < k : the kinetic energy ¢, is dominant and V. tends to
0 when k& — oo (this domain will be absent for the pseudopotential).

Remark. Even if the quantum gases correspond to the case we have just
discussed, it is interesting to consider the opposite case represented on the
diagram on the right of figure 2, obtained for a high density situation,
8mnab® > 1. In order to specify the parameters in this case, it is prefer-
able to choose a specific form of potential, such as the Yukawa potential
[see for example Ceperley, Chester, et al. (1978) and Campana, D’Auria,
et al. (1979)]

efr/b
r/b’

One might worry about the validity of Bogoliubov’s approach in this high
density regime, but there is in fact no problem. Indeed, we can show that
the quantum depletion is written in this case:

- Vo

= V0=

Vo = 4mb® V. (30)

n' 1

a
X 3 31)
and it is thus all the smaller that the density is larger ! More precisely, the
first term of the product intervening in the right-hand side is less than 1
by definition of the high density situation, and the second term is small in
front of 1 because of the validity criterion of the Born approximation. Note
that one can take the limit of an infinite range b, i.e. a Coulomb potential.
This problem was initially studied by Foldy (1961) and Girardeau (1962).
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The Bose-Einstein condensed phase is then in competition with the for-
mation of a Wigner crystal, but for the high density limit considered here,
it can be shown that the Bose-Einstein condensed phase leads to a lower
energy (Ceperley, Chester, et al. 1978; Halinen, Apaja, et al. 2000).

1-3 Illustration: the excitation spectrum

Once the Bogoliubov Hamiltonian is put into the form
. _oN\1/2
H = Z huwy, b};bk + constante, hwy, = (ei + Qndek) , (32)
k0

the simplest physical quantity to study is its excitation spectrum, i.e. the
energy and the momentum that it is necessary to bring to the system to
make it pass from its ground state to an excited state.

The elementary excitations of the system are obtained by making one of
the operators b;rc act on the ground state of the system. Such an operation
gives the fluid the energy hw;, and the momentum 7k, since bL is a linear
combination of a,Tc (which brings hk) and a_j, (Which removes —hk). We
will now discuss the different possible regimes for this elementary excita-
tion, based on the different domains of k values we have just identified.

¢ Domain 1. In this domain, we have nVj, ~ nV; > ¢, and we find

with ¢ =1/nVy/m. (33)

We find the well-known phonon spectrum, which also appears in a
Bogoliubov theory conducted with classical fields [cf. course 2015-16].
Recall that this linear spectrum is a key element of the superfluidity of
the gas; it allows indeed a localized impurity to propagate in the gas
without dissipating energy, provided that its velocity is sufficiently
low.

wg =~ ck

¢ Domain 2. In this domain, we have ¢; > nVj, ~ nV, and we find

iy, =~ e, +nVj. (34)
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This result is simply interpreted from the Hartree and Fock contri-
butions calculated in the previous chapter. It corresponds to the en-
ergy that must be provided to make a particle of the condensate pass
from the state of zero momentum, with an interaction energy with its
neighbors equal to nVj [only the Hartree term, since the Fock term
(exchange) is zero in this case], to an excited state of momentum #k
and an interaction energy 2nV,, [Hartree+Fock]. This energy to be pro-
vided is therefore €; + 2nVy — nVj, as indicated in (34).

e Domain 3. In this domain, we have €; > nV % nV, and we find
hwy, =~ €, + nd (35)

The result can again be interpreted from the Hartree-Fock contribu-
tions. The initial energy of the particle when it is part of the conden-
sate is nVpas above, and the final energy is e, + n(f/o + f/;g). The initial
and final Hartree terms cancel each other out, leaving only the kinetic
energy and the Fock term.

We will see in the rest of this chapter and in the next one that it is possi-
ble to add terms that were neglected so far in the Bogoliubov approxima-
tion, and to reach in this way a resummation of the Born series describing
two-body collisions. This procedure, initially discussed by Beliaev (1958b),
amounts to taking into account for example virtual processes like

(k) +(0) «— (k—q)+(q) (36)

which corresponds to the application of the operator a,Tc_ qagakao and its

conjugate. The effect of this resummation is to replace V; by a term pro-
portional to the low energy scattering amplitude f(k = 0) = —a, more
precisely by the coupling g = 4nfi*a/m. The results (33) and (34) become
respectively

Domain 1: w ~ ck

with ¢=+/ng/m (37)

Domain 2: hwy, ~ € + ng. (38)
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2 LHY energy and quantum depletion

2-1 The energy of the ground state

In this paragraph, we will evaluate the ground state energy of the approx-
imate Hamiltonian H’ given in (4). Our goal will be to make the Born
expansion (16) appear in the expression of this energy. In particular, we
wish to go to order 2 included in V' for the dominant term, representing
the mean field energy.

The ground state is obtained by placing each mode described by the
operators b}, b, in its ground state, so that the sought energy is written:

1 - 1
FEorng = =nNV, — hwr — hwo k.- 39
gnd = 5NV + 2}; k 0.k (39)

Using the values (9-10) of wy, and wy i, and replacing the discrete sum
by an integral, we obtain:

Eon 1 5~ 1 . 1/2 N
grnd _ Z 20 4 m/ [(eiwnvm) —ek—nd} d3k.  (40)

L3 2

It is important to make sure that the integral involved in this expression
converges. At large k, as explained in § 1-2, nV}, tends to 0 while ¢, grows.
We can therefore carry out the expansion:
r 2?2l
\/1+x:1+§—§+1—6+0(964). (41)

of the square root contributing to the integral

A
€k <1+ zkk>

n2V;2 N n3Vv3
2€p 26%

- 1/2
(ei + Zndek) =

R ek—|—n‘~/k— + ... (42)

Here, the dominant term of the integrand is
n2v;2

QEk ’

(43)
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i.e. the same term as the one appearing in a(?), the second order of the
Born expansion (24) of the scattering length. The criterion of convergence
is therefore always a decay of |V} |? faster than 1/k, which we assume here.

At this point, the dominant term of E,,nq given in (40) is the first contri-
bution of the right-hand member, %nQVO, with Vy = ¢™). As announced in
the introduction of this paragraph, we wish to express this term as a func-
tion of g with a precision better than ¢, and go to order 2 in V. For this
purpose, we can rewrite this dominant term in the form:

1 5= 1 1

Ly = Lo (400 1 4) - Lizge) a
and then feed the second term —2n2g¢(?) back into the integral over k using
the expression (24) of g . We then arrive at:

Egrnd = Fmeanfield + ELHY (45)

with

Emean (S 1
Lmean field _ 5n2 (g(l) +g<2>) ~

T3 gn® (46)

1
2
and
ELHY 1 / n2‘7k.2 3
—_— = d°k. (47
L3 2 (2m)3 (47)

~ 1/2 ~
(e% + 2ndek> — € —nVi +

2-2  Calculation of the energy Eyny

An important point regarding the expression (47) of the energy Er vy con-
cerns the behavior at large k of the integrand. While the dominant term
of the integrand appearing in (40) involved V;2/e;, [see (43)], this dominant
term is exactly offset by the contribution of g(»). The integrand of Frgy
now tends to 0 much faster at large &, with the dominant term

3773
n°Vy

Dominant term for e, > V, : 502 -
€k

(48)

Even if Vj, decreases only very slowly at infinity, the convergence of the
integral is now assured by the presence of ¢; o k?* in the denominator.
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It is therefore interesting to look further into the values of k£ which con-
tribute significantly to this integral. Let’s take again the figure 3 on which
we have distinguished three sectors:

e Domain 1 of small k values, where ¢, < nVj ~ nVj.
e Domain 2 of intermediate k values, where ¢, > nVj, ~ nVj.

e Domain 3 of large k values, where ¢, is dominant and V. differs sig-
nificantly from Vj.

Given the rapid decay of the integrand involved in Eyppy [cf. (48)], zone
3 has a negligible contribution. Limiting ourselves to the contribution of
zones 1 and 2, we can therefore replace Vj, in V; in the integral:

Ermy _ 1 /
3 2(2n)

To finish the calculation, let us note that the energy Erny is a small cor-
rection to the mean field term. We can systematically replace a(!) by a, or
equivalently g(') = ¥ by g. In this way, we obtain an expression as a func-
tion of a or g which corresponds to a systematic expansion in powers of V,
to order 2 included. Let us insist on the fact that this is only possible thanks
to the fast decay of the integrand of (47). This would not have been the case
if we had tried to compute explicitly the integral of (40): the full form of the
k-dependence of Vi, would have contributed. Fortunately, this contribution
is reintegrated in the second order term of the Born expansion, a(?.

After the change of variable z = k(h?/2mnV;)Y/? [or z = k¢ with € =
1/+v/8mna] in the integral (49), we obtain

ELHY hz 5

n2 %2

~ 1/2 ~
<ei + 2nVoek) —ex—nVp + Bk (49)

€k

i = ()1 (50)
where we have posed
+oo 2 1
7 =16V 27r/ [x2 +1— (2% + 2x) " — % dx. (51)
0

After an explicit calculation of this integral, we arrive at:

Eigy 1 5 128

3 29"

3
X 577 na3, (52)
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which is the result announced in (13). As indicated in the introduction,
the energy Erpy is small in front of the mean field energy as soon as the
"low density" validity condition of the Bogoliubov approach, vna3 < 1, is
satisfied.

We have thus seen how the Born expansion for the scattering length ap-
pears. The first and second order contributions must be taken into account
for the dominant mean field term, whereas the first order contribution is
sufficient for the LHY term. One may seek to go further? and include all
terms of the Born expansion to express the final result solely in terms of
a =332, al9). We will not do this resummation here for an arbitrary po-
tential V' (r) because it is very technical [see for example Beliaev (1958b),
Hugenholtz & Pines (1959), Gavoret & Nozieres (1964) and Nozieres &
Pines (1990)]. Moreovert, the convergent character of the series that we sum
up is not easy to establish, especially in the presence of bound states in the
potential V(r) that we have to ignore to treat only the case of a gas of free
atoms. Thus Lieb, Seiringer, et al. (2005) write about these methods® : They
all rely on some special assumptions about the ground state that have never been
proved, or on the selection of special terms from a perturbation series which likely
diverges.

2-3 Quantum depletion

The last step of our treatment is the validation of the approximation at the
basis of the Bogoliubov method. Is it correct to assume that the number of
particles N’ outside the k = 0 state is small in front of the total number N?

To evaluate N’, we can directly use the result of the two-mode model
developed in the previous chapter. The average number of pairs {+k, —k}
in the ground state of the system is given by v7, where the coefficient vy, is
recalled in (11). Summing up the contribution of all pairs, we thus find the

2This possibility was mentioned by Bogoliubov in his original paper (Bogoliubov 1947),
and he thanked Landau for this "important remark".
30ne can also consult the discussion on pages 463-464 of Gavoret (1963).
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number of atoms N':

IR

k£0

r -

e, +nVy 3

/ | L G-
(ei + 2nde;€>

As in the calculation of the energy of the ground state, it is important to
verify the convergence of this integral:

¢ In the neighborhood of the origin, thanks to the Jacobian in d*k =
4mk? dk, there is no divergence problem although the content of the
bracket diverges as 1/k.

e Atlarge values of k, the dominant term of the integrand is *
ng V¢
2€r

(54)

This asymptotic behavior is the same as the one found above for the
energy Frpy in the framework of the Born expansion [see (48)] and
the conclusion is identical: even if V}, decreases only very slowly at
infinity, the integral will be convergent thanks to the factor €7 « k*
which appears in the denominator.

The procedure is therefore similar to that used to calculate Erpy.
Among the three domains of k values identified in figure 3, only domains
1 and 2 contribute significantly to the integral (53). In these domains, we
can make the approximation V;, ~ V; ~ g and arrive at the expression for
the uncondensed density n’ = N/L3:

where we set z = k€. The integral in this expression can be calculated
analytically and the result is

— a:) x dux, (55)

n’ 8
— vn (56)
n 3w

“We use the expansion (1 + 2u)~1/2 =1 —u + %uQ +...and (14 w)(1 + 2u)~ Y2 =

1+ %uQ + ... withu = nd/ek
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We see appearing here the small parameter v/na® announced in introduc-
tion. The result (56) involves only the scattering length and its scope goes
beyond the case of a regular potential described by the Born approxi-
mation; it extends to the case of any potential, in particular the pseudo-
potential, as we shall verify in the next paragraph.

To make the connection with the low density condition established in
§1-2 [cf. (28)], it is interesting to rewrite this result as :

/

— ~ Vnab? % (57)
which is the product of two terms, each small compared to 1: the smallness
of the first term vnab? comes from the condition (28), and that of the sec-
ond term a/b comes from the validity criterion of the Born approximation.

3 Bogoliubov Hamiltonian for VPP

After studying in detail the effect of the coupling created by a regular po-
tential V'(r), in the limit |a| < b allowing to use the Born expansion, we
move to the case of the pseudo-potential, of range b = 0, but of arbitrary
scattering length a. The results (12) and (13) for quantum depletion and
ground state energy will be unchanged, but the approach to be followed
has some specific subtleties that we will discuss.

3-1 Contact potential and pseudo-potential Vpp

We studied in detail in last year’s course how to obtain such a zero range
potential in three dimensions in quantum physics. The simplest choice
seems to be the contact potential

V(r)=gd(r) & Vk: V=g (58)

But this potential leads to a divergence of the scattering amplitude and
is therefore not usable as is. This singular behavior can be observed for
example on the Born expansion: the first order is regular and gives

mg

= 2 (59)

ay
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but the second order a, given in (24) is proportional to the integral
J(1/k?) d®k, which is divergent.

The pseudo-potential V;,, allows to cure this divergence while keeping
a zero range. We define its action® on a wave function ¢ (r) by:

Voo ()] = 93(r) - [r5(r)] (60)

r=0

This expression allows us to give a meaning to the potential when it acts on
regular functions in » = 0 and also on functions diverging like 1/r. More
precisely, we find that V},, "erases” any term diverging like 1/7:

U =T () = Vo [0()] = g ies(0)3(r) | (6D)

where 1,04 (r) is regular in = 0. The action of V;,, on regular functions
(such as plane waves e'*7) is thus identical to that of the contact potential
(58), but V,,,, also has a well-defined action on spherical waves that play an
essential role in scattering theory:

R eikr . 1 eikr _
Vop { ] =Vop { + r

,
We can thus completely solve the problem of a two-body collision inter-
acting via this pseudo-potential and we find in particular that the scatter-
ing length « is always related to the coupling constant g by the relation
g = 4nh%a/m.

1} — kg 6(r). (62)

3-2 The subtleties of the pseudopotential

When manipulating the pseudo-potential, it is important to keep in mind
several subtleties in its action. An example is provided by the action of V},,
on an infinite sum of terms. Consider the identity:

ik-r
1_1 / Bk 63)

r on2 k2

and apply V,,, on both members:

5See Olshanii & Pricoupenko (2001) for a generalization of this definition.
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* On the left member, the action of V},,, is by definition:

Vop H =0. (64)

r

e On the right hand side, if we allow ourselves to swap the action of V,,,,
and the integral on k (which is in fact incorrect), we find

% 1 [k g r 1 [ Vep[e*T]
_ 9o [1 3 _95(T)/
= S5 | @ Ph=" g [4ndk

which is a divergent integral in k = 400 !

It is therefore necessary to be careful as soon as we want to calculate the
action of V;,, on a function that we express in terms of its Fourier transform,
as in (63). This point appears when we consider the action of V,, in second
quantization

-1 [ . N

V= §/\Iﬁ(r’) Ft(r) Vo [xy(r)qf(r’)] &3r a3 (66)
where ¥(r) is the field operator which destroys a particle at point . The
expression of this operator on the plane wave basis is written:

9r) = 2 S (67)
k

If we insert this expression in (66) and permute the action of V,,, and the
summation on k, we get

S g
V= 5L Z a,1+qa£,_qak/ak. (68)
k.k'.q

This is exactly the form that we would have deduced from the general

expression
1 -
2L3 Z Va achJrq GL/*q U’ A (69)

k.k'.q
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by taking V, = g for any moment g, which in fact corresponds to the naive
contact potential g d(r) given in (58). By passing from (66) to (68), one
has omitted the subtle difference between V;,, and a pure contact potential,
which opens the way to divergences.

To eliminate these discrepancies, two strategies are possible. One can
forbid oneself from interchanging the action of V},, with any infinite sum
on k, and to work only with operators of the type (66) (Lee, Huang, et al.
1957). The other approach, which is validated by a treatment using the
renormalization group (Braaten, Kusunoki, et al. 2008), consists in carry-
ing out the calculations with the "plane wave'" expression of V,,, [i.e. the
expression (68)] while watching for the appearance of divergent terms of

the form )
g g
73 ,;)k:? = @ /471' dk. (70)

These terms will "sign" the result of applying V,, to a function propor-
tional to 1/r, which in fact gives a zero result, and so they should simply
be subtracted from the final result:

g 1
73 > = 0 (71)
k0

More generally, let us recall that the pseudo-potential changes the do-
main of acceptable functions: for the two-body problem with a regular
interaction potential, the space of wave functions ¢ (r1,72) is composed
of the continuous functions of the two variables r1,r,. When we use the
pseudopotential to describe the interaction, the domain of the Hamilto-
nian is modified. It is now the set of functions satisfying the Bethe—Peierls
boundary condition, i.e. behaving as

r—0: U(ry,re) ~ (i - i) O(R) (72)
with
R=(r1+1r2)/2, =7 —"To (73)

This Bethe—Peierls boundary condition plays an important role in the
choice of test functions if one wishes to approach the problem by the vari-
ational method.
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3-3 Bogoliubov method for the pseudo-potential

Once the expression of the V operator describing the interaction between
particles is established, the Bogoliubov approach proceeds in the same way
as for a regular V (r) potential. We assume that the majority of the particles
occupy the condensed state k = 0 and we treat the operators ag and a/)
as classical numbers, neglecting their commutator. We then arrive at the
approximate Hamiltonian:

~ 1 N
H’zignN—i—H” (74)
and
" — Z [ex + gn] (aLak + aT_ka_k> + gn (aLaT_k + aka_k) (75)
pairs
{kv_k}

The dominant term of H is the constant energy $gnN : it is the mean field
energy calculated by assuming that all particles occupy the state k = 0.

The diagonalization of H” is done with the same canonical transforma-

tion as before, by, = upar + vkaT_ , With the coefficients (u, vx) given by

U = cosh \g v = sinh Ag, (76)

the auxiliary variable A\;, being defined by

sinh(20) = 25 cosh(2ry) = ETI" 77)
ﬁwk k
ie.
an 1

tanh(2Ar) gn+e, 1+ k2£2 (78)

where the healing length ¢ is given by

1 h

§= 79)

VRran _ 2mgn’
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Figure 4. The two domains of k values for the pseudo-potential.

The Hamiltonian H is written as a function of by, bL:

with  Awy = y/€2 + 2gneg (80)

The frequency wy, and the energy gn can also be put in the form:

gn = %ek (e4)"“ — 1) . (81)

H =" hwy blbi, + Eo
k#£0

hwk. = €L 62/\'“

In principle, the energy of the ground state can be deduced from the
previous general result:

1 1
AE = Z (2hwk - 2hw07;€> (82)
k#£0
which leads to:
2 1 1
Egina = 590N + 5 é (g — ek — gn) . (83)

We put a question mark on this last result, because we will see that it
presents in fact a divergence of the type (71), which we will have to erase
before giving the correct result to this order of the calculation.

Because of the zero range of this potential, there are only two domains
to consider for k instead of three (cf. figure 4) :

® The small £ domain, for which ¢}, < gn that is k{ < 1. It corresponds
to the phononic regime

with L n 1
c= — Uy =V N ———
k N 53T e

72 mé (8)

wg =~ ck
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* The domain of almost free particles, €, > gn, thatis k€ > 1, for which

1 1

mk;:jek +gn 8k4£47 U N 2k2§2

up ~ 1+ (85)

The calculation of the quantum depletion is unchanged from that of the
previous chapter. Indeed, the k states contributing to the depletion are
essentially such that £ < 1/¢ and their contribution is not affected by the
Vi. — Vj substitution. Thus we find:

1 8
n = — Z/UI% = — naB (86)

Note that the condition of validity of Bogoliubov’s approach, vna? <
1, ensures the hierarchy of length scales in the problem:

e < d=n"1? <« € (87)

The average distance between particles d must be large compared to the
scattering length a, but small compared to the healing length £ since

g =n"Y3V8ran = V8r(na®)V/® « 1. (88)

3-4 The energy of the ground state

Let us now return to the expression (83) of the energy of the ground state
which is put in the form

2 1 1 1/2
Eging = 5gnN + 5 Z {(ei + 2gnek,) /2 _ €x —gn| . (89)
k#0
At large values of k, the dominant terms in the argument of the sum are:
?n?  g3nd
2€, 26%

(90)

The first term oc 2, 1/ k? leads to the characteristic divergence we re-
ported in §3-2 and related to the fact that by switching to the plane wave
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basis, we identified V;,, to a pure contact potential [cf. 68]. Recall that this
term results from an abusive inversion of the action of V},, and the Fourier
series expansion of a function proportional to 1/r. As explained before, this
kind of term must simply be removed from the final result since V},,(1/7)
is in fact zero: )

9y =0 (91)

k#0

Once this subtraction is done, we find the expression for the energy shift
of the ground state under the effect of the pseudopotential:

2,2

1 1 9 1/2 gn
Egina = §gnN + 3 %:O [(% +2gne) T — e, —gn+ %,

92)

At large values of k, the dominant term in the argument of this sum is now

g>n3 1

26% O(ﬁ

which leads to a convergent three-dimensional integral on k.

(93)

In fact, the second member of the expression (92) is identical to the term
(49) obtained for a regular potential and the result of the calculation Er,py,
given in (52), is unchanged. Once the first term % gnN of (92) is added, we
arrive again at the result (13) announced in the introduction of this chapter.

The similarity between the results of the calculations carried out with a
regular potential or with the pseudo-potential should not, however, hide
an important subtlety of V;,;:

¢ Calculation for V (r) regular: The energy E” written in (40) is always
negative. To bring out the Born expansion of g, we added to the dom-
inant term inNV, = 1nNg®) the order 2 correction 1nNg®), a con-
tribution which we simultaneously subtracted from E”. This led to a
positive value for Er gy (recall that the correction g() is always nega-

tive):
Lty = Lanvo+ B
g"v o MO TS
<0
Loy o Lbonve® g L@
= 5”NVO+§HNQ +FE —inNg (94)
TgnN Erny>0
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e Calculation for V,,, : Starting from H’ = sgnN + H'",we arrived at the
energy:

1 1
—gnN — —gnN + Ergy . (95)
2 2 ——

>0

Taking into account H” for the pseudo-potential thus increases the
energy of the ground state instead of decreasing it, which seems to
constitute a violation of the variational theorem. The explanation of
this paradox lies in the change of the domain of the Hamiltonian when
passing from gnN to 1gnN + H". Since we are no longer working
in the same Hilbert space, the theorem in question no longer applies
and this increase in energy can occur. We refer the reader to the course
2020-21 (chapter 3), where this point is discussed in more detail with
the corresponding bibliographic references.

4 Measures of quantum depletion

In the previous sections, we have presented the Bogoliubov method, both
for a regular potential for which the Born expansion converges, and for the
pseudopotential. In the low density limit na® < 1, the quantum deple-
tion n’/n and the LHY energy take in both cases the same values, given
in (12) and in (13). In this section, we will discuss some measurements of
quantum depletion as well as related experiments, such as the observation
of correlated pairs of excitations. We will describe the measurements of
Erny in the next chapter.

4-1 The case of liquid helium

Measurements of quantum depletion, i.e. the fraction of atoms outside the
zero momentum component, have been conducted with remarkable accu-
racy on liquid helium. The most robust protocol uses inelastic neutron
scattering; it gives access to the dynamical structure factor S(k,w), where
hk and hw are the momentum and energy deposited by a neutron in the
fluid [see figure 5, taken from the original proposal by Hohenberg & Platz-
man (1966)].
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Figure 5. Inelastic scattering of neutrons by liquid helium. The analysis of the
distribution of scattered neutrons gives access to the momentum hk and the energy
hw transferred to the liquid. Figure extracted from Hohenberg & Platzman (1966).

To access the quantum depletion, the neutrons must be fast enough that
the wave number £ is larger than 1/d, where d is the average distance be-
tween atoms in the fluid. In this way, one does not probe the collective
properties of the fluid, but the properties of individual atoms, in particular
their momentum distribution n(p).

More precisely, we place ourselves in the regime of the impulse approx-
imation, where the duration of the neutron-atom scattering is sufficiently
short that we can, in a first approximation, neglect the interaction of the
atom with its neighbors during this time. We then have simply

(pir)?  (piY

2
fin ini )
pat pat + ) 2mat Qmat + ) ( )
from which we deduce
h2k2 ini | k
hw = oy Pat 18 97)
Qmat Mag

i.e. the sum of the recoil energy hwye. = h?k?/2m,; and a term describing
the Doppler effect related to the initial motion of the atom. The signal ob-
tained by measuring the momentum and energy of the scattered neutrons
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Figure 6. Expected signal (right) for two very different n(p) distributions (left).
See text for more details. Figure taken from Sokol (1995).

is written as

(98)

Mat

M) o [ i) |- ) - B

where we noted p = p'ii.

After passing in spherical coordinates and angular integration, we ar-

rive at
+o0

Iow) o J(¥) x [ pnp)dp (99)
Y]
where the variable Y is defined by
W — Wrec
Y = % (100)

A serious experimental difficulty comes from the fact that the signal J(Y")
obtained after integration on pn(p) masks to a large extent the desired ef-
fect, namely the presence of a very narrow peak at p = 0. We have plotted
on figure 6 an example from Sokol (1995) which shows on the left two very
different theoretical predictions for the same system, superfluid helium at
low temperature. One of the curves, obtained with a quantum Monte Carlo
approach, shows the narrow peak at p = 0 corresponding to a condensate;
the other curve, which results from a variational approach, is regular at
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Figure 7. J(Y') distributions measured in the superfluid case (T = 0.5K) and
in the normal case (T = 2.3 K). The difference in the center is explained by the
presence of a condensed fraction in the superfluid case. Figure extracted from
Glyde, Azuah, et al. (2000).

p = 0. The function J(Y) given in (99), shown on the middle panel still
allows to differentiate the two predictions. On the other hand, after convo-
lution by the experimental resolution and corrections taking into account
the interaction of the scattering atom with its neighbors, the predictions for
the two n(p) distributions become almost indistinguishable (right panel of
figure 6).

Nevertheless, one can finely analyze the experimentally measured J(Y)
curves to deduce the condensed fraction. The recent results of Glyde,
Azuah, et al. (2000) and Glyde, Diallo, et al. (2011) (see figure 7) lead in
the limit 7' — 0 to a condensed fraction ng/n = 7.25 (0.75)% at the saturat-
ing vapor pressure. We are thus very far from the limit of applicability of
the Bogoliubov method, which requires a condensed fraction ng/n close to
100%.
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Figure 8. Momentum distribution for the ground state of a Bose gas confined in a
box of length L = 50 um and diameter 60 pm. For a gas without interaction, we
expect an ideal condensate with a distribution limited simply by the Heisenberg
relation (blue colored area). For an interacting gas, additional wings on both sides
of the k = 0 momentum appear due to the quantum depletion (in orange). Figure
extracted from Lopes, Eigen, et al. (2017D).

4-2 Measurement on an atomic gas

Quantitative measurement of quantum depletion with cold atoms "suffers"
from an inverse problem of liquid helium. The atomic densities there are
low, less than 10!® atoms/cm?. With a typical scattering length a of the
order of a few nanometers, one arrives at na® of the order of 107°: the
non-condensed fraction is then less than 1%. To increase it and to be able
to measure it with a good precision, it is necessary to use either a local
increase of the density induced for example by an optical lattice (Xu, Liu, et
al. 2006), or to increase a thanks to a scattering resonance. We will describe
here this second strategy.

We are interested in the measurement made by the Cambridge group
(Lopes, Eigen, et al. 2017b) on a gas of potassium atoms (isotope 3°K) for
which a Fano-Feshbach resonance (magnetic field ~ 400G) allows to in-
crease the scattering length a up to about a hundred nanometers without
the atomic losses by inelastic collisions becoming troublesome. The gas is
confined in a cylindrical box potential (see figure 8). The gas is probed by

Bragg spectroscopy by illuminating it with two light beams of frequencies
and wave vectors wy, k1 and ws, k. By an absorption — stimulated emis-
sion process, one transfers the momentum 7ig = (ks — k1) and the energy
fw = h(we — w1) to the gas.

The gas is prepared in the equilibrium state corresponding to an inter-
action between atoms characterized by the scattering length «a. Just before
the Bragg spectroscopy measurement, the scattering length is suddenly
brought to 0, so that one obtains a gas without interaction, but with the
momentum distribution corresponding to a. As in the case of neutron scat-
tering by liquid helium, the atoms that are affected by Bragg spectroscopy
are those for which momentum and energy conservation are possible, i.e.
those of initial momentum p; and final momentum p; such that

P P2
p;=p;+hq LA S ) (101)
2m  2m
or by eliminating p,:
. ha?
Piq M _ gy, (102)
m 2m

In practice, the transferred momentum #gq is aligned with the axis of the
cylinder and we choose w = fig?/2m, so that the transfer will be done for
atoms of zero initial velocity along this axis. The non-transferred atoms
can have three origins:

® These are the atoms corresponding to the desired quantum depletion.

* These are atoms whose non-zero momentum comes from the finite
size of the box along the z direction: the Heisenberg inequality im-
poses indeed that the momentum distribution of the single particle
ground state along z is not a d(z), but rather a power function of a
cardinal sine.

¢ These are atoms corresponding to a thermal excitation. They play a
weak role, taking into account the extremely low temperature of the
gas (see the inset of figure 9).

After deconvolution of the different effects, Lopes, Eigen, et al. (2017b)
arrived at the result shown in Figure 9, giving the diffracted fraction n as a
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Figure 9. Maximum diffracted fraction by a Bragg pulse of frequency w =
hig?/2m. The linear fit corresponds to ng = 0.954(5) and v = 1.5(2). The
inset shows the result of numerical simulations, done at T = 0 (dashed line) and
for T between 3.5 and 5 nK, area colored in orange. Figure extracted from Lopes,
Eigen, et al. (2017b).

function of the scattering length. These data are well fitted by the function
n=mo (1 - Wna?’)

with v = 1.5 (2) in agreement with the prediction 8/(3/m) = 1.505. Further
analysis of the systematic effects in this experiment leads to a quantitative
confirmation of the prediction (56), with a statistical error of 15% and a
systematic error of 20 %.

(103)

4-3 Pairs of atoms in the Bogoliubov vacuum

An important prediction of the Bogoliubov approach is the correlation be-
tween particles of opposite momenta. This correlation originates in the
very form of the coupling involved in A, in ala,. As we pointed out
in our analysis of the two-mode system, these correlations appear in a
simultaneous measurement of the occupation numbers n; and ng of the
two modes in question: these two numbers are in principle always equal,

ny1 — ng = 0, even if the sum n; + ny can have a wide distribution.
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Figure 10. Left: time-of-flight experiment conducted on a Bose-Einstein conden-
sate of metastable helium atoms. For each realization of the experiment, we deduce
the v; velocities of the atoms. Right: Q) area (colored in green) selected for data
analysis. Figure extracted from Tenart, Hercé, et al. (2021).

Recently, Tenart, Hercé, et al. (2021) have succeeded in directly mea-
suring the correlation between these (k, —k) pairs [see also Cayla, Butera,
et al. (2020)]. The experiment is performed with helium atoms placed in
a metastable electronic state. The atoms are detected after time of flight
thanks to a microchannel plate with an efficiency of 53 %. This plate is
placed in the vacuum chamber, 45 cm under the condensate (time of flight
of 300ms). The impact of a metastable atom generates an electron pulse
that propagates on the surface of the plate; the very precise measurement
of the arrival times of this pulse on the plate periphery gives access to the
x,y coordinates and the ¢ time of the atom’s impact, which then allows to
trace the three components of the atom’s initial velocity.

For each realization of the experiment, one selects the detections outside
the peak corresponding to the condensate itself (green zone (2 of the figure
10, right). There are about 100 atoms and 0.5 correlated pairs in this area.
The experiment is reproduced 2000 times to obtain a significant average
for the correlation function

[ n(k)n(ok — k) dk
92 0k) = T8 ok — k) TF

where (...) means an average over the different realizations of the exper-
iment. With this definition, the pairs (k, —k) should appear as a peak in

(104)
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Figure 11. Correlation function g\®)(5k) measured along the three directions of
space, clearly highlighting the correlations between pairs of opposite momenta.
Figure extracted from Tenart, Hercé, et al. (2021).

0k = 0. Note that to increase the quantum depletion, Tenart, Hercé, et al.
(2021) have placed the atoms in an optical lattice, which has the effect of
concentrating the atoms at the minima of the potential and thus increasing

the effective density n, hence vna3.

An example of the result is shown in figure 11. The correlation peak in
dk = 0 appears clearly. This figure was obtained at very low temperature,
for a condensed fraction of 84%. Tenart, Hercé, et al. (2021) studied the
dependence of the height of this peak with temperature and showed that it
becomes almost undetectable when approaching the critical condensation
temperature. They also verified that its height varied as 1/pq, where the
density pq is defined by po = [, (n(k)) d®k; this is the expected depen-
dence if we assume a perfect correlation between n(k) and n(—k).
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Chapter IV

The ground state of the Bose gas :
LHY, excitation spectrum and quantum droplets

In this chapter we continue the study of the dilute Bose gas by look-
ing at both its ground state energy and its excitation spectrum. Thanks to
the Bogoliubov approach, we know the expression of the energy Ey of the
ground state for a gas of density n = N/L3:

Eo 1 128
20— Zgn? |1+ avVna® + ...
5~ 3 agn + avna® + 5y/r
where a is the scattering length characterizing the s wave interactions and
g = 4rwh*a/m. The dominant term gn?/2 represents the mean field term
and the following term is the LHY correction describing (at lowest order)

the effect of quantum fluctuations (Lee, Huang, et al. 1957).

with o=

~ 4.8, 1)

The expression (1) results from a quadratic approximation of the Hamil-
tonian with respect to the operators a;, and aL with k # 0, destroying and
creating a particle in a non-zero momentum state. This quadratic approx-
imation is valid when the quantum depletion n’/n = (N — Ny)/N giving
the fraction of atoms outside the k = 0 state is small. The Bogoliubov
approach allows to estimate this depletion:

n’ 8
—~ 3, 2
n 3y e @
The self-consistency condition of the Bogoliubov approach is thus written
Vnad < 1. 3)
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The excitation spectrum is deduced from the expression of the Hamilto-
nian after the canonical Bogoliubov transformations, which introduce new
bosonic operators by, bL:

H=FEo+ ) hwg blbr ()
k0
with for the pseudo-potential approach:

h2k?
hoog = [ex (e +20m)] 2, =5 5)

The action of bL on the Bogoliubov vacuum thus creates a quasiparticle of
momentum /k and energy hwy. The k dependence of wy, allows to identify
the characteristic value kg (see figure 1)

B
om

gn = ko= % = V8mna. 6)
For k < ko, we find the phononic regime wj, ~ ck, with the speed of sound
¢ = hko/v/2m. For k > ko, we find the free particle regime hwy, ~ €5, + gn.
Let us recall the origin of the energy shift gn in this regime: it must be
understood as the difference gn = 2gn — gn. The first term 2gn represents
the total interaction energy (direct term + exchange term) of the excited



CHAPITRE IV. GROUND STATE OF THE BOSE GAS

§0.

€ K gn € > gn

v
=

I
0 haw,, ~ hck ho, = €, + gn

phonons free particles

1

kozz

= /S

Figure 1. The two regimes of k values for the pseudo-potential in the Bogoliubov
approach. Another characteristic value of k, of the order of 1/a > ko, will appear
later. Moreover, for a potential of finite range b, the scale k ~ 1/b can also play an
important role (see Lecture 3).

particle of momentum hk with the condensate of density n ; the second
term corresponds to the initial energy gn of the particle when it is part of
the condensate (direct term).

This dispersion relation, plotted in figure 2, is obtained by assuming a
fluid of low density [cf. 3] and therefore does not allow the description of
strongly interacting systems such as liquid helium: in particular, it does
not contain its famous rofon-maxon structure plotted in figure 3. On the
other hand, it is in principle well adapted to the description of gaseous
Bose-Einstein condensates, at least as long as one does not get too close to
a scattering resonance.

In this chapter, we will first describe the experimental measurements
of the LHY energy made on dilute atomic gases. We will then move on
to measurements of the excitation spectrum: we will first present the now
classic results of Steinhauer, Ozeri, et al. (2002) which are very well de-
scribed by (5). These measurements were made in both the phonon regime
and the free particle regime, but always keeping ka < 1. We will then look
at more recent experiments conducted in Boulder (Papp, Pino, et al. 2008)
and Cambridge (Lopes, Eigen, et al. 2017a), which extended the measure-
ment range to the ka ~ 1 region, leading to notable deviations from (5).

The last part of this chapter will be devoted to the case of a mixture of
two quantum gases noted 1 and 2. Depending on the values of the three
interaction parameters g;; with 4, j = 1,2, this mixture can be miscible or
immiscible in the framework of the mean field theory. In particular, immis-
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Figure 2. Bogoliubov dispersion relation (5) in solid blue line with kg = 1/§ =
V8mna and ey, = h?k%/2m. The red dashed line corresponds to the phonon
regime. The purple dashed curve gives the dispersion relation of a free particle
ex = h2k?/2m.
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Figure 3. Excitation spectrum for superfluid liquid helium; the dotted line rep-
resents the experimental data of Donnelly, Donnelly, et al. (1981) and the points
with error bar the results of the quantum Monte Carlo calculation of Moroni,
Galli, et al. (1998). The dashed line is an upper bound obtained from the Feynman
approach. Figure taken from Pitaevskii & Stringari (2016).
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cibility occurs when the dispersion relation of the homogeneous mixture,
which generalizes (5), gives rise to complex frequencies w, leading to ex-
ponential divergences from a small initial perturbation. We will then see,
following the proposal of Petrov (2015), how it is possible to use LHY ef-
fects to stabilize this mixture in the form of quantum droplets.

1 LHY energy measurements

1-1 The three-body loss problem

The quantitative measurement of the LHY energy is not easy since it is by
definition (at least for a one-component gas) only a small correction to the
mean field energy. One could think of increasing experimentally its relative
contribution by momentarily increasing the scattering length o thanks to a
Feshbach resonance, even if it means giving up the Bogoliubov approach
to describe precisely the system. One could then take advantage of the fact
that Erpy grows as a®/? [cf. (1)] while the mean field energy only grows as
a.

Nevertheless, this increase of a cannot be done in practice up to arbi-
trarily large values. One is indeed limited by the three-body recombination
losses, whose rate varies as Ly ~ a'/m, to within a multiplicative factor,
in the vicinity of a scattering resonance (Fedichev, Reynolds, et al. 1996).
In this process, two of the atoms form a molecule of size ~ a and energy
~ —h?/ma?, with the third body carrying away the energy released dur-
ing the formation of the weakly bound dimer. This dimer can then relax
to a more strongly bound molecular state and escape from the confining
trap. For a reliable measurement of the LHY energy, it is necessary that
the increase of a is made only for a short duration 7, such that Lyn?r < 1,
thus ensuring that the density varies little during the measurement. But
the duration 7 must also be at least equal to the time it takes the system to
reach its equilibrium for the new value of q, typically //u. As an order of
magnitude, we can take here the value of the chemical potential given by
the mean field theory, 1 = gn. The conjunction of these two inequalities
leads to:

h 1
—<T< — = na’® < 1. 7)

12 L3n2
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At zero temperature!, the study of a Bose gas at equilibrium can only be
done for small values of na® (for a review, see Chevy & Salomon (2016)).
We now detail some of the lines that have been explored to highlight this
LHY energy.

1-2 Use of the breathing mode

This approach takes advantage of an important theoretical result estab-
lished by Pitaevskii & Rosch (1997). Consider a condensate described by
mean-field theory, confined in a two-dimensional isotropic harmonic trap
in the zy plane, (i) in the form of a disk or (ii) in the form of a very elon-
gated cigar of axis z. In both cases, the breathing mode in the xy plane
always has frequency wprea. = 2w, where w is the trap frequency. This re-
sult can be proved relatively simply by studying the evolution of (r?)(t)
from the Gross-Pitaevskii equation in 2D:

., 0y h?

1ha =5
whatever the value of the product Ng (¢ is normalized to unity). It was
verified experimentally for the first time by Chevy, Bretin, et al. (2001).

V3 + gNIgIPY + sy ®

Any deviation of whes. from the 2w frequency thus signals a beyond
mean-field contribution to the energy of the gas. This is the principle of the
experiment of Altmeyer, Ried], et al. (2007), carried out on a gas of 614, the
fermionic isotope of lithium. The authors prepared the gas in the vicinity of
a Feshbach resonance (834 G), on the a > 0 side of the resonance. To a first
approximation, the gas in its equilibrium state is then essentially formed of
6Li, dimers, bosonic molecules that form a Bose-Einstein condensate. This
gas is confined in a hybrid trap: the harmonic confinement in the zy plane
is ensured by a laser beam of wavelength 1030 nm and waist 54 ym. The
frequency w/2m is adjusted between 290 and 590 Hz by varying the power
of this laser. The confinement along the z axis is ensured by a magnetic
trap, of frequency w, /27 = 22.4Hz.

The excitation of the breathing mode is done by reducing the power of
the confining laser for a short time interval. The gas is then allowed to

1We will see in a later chapter that this condition can be relaxed at higher temperatures, in
the non-degenerate regime, and becomes n\3 < 1.
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Figure 4. Evolution of \/(r?)(t) (breathing mode) for a SLi gas (fermions) in
the neighborhood of a Feshbach resonance. The gas is prepared on the a > 0
side of the resonance so that the SLi atoms are present essentially as °Liy bosonic
molecules. The frequency (here 1185 Hz) is measured with a precision ~ 1073,
Figure extracted from Altmeyer, Riedl, et al. (2007).

oscillate in the trap for an adjustable amount of time before its radius is
measured. An example of the oscillation is shown in figure 4.

This experiment is repeated for different values of the scattering length
a and the ratio wprea. /w is plotted as a function of 1/a in figure 5. In the
molecular condensate regime (kra < 1), this ratio is notably above 2, and
the deviation from 2 is in good agreement with a numerical calculation
based on a quantum Monte Carlo approach (figure 5, top). Note that the
experimental data have been (slightly) corrected to take into account the
non-isotropy of the trap (~ 7 %) as well as its anharmonicity.

The fact that the gas is prepared in the vicinity of a Feshbach resonance
complicates the attribution of the non-zero value of wpyea. — 2w to LHY
effects alone. We have reported in figure 5 (bottom) an analysis made by
S. Nascimbene from the theoretical predictions of Stringari (2004). It shows
that for the values of 1/kra explored here, which remain relatively small,
one is still far from the prediction for a "simple" Bose-Einstein condensate.
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Figure 5. Top: Variation of f. = Whrea./w as a function of 1/kpa with kp =
(24m3w?w, N/ 53)1/ % The open (resp. full) disks were obtained with w /2 =
290 Hz (resp. 590 Hz). The black curve is the prediction of the mean field theory
and is compatible with a limit wyyea, = 2w in the limit kpa < 1, corresponding
to a weakly interacting molecular condensate. The red curve is a quantum Monte
Carlo calculation, taking into account the LHY corrections. Figure extracted from
Altmeyer, Riedl, et al. (2007). Bottom: same experimental data, with in dashed
line the contribution of the LHY effects only. The continuous curve is deduced
from the equation of state measured by Nascimbene, Navon, et al. (2010). Figure
adapted from S. Nascimbene’s thesis.
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Imaging/

beam

Figure 6. Measure of the equation of state P(y1) from the image of a gas confined in
a harmonic trap. Using the local density approximation, the pressure P is obtained
from [ n(xq,z2,x3) dzy das (cf. chapter 1).

1-3 Determination of the equation of state

We described in chapter 1 the measure of the equation of state of a gas
confined in a harmonic trap from its integrated density profile along two
spatial directions (Nascimbéne, Navon, et al. 2010) [see figure 6]. In chap-
ter 1, we were interested in the low phase space density limit and we de-
scribed how some coefficients of the virial expansion could be extracted
from these experiments. The same type of experiment allows one to study
the equation of state at very low temperature, in the strongly degenerate
regime.

Navon, Piatecki, et al. (2011) used a gas of ~ 60000 atoms of "Li (a
bosonic isotope of lithium) that they prepared to a "standard" value for
the scattering length, a ~ 10nm. They then modified the magnetic field
to approach a Fano-Feshbach resonance (B = 738G) and measured the
gas pressure for different values of a, ranging from 30 to 100nm. These
measurements are made at very low temperature so that the only ther-
modynamic variable relevant from a grand-canonical point of view is the
chemical potential y, which can be measured in units of the energy scale
h?/ma?.

The results for pressure, measured in units of P, = h?/ma®, are shown
in figure 7. The prediction of the mean field theory is P = gn?/2 and
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Figure 7. Equation of state for a "Li Bose gas: measurement of the pressure P as a
function of the chemical potential ji. Red solid and dashed lines: analytical predic-
tion including or not the LHY correction. Black line: numerical results obtained
by a quantum Monte Carlo method. The region colored in green delimits the un-
certainty zone related to the determination of a. Figure extracted from Navon,
Piatecki, et al. (2011).

p = gn [with g = 4wh%a/m], and it thus corresponds to the quadratic law
P = uz /2g. This prediction, indicated by the red dashed line, is clearly not
in agreement with the experimental results for larger values of p.

Quantum fluctuations are taken into account using the LHY result
given in (1) and the thermodynamic relations taken here at zero entropy
(ground state):

_ oF _1 9 § 3
P = — (aL?’)S’N = 59n <1—|— 20Nna —|—> )
oF 5
= — prg — 3
I <5N>57L3 gn <1—|—2a\/na —|—> (10)
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from which we deduce by elimination of na®:

P gg (1= a/ua’]s) a1

This LHY prediction, shown as a red solid line in figure 7, is in excellent
agreement with the data, as are the Monte Carlo results (black solid line)
obtained assuming a temperature T' < 7./4, where T is the condensation
temperature of the ideal gas.

1-4 Momentum distribution and kinetic energy

We now return to the momentum distribution deduced from the Bogoli-
ubov approximation and discuss the total kinetic energy derived from it.
For this analysis, we momentarily leave the pseudo-potential approach
and return to a regular interaction potential V' (r) of Fourier transform V}.

In the calculation of the quantum depletion (Chapter 3), we obtained
the value of the population 7, of each momentum state /ik:

. .
ﬁk:|’0k|2:§ M_l ’ (12)

\/ez + Qndek

from which we can deduce the kinetic energy

h2k?
Ekin = Z % k- (13)
k

The population 7, represents the momentum distribution of the gas, as it

can be measured in a time-of-flight experiment, if we abruptly switch off
the interaction potential at the beginning of the ballistic expansion.

For a regular potential, we explained in the previous chapter that one
can distinguish three domains for k, which we recall in figure 8 :

* The phonon domain, k < £, which leads to 71, oc 1/k€. These states
are thus highly populated without leading to a divergence of the quan-
tum depletion or the kinetic energy due to the Jacobian in k? dk which
appears in the 3D integration volume element.
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Figure 8. The three domains relevant to the k wavenumber.

* The intermediate domain £ < k < b~ !, in which the kinetic energy
term ¢, dominates the interaction term Vj,, but where we can still re-
place V;, by its value at the origin V. We then obtain a power law for
the momentum distribution:

~ n2‘~/02 7 C/LS

TS proa e with  C = (47a)?nN. (14)

This law in ¥~ is an important characteristic of interacting gases. We
will find it again when we study the formalism of the contact of Tan.

e The very large momentum domain, b~ < k. The decay of V}, then be-
comes significant and the momentum distribution decays faster than
in the intermediate domain:

V2

g o ITIZ (15)
This zone of very high momentum is absent for the pseudo-potential,
since the latter amounts to taking V}, constant equal to ¢ for all values
of k.

The faster than k=% decay of 7, is essential to ensure that the kinetic
energy of the gas takes a finite value. Indeed, in three dimensions, a mo-
mentum distribution varying like C'/k* up to infinity leads to a divergence
of the integral

B2k C RE:C

Such a divergence, which leads to an infinite kinetic energy, will occur if we
model V(r) as a contact potential since we will then have Vj, =V}, for all k.
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As the total energy Ep iy is finite, this means that the positive divergence
of the kinetic energy must be compensated by a negative divergence of
the interaction energy. This last point is easily verified; let us write the
interaction potential involved in the Bogoliubov Hamiltonian as

V =gn (N’+O) 17)
where N = 37, £0 azak is the operator number of particles outside k = 0
and )
= 5 Z ara_x + H.c. (18)
k#0

The divergence comes from the contribution of (O) which is written in the
Bogoliubov vacuum:

<O = —= Zukvk bkb ) +cc = Zukvk (19)

k;éo k£0

The argument of the sum indeed behaves like k=2 at large k, so that the
three-dimensional integral on k (with its Jacobian in 47k? dk) diverges. We
will come back to these two divergences of the kinetic energy and the po-
tential energy when we study the contact.

2 The excitation spectrum of a condensate

2-1 Summing the Born expansion

The diagonalization of the Bogoliubov Hamiltonian carried out in the pre-
vious chapters led us to the expression of the dispersion relation for the
elementary excitations of the gas. We treated two different cases: for a
regular potential in the Born approximation, we found

o \q1/2
regular potential (Born):  hwy, = [ek (ek + 2nd)} (20)

and for the pseudo-potential :

Arh?
with g= 22 1)
m

Pseudo-pot.: hwy = [ex (e + 2ng)]"/?
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Let us look at the first of these two relations, concerning the case of
a regular potential. We see that it involves the Fourier transform of the
potential k. If we restrict ourselves to momenta k£ small in front of 1/b,
where b is the range of the potential, we can use

2.(1
F< s Vkmffo:M (22)
b m

where a) is the scattering length, at order 1 of the Born expansion. Recall
that it is only legitimate to restrict to this first order if the scattering length
a is very small in front of the range b, i.e. + < 1. In fact, as we explained in
the previous chapter, it is possible to go further in Born’s expansion and to
sum the whole Born series (Beliaev 1958a; Beliaev 1958b). This requires go-
ing beyond the Bogoliubov Hamiltonian: to study the interaction between
an atom with momentum %k and an atom of the condensate with zero mo-
mentum, one must take into account the passage through a virtual state

where both atoms have momentum k1, ko with k = k1 + ko:
E,N—-1:0

— kyky,N—2:0 — kN—-1:0 (23)

which is only possible by the action of terms like azla;r62 axap for the first

arrow and a,tagaklakz for the second. These terms, which contain only

one operator ag or g/, have been neglected when restricting the N-body
Hamiltonian to its quadratic approximation.

Once this resummation is done, we arrive at an expression formally
identical to the one obtained in the case of the pseudopotential in (21). The
constraint ¢ < b has no more reason to exist if all the terms of the Born
expansion are taken into account (provided that this expansion converges,
of course) and we arrive for the regular potential at the same result as the
one obtained for the pseudo-potential:

[ex (e + 2ng)]1/2 ) (24)

1
B —
a

1
s E . hLUk- =
2-2 Measurement of the Bogoliubov spectrum

We will briefly describe here the quantitative measurement of the Bogoli-
ubov spectrum made by Steinhauer, Ozeri, et al. (2002) [see also course
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Figure 9. Left: Image of an atomic cloud after a Bragg pulse. The diffracted cloud
is moving in the x > 0 direction. Right: resonance curve. Both types of symbols
correspond to diffracted clouds moving in the x > 0 or x < 0 direction. Figure
extracted from Steinhauer, Ozeri, et al. (2002).

2016]. This experiment is based on Bragg spectroscopy, which we have
already described in the previous chapter. Recall that this experimental
technique consists in studying the linear response of the fluid to a probe
that can transfer a momentum 7q and an energy Aw. For cold atomic gases,
this probe is generally? formed by a pair of light beams of wave vectors
ki and ko, the atoms gaining momentum hg = (k1 — k2) and energy
fw = h(wi — ws) in an "absorption — stimulated emission" process.

Steinhauer, Ozeri, et al. (2002) worked with a rubidium 87 condensate,
and a pair of light beams whose angle varies between 3 and 130 degrees,
which corresponds to ¢ between 0.4 and 15 yum~!. The healing length is
& ~ 0.25 um, so that ¢ varies between 0.1 (phonon regime) and 4 (free
particle regime). A typical example of the result is shown in figure 9 for
q = 2.8 um~!. This image taken after a time of flight clearly shows the
(small) fraction of atoms excited by the light pulse, on the right side of the
condensate.

If we assume that the observed signal corresponds to the creation of
a single elementary excitation for each elementary Bragg process (we will
come back to this assumption later), the resonance curve of these processes
gives direct access to the desired dispersion relation w,. The results are
presented in figure 10. The agreement with Bogoliubov’s prediction (24) is
remarkable, both in the phononic and in the free particle regime.

2For another type of probe, however, see Guarrera, Wiirtz, et al. (2011)
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(k)2 (kHz)

Figure 10. Excitation spectrum measured by Bragg spectroscopy. The solid curve
shows the prediction (24) for the Bogoliubov spectrum. Figure extracted from
Steinhauer, Ozeri, et al. (2002).

One may wonder about the effect of the LHY terms on this excitation
spectrum:

¢ In the phononic case, these effects will modify the speed of sound in
the condensate. Let us start from the general relation

-5,

where the derivative is taken at constant entropy, i.e. for the ground
state in the case of interest here. The pressure P was given in (9) and

we deduce:
_ /gn 8 3
C—\/—m [1—}—\/%\/71(1 —|—] (26)

This result coincides with the one found by Beliaev by the method of
Green’s functions [see also Mohling & Sirlin (1960)].
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¢ In the free particle regime k{ > 1 (but ka < 1), Mohling & Sirlin
(1960) write the dispersion relation of an excitation in the form

Tl k<at: hw(k) = e + 2gn — p, (27)
where 4 is the chemical potential of the condensate given in (10). The
physical interpretation of (27) is in line with that proposed above in
this regime: this relation represents the difference between the energy
of the particle in its final state, ¢, + 2¢gn, unmodified by terms beyond
the mean field at this order of the calculation®, and the energy required
to extract a particle from the condensate, i.e. the chemical potential .

For each of these two regimes, phonon and free particle, it seems diffi-
cult to detect beyond mean-field effects in a weakly interacting Bose gas,
given the present accuracy of the measurements.

2-3 Boulder and Cambridge experiments: ¢ = 1/a

Using rubidium 85 and potassium 39, respectively, Papp, Pino, et al. (2008)
and Lopes, Eigen, et al. (2017a) have extended the measurement of the
response of a condensate by Bragg spectroscopy to much larger values of
qa, taking advantage of the existence of a Feshbach resonance for these
atomic species.

The results of Papp, Pino, et al. (2008) are shown in figure 11. The top
figure shows the deviation hw, — ¢, as a function of the scattering length
a. In the g€ > 1 regime, the Bogoliubov spectrum (24) predicts fuw, — ¢4 =
gn, i.e. a linear variation of this gap with a, which is not consistent with
observations.

This type of experiment was repeated over a wider range of ¢a values
by Lopes, Eigen, et al. (2017a). In this experiment, three values of ¢ were
used, corresponding to three possible relative orientations of the k; and ko
vectors. An example of resonance is shown in figure 12. The results for
different values of a and ¢ are grouped together? in figure 13. The plotted

3This can be understood by noting that the domain contributing to the integral for the
LHY correctionis k < 1/¢€.
4For this data set, the maximum value of the small parameter v'na? is about 0.05.
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Figure 11. Top: Bragg spectroscopy of a ®°Rb condensate, showing the reso-
nance frequency wies/2m measured after subtraction of the "one particle” fre-
quency eq/h. The open symbols correspond to the direct measurements and the
closed symbols are the corrected data, once the contribution of the thermal part of
the cloud is taken into account. The lines correspond to different theoretical mod-
els. Bottom: width of the Bragg resonance giving access, at least qualitatively, to
the lifetime of the excitations. Fiqure extracted from Papp, Pino, et al. (2008).

quantity is
a=ga —=2 1 (28)
gn
and the experimental results are remarkably well fitted by the law:

a=qa (1 — %qa) , (29)

which leads to a cancellation of o in ga = 4/ ~ 1.3. At this point, the
resonance frequency for the Bragg process is equal to the single atom fre-
quency, ¢,/ h.

We will explain the rationale for this choice of the quadratic law (29) in
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(a) i

0
Aw / 27 (kHz)

Figure 12. Left: Image of a cloud of 3°K atoms after Bragg spectroscopy. The
cloud at the bottom of the figure corresponds to the initial condensate. The smaller
cloud at the top of the figure corresponds to the diffracted atoms, having gained
the momentum hq. Right: Example of a resonance curve allowing to determine
wres(q). The dashed line gives the position of the "bare” resonance: hw = ¢,.
Figure taken from Lopes, Eigen, et al. (2017a).

§2-5, but note that it is not compatible with the Bogoliubov single-particle
excitation spectrum (24), which predicts iw, = €, + gn, and thus the linear
law o = qa plotted as a dashed straight line on figure 13.

2-4 Back to Beliaev’s approach

A first clue to explain the experimental results of Boulder and Cambridge
is provided by Beliaev’s approach, which has recently been generalized
to an arbitrary value of na® by Hofmann & Zwerger (2017) using the OPE
(Operator Product Expansion) technique. We will give here some elements to
explore this track, to conclude that it cannot alone explain the experimental
results.

In his article already quoted above, Beliaev (1958b) explains how to take
into account at all orders in V' the interaction between the elementary exci-
tation of momentum %k and an atom of the condensate at zero momentum.
The result of this resummation of the Born expansion is expressed in terms
of the scattering amplitude f(k,) between the two partners, with the rela-
tive momentum k, = k/2. Assuming that a is large in front of the effective
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Figure 13. Positions wi.s(q) of the resonances as a function of ga for three different
values of q, with « defined in (28). The solid line represents the prediction (29)
based on Feynman'’s formula (cf. §,2-5). The straight dashed line represents the
prediction for an elementary Bogoliubov excitation o = qa. Figure taken from
Lopes, Eigen, et al. (2017a).

range, we have [cf. course 2021]:

—a

flhe) ™ o Tha (30)

At low energy, k < 1/a and we find f(k,) = —a, which leads to the
Bogoliubov spectrum given in (24). On the other hand, when k, becomes
comparable to 1/a, the corrections related to the denominator of (30) be-
come significant. Beliaev shows that the excitation spectrum is related to
the real part of f(k,) which is modified as:

—a

Rel[f(0)] = —a  — = T a3

Re[f(kr)] (1)

More precisely, the energy balance already mentioned in the regime ® k¢ >

5We will not give here the general expression found by Beliaev (1958b) [cf. eq. (4.7) of this
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1 becomes:

2
hwi = (e, +2gn) —gn = — hwk_<€k+ I )gn (32)

1+ (ka/2)?

This prediction constitutes a significant deviation from the Bogoliubov
dispersion relation (24). In particular, we see that the difference hwy — €
can now cancel and change sign. However, the point of cancellation does
not correspond to what was measured in Cambridge: according to (32), it
should occur for ka = 2, whereas it is found experimentally around ka =
1.3. The same kind of disagreement occurs when one tries to fit the data
of the Boulder experiment with the result (32) [see Hofmann & Zwerger
(2017)].

Lifetime of the excitations. The Beliaev analysis also allows to calculate
the lifetime of an elementary excitation from the imaginary part of the scat-
tering amplitude (30). This lifetime corresponds to a process in which an
excitation decays into two excitations of lower energy. In the free particle
regime, this can correspond simply to the elastic collision process between
the particle with momentum ik and an atom of the condensate

(hk) + (0) — (hkq) + (hk2) (33)

with |k1], |k2| < |k|. The result of these s-wave collisions is clearly visible
in figure 12 and it leads to the lifetime (Mohling & Sirlin 1960; Hofmann &
Zwerger 2017):

hkriﬂ

1)<k S1/acx .

71~ n(8ma?) ka. (34)
We note that to have a measurement of the resonance with an accuracy
at least equal to gn (necessary to discriminate between 7wy and ¢), the
measurement time must be at least equal to //gn, which is comparable to
the lifetime 7 of an excitation when ka ~ 1. An accurate description of the
Bragg measurement process in the high energy regime should therefore
take into account this finite lifetime.

article]. Ronen (2009) has studied in detail how to adapt this general result to the case of a
van der Waals interaction potential between atoms [see also Hofmann & Zwerger (2017)].
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2-5 The Feynman Formula

Feynman (1954) developed a powerful approach to study the excitation
spectrum of interest here. This approach provides the center of gravity of
the absorption line:

fjoo wI'(g,w) dw

w(q) = —= 35
S g o >
by putting it in the form
€
hio(q) = = 36
(9) () (36)

with as always €, = h?¢?/2m and the static structure factor S(q) given by:

ﬂ@:1+n/wxm—ue”*@r (37)

The spatial correlation function g,(r) gives the probability density to find
two particles separated by the distance r within the fluid. It is calculated
from:

02(r) = — (BT (0) BT () () B(0)). (38)

T2
n
This function characterizes the density fluctuations of the fluid, in partic-

ular a possible bunching or antibunching of particles, and it is normalized
so that it tends to 1 when r — oco.

The proof of Feynman'’s formula for the problem we are interested in is
detailed in the appendix of this chapter. We indicate here the main ingre-
dients. We consider a quantum fluid with N particles which is subjected
to a time-dependent, monochromatic perturbation:

V(t)=VH e L He. (39)

where the operator V(*) transfers the momentum /q to one of the particles
of the fluid:

N
V) = hr Y e, (40)

j=1
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At the lowest order of perturbation theory, one can use Fermi’s golden rule
to evaluate the probability per unit time I'(g,w) for the fluid to absorb a
quantum of momentum 7q and energy /iw. The calculation of the numera-
tor of (35) gives then the exact result

hg?

N(q) = 2mk*N —

L, (41)

a result in which the interaction strength does not contribute®. The denom-
inator is written :
D(q) = 27x*N S(q) (42)

hence the expression (36) for @(q).

The determination of the structure factor S(q) requires the knowledge
of the function g, (r), which has been computed by Lee, Huang, et al. (1957)
in the framework of the Bogoliubov approach. This calculation is also de-
tailed in the appendix and we will just give here the behavior of g»(r) in
the neighborhood of r = @, since it is the value of S(gq) for ¢ ~ 1/a that
interests us. Lee, Huang, et al. (1957) find for small r:

an 2
r<: @) =(1-2) + 0/ (43)
When we expand the square to form the quantity g»(r) — 1, we find the
dominant terms —2a/r and a?/r? whose Fourier transforms are respec-
tively proportional to —1/¢? and 1/q. We then arrive at the structure factor
(cf. appendix):

1 272na

2 1 7

g€ >1:

It only remains to inject this result into the Feynman formula (36) to
deduce the center of gravity of the line:

) 1
€>1:  hilg) ~ e, {1 +om (1 _ an)} . (45)

6This result is known as the f-sum rule or Thomas—Reiche—Kuln relation. This terminology
comes from atomic physics and deals with the algebraic sum of the oscillator forces (noted f)
of electronic transitions — absorption or emission of photons — in an atom.
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This result is the one drawn as a solid line on figure 13 giving the results of
the experiment of Lopes, Eigen, et al. (2017a):

WAY) =€ _ qa (1 - %qa) . (46)

and it seems in excellent agreement with the experimental data.

2-6 Problem solved?

At first sight, the agreement between the experimental data and the pre-
diction (45) from the Feynman formula seems to solve the problem of the
interpretation of the experimental data from Boulder and Cambridge. But
a closer look reveals that the situation is not so clear.

A first question that arises is to connect Feynman'’s result with the spec-
trum (32) predicted by the Beliaev approach. Since the spectrum (32) con-
cerns the dispersion relation of an elementary excitation while the Feyn-
man result concerns the center of gravity of the line, the discrepancy be-
tween the two predictions is possible but it deserves to be explained. To
do this, the simplest way is to return to the V(+) operator which describes
the excitation of the system during the Bragg diffraction. This operator is
given in (40) and it is written in second quantization:

V) = hk Z aL+qak. (47)
k

When we rewrite the operators ay, a,Tc as a function of the operators a¢ ~
a} ~ /Ny and of the operators by, ka for k # 0, the following terms appear
at the same order in hix

* A dominant term, proportional to v N, corresponding to the creation
of a single ¢ momentum excitation with /w, energy.

* A second term corresponding to the creation of a pair of excitations
(k1, k2), of total momentum k; + k2 = q.

This single and double excitation structure is described in detail by Grif-
fin (1993). For the problem of interest here, we deduce the form of I'(g, w):
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Figure 14. Generic form of the two-component spectrum expected in an analysis
of the Bragg diffraction process using Fermi’s golden rule.

I'(q,w) =TW(q,w) + T (q,w), (48)

where T'!) is a narrow peak, centered on the frequency w, of an elementary
excitation and T'® corresponds to a much wider pedestal. A (schematic!)
representation of this spectrum is given in figure 14, the Feynman formula
corresponding to the center of gravity of the sum of these two components.

It remains to be understood why the Boulder and Cambridge experi-
ments would be sensitive to the center of gravity of this double-structured
line, rather than to the central peak. As far as we know, this question is
open’. The problem of the interpretation of the experimental results is
made even more complex by the fact that this separation between single
and double excitation processes is not necessarily relevant on a practical
level: we have indeed seen that over the duration of the experiment, an
elementary excitation has a quite significant probability of decaying into

two excitations of lower energy...

7] thank Johannes Hoffmann, Raphael Lopes and Willi Zwerger for the numerous ex-
changes on this subject.
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3 Quantum mixtures and droplets

3-1 Position of the problem

In the experiments that we just described, the LHY energy was a small
correction to the dominant mean-field energy and it had very little effect
on the equilibrium form of the gas in its ground state. This is of course
due to the na® < 1 validity criterion of the LHY calculation. As explained
above [cf. (7)], this criterion is unavoidable when one takes into account
the necessity to reach thermal equilibrium in a sufficiently short time for
the three-body losses to be negligible. Despite this constraint, we wish to
address here the following question: are there situations where the LHY
energy, despite the smallness of na?, plays a determining role in the equi-
librium and in the dynamics of the gas?

Since the LHY contribution cannot be brought to a "standard" value of
the mean field energy gn, the other option to make the two terms compa-
rable is to lower the mean field energy. This is the idea put forward by
Petrov (2015), and based on a mixture of two fluids. The principle is to
start from a situation where the mean field energy for each of the fluids
taken separately is positive (intra-species repulsion), while the mean field
energy describing the interaction between the two fluids is negative (intra-
species attraction). We can then reach a regime where the sum of the mean
field energies is almost zero: the LHY energy becomes decisive to calculate
the equilibrium shape of the fluid. We will see that this equilibrium cor-
responds to a "liquid" state, with a density independent of the number of
particles. We thus speak about quantum droplets.

Another method to lower the mean field energy to the level of LHY en-
ergy appeared almost simultaneously to the proposal of Petrov (2015). It
amounts to adding an additional term to the mean field and LHY energies
describing the s-wave interactions, this term coming from the magnetic
dipole-dipole interaction. This approach has been pursued experimentally
by the Stuttgart (Ferrier-Barbut, Kadau, et al. 2016; Schmitt, Wenzel, et
al. 2016) and Innsbruck (Chomaz, Baier, et al. 2016) groups. These stud-
ies then led to the observation of supersolid states in these two groups
(Bottcher, Schmidt, et al. 2019; Chomaz, Petter, et al. 2019) and in Florence
(Tanzi, Lucioni, et al. 2019). We refer interested readers to recent review
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articles by Ferrier-Barbut (2019) and Bottcher, Schmidyt, et al. (2021).

3-2 Mean-field stability of a binary mixture

In the following we will focus on the proposal of Petrov (2015), which is
based on a binary mixture of two quantum fluids. We start by discussing
the stability of such a mixture at the mean field level. We denote 1 and 2
the two components of the mixture, which can correspond to two different
atomic species of mass m; and my, or to the same atomic species but with
two different internal states. We denote g1 and gs2 the intra-species mean
field interaction parameters and g7 the inter-species coupling. We will
take m; = my for simplicity.

We will assume that the couplings g1 and g2 are positive, i.e. that each
component taken separately is stable. On the other hand, we do not make
any assumption at this stage about g12. We will see later that the favorable
situation corresponds to the case where g, is negative and approximately

equal to —(g11922)"/2.

We will look at the stability of the mixture according to two criteria:

* There must be no demixing, i.e. the energy of the mixture must be
lower than the energy of the system with separate phases.

¢ The system must be stable, i.e. it must not collapse on itself.

Let’s start by evaluating the energy of the phase with demixing, where
the species i occupies a volume V;, with V; + V5, = V where V is the total
accessible volume. We have
N2 N2
21 + 92257 2,
where we have neglected the (non-extensive) energy resulting from the
surface tension between the two phases. The minimization of this energy
with respect to V; (at constant total volume V') leads to the equilibrium of
pressures % gnnf = % g22n§ and we arrive at the minimal energy of this
separated phase:

Edemix 91157, (49)

N2 .7\72 N1 Ny
2V+9222V V911922 v (50)

Edemix g11

collapse homogeneous mixture non miscible

| | gi2

—v/911922 +4/911922

Figure 15. The three possible scenarios according to the value of gi2.

Let us now consider the mixed phase, where each species occupies the
entire accessible volume V. Its mean-field energy is
N? N2

gnﬁ + 922 e

N1N2

Emix
\%4

+ g12 (51)

The comparison with the energy of the separated phase (50) immediately
gives the criterion:

Miscibility if: g1 < V/gr1922 | (52)

Let us now look at the stability of this mixed phase. For any pair N1, Ny,
the energy (51) must be positive. If it were not the case, we could lower the
energy (i.e. make it tend towards —oo) by taking a volume V' — 0, which
corresponds to a collapse of the system on itself. By rewriting the energy
FE iy in the form

Emix =

1 1
o7 (V911 N1 — /922 N2)2 + v (V911922 + g12) N1No, (53)

we see that the energy will always be positive if and only if

— V911922 < 912‘ (54)

| Stability if:

To continue the analysis, let us place ourselves for simplicity on the
"minimizing" line which cancels the first term of (53), that is with atom
numbers N; and N5 chosen such that:

VITN = Vim Ny e Ny =N—YI2 oy oy Vi
\/9T+\/97 V1L + /922
(55)
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The mean field energy is then written (Petrov 2015):

1. N2
Ehix = 5597 (56)
with
09 =2 (V911922 + 912) g11922 (57)

(var + vom)”

If we choose g12 very close to —,/g11922 (i.e. just at the edge of the collapse
boundary of the figure 15), the parameter dg is small. The energy (56) thus
has the structure of a? mean field energy for a one-component gas, but
with a value of the coupling coefficient dg very reduced compared to the
initial systems 1 and 2. This is precisely the effect we are looking for in
order for the LHY energy to play a decisive role.

We can extend this study by calculating the excitation spectrum of the
homogeneous mixture. Let us assume that gi1 = g22 = gand N; = N> to
simplify the writing of the result. Timmermans (1998) obtains in this case
the two excitation branches:

wi(k) = w?(k) £ |’;2|62k2 (58)

where ¢ denotes the speed of sound in each of the condensates taken sep-
arately. These two branches correspond to the excitation of total density
waves (n1 + ng oscillation) and of "spin” waves (n; — ny oscillation). In the
low k& limit, we find two linear branches

-~ 9121\ /2
wy (k) = ck <1 + g) , (59)
which are both real if and only the stability criterion (54) is satisfied. When
this is not the case, the expression (58) allows to determine the k wavenum-
ber which leads to the largest imaginary part of wy (k), and thus to the
maximal instability.

3-3 LHY energy for a mixture

The LHY energy for a mixture has been calculated by Larsen (1963) and
Minardi, Ancilotto, et al. (2019). In the homonuclear case m; = ms, this
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energy is written:

8V m3/? 5/2 < 9t 922712)
Py = —— 2 (gun _Ji2 92272 60
LAY = 9502 73 (g1171) / g11922 G111 (60)

where the dimensionless function f(z,y) defined by
1 5/2
f@.y) = 557 2 |1y VL —y)? +day (61)
£

is in practice of order unity. In the vicinity of the instability point g;» =
—/g11922, we have z = 1 so that this energy is written:

8 m3/? (911 N1 + 922N2)5/2
g12 & —/g11922 1572 13 V372 . (62)

Erny =

For a mixture in the proportion Na/N1 = \/g11/g22 defined in (55), this
energy simplifies to

8 m3? (gN)**
15m2 K3 V32

with g = /911922 (63)

Erny =

that is, the LHY energy of a gas with a coupling constant g [cf. (1)]. The
LHY energy is therefore not significantly reduced in the vicinity of the in-
stability point g12 = —,/g11922, unlike the mean field energy (56).

3-4 Droplet stabilization

To form an edifice stabilized by LHY energy, Petrov (2015) suggested ad-
justing the value of the interspecies coupling g2 in the vicinity of the col-
lapse zone in figure 15, more precisely inside the unstable region. If it were
alone, the mean field energy (56) would then lead to a collapse of the gas
on itself, since dg is negative. Two terms may oppose this collapse. To es-
timate them, let us note V' = ¢2 the effective volume occupied by the fluid
at equilibrium. These two terms are

* The kinetic energy term

Nh? Nh?
Elan & 2ml2  2mV2/3 (64
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This single-particle contribution corresponds to the energy needed to
confine an atom in a domain of size ¢;

e The LHY term calculated in (63).

Both of these positive contributions increase as the cloud contracts and
thus can effectively counterbalance the mean field term.

To simplify the discussion, we will review the separate action of each of
these two terms against the mean field term. If only the kinetic energy and
the mean field term are considered, the equilibrium volume of the fluid V/
must minimize

NR®  |ég|N?

T omVeE oy (65)

Eyingmr (V)

This function of V' is plotted in figure 16 and the stationary point that ap-
pears is clearly unstable for our three dimensional problem®. The desired
equilibrium can therefore not occur in practice.

If only the LHY term and the mean field term are considered, the equi-
librium volume must minimize

m?/? (gN)*?  |5g|N? 8

wooveE v W T

Ernymr(V) =7 (66)
This function is plotted in figure 17 and it leads to a stable minimum: the
LHY energy can thus effectively prevent the collapse of the gas on itself
that the mean field tends to cause. More precisely, we find that this mini-
mum corresponds to a density n = N/V given by (up to a numerical coef-

ficient):
2 2
n @ ~ <59|> with g = 2@ (67)
g m
We arrive at the following important result: the equilibrium volume is such
that the density within the droplet n = N/V is independent of the number
of atoms. This corresponds to the definition of a liquid, i.e. a state that
is both fluid and almost incompressible [this last point is confirmed by

8The situation would be different in 1D where the mean field term would vary as
—|8g|N?2/2¢. We would then find the well known situation which leads to the formation
of solitons. The transition between the soliton regime and the droplet regime is discussed by
Cheiney, Cabrera, et al. (2018).
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E(V)

-1/v

Figure 16. Competition between the mean field term (56) and the kinetic energy
term (64) for a 3D cloud. The equilibrium indicated by the arrow is unstable.

EV)[

1/V7?

-1/V

Figure 17. Competition between the mean field term (56) and the LHY term (63).
The equilibrium indicated by the arrow is stable.
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droplet g & -4 @ $ *

Figure 18. Evolution of a 3°K gas in free space for a mixture of the two hyperfine
states |F' = 1,m = 0) and |F = 1,m = —1). Top row: expansion (gas regime)
obtained for |0g| very small, with the kinetic energy playing a significant role;
bottom row: droplet regime obtained for |dg| larger and resulting essentially from
the competition between mean field energy and LHY energy. The images are taken
att =0,2,...,10ms. The initial number of atoms in the droplet is of the order
of 200 000 and the r.m.s. size of the order of 2pum. The ratio N1/Ns, on the order
of 0.7, is in good agreement with the theoretical prediction. Figure taken from
Semeghini, Ferioli, et al. (2018).

the study of the vibration modes of the droplet (Petrov 2015)]. We note
moreover that this density satisfies the validity criterion of the Bogoliubov
approximation na® < 1, if we take care to keep |dg| small in front of the
typical value g of the coupling coefficient.

In practice, it is of course appropriate to consider simultaneously the
kinetic energy and the LHY contribution to quantitatively study the com-
petition with the negative mean field energy. However, for large numbers
of atoms, kinetic energy plays a small role and the prediction (67) can be
used as a good approximation.

We will not describe here the experimental observation of these droplets
since this subject will be detailed in the seminar and workshop of April 15.
Let us just mention that these droplets have been observed in absence of
confinement by Semeghini, Ferioli, et al. (2018) in Florence and Guo, Jia, et
al. (2021) in Beijing. The experiments of Taruell’s group in Barcelona have
been performed in a one- or two-dimensional confinement (Cabrera, Tanzi,
et al. 2018; Cheiney, Cabrera, et al. 2018). An example of a result from the
Florence group is shown in figure 18.
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Appendix

Demonstration of the Feynman relation

We start with the time-dependent perturbation V(t) = V() e~ + H.c.
which probes the density of the fluid at a particular wave vector g:

V) = hg / A(r)el ™ d3r (68)

where the operator 7i(r) is associated with the spatial density in 7 : 7i(r) =

Zj'vzl 6 (r—

7). The operator V(1) is therefore:

V) = hk Zeiq'i‘j. (69)
J

The probability per unit of time to excite the system assuming that it is
initially in its ground state |1)g) is given by the Fermi golden rule:

Dlg.w) = 20 S|V Okl 68— By —hw)  (70)
I

and we define the average frequency w as

o [TTwl(qw) de  N(q)
)= ST dw Dl 71)

where in fact only the positive frequencies contribute to I since the system
is initially in its ground state.

Calculation of the numerator AV'(¢). The integral over w is written:

2

N(@) = T3> wolV Ny (s [V o) (Bf — Eo)

= 22 Wl VOlwg) (ol [H,VD)] o) 72)
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which gives

Na) = 22wl VO [B,70)] [yo)
= Bl [H,70] VO o) 73)

Because of the isotropy of the system, the result for N (q) is equal to that
for N (fq)A. Since the substitution g — —g corresponds to the exchange of
V) and V(-), we deduce that \'(q) is equal to

Niq) = 35 (ol [V, [, 7] | o) 74)

The Hamiltonian of the gas is written:

A2
g P 5
H_zj:2m + 2;1;(%). (75)

Therefore, only the kinetic energy term has a nonzero commutator with the
operators V(). We find:

U

) - &

~ ig-7; hQ ~ iq-7 ig-v: =~
(B0 ] = 5, 2o (by 0T 4 ) (76)
j j
and
o) [ @] < P e
VOO = 2 N @7)
so that we finally obtain (41).

The link with the Thomas—Reiche-Kuhn relation in atomic physics is
made by choosing for simplicity an atom with only one outer electron. For
this electron, of position # and mass m, we find for an energy eigenstate
m):

2
Z(E" - Em) ‘<n|i“m>‘2 = L

 2m

(78)

n

The proof is similar to the above, with the operators V (*) replaced by .

78

Calculation of the denominator D(q)

The integral over w gives :

Dla) = o5 S olV Ok (17 o)
f
= %@/}0\ V) V) )
= 2K’ (N + Z<wo|ei““j>|wo>) (79)
i)
which leads to (42).

The spatial correlation function g,(r)

The calculation of the g»(r) function for the ground state of the Bose gas
was carried out in detail in the original article by Lee, Huang, et al. (1957).
We simply reproduce here the main lines of this calculation, which is a bit
tedious but without noticeable difficulty. Different aspects of the behav-
ior of the function g2(r) have been analyzed in the more recent articles of
Naraschewski & Glauber (1999) and Holzmann & Castin (1999).

The correlation function g, is written as the square of the norm of a
vector:

920) = — [ 0(r)§(0)|0) (50)

where |05) denotes the ground state of the gas, i.e. the vacuum of Bogoli-
ubov excitations. Let us replace the field operators ¥(0) and ¥(r) by their
expression in terms of the creation and destruction operators of elementary
excitations

1 -
U(r) = \/ﬁoJrﬁZelk .

k40

Vg + \/% > e (uby — vidl ) (81)

k0

We then see that the vector entering in (80) can contain 0, 1 or 2 Bogoliubov
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excitations:

U(r)¥(0)|0g) = (ﬂo - % Zukvk e_ik'r) 05)

k£0

B ﬁ: > ok (L+e77) 1)

k#£0
1 . "
= 3w (TR L) (82)

pairs k,k’

We obtain the correlation function’
!

g(r) = D+FEP+1+G0)P -1-22[F()+G0)]  ©63)
= 14222 [F(r) + G(r)) + F2(r) + G2(r) (84)

where we have adopted the same notations as Lee, Huang, et al. (1957):

1 ; 1 .
F(r)= N Z vi eF T G(r)= N Z upvy e*7. (85)
k+£0 k0

Asymptotic behaviors. Lee, Huang, et al. (1957) give the short and long
range expansions of the functions /" and G. In the neighborhood of r = 0,
they find:

<& P~ ar~-21 Svnd (86)
r : r)~ r) - NG na
which leads to
a2
r<gs g =(1-2) +0/e). (87)
At large distances, Lee, Huang, et al. (1957) find:
1 1
P> € F(r) ~=G(r) ~ 55— ] (88)
which leads to
r> € g2(r) =14+ 0 (T_4) . (89)

Note that the corresponding equation of the article of Lee, Huang, et al. (1957) contains
a term 4n’/n instead of 2n’/n in factor of the last term of (83). This error was reported by
Garcia-Colin (1960).
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The structure factor S(q)

Once the function g, is known, we calculate the Fourier transform of
g2(r) — 1 to determine S(¢) which intervenes directly in the Feynman for-
mula. To carry out this calculation, we start from the expression (84) which
we put in the form

92(r) = 1+ g2,4(r) + g2,5(7) (90)
with

go.0(r) = 222 [F(r) + G(r) gau(r) = F*(r) + G*(r).  (91)

and we pose
S(q) =1+ Sa(q) + Ss(q) 92)
with
Sop(@) =11 [ goap(r)e e & ©3)

Contribution of g2 ,(r). The calculation of the Fourier transform of
g2,q(r) is straightforward: since F' and G are defined in (85) as Fourier
transforms of v7 and —uyvy, we find:

Sa(q) = —Z%Uq(uq — Vg). (94)

In the ng ~ n approximation (quantum depletion neglected when vna? <«
1), we can notice that this contribution alone leads to the result for the
Bogoliubov spectrum given in (24)

€q €q
~ = hwy. 95
1+ 8a(g) 1 —2vq(uq — vq) ! =

In particular, in the limit g€ > 1, we saw in the previous chapter that u, ~ 1
and v, ~ 1/2¢%¢? < u,, so this expression simplifies to

g¢>1: Sa(q)  —— == =~ (96)
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Contribution of g;;,(r). The complete calculation of the Fourier trans-
form of go(r) is more complicated than for g2 ,(r) and we just consider
here the dominant term for ¢¢ > 1 and Vna3 < 1. The only term to take
into account then comes from the Fourier transform of G?(r), which can be
evaluated using the expression of G at small r given in (86):

2 2m2na?

Sp(q) = n/GQ(T) e 9T A3 ~ n/ a—2 e T @3 = — (97)

r

Summary for the ¢ > 1regime. Combining (92), (96) and (97), we arrive
at the result (44).
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Chapter V

The two-body contact

In the previous chapters, we were interested in the link between two-
body physics, described by the scattering length a, and the properties of
a N-body system, discussed by the Bogoliubov method. This link was
possible for a weakly interacting gas, the small parameter of the problem
being v/na3. This imposed that the distance between particles d = n~'/3
always remained large in front of a.

The purpose of this chapter is to explore the "2-body — N-body" link
without making any assumption on the a/d ratio. More precisely, we will
not put any constraint on the value of the scattering length a, which can
be experimentally adjusted almost at will for atomic species exhibiting a
Fano-Feshbach resonance. It can be set to a positive or negative value,
from |a| < b (Where b is the range of the potential, itself of the order of a
few nanometers) up to values greater than a micrometer, which becomes
large compared to the distance between particles: a 2 d. On the other
hand, we will always assume that the system is dilute, i.e. that the range
of the potential b satisfies b < d. We will also restrict ourselves (with one
exception in the next chapter) to cases where only the s-wave interactions
play a significant role.

To the three length scales a, b and d that we have just mentioned, we
add the thermal wavelength X\ = (2wh? /mkgT) 1/2 (cf. figure 1). In the first
chapter of this course, we explained how the virial expansion allowed us
to approach the weakly degenerate case A < d. In the following we will
concentrate on the strongly degenerate case \ 2 d.
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lal:

non degenerate regime nid < 1 (virial) degenerate regime nid>1

| |
| |
0 b d=

”—I/3

weak interaction regime n|a |’ < 1 strong interaction regime 7 | a |3 > 1

Figure 1. The four length scales of the problem: potential range b and scattering
length a for the two-body problem, mean inter-particle distance d and thermal
wavelength A for the N-body problem. The system will always be assumed to be
dilute: b < d. In this chapter, we will be mainly interested in the degenerate
regime, A\ > d, and in the case of a large scattering length a >> b.

For the case of three-dimensional gases that will interest us here, the "2-
body — N-body" link was largely initiated by Shina Tan in a series of three
papers. The first two were deposited on arXiv in 2005, but these three
papers were only published (together) in 2008 (Tan 2008a; Tan 2008b; Tan
2008c). In this work, Tan established a large number of universal relations
verified by a two-component Fermi gas, with interactions described in the
zero range limit.

These relations that we are going to study link microscopic quantities,
such as the momentum distribution of the gas or its two-body spatial corre-
lation function, to macroscopic quantities, such as its ground state energy
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V(r)

Figure 2. Two-body interaction potential V (). The potential well, whose depth is
typically several hundred kelvins, contains many ro-vibrational bound states.

and more generally its free energy or its pressure. They involve a quantity
C called "contact", a name justified by the fact that it constitutes a measure
of the probability of having two particles close to each other. The interest of
relations involving contact is that they do not require precise knowledge of
the state of the system, which we would not be able to provide in the case
of strong interactions a 2 d.

Tan’s approach has been further developed and generalized theoreti-
cally by many authors, and additional universal relationships have been
established. It is not possible to cite them all here. Let us simply mention
the articles that, in addition to Tan’s, served as the basis for writing this
and the next chapter: Baym, Pethick, et al. 2007; Punk & Zwerger 2007;
Braaten & Platter 2008; Werner, Tarruell, et al. 2009; Zhang & Leggett 2009;
Combescot, Alzetto, et al. 2009; Yu, Bruun, et al. 2009; Braaten, Kang, et al.
2010; Braaten 2011; Werner & Castin 2012a; Werner & Castin 2012b.

1 Scope of the contact concept

1-1 Contribution of bound states

Before approaching the presentation of the contact, it is important to spec-
ify the framework in which we will work. A first point concerns the states
linked to two (or more) particles. For the atomic species used in the labo-

I Ebound

»1/a

~ — h%/ma?

Figure 3. Energy of the bound state that appears on the a > 0 side of a Fano—
Feshbach resonance.

ratory, the two-body interaction potential V' (r) represented in figure 2 has
a depth of the order of several hundreds of kelvins and it generally in-
cludes many bound states. Apart from a Fano-Feshbach resonance, the
energy of the last bound state is of the order of about ten times the van
der Waals energy E,qw (see course 2021), i.e. from 0.1 to 1 mK depending
on the species. This energy is large compared to the characteristic ener-
gies of gases, which are in the range 10nK-1 K. This considerable differ-
ence is still increased for the more strongly bound states in the potential
V(r). It follows that the formation of dimers in these states constitutes a
irreversible loss of atoms for the gas. Once these dimers are formed, they
generally escape the trap confining the assembly of atoms and they do not
enter the realization of the thermodynamic equilibrium. We will therefore
ignore them in the following.

The situation is different for the very weakly bound state which appears
in the vicinity of a Fano-Feshbach resonance, more precisely on the a > 0
side of the resonance (figure 3). The resonance corresponds to |a| = +00
(i.e. 1/a = 0) and the energy of the bound state, very low in absolute value,
is & —h%*/ma®. This binding energy is comparable to the other energy
scales of the gas and this bound state must therefore be taken into account
for the study of the dynamics and thermodynamics of the N body system.

In the vicinity of this resonance, one can also wonder about the possi-
bility of forming more complex states, with three bodies for example. For
fermions of spin 1/2 with m+ =~ m,, the Pauli principle forbids the forma-
tion of a three-body state. On the other hand, for bosons or for spin 1/2
fermions with a large difference between m4 and m |, these weakly bound
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three-body states exist — this is the Efimov effect — and must also be taken
into account [for a review of the three-body problem, see Naidon & Endo
(2017)].

1-2 Conditions of application : fermions vs. bosons

We will see that the central element of Tan’s approach, the contact, is the
thermodynamically conjugate quantity of the scattering length a. The con-
tact allows to characterize thermodynamically all the short-range physics
of the system, provided that the interactions between particles do not in-
troduce any other energy scale than 4? /ma? in the relevant energy domain
for these quantum gases. In particular, the three-body problem and the
Efimov effect should not invalidate this assumption.

As we have indicated in the previous paragraph (§ 1-1), the Efimov ef-
fect is absent for a gas of 1/2 spin fermions with m4 =~ m;. The first field of
application of the results of this chapter is therefore a gas of N fermions of
spin! 1/2. In this case, we will not need any restriction on the sign or the
value of the scattering length a characterizing the 1] interactions.

For a gas of bosons (or for a gas of fermions with a ratio m4/m, very
different from 1), we have explained that the assumption stated above is
not always correct. In the vicinity of a scattering resonance, three-body
physics can introduce new length and energy scales, which then compli-
cates the problem since « is no longer the only quantity characterizing the
interactions. To avoid this difficulty, we will assume in this chapter that
the Bose gas is prepared in a configuration such that :

e the scattering length « is positive, to ensure its mean-field stability;

e the density is sufficiently low that na® < 1, i.e. a < d, so that there
is a time range during which the gas can reach its equilibrium state
related to two-body interactions, without the three-body states being
appreciably populated (see Chapter 4, §1.1).

Note that these assumptions remain compatible with the use of a Fano-
Feshbach resonance, b < @ provided that we have simultaneously a < d.

!t can of course be a pseudo-spin, the two states being chosen from the set of Zeeman
sub-levels of the atoms.
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Figure 4. Ground state of an equilibrated ideal Fermi gas, with the filling of the
single-particle states up to the Fermi level.

1-3 Reminder on the Fermi gas

Since the Fermi gas will play an essential role in this chapter, we will recall
here some definitions and properties concerning this system. We will as-
sume that the gas is "balanced", i.e. that there is the same number of atoms
in each spin state:

N

1)
In the absence of interaction, the ground state of the gas is obtained
by filling with two particles (one 1, one |) each momentum state from the

momentum zero to the momentum 7kr (figure 4). The value of the Fermi

level is deduced from
|k|<kr

N= > 2 2)
k

Using the usual transition from a discrete sum over k to an integral:

L3 L3k
N = 3/ 2d% = ——F, (3)
(27)% ik <ke 3m
we get
N
ke = (372n)"" with n= Tt @)

The energy of the ground state in absence of interaction is:

‘k‘<l€F

2Kz 3 R2k2
E= 2 =-NE ith Ep = E
kz:% om 5 0 F W = om

©)
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Strong interaction regime

Figure 5. The different regimes for the ground state of a Fermi gas with s-wave 1]
interactions, characterized by the scattering length a.

Let us now take into account the interactions. At low temperature, only
the s-wave interactions are significant and the Pauli principle forbids this
channel for the 71 and || collisions. On the other hand, interactions be-
tween the two components 1] are possible and they make this system ex-
tremely rich. For any value of a, positive or negative, one predicts and
observes a transition from the normal state at high temperature to a super-
fluid state at low temperature [see for example Zwerger (2012)]. In particu-
lar, when a Fano-Feshbach resonance is crossed, the following regimes are
observed for the ground state (figure 5):

¢ For a positive and small in front of d, this superfluid state can be ap-
proximated by the Bose-Einstein condensation theory, with pairs of
fermions that form in real space to constitute bosonic dimers.

¢ For a negative and small in absolute value, the superfluid state can be
described by the BCS (Bardeen—-Cooper-Schrieffer) theory.

¢ In the vicinity of the resonance, we find the strong interaction regime
nlal® > 1.

It is not our intention to review in this chapter all the physics of the
interacting Fermi gas. We will only indicate the elements that are essen-
tial for the study of the link between binary interactions and macroscopic
properties of the fluid.

1-4 Wide or narrow Feshbach resonances?

Tan’s approach allows to provide quantitative predictions on strongly in-
teracting systems with a scattering length a large in front of the range of

a positive and small: bosonic dimers
E ~ — h?/ma® forming a condensate
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the potential b. In atomic gas physics, the range b is given by the van der
Waals length R,qw and a large scattering length a is usually obtained via
a Fano-Feshbach resonance. We studied these resonances in last year’s
course and showed that they can be classified into two categories:

¢ The large resonances, for which the scattering amplitude is written as
a good approximation
—a

1+ ika

f(k) =~ (6)
for all k such that k& < b~'. The scattering length is in this case the only
relevant parameter to characterize the binary interactions and every-
thing that follows in this chapter applies without problem.

e Narrow resonances, for which a quadratic term must be taken into
account in the denominator of this fraction:

—a

IR~ e T R

@)
the length R, being large before the "natural” range b ~ R,qw (Petrov
2004). For these narrow resonances, corresponding to an abnormally
large effective range term r. = —2R., the following approach is not
applicable?, since the scattering length alone is not sufficient to char-
acterize binary interactions in the k¥ < b~! domain.

2 Contact and two-body correlations

2-1 Reminder : scattering states close to £/ = 0

We will recall here some useful properties of low energy scattering states.
For more details, we refer the reader to the course 2021. We are interested
in s-wave collisions (thus isotropic) and the analysis of the process is done
by considering the radial equation verified by the reduced wave function
uk(r) = r(r) of energy E = h?k?/2m,, where m, = m/2 is the reduced

2Werner & Castin (2012b) detail how to generalise Tan’s approach to take into account the
effective range term.
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mass :
2

uy + V(r)ug(r) = Eug(r). (8)

Tr

Outside the range of the potential, this solution is written in terms of the
phase shift 6o (k):

r2b: ug(r) o sin[kr + 0o (k)] )
The scattering length is defined by a = — limy_, do (k) so that (9) becomes
r2bk—0: ug(r) o<ca—r. (10)

This behavior common to all reduced radial functions u(r) for k& small is
illustrated on figure 6 in the case of a square well. We placed ourselves in
the vicinity of a resonance with ¢ = 10b. The normalized wave function
1o(r) has the following behavior:

r>b: ‘/’0“):\/%(?—1)=¢%(i—i)v (11)

and the behavior of v (r) is similar for & sufficiently small. We will see in
what follows that it is the behavior in 1/r of 9 that plays a determining
role.

2-2 A qualitative argument

To begin with, let us consider the wave function of the ground state of a
gas of N particles.

¢ For spinless bosons, we will write this wave function as
®(ry,7ra,...,rN), with the normalization

/|CI)(’I”1,'I°2,’I"3,...,’I"N)‘2 d3T1...d37‘N=1. (12)

The particles having been arbitrarily numbered 1,2,..., this wave func-
tion gives the probability amplitude to find the particle 1 at the point
r1, the particle 2 at the point r5,...and it is symmetric by exchange of
two particles.

| | | |
0 20 40 60 80 100 120 140 160 180 200

/b
n —ka =0
— 0.1
= — 0.2
= — 03 H
3
U | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
r/b
o
=
=
| | | | | | | | |

0 2 4 6 8 10 12 14 16 18 20

Figure 6. Reduced radial functions uy,(r) and radial function 1 (r) for scattering
by a square well with a = 100.
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Figure 7. N fermion system. We are interested in the behavior of the wave func-
tion ® when particles 1 and 2 of opposite spin approach each other, the other par-
ticles being far from vy and r.

e For the fermion case, we consider a gas with N/2 particles in the 1
spin state and N/2 particles in the | spin state. We can write the N-
body wave function by assigning the odd indices 1, r3, . .. to the N/2
fermions of spin 1 and the even indices r3, 74, . .. to the N/2 fermions
of spin | with the same normalization as in (12). This wave function is
antisymmetric by any permutation of two odd indices, and also anti-
symmetric by any permutation of two even indices.

Let us fix the positions 73, 74, . .., 7y and let us be interested in the vari-
ation of ® when r; and r approach each other. More precisely, let us pose

ro=R— L (13)

'S
—R+ <
" Ty 2

and consider the limit of small r (typically of the order of b), assuming that
the remaining NV — 2 particles are at a distance > b from R (figure 7). It is
then natural to assume the following result:

B(r1,79,...,7N) = Yo(r) B(R,T3,...,7N) (14)
where 1y(r) is the scattering state for the relative particle of the pair (1,2)
at zero energy (see figure 6, bottom). In the case of a strong interaction,
a ~ d, one expects this form to remain valid as long as r < a, d, i.e. as long
as particles 1 and 2 do not enter the "influence zones" of the other particles,
and interact only with each other.
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Remark. If we describe the interaction between particles by the pseudo-
potential, the qualitative argument we just gave becomes the definition
of the domain of wave functions eligible to describe the system (Werner
& Castin 2012b). This wave function must be such that for any pair of
particles, for example (1, 2), we have:

1 1

(I)('I"l,’r‘g,...,?"N) = (7”12 — a> ‘i(R,’l"g,...,’r’N) + 0(7"12) (15)

r—0:

where @ is a regular function of the coordinates of the N — 2 other particles

and of R. We have assumed here that R is different from r3,...,ry.

2-3 Two-body spatial correlation function

The argument presented above was restricted to the case where the po-
sitions 73, ...,y were not close to the positions r; and 7, considered to
write (14). To make this assumption more quantitative, we will reformulate
it in terms of a two-body correlation function.

Let’s present the approach on the fermion case. We introduce the "four-
point" correlation function (Zhang & Leggett 2009)

Gory (T, mhima, ) = (WL )WL () U () U (7)) (16)

which is calculated from the wave function ®:

N2 .
Gor (), T TasTy) = T/d?)’l"g LAy (el T, TN)
X D(ry,rp,7T3,...,TN). (17)
This correlation function is normalized as:
N2
/ g2,TJ,(Taa Th;Ta, Tb) dgra dg'rb = T (18)

More precisely, let us fix r, = r;, = 0 and let us be interested in the
"two-point" object:

Gary(r',0;7,0) = (UL (") T (0) W (0) T4 (r)) (19)
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We will try to characterize the behavior of this function when r and r’ are
both close to 0. To do this, we note that G 4+, (r,0; 7, 0) can be considered
as the matrix element of a Hermitian operator O in position representation,
(r'|O|r). This operator can be diagonalized and written as (Yu, Bruun, et

al. 2009):
Gar (7', 0;7,0) ny] , (r). (20)

The hypothesis at the basis of the contact theory is then formulated as
follows: we suppose that for r < d, the significantly populated ¢, (r) func-
tions are all very close to the two-particle wave function )y (r) introduced
in §2-1. We therefore define the quantity C such that

C

T, T/ <d: g2,T¢(r/7 07 r, 0) (471')2 Qwo( )1/)0(,’“) (21)

Using (11), this relation is written outside the range b of the potential

b<rr <da: Gopy(r',057,0) =

¢ _L11 o
rr

(4m)2L3

The quantity C is called the two-body contact. It is an extensive quantity
whose dimension is the inverse of a length. The central point of the ap-
proach developed here is that at short distances, N-body physics inter-
venes only through this multiplicative constant. Note that we have defined
here the contact for the ground state of the system. We will see in the next
section how to generalize this definition to the case of T' # 0, once the link
with gas thermodynamics is established.

We proceed in a similar way for the bosons by posing

Go (T Th;Tas ) = <‘1’T( D) (ry) (7)) (23)
= N —-1) /d3r3 dPry ©*(rl, 7,73, .., TN)
D(ry,ry,T3,...,TN).
This function is normalized as follows
/ Go(Ta, p;7a,1p) dirg d3ry = N(N —1). (24)
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The hypothesis at the base of the contact theory is then written for
bosons:

c .
T, r! <d: g2(’l"/, 0; r, 0) ~ (471')2@2 1/)0 (’I"/) ¢O(T) (25)
orifa > b:
C 11
b<rr <a,d: Go(7',0;7,0) ~ G2 (26)

Remark. Rigorously, the short-range validity condition comparing r,’
and the range b should be written b < r, ’. We take here the less restrictive
condition b < r,r’ by relying on the numerical results of Yin & Blume
(2015), which will be described in §4-3. These authors consider a Gaussian
two-body interaction potential, V(r) = Vjexp(—2r?/b?), and show for a
gas of N = 10 particles that the law (26) is reached to a good approximation
as soon as r and r’ exceed b (see figure 12).

2-4 Pair distribution

Once the forms (22,26) of the G- function have been established, we can de-

termine the short range behavior of the pair distribution function, defined

here for fermions:
GQTi /g2¢¢’l”a+’r Ta,Ta+TT)d Tq (27)

and we find by using the invariance by translation of the system:

C
(4m)2r2 |

b<Sr<da: GQﬁT\L('r) ~ (28)

An identical result appears for bosons, without the index 1| of course.

The rapid increase of G2(r) at short distance can be understood as a
signature of bunching of the particles, provided that they are of opposite
spins in the case of fermions. To investigate this point further, let us place
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ourselves in the b — 0 limit (pseudo-potential) and consider a particle of
spin 1 at a given point, e.g. the coordinate origin; let us look at the prob-
ability 0P of finding a particle of spin | in a ball of infinitesimal radius
r centered at 0. If the particles were uncorrelated, this probability would
vary as 6P o 73 when r — 0. Given the variation of Gs, we find here
0P o r; this probability always tends to 0 when r — 0, but only linearly
with r instead of the r® law expected for independent particles.

Link with Bogoliubov’s approach. In the previous chapter, we com-
puted the function g, = G2/nN and found at short distance the following
result:

an 2
r<é:  gor) = (1 — ;) (29)

orforr < a < d: )
r<a: Ga(r) =~ nZ;/;a . (30)

This variation is well in accordance with (28) and we deduce the value of
the contact for a weakly interacting Bose gas at 7' = 0:

Bogoliubov: C = (4ma)*nN (31)

Note that the validity condition r» < £ of (29) is less restrictive than the
condition r < d of the general case (25). Indeed, ¢ = (87na)~/? =
d (d/8ma)'/? is much larger than d in the weak interaction regime.

2-5 Momentum distribution

As announced in the introduction, the contact C'is involved in many phys-
ical quantities characterizing the fluid. We are interested here in the mo-
mentum? distribution n (k).

Let us consider for example bosons and let us start with the probability
amplitude to find the particle 1 with momentum k, the particles 2,..., N
being fixed at the points 7o, ..., ry. This amplitude is written:

Ai(k;re, ... rN) = /d3r1 e TR B(ry Py, . TN). (32)

3To avoid the constant 4 in all that follows, we work rather with the wave vector k than
with the real momentum hk.
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The probability distribution n; (k) for the momentum of particle 1 is ob-
tained by taking the square modulus of this expression, then integrating
over all positions ra, ..., TN, which gives:

J et @t (s, )

L) By A3 dBry L Ay, (33)

ny (k) =

X‘I‘(’Pl,’l‘z, ..

which naturally brings up the four-point correlation function G, consid-
ered above.

We are interested here in the behavior of this function at large k, thus
coming from the contribution of the small differences |r; — 7/ |. This contri-
bution becomes important when the couple (r1, 7} ) approaches one of the
other positions r3,r3,...,7N. Consider for example the resonant behav-
ior between (71,7}, 72), the result then having to be multiplied by N — 1
to take into account the other possibilities (r1,7],7;), 7 = 3... N. We see
appearing by using (26):

71,71, 72 close: /d37“3 dPry " (r,re, 73, .., TN)

1 C 1 1
~ _ 4
TN N(N —1) (47)2L5 17, r1a (34)

X @(7‘171“2,7“3,...

The contribution of the term —--L to the Fourier transform giving n1 (k)
12 12

is written:
ik-(r)—71) ik-(r)—7r2) ik (ra—71)
e e 1 e
/,7 d3ry &3 BBy = / - d3ry A3 dry
T12 T12 T12 T12

- ﬁ(“)z (35)

k2
/ eik~'r- d3r
r

We thus find the dominant behavior for the large momentum for the parti-
cle 1:

where we used
4
=@

(36)

m@:%%+“ 37)
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and it only remains to multiply the result by NV to obtain the total momen-
tum distribution of the gas:

Bosons : nk)=—+... (38)

this distribution being by construction normalized as follows (cf. (33)):

1 3
: = = N.
Bosons o) /n(k:) d°k 39)
We thus find that the momentum distribution behaves like k=% at large &k
(where the "..." term becomes negligible) and the contact gives directly the
weight of this component.

For a spin 1/2 balanced fermion gas, the contact has been defined so
that this relation remains valid for each component:

C

Fermions : n(k) =n (k) = W +... (40)

with normalization

@;y/m“ﬂ&kgép/ﬁ“md%l; (41)

Fermions :

Recall that we had proved the existence of this wing in the framework
of Bogoliubov’s theory for the pseudo-potential, in the na® < 1 case. The
(considerable!) interest of the present approach is to generalize this result
to the case of large scattering lengths, and even to the unitary case 1/a =
0. Its domain of validity in the case of strong interactions a ~ d can be
deduced directly from that found for the pair distribution in the previous
paragraph:

11 1

v < k §b. (42)
This general law in k=%, valid in the unitary regime and on both sides of
this regime, was first predicted by Haussmann (1994).

Remark. It is interesting to note that a 1/k* law appears for a one-
dimensional gas described by the Tonks (Minguzzi, Vignolo, et al. 2002)
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Figure 8. Typical sketch of the momentum distribution n(k) of a two-component
Fermi gas or a Bose gas (neglecting three-body effects) in the limit of a scattering
length a ~ d much larger than the range b of the interatomic potential. The law
n(k) ~ C/k* is valid in the central region colored in green.

or Lieb-Lininger models, with a prefactor related to the derivative of the
ground state energy of the gas in a manner similar to what we will see in § 3
(Olshanii & Dunjko 2003). This law in 1/k% is also valid in two dimensions,
both for fermions (Werner & Castin 2012b; Shi, Chiesa, et al. 2015) and for
bosons (Werner & Castin 2012a). Note that for 2D bosons, the Efimov prob-
lem does not arise (Brodsky, Kagan, et al. 2006) and the difficulties related
to the introduction of an additional parameter to describe three-body in-
teractions are absent.

3 Thermodynamic definition of contact

3-1 A new thermodynamic variable

In this section we move to an apparently different definition of contact,
based on the notion of thermodynamic variables. A fluid at equilibrium is
described by its equation of state, which gives the variation of a thermody-
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namic potential (its energy I for example) as a function of conjugated ther-
modynamic variables like entropy/temperature, volume/pressure, num-
ber of particles/chemical potential. We thus have the total differential for
the energy

dE = TdS — PdL?® + pudN (43)

with

oF oOF OF
T=|— P=—|— = — . 44
<85>L3,N (6L3)S,N g (M)w 49

The interaction potential can be added to the list of these thermody-
namic variables, but its characterization generally requires a large number
of parameters, which makes this notion of little practical use. The situation
changes radically when we are interested in a cold dilute gas, since the in-
teractions can then be described using a single parameter, the scattering
length a. It is then relevant to introduce this parameter explicitly in the
equation of state, which leads to introduce also its thermodynamic conju-
gate quantity. In fact, it is more convenient to use the variable 1/a and to
pose

Bosons :

n2C OF
Som (au/a))s,Ls,N )

The thermodynamic description of the fluid is then done according to
the usual procedure, using the differential of a thermodynamic potential,
the energy for example:

2
dE = TdS — PdL?® + pdN — e
8mm

d(1/a) (46)

We will first place ourselves at zero temperature (hence at zero entropy)
and show that the quantity C' which appears in this expression coincides
with the contact introduced in (25). We will generalize this approach to the
case of non-zero temperature in § 3-4.

90

Case of fermions. For spin 1/2 fermions, the definition is modified by a
factor 2 and becomes

Fermions :

m2C OF
- <a<1/a>>S,Ls,N @)

This additional factor of 2 allows to absorb the fact that a fermion interacts
only with N/2 particles (those of opposite spin), while a boson interacts
with the IV — 1 other particles. As we have already mentioned, with this
definition, the wing of the momentum distribution is equal to C/k* for
both bosons and each spin component of fermions.

d7rm

3-2 A useful lemma

To link the contact to the derivative of the energy with respect to the scat-
tering length, we will start by proving a preliminary result. Let us con-
sider a collision between two particles of mass m, that is a reduced mass
m, = m/2. The interaction between the two particles is described by the
potential V'(r) and we consider the zero energy solution v, (r) for the radial
equation. Suppose that the interaction potential V' (r) is slightly modified:

V(r) — V(r)+6V(r). (48)

We are interested in the corresponding change da of the scattering length a
and we will establish the following result:

L3 /O h SV (r)a(r) d®r = 47;32 Sa (49)

the function ¢, (r) being normalized so that 1y(r) ~ 1/L%? at infinity [cf.
(1Dl

Proof: As usual, it is convenient to consider the reduced radial wave
function ug(r) = r 1o (r) which is a solution of the equation :
FLQ
2m,

ug (r) + V(r)uo(r) = 0. (50)
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Let us note du(r) the modification of uy(r) induced by the change §V.
We obtain at order 1:

h2

my

du" (r) + 6V (r) uo(r) + V(r) du(r) = 0. (51)

Let’s multiply this equation by uy(r) and integrate the result between r = 0
and 7 = Tmax, upper bound that we will take infinite at the end of the
calculation:

2 Tmax Tmax
_ / du'" (r) uo(r) dr —|—/ SV (r)ud(r) dr
er 0 0
+/ o V(r) du(r) up(r) dr = 0. (52)
0

To evaluate the first term, recall that uo(r) and ug(r) + du(r) satisfy the
boundary conditions:
uo(0) =0, du(0) =0 (53)

and

1 1
r>biu(r) g —a), u(r)+ou(r) x 5 (r—a—da), (54)

ie. du(r) = —da/L?? and 6u’ ~ 0 at large r. A double integration by parts
of the first term gives

/ o Sug(r)up(r) dr = [ug 6u']y™™ — [ug duly™™ —|—/ o ug (r) du(r) dr
0 0

da  2m,
= O+§+ 2

/Ormx V(ryuo(r)du(r)dr  (55)

Inserting this result in (52) in the limit rnax — +00 provides the result
announced in (49).

3-3 Variation of a and contact

We are now able to prove that the parameter C' introduced as the conjugate
variable of 1/a is the same as the contact defined in (21,25) from the two-
body correlation function. We consider an assembly of N particles with
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binary interactions, with the Hamiltonian:

H = Hgn + Hine (56)
with
Hipe = Z V(Fi5). (57)
J 1<

Let us consider an infinitesimal variation of the potential V' inducing
a variation (also very small) of the scattering length a. We carry out this
variation at constant volume and number of particles (remember that we
have placed ourselves for the moment at zero temperature and thus at zero

entropy). We try to evaluate
(%) - 58)
Oa L3N

The Hellmann-Feynman theorem allows to express the variation of the
energy in terms of the variation of the Hamiltonian itself:
9F _ <@> - <8ﬁint
da  ‘da’ ' Oa

)- (59)

The last member is calculated by using the link between the variation 6V
and the variation da established with the lemma (49). Let us take for exam-
ple the case of bosons and start from

N(N -1
5<Hint> = %/5‘/(7‘12) ‘(I)('l”‘l,’l"g,...,’l"]v)‘Q d37”1...d37‘]\[

1
= 5/5‘/(7’12) Ga(r1, 72371, m2) d°rq dry
LB
-z / SV (r) Ga(r, 0;7,0) - (60)

Because of the presence of §V, the integrand is nonzero only if r < b. We
can therefore use the starting hypothesis of the contact theory, namely the
equation (25) which we reproduce here for r = r':

Ga(r,0;7,0) ~ L\wo(T)P. (61)

d:
r< (4m)2a?
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Using the lemma (49), we then arrive at:

- Ch?
5<Hint> = m(sa» (62)

from which we deduce the desired relation:

OE  L,0E

. ,
20 O (63)

“ da oa 8mtm

9(1/a)

The thermodynamic quantity C' introduced in (45) is thus identical to the
contact defined from the function G, and used in (61).

3-4 The case of the non-zero temperature

In all the above, we have considered the case of a system at zero tem-
perature and we have expressed the contact in terms of the energy of the
ground state of the system. In fact, the approach we have described for the
ground state can be performed for any eigenstate ¢; of the Hamiltonian of
the N-body system, provided that its energy is low enough that the inter-
actions remain limited to the s-wave regime. This indeed guarantees that
the two-body correlation function deduced from ®; behaves as indicated
in (21,25).

Let’s start by defining a contact C; for each eigenstate ®; of energy E;
as [cf. (45-47)]
[4/8]mm [ OE;
R 4
CJ h2 a(l/a) N,L3 (6 )

with the factor 4 (resp. 8) for fermions (resp. bosons). Let us now sup-
pose that the system is in a statistical mixture of eigenstates, with a density
operator

ﬁ:ZPj |®;)(P,, (65)

the P; obeying for example the Boltzmann law P; « e~ Fi/*2T for a tem-
perature T'. We can define an averaged contact using the weights P;:

C=> PC; (66)
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and this contact will allow us to calculate all the quantities we have been
interested in so far, such as the momentum distribution, the two-body cor-
relation function or the radio-frequency spectrum that we will discuss in
the next chapter. Indeed, the contact intervenes in a linear way in all these
expressions.

Inserting the expression of each C; into (66), we find

ool

4/8Jmm ( oF ) with E=Y PE, 67

h? 9(1/a) N,L3,{P;} ; o ©)
The derivative defining the mean contact must be taken keeping constant
the populations of each eigenstate ®;, which is the definition of an adia-
batic process in quantum thermodynamics. We can therefore replace the
previous definition of C' by a more conventional formulation, involving
the constant entropy derivative of the mean energy of the system:

_ _[4/8lmrm [ OFE
C=w (au/a))N,Ls,s (©9)

fermions/bosons :

We can also work at constant 7" and N, which is the same as replacing the
average energy F by the free energy F = E — T'S:

fermions/bosons : C=- [4/8]mm ( 88F

h? (1/a) > N,L3,T (©)

or at constant 7" and (1, and use the grand potential €):

o |

4/8]rm ( o0

& a(l/a>>#,Ls,T -0

fermions/bosons :

Note that in this last case, we know that for an extensive system, the grand
potential is related to the volume and pressure by the simple relation 2 =
— PV, so that the contact per unit volume is written:

. C_ [4/8ltm [ 0P
fermions/bosons : 5 = =5 (8<1/a>>N,T (71)
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This set of relations is remarkable since it links many microscopic pa-
rameters such as n, (k) or Ga(r) to the thermodynamics of the system, even
though it is (at present) impossible to calculate the equation of state of
an interacting system at any temperature and for an arbitrary scattering
length.

To finish this paragraph, let us indicate that the contact, like the other
thermodynamic quantities, can be calculated by a virial expansion in the
weakly degenerate regime. One can consult the article of Liu (2013) and
references therein.

3-5 Contact and virial theorem

Using dimensional analysis, it is possible to obtain relationships between
different thermodynamic quantities such as internal energy, pressure and
contact. Let us consider for example the entropy of the system, which is a
state function whose differential is written

n:C

1 P I
= _dE+ —dL3 - Eqnv 4+ 22
ds Td + Td Td * [4/8]7mT

d(1/a).

(72)
The entropy can be put in the form S = Nkg f(E, L3, N, a) where the func-
tion f is dimensionless and intensive. We can simplify its writing signifi-
cantly:

fermions/bosons :

e Since f is intensive, only the three intensive variables E/N, V/N and
a have to intervene:
E L3
S:Nk'Bf<N,N,Cl>. (73)
¢ Since f is dimensionless, we are able to choose its variables also di-

mensionless. The scattering length a provides the natural energy scale
h?/ma? and the natural volume scale a®>. We can therefore write the

entropy S as
E/N L3/N
h?/ma?’  a? > ' 74

S—Nka(
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Such a writing, a function of only two variables, will allow us to estab-
lish a relation between the three conjugate variables of E, L? and a, that is
T, P and the contact C. We have indeed:

a2

1 oS m
7= (a‘E>L3,N,a = Nks1r7s of 75)

where 0; f denotes the derivative of f with respect to its first variable,

P [0S 1
P (8L3>E =Nk o (76)
and
nc oS Ema? L3
- = —2Nkp—o Nkg——0>f.
[4/8]rmT (8(1/a)>E7L3,N Bz O+ 3Nke g5 02f

(77)
The elimination of 0, f and 0s f between the three preceding equations then
leads to (Tan 2008c):

PL? = gE+ o

3 [12/24]7mma’ @8

fermions/bosons :

One can consult the article of Werner (2008) for a generalization of this
relation to the case of a gas confined in a potential of arbitrary shape.

Unitary case. In the case a — oo, the contact tends to a finite value so that
we find
2
Unitary gas: PL? = §E. (79)

This remarkable relation is a consequence of scale invariance for a infinity:
the energy scale 1% /ma?® and volume scale a® disappear, so that the equa-
tion of state giving the entropy S (or any other thermodynamic function)
is a function of only one variable :

(80)

EmL?
R2N5/3 )"

S—Nka(
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n(k) ~ Clk* with C ~ 2.2 Nkg

*

8
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Figure 9. Left : variation of k* n(k) as a function of k for (kpa)™' = —0.08 (4).
The plateau at large values of k allows to extract the value of the contact C for
this value of a. The figure on the right shows the importance of having a very fast
change of the scattering length from the value of interest to the zero value used
for the time of flight. For the measurements given in the left figure, the magnetic
field change is performed with a rate of 1.4 G/us. Figures extracted from Stewart,
Gaebler, et al. (2010).

The relation (79) is deduced by using:

1 kgmL?
T h2N2/3

P 2 kgEm
r T~ 3 B2N2/3L r (81)

where f’ denotes the derivative of f.

4 First measurements of the contact

4-1 Momentum distribution of a Fermi gas

Experiments conducted in Boulder by Debbie Jin and her team during the
period 2010-12 have shown very convincingly the fact that the contact al-
lows to link measurements of various quantities, made on complex sys-
tems such as a Fermi gas around the unitary limit or a strongly interacting
Bose gas (Stewart, Gaebler, et al. 2010; Sagi, Drake, et al. 2012; Wild, Mako-
tyn, et al. 2012). We focus here on the results obtained on the Fermi gas.
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The experiments described by Stewart, Gaebler, et al. (2010) were con-
ducted on a potassium-40 gas (a fermion), prepared in an equilibrium mix-
ture of its two lowest energy Zeeman states, | |) = |F = 9/2,mp = —9/2)
and | 1) = |F = 9/2,mp = —7/2). The gas contains N = 2 10° atoms in
total, it is confined in a laser dipole trap and cooled by evaporation to a
temperature 7' = 0.11 Ty with kgTr = Ep. At the end of the evaporation,
the strength of the interactions between the two spin states is adjusted to
the desired value by slowly modifying the external magnetic field thanks
to a Fano—Feshbach resonance.

Let’s focus here on the measurement of the momentum distribution.
Once the stationary regime was reached for the desired scattering length,
Stewart, Gaebler, et al. (2010) very quickly switched the magnetic field to
the value for which a = 0, and then measured the spread of the atomic
cloud in a time of flight. Since the interaction energy is zero during the
time of flight, this spread gives access to the initial momentum distribu-
tion. It is essential that the magnetic field change is very fast, to avoid sig-
nificant conversion of the initial interaction energy into additional kinetic
energy. The results of this momentum measurement are shown in figure 9.
We see that the wing does indeed vary as k=%, and we thus obtain a first
determination of the near-resonant contact C' ~ 2.2N k.

We will return to other characterizations of the contact made by the
Boulder group in the next chapter, once we have described another study
tool, radio-frequency spectroscopy.

4-2 Scaling laws for contact

In the case of a two-component Fermi gas, we can give some elements on
the value of the contact in the asymptotic regimes. We will distinguish
the three cases encountered successively when sweeping across a Fano—
Feshbach resonance. We limit ourselves here to the case of zero tempera-
ture (figure 10) so that all the phases considered below are superfluid.

* On the a < 0 side and relatively far from the resonance, we find the
BCS regime with kp|a| < 1. The interaction energy in the ground state
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Figure 10. "Schematic” variation of the C contact with the scattering length
for a two-component Fermi gas. The dashed line shows the prediction (86) for a
small and positive scattering length a, the gas then consisting of an assembly of
dimers. The blue dashed line represents the prediction (??) for the BCS limit, for
a scattering length a negative and small in absolute value. The purpose of the
red solid line is simply to give an idea of the variation of C'/Nky in the different
regimes of kra values, but it does not provide a precise value.

is simply calculated in a mean field approach*

1 (N\?4rh%a
Einzi ry 2
t L3(2> i 52)

which leads for this regime to:

C
Nkp

a<0: C =~ (2ma)>n N &

Wl >

(kpa)® (83)

~
~

We find a similar result to the Bogoliubov approach for bosons (31),
except for a factor 4.

e At resonance, i.e. at the threshold of the two-body bound state, the
scattering length becomes infinite. There is then no more length scale

4Corrections from the BCS theory are exponentially small and are therefore neglected here.

associated to the interactions and we find the scale invariant situa-
tion mentioned above; by simple dimensional analysis and in the case
T = 0, we expect the energy at this point to be written as E = $ NEg ¢
where ¢ is a dimensionless (universal) parameter that has to be calcu-
lated numerically or measured experimentally. In the vicinity of this
point, a first linear correction in 1/a is expected and the energy must
be in the form (still by dimensional analysis):
E~ NEgp <35 - ”) (84)
5 kFa
where 7 is another dimensionless universal parameter. The contact is
then

a=+oo: =271 (85)

Nkp

There is no known analytical expression for this coefficient n and its
theoretical determination is a difficult theoretical problem. In practice,
a numerical calculation (quantum Monte Carlo) gives 2.95, (10) (Drut,
Léhde, et al. 2011), in good agreement with the experimental results
of Laurent, Pierce, et al. (2017) that we will discuss in the next chapter,
and the even more recent ones of Mukherjee, Patel, et al. (2019) and
Carcy, Hoinka, et al. (2019).

In the case where the two-body bound state has appeared®, the scat-
tering length a is positive. This bound state involves one atom 1 and
one atom |, and its energy is ~ —h?/(ma?). Since the number of
atoms is assumed here to be the same for both spin states, the gas
contains Ny = N; = N/2 dimers and the energy of its ground state is
E = —Nh?/(2ma?), which leads to:

47 C 47
: ~—N N —
a>0 C a Nk‘F k‘FCl

(86)

The contribution of the dimer-dimer interaction, characterized by the
scattering length aqq ~ 0.6 a (Petrov, Salomon, et al. 2004), is in the
mean field approximation

thadd
—nNn

Eii =
dd Am

N (87)

5We assume here that there is no formation of aggregates larger than these dimers, see for
example Petrov (2003) and Castin, Mora, et al. (2010) and Endo & Castin (2015).
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21+ 21

anla

Figure 11. Variation of the contact with 1/a calculated by Blume & Daily (2009).
The red solid line represents the value deduced from the derivative of the total
energy with respect to 1/a [eq. (47)]. The values indicated by green circles [resp.
blue squares] are obtained from the pair distribution Ga(r) [resp. the momentum
distribution n(k)]. The variation of C with 1/a is consistent with the one showed
in figure 10.

and its contribution to the contact is of higher order than (86).

4-3 Numerical studies

To test the predictions we have described, Blume & Daily (2009) and Yin &
Blume (2015) numerically calculated the energy and position and momen-
tum distributions of a small number of particles confined in an isotropic
harmonic trap. The original paper by Blume & Daily (2009) involved N = 4
particles, 2 in 1 and 2 in |. Yin & Blume (2015) were then able to carry out
calculations up to N = 10.

The harmonic confinement potential of frequency w provides the natu-
ral length scale for the problem, ayn, = +/h/mw. For these calculations, the
interaction potential between two atoms is chosen to be Gaussian of range
b: Vir)y=-V e~ 7°/27% with Vo > 0, i.e arange b ~ 2ry. For a given value
of 7y, the depth V; is adjusted to be close to a zero energy resonance; re-
call that this is the point where a bound state is about to appear or has just
appeared, the scattering length a diverging at this point. The parameter r
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Figure 12. Function r>Go(r)/N giving the spatial correlation of 1 pairs at the
unitary limit a = oo for different numbers of particles. Figure extracted from Yin
& Blume (2015).

is chosen to be small in front of ay,, with typically 7o /ap, = 1072 to 10~ 1.
The limit of the pseudo-potential is obtained by taking the limit ro — 0, for
a constant scattering length a.

Blume & Daily (2009) have numerically verified that the different ways
of calculating the contact, from (i) the total energy, (ii) the two-body spa-
tial correlation function and (iii) the momentum distribution lead to very
close values for C. The different results are reported in figure 11. In ad-
dition, Blume & Daily (2009) have tested the generalized virial theorem
demonstrated by Werner (2008), which also gives access to the value of the
contact.

Yin & Blume (2015) have extended this calculation to a number of parti-
cles up to N = 10. This allows us to have a first intuition of what would be
the thermodynamic limit for this system. Figure 12 shows the variations
of 72Go(r)/N for N = 4,6,8 and 10 in the unitary regime a = co. We see
that the curves obtained for different values of N cluster together in the
distance domain b < r < ap, (with here g = 0.06 ay,), as expected.

4-4 Fano-Feshbach resonance and molecular fraction

As explained in detail in last year’s course, a Fano—Feshbach resonance is
an extremely powerful tool to modify the scattering length describing the
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Figure 13. Principle of a resonance of Fano—Feshbach.

s-wave collision of two atoms. We start from a gas of atoms with Hamil-
tonian H,; leading to scattering length aj,z. We assume that in addition to
the standard interactions described by a,, a pair of colliding atoms ("open"
channel) can temporarily form a |¢,) state of a closed channel, correspond-
ing to a di-atomic molecule, before separating again (figure 13). The energy
of |¢y) can be adjusted with respect to the energy reference E = 0 of the
open channel by varying for example the ambient magnetic field B.

The law giving the scattering length a(B) is assumed to be known, and
is usually given in the form:

a(B) = apg (1 - 31—91&) , (88)

which reflects a resonant behavior around B = By. When |B — By| > Bj,
the coupling between the open and closed channel has no significant effect
and the scattering length returns to its background value ayg. The law (88)
is given by the solution of the two-body problem (cf. course 2021) and we
want to relate this law to the value of the contact C, as proposed by Werner,
Tarruell, et al. (2009).

For a gas of spin 1/2 atoms, the Hamiltonian describing the gas can be
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put in the form

N . h2K?2 i N
H=Hy+) (= —+ Eaim(B) | bicbx + Va dim (89)
K

where IA)}{ creates a molecule of mass 2m in the state |¢g), with momentum
hK.

For simplicity, we consider the zero temperature case. We note E the en-
ergy of the ground state of the gas and we consider the derivative g—g taken
at constant volume and number of particles. The Hellmann-Feynman the-

orem gives

OE  OH

9B <6iB> = 11(Ng, ) (90)
where y = B4 represents the magnetic moment® of |¢y) and where
Ny, = g blcbi is the operator giving the number of |¢o) molecules

present. Moreover, this derivative can be related to the contact since

2
(“)j_@Edu_hC da 91

OB~ da dB ~ 4rma? dB’
The quantity 44 is deduced directly from (88). We thus obtain a relation
between the population of the dimer state and the contact:

K2 da

= — 92
47mma?p dB 2)

<N¢o>

This result, due to Werner, Tarruell, et al. (2009), can be generalized to the
case of non-zero temperature, the derivative of the gas energy being in this
case taken at constant entropy. It has been tested by Werner, Tarruell, et
al. (2009) on the experimental data obtained by Partridge, Strecker, et al.
(2005) (Rice University group) long before the theory was developed.

Rice’s experiment was conducted on a °Li gas, initially prepared in the
regime of weakly bound dimers of energy ~ —h? /ma?, by placing the gas
on the a > 0 side of the Fano-Feshbach resonance located at B = 834 G. Re-
call that for a broad Fano-Feshbach resonance, a dimer of energy —h?/ma?

6Tt has been implicitly assumed here that the magnetic moment of free atoms is zero. If this
is not the case, it is sufficient to replace in what follows p by dy, i.e. the difference between
the magnetic moment of |¢o) and that of the pair of atoms of the open channel.
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Figure 14. Variation of the fraction of molecules Z in the closed channel |¢q)
for a SLi gas around the Fano—Feshbach resonance located at By = 834 G. The
weakly bound dimer condensate regime corresponds to the B < By region. Figure
extracted from Partridge, Strecker, et al. (2005).

has only a weak overlap with the molecular state |¢,) of the closed channel:
the main contribution to this dimer comes from the open channel.

The magnetic field was then slowly swept to bring the gas into the
strongly interacting regime. Partridge, Strecker, et al. (2005) measured the
fraction of atoms in the "closed" channel of the Feshbach resonance, the |¢g)
molecular state, thanks to a laser that brought this molecule into an excited
electronic state. This resulted in the spontaneous emission of a photon and
a loss of particles that could be detected.

The results of the measurement of the fraction Z = 2(N,,)/N of atoms
in the molecular state |¢g) are shown in figure 14. We see that this fraction
is always much smaller than 1, as expected for a broad resonance. Werner,
Tarruell, et al. (2009) used these data to deduce the value of the contact
thanks to (92). The result is shown in figure 15: the agreement between
the data of Partridge, Strecker, et al. (2005) and the theoretical modeling is
remarkable.
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Figure 15. Points: data from Partridge, Strecker, et al. (2005) re-expressed as a
function of contact via (92). Continuous curve: prediction for the contact of a spin
1/2 Fermi gas. Figure extracted from Werner, Tarruell, et al. (2009).



Chapter VI

The different facets of the two-body contact

We continue in this last chapter our study of the contact C started in
chapter 5. Recall that the contact C is a quantity that allows, for a dilute
system, to link aspects of two-body physics, such as the pair distribution
function Ga(r), to the equilibrium thermodynamics of the gas, its internal
energy I for example (see figure 1). For a gas of spin 1/2 fermions, this
link between microscopic and macroscopic properties is possible whatever
the strength of the interactions — characterized by the scattering length a —
and the degeneracy of the gas — characterized by the phase-space density
nA3. For a gas of bosons, restrictions are to be put on the density and the
scattering length to avoid that microscopic processes involving more than
two bodies play a significant role.

Our goal in this chapter is to present a series of measurements of the
contact involving spectroscopic techniques or the study of losses induced
by collisions between atoms. To set up the formalism to describe these
measurements, it is useful to reformulate the results of the previous chap-
ter in terms of the pseudo-potential Vj,,,, i.e. a potential of range b = 0. This
reformulation is not trivial: it is accompanied by a divergence of some
quantities characterizing the system, its kinetic energy for example. We
will show that this divergence is compensated by the divergence of the
other component of the energy of the fluid, the interaction energy, the sum
of the two energies, i.e. the thermodynamic function internal energy E be-
ing convergent, as it should be.

Once the formalism for describing a zero range potential is in place, we
will move on to model a radio frequency spectroscopy experiment and
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Figure 1. The different links established by the two-body contact introduced in
chapter 5.
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show how the short range correlations studied in the previous chapter
translate into the shape of the resonance line, in particular its wing. We
will describe experimental observations of this wing, as well as other man-
ifestations of contact for a fermion gas, such as atomic losses induced by
the presence of impurities within the gas.

The last part of this chapter will be devoted to the Bose gas. We will
briefly explain why Efimov-type three-body processes make the situation
more complex than for fermions. We will describe experiments demon-
strating two-body contact in different density regimes, limiting ourselves
to situations where three-body effects do not play a significant role.
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1 Contact and pseudo-potential

1-1 Reminder on the definition of the contact

In the previous chapter, starting from a wave function ®(r1, ..., ry) for N
particles, we defined the contact C' from the two-body correlation function.
We are particularly interested in the case of a scattering resonance, when
the scattering length a becomes much larger than the range of the potential
b.

Let us recall the approach followed in the case of a gas of spin 1/2
fermions. Let us assume that this gas is balanced, i.e. Ny = Ny = N/2
and let us assign odd (resp. even) indices to the particles of spin 1 (resp. |).
The function ®(ry,...,ry) is thus antisymmetric by any exchange of odd
indices, and also antisymmetric by any exchange of even indices.

We have introduced the two-body correlation function
Gopy (r',0;7,0) = (FL(r")T[(0),(0)T4(r)) 1)
2

= /d3T3...d3rN *(r',0,73,...,7N)
X

o(r,0,73,...,7N),
then, using the zero energy wave function v(r) describing the state of the
relative variable in a collision between two particles, we explained that the
two-body correlation function could be put in the form

C

/ .
r,r <<d,a. W

Gor (7',0;7,0) = Yo (r') tho(r) )

where d = n~!/3 is the average distance between particles and where the
contact C' describes the effect of the remaining N — 2 bodies. We have
written a similar relation for an assembly of spinless or polarized bosons.

We are also interested in the associated momentum distribution n(k)
and we have shown for spin 1/2 fermions that :

1 1
Fermions: p; kKL ne(k) =ny (k) ~ %. 3

b
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A natural question at this stage concerns the extension of these results
to the case of a potential of range b = 0, i.e. the pseudo-potential V,,. The
use of the pseudo-potential allows to simplify the calculations and to find
other remarkable scaling laws, as we will see in the case of radio-frequency
spectroscopy.

Recall that in reality, inter-atomic potentials have a non-zero range b,
of the order of the van der Waals length R.qw. If the use of the pseudo-
potential leads to a divergent expression for a certain physical quantity,
it is important to keep in mind this natural limitation at short distances
(Rvaw S r) or, equivalently, at large momentum (k < R;dlw).

1-2 The zero-range limit

In the limiting case of a zero range potential, the tail of the momentum
distribution n(k) = C/k* given in (3) extends to infinity. We immediately
deduce that the kinetic energy

21.2
Ecin = ﬁ/% [nT(k) +n¢(k)] dgk (4)

diverges since the integrand tends to a constant at infinity:

1 % 2C
(2m)3 2m Kkt

n*C
ATk? = : 5
i 22m ©)
The usual remedy to this type of "ultra-violet" divergence is to place a
cutoff in the momentum space. If we note kn,.x the upper bound of the
integral on £, the kinetic energy is written:

B2Ckmax
Eyin=———+... (6)

Fermions:
2m2m

where "..." represents a finite and regular contribution. One will notice
that the presence of k=5 terms could invalidate this assertion, by leading
to a divergence in log(kmax). Fortunately, it can be shown that the presence
of such terms is excluded in the case of the Fermi gas considered here (Tan
2008c).
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To make this zero range limit more quantitative, we will now approach
the problem by modeling the interaction between atoms by the pseudopo-
tential.

1-3 The pseudo-potential approach

In the case of a binary interaction described by the pseudo-potential

0 ) drha
o) with 9= T )

Vpp [¥(r)] = gd(r) o Y

one can determine exactly the scattering states v (r) and the possible
bound state ¥bouna(r) (cf. course 2020-21). A scattering state of energy
E = h%k?/2m, (m, = m/2 is the reduced mass) is written

a elkr

_ ikr
Vk(r) =e  1+ika r ®)

with in particular for zero energy, the normalized wave function:

w(r) =15 (3- 1) ©

The bound state exists if and only if ¢ > 0 and is written:

—r/a
wbound (T) = = ¢ (10)
V2ma T

energy E = —h?/ma®.

Let us also recall the action of the pseudo-potential on a function with
a divergence in 1/

V) =T ) = Ve 0] = ghee(0)3(r) (D)

Each eigenstate (8,9,10) has the same behavior in the neighborhood of
the origin:

P(r) oc1 _ ! + O(r) 12)

r a
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and this behavior, which links the coefficients of the »~! term and the °
term, is thus shared by all physically acceptable functions in the presence
of the pseudopotential; it constitutes the domain of the Hamiltonian in-
volving this pseudopotential.

This behavior generalizes to a N body system, if the binary interac-
tions are described by the pseudopotential. The fermionic wave function
®(rq,7r2,73,...,7N) introduced above must verify:

1 1\ =
O(ry,re,rs,...,PN) X (—) (R, r3,...,TN) (13)

T12 a
when the distance 715 tends to 0. We have posed here R = (ry + 72)/2
and assumed that R was different from all 7;, j = 3, ..., N. The two-body
correlation function at short distances! is therefore:

Go 1y (1, 057, 0) ~ (M)C;Lg <1 - é 4 0(7«’)) ( L1, O(T)) a4

r r a

Let us now consider the interaction energy. We take again the case of N
fermions of spin 1/2. This interaction energy can be evaluated from

N2 * 9y 3 3
B = e O (ry1,re,...,TN) {Vpp(rlg) [@(rl,rg,...,rN)]} d°ry...d°rN
(15)
Using (14), we find
e 11\ [, (1 1\]
B = gap f (2) [ (-2)] o
2
_ e / (1 - 1) 5(r) dr, (16)
4mm roa

with an obviously divergent contribution since we have to make the Dirac
distribution act on the 1/r function.

As for the calculation of the kinetic energy, let us put a cutoff in k at a
value knax, which amounts to smoothing the divergence of 1/r inr = 0 on

IThe behavior given in (14) is a direct consequence of the argument presented in the previ-
ous chapter, that G5 1| (7/, 0; 7, 0) can be seen as the matrix element of a Hermitian operator
between (r’| and |r). This operator can be put in the diagonal form >~ v; o (r")¢;(r) and
every function ¢; verifies (12) since it belongs to the Hamiltonian domain.
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a domain of extension k-1

max*

We can then compute the integral (16) using

Lo L[ 7)
so that .
L) = oy [ St @tk = P (18)
hence
Fermions: By = ii—g (—%:“ + i) (19)

The two linearly divergent contributions in k.« of the kinetic energy
and the interaction energy are thus equal in absolute value and of opposite
signs. They compensate each other exactly when we compute the total en-
ergy, that is to say the thermodynamic function considered in the previous
chapter: this function is therefore finite, even for a potential of range b = 0.
A convenient form for this total energy is

h2C

4mma

21.2
Fermions: E= Y _ @ / % {ng(/{) - ;] d*k (20)
o=Tl

where the divergent parts of the kinetic energy and the interaction energy
terms were isolated and offset each other.

For bosons, if we forget about three-body effects, we find

. , 1 R?k? Cl 5 m2C
Bosons without Efimov: E= RE /% [n(k) - k4] d°k + r—
(1)

The Efimov states that appear in the vicinity of a scattering resonance com-
plicate the situation by introducing another component in the momentum
distribution, varying as k=5 (Castin & Werner 2011). The divergence in-
duced on the kinetic energy is only logarithmic, and it is compensated by
an additional term in the interaction energy also originating from three-
body effects (Braaten, Kang, et al. 2011).
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1-4 The case of a potential in "true" Dirac

A commonly used method (see Chapter 3) to describe a potential of neg-
ligible range is to use a true Dirac distribution g d(r), associated with the
cutoff kpax in momentum space, and to choose

]- 1 mkmax 1 1 kaax
_ 1 = 2 4 Zfmax 22
g g T oz s @t Ta @)

where g = 4wh?a/m is the "physical” coupling constant and g = 4rh?a/m
the "bare" coupling constant.

The constraint (22) is obtained by imposing on the eigenfunction

Yo(r) = 1 — L of zero energy for ?/2m, + Vj,, to be also eigenfunction
of zero energy for p?/2m, + g(r):
h? 1 1 1 1
v (1- ) swm (2o 1) =0 @)
m roa roa
which implies
dwh?® (2 1
o) [T (- 1) - (1)

where we used V*(1/r) = —4n6(r) and 1|, = 2kmax/7 [cf. (18)].

In a calculation, intermediate results may involve the "bare" coupling
constant g and/or the cutoff k.,.x, but the physical quantities must be cal-
culated by taking the limit £,.x — oo and they must be expressed using g
only. When this is not possible, it means that we are in the presence of a
problem whose answer depends explicitly on the range b of the potential.

We can see that the interaction energy (19) is written in these conditions

rtC
Bt = (25)
m=g

and a similar expression for bosons with no Efimov:

Fermions:

rC

Bosons without Efimov effect: —
2m2g

Eint - (26)
It is therefore not a physical quantity, just like the kinetic energy (6) which
explicitly involves kpax. On the other hand, the total energy involves only

the physical coupling constant g.
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Let us now check that we can directly find the result (25-26) for a "true"
Dirac potential. Let us consider spinless bosons to simplify the notations.
The Hamiltonian is written in these conditions

H= gkin + I:Iim (27)
with B
Hipy = gf( et K= / O ()T () (r)eh(r) dPr (28)

hence the interaction energy

Biw, = () = 3 (K). 29)

The quantity (K) involves the value of the function Gy (7, 75; 71, 72)
when the four points are identical, i.e. for a uniform system:

(K) = L G5(0,0;0,0). (30)

Let us take again the expression (14) of G, at short distances. We must use
the "value in 0" of the function 1/r, which we gave in (18). Let us transfer
this value into the expression (2) of Go:

C (%max 1)2 e o1

™ a

The correlation function G, taken in 7y = r; is thus not a physical quantity
for an interacting gas, since it involves the bare coupling g and not the
physical coupling g. It diverges when we take the limit kp,ax — co. The
situation for an interacting gas is thus radically different from the case of
the ideal gas (Naraschewski & Glauber 1999).
Let us now return to the interaction energy (29)
g,y _ 9,3 MC 1
Enw==(K)=>1L —.
T2 (K) 2 L3m2 g2

This result coincides with the one announced in (26).

(32)

To summarize, the use of the couple (g, kmax), followed by the limit
kmax — oo under the condition (22) linking g, kmax to the real coupling g
allows us to carry out calculations in a relatively simple and transparent
way. This is the method we will use in the next part dedicated to radio-
frequency spectroscopy.

2 Contact and radio frequency spectroscopy

2-1 Position of the problem

Radio frequency spectroscopy is a powerful way to analyze the properties
of a quantum gas. While for an isolated atom, the absorption spectrum is
composed of discrete lines, the spectrum of an interacting gas is generally
a continuum whose line shape, center of gravity, and wings provide infor-
mation about the nature of the N-particle states that may exist within the
fluid.

We will focus here on the case of a gas of spin 1/2 fermions. The idea is
to illuminate the gas with an electromagnetic wave of frequency w which
can induce a transition from one of the two internal atomic states, 1 for ex-
ample, to a third state which we will note e (figure 2). The fact of choosing
a "radio-frequency" wave, thus of long wavelength, means that the passage
from 1 to e is not accompanied by any transfer of momentum, contrary to
what would happen if we used a light beam (Bragg spectroscopy). The
momentum states that will play a role in the following are those which
are populated in the stationary state of the gas, in particular during the
interaction between two close atoms.

We are going to study here the variation with w of the transfer rate I'(w)
from 1 to e, and we are going to look at two quantities:

® The average position of the resonance involves the contact and is writ-
ten in the limit of large scattering lengths |a.|, |ac;| > b:

_ Jwl(w)dw _ 1 1 hC
w) = [T(w)dw ~ “o (am a ae¢> drmNy (33

where wy denotes the Te transition frequency of an isolated atom (we
will assume here wy > 0 to fix the ideas).

* When the atoms in the state e do not interact with the | atoms (a.;=0),
the mean displacement (33) diverges. It can be shown that this is due
to the appearance of a large detuned wing for I'(w), which also in-
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Figure 2. Principle of radio-frequency spectroscopy for a two-component Fermi
gas. A radio-frequency wave couples one of the two spin states, here 1, to a third
internal state denoted e.

volves the contact:

I'(w) - 1 W C
JT(w)dw 42NV m (w — wp)3/2 (34)

We will see that this wing is closely related to the 1/k* decay of the
momentum distribution.

These results were obtained from a succession of works described in Yu &
Baym (2006), Baym, Pethick, et al. (2007), Punk & Zwerger (2007), Hauss-
mann, Punk, et al. (2009), and Pieri, Perali, et al. (2009) and Braaten, Kang,
et al. (2010).

2-2  Center of mass of the spectrum

The calculation of the rate I'(w) is done by using the Fermi golden rule,
or in an equivalent way, the linear response approach. The perturbation
created by the radio frequency wave is described by the operator

Hy(t) = ? e 'Y +He  with V= / Ul (r)Uy(r) d®r,  (35)

where (2 is the Rabi frequency of the radio-frequency, proportional to its
oscillating electromagnetic field. We have made here the rotating wave

°* o % e P
([ ([
) o © 20 w
® o 0 °® 1 ¢ Weak or strong
° 1 ® interaction a;
o o
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—iwt

approximation (RWA) by keeping only the quasi-resonant part (in e
with w > 0) for the passage from 1 to e.

The transfer rate is then written [see for example Cohen-Tannoudji, Diu,
et al. (1986), XIII-C-3]

D(w) = 50 (@] V19:)[ Sl — (Bf — Ei)/A]. (36)
Py

In this expression, the state |®;), of energy E;, represents the initial state
with Ny and N particles in the two spin states 1 and |, and no particles
in the e state. The sum covers all possible final states |®¢) (of energy E).
These states have IV — 1 particles in the 1 state, 1 particle in the e state, and
N, particles in the | state.

To show (33), let us first look at the denominator [ I'(w) dw. The integral
over w of the Dirac distribution gives 1; using the closure relation 1 =
Z‘@f |®¢)(D¢|, we arrive at:

/F(w) dw

gm (@;| VTV |2, (37)
T ~ ~ ~ ~
— 592 /<<1>Z-|x11}(r) o (r) Ulr') Uy (r')| ;) d3r d3r.
For fermions, we have the anti-commutation relation [¥,(r), ¥f(r/)]; =

d(r — r’). As the |®;) state does not contain a particle in the e state, we
deduce:

/F(w) dw = gQQ /<q>i|\if§(r) Ty (r)|®;) d3r = gmNT. (38)

The calculation of the numerator of (33), [wI'(w)dw, is slightly more
complicated. We use the presence of §jw — (E; — E;)/h] to establish

To(®i[YT|®f) = (By — E)(®|VT| @) = (2|7, H]| @), (39)

where H denotes the Hamiltonian in the absence of radio-frequency cou-
pling. This leads to (still using a closure relation on |®¢)):

/wF(w) dw = %QQ /<<I>i| [\i@(r) \ile(r),lﬂ Ul (") Uy ()| @) d3r A3,
(40)
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where the Hamiltonian contains the internal energy fwq of the state e, the
kinetic energy terms for the three components 1, | and e, and the three
interaction terms 1, e} and e 1.

Let us first observe that the commutators of \ﬂ (1) W, (r) with the kinetic
energy terms as well as with the e 1 coupling have a zero contribution for
the initial state considered.

We will treat here the interaction terms using "true" Dirac potentials,
according to the procedure explained in §1-4. We introduce for this pur-
pose the bare couplings g+, Gey, Get associated to the same cutoff kpax in
momentum space. In the calculation of the commutator involved in (40),
the only non-zero contributions come from the internal energy 7w of e and
from the couplings e and 1. We then arrive at

(w) = wo + %NT (Ges — Gr1) (Kint)- (41)
The operator K, defined by:
K = [ 3]y ar )

is the fermionic version of the operator introduced in (28) for bosons. Its
average is i'C//(m?g3, ) [¢f. (30,31)], which leads to:

Qe 1 1 hC
= — - . 4
W=t ary (au @ei) dmm Ny @

Using the identity between the bare couplings (g, @) and the physical cou-

plings (g, a):
1 1 11

-2 (44)
] Qel Ay Qey
this relation can also be written:
a 1 1 hC
@ man 22 (- ) 45)
tL\ary Gey ) AmmNt
Finally, we can write the ratio @, /a4, as:
_ oy — 57—
el - M 200 ] when Fmax — 0. (46)

dT,L N kmax - 2a.,
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We then arrive at the result announced in (33). Recall that the limit k.,
must be understood physically as kmax ~ 1/b since beyond this value,
the range of the potential must be taken into account. The result (46) is
therefore only physically relevant if the scattering lengths are such that
laty|, |aey| > b. One can consult the article by Baym, Pethick, et al. (2007)
for a discussion of situations where this inequality is not satisfied.

One might be surprised not to see an interaction term proportional to
get in the above. The reason is that the action of the radio frequency con-
sists in making each of the N; atoms switch from the | 1) state to the
cosf | 1) +sinf |e)state (with § < 1 in our perturbative approach). These
Ny atoms all remain in the same internal state, they are thus polarized
fermions and they do not interact with each other (Gupta, Hadzibabic,
et al. 2003). The situation would of course be different if we considered
bosons.

2-3 The wing of the radio frequency spectrum

We consider in this paragraph the case where the atoms in the e state do not
interact with the atoms in 1 and |. In particular, the fact of posing a.y = 0
leads to the divergence of (33). We want to show here that this divergence
of the integral [w,I'(w)dw comes from the appearance of a wing in (w —
wo) /2, whose expression is given in (34).

Since the atoms in the state e evolve freely, the form of the possible final
states @ involved in the Fermi golden rule (36) is simple: they are product
states |e : k) ® |<I>50N_1)>, of energy Ey = % + E;N_l). A generic matrix
element involved in (36) is then written:

e

—ik-r
N

@ﬂ?@»=/“ SNV (1) 01) 47)

When w — wy is large, an isolated 1 atom is almost insensitive to radio
frequency. The dominant final states are those where the radio-frequency
makes the internal state of an atom 1, initially very close to an atom |,
change. Depending on the value of a, these two atoms could, before the
r.f. transition, form a bound state or be in a scattering state. In both cases,
the center of mass momentum of this pair was small, while the momentum
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Figure 3. Process contributing to the wing o< (w — wg)>/? of the radio frequency
spectrum.

distributions of each of the two partners (or equivalently, the momentum
distribution of the relative variable) could be broad.

During the transition from 1 to e, the total momentum of the pair is
unchanged and thus remains negligible. The total initial energy of the pair,
E;, is assumed to be small in front of the detuning A(w —wy), even if its two
components, kinetic and interaction (which are of opposite signs), are each
comparable to the detuning®. Once the radio frequency photon has been
absorbed and the 1 atom has been transferred to the e state, the two atoms
do not interact anymore (figure 3). They share equally the excess energy
h(w — wp), each of the two atoms gaining the kinetic energy h?k?/2m. The
distribution é[w — (Ey — E;)/h] can then be approximated by 6(w — wg —
hk?/m).

Once this approximation is done, we can again use a closure relation on

the |<I>§CN_1)> states. The sum of the squares of the matrix elements of type
(47) gives

02 EPTIA hik?
I(w) ~ - ST N e k@ @YY@ 6 (w —wo — m) (48)
kgD

or

102 eikn(r’—'r) . .
e~ T3 [ @l bije)

hik?
) (w —wp — m) d3r a3, (49)

2A similar reasoning appears in the analysis of the energy increase induced by atomic
losses in an interacting gas (Bouchoule, Dubois, et al. 2021). The loss of atoms that have a
close neighbor leads to a divergence of the rate of energy increase for a zero range potential.
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We recognize the momentum distribution for the 1 state:
ny(k) = / ik (=) <q>i|®;(r’) Uy (r)|@;) d®r d®r’ (50)
so that I'(w) is written:
0?1 fik?
N k —wy— — | d’k. 1
5 (QW)S/HT()(S(LU wo m)dk (51)

We then insert the asymptotic law n4(k) ~ C/k* and arrive at

hik? h 1
/nT(kz) 0 (w —wo — m) d*k = ZWC\/;(W—UJQ)?’/Q (52)

02 /h C

which is consistent with the prediction (34).

['(w)

and

Note that in practice, a.; is never strictly zero. Braaten, Kang, et al.
(2010) show that for w 2 f/maZ , the slow decay in (w — wo) ~3/? switches
to a faster decay in (w—wp) ~°/2, which ensures the convergence of the inte-
gral giving the center of mass of the line [see also Chin & Julienne (2005)].
Corrections related to the range b ~ R,qw of the potential can also play a

role for very large detunings.

3 Experimental studies on the Fermi gas

3-1 Radio-frequency spectroscopy

We presented in the previous chapter a first part of the results obtained by
the Boulder group in 2010 for the measurement of the contact, using the
momentum distribution of a 1°K fermion gas with | |) = |F = 9/2,mp =
—9/2) and | 1) = |F = 9/2,mp = —7/2) (Stewart, Gaebler, et al. 2010).
Let us now describe the second study carried out by the same group using
radio frequency spectroscopy, performed from the | 1) state to the |e) =
|F =9/2,mp = —5/2) state. The transfer rate as a function of the detuning
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Figure 4. Variation of 13/ T(v), where T'(v) is the rate of transfer from | 1) to
le) by a radio frequency detuned by v from resonance, v being expressed here in
units of By /2nh. The plateau observed for large values of v allows to determine
the contact for the chosen value of a [(kpa)™' = —0.03 for these data].Figure
extracted from Stewart, Gaebler, et al. (2010).

w — wp is shown in figure 4. We see that this rate varies as expected as
(w — wp)~%/? at large detunings, and the proportionality coefficient thus
provides another determination of the contact.

Figure 5 combines the two datasets for the contact obtained by Stew-
art, Gaebler, et al. (2010) from the momentum distribution and from radio
frequency spectroscopy. A third dataset was obtained with the photoemis-
sion spectroscopy technique which we will not describe here. All these
data are compatible with each other and their variation with 1/a is in good
agreement with the qualitative discussion in the previous chapter.

Recently, the MIT group led by M. Zwierlein has further investigated
the contact at the unitary point ¢ = =oo using radio frequency spec-
troscopy (Mukherjee, Patel, et al. 2019). The MIT researchers varied the
temperature of the gas to study the behavior of the contact when cross-
ing the transition between the superfluid and normal states (7. ~ 0.17 T¥).
These measurements, plotted in figure 6 (top), were performed in a uni-
form gas, confined in a box-like potential, which avoids the broadening of
the spectrum that occurs in a harmonic trap because of the spatial density
variations. The obtained spectra provide a lot of information about the
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Figure 5. Summary of the values obtained for the contact (in units of Nkr) by
measuring the momentum distribution (black dots) and by radio frequency spec-
troscopy (stars). The third data set uses photoemission spectroscopy (PES). The
solid curve is the theoretical prediction of Werner, Tarruell, et al. (2009). Figure
taken from Stewart, Gaebler, et al. (2010).

physics involved. For example, the shift of the line maximum gives access
to the energy of the Cooper pairs whose formation becomes energetically
favorable for ' < 0.5 Tr. For the spectrum obtained at the lowest temper-
ature, we clearly see a (w — wo) ~%/? wing (figure 6, bottom), with a slightly
faster decay for very large detunings, related to the non-zero interactions
between the e atoms and the | atoms [see the discussion after equation
(53)].

The contact deduced from the wing analysis of the radio frequency
spectrum by the MIT group is shown in figure 7, along with results ob-
tained simultaneously by the Swinburne group using the measurement of
the dynamical structure factor S(g,w). The results of both groups are in
excellent agreement and provide in particular the value in the zero tem-
perature limit C'/Nkp = 3.
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Figure 6. Top: series of radio frequency spectra measured on a unitary Fermi
gas (la| = +o0) for different temperatures. Bottom : spectrum measured at low
temperature with the wing in (w — wo) /2, and corrections related to residual
interactions between e and |. The analysis of these data gives C' = 3.07 (6).
Figures taken from Mukherjee, Patel, et al. (2019).
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Figure 7. Contact values for an equilibrium Fermi gas in the unitary regime as
a function of temperature. Left figure taken from Mukherjee, Patel, et al. (2019).
Right figure taken from Carcy, Hoinka, et al. (2019). Theoretical BDMC (bold-
diagrammatic Monte Carlo) data were obtained by Rossi, Ohgoe, et al. (2018). The
value of Laurent, Pierce, et al. (2017) discussed in § 3-2 is indicated by an orange
square (green dot) on the left (right) plot.

3-2 Measurement of contact by atom loss

Laurent, Pierce, et al. (2017) have developed an original approach to mea-
sure the contact in a °Li gas of spin 1/2 confined in an optical trap, by in-
serting a few "Li atoms playing the role of impurities (see also see Spiegel-
halder, Trenkwalder, et al. (2009b) and Khramov, Hansen, et al. (2012)).
The principle of the measurement is to study how impurities promote the
formation of ®Li, dimers. We are therefore interested in the three-body
process:

SLit +°Li) +7Li — °Li; + "Li. (54)

The presence of the impurity allows for the conservation of energy and
momentum in this process.

Since the dimer that is formed has a small extension (b ~ R,qw), the
rate at which this process occurs gives information about the probability
density for having the two SLi atoms close together, at a distance of ~ b
from each other: this is precisely the quantity to which the contact gives
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Figure 8. The impurity assisted dimer formation process. At the end of the process,
the energy released is converted into kinetic energy. This energy is large enough
for the impurity to escape from the trap confining the particles.

access. As the "Li atom has a large kinetic energy after the dimer formation,
it escapes from the trap. The loss rate of the "Li atoms thus allows to infer
the value of the contact in the °Li gas.

For a quantitative treatment of the problem, we introduce the three-
body operator:

A r+7r ~ ~ A ~
///g(ri,m,m) |3 <T2¢> Tl (ry) i(ry) Ty(ry) Ty (ry) dry drp dPry.

(55)
We see appearing in this operator the density of impurities in r;, 72;(r;) =
zﬁ:r (ri)z/}i(ri) ; moreover, the dimer is created in the middle of the segment
joining the two fermions 1 and | initially present. The function g, which de-
pends on the details of the interaction potentials between the three atoms,
takes significant values only when the three atoms are in the same volume
of extension ~ b.

To calculate the rate of dimer production (and thus impurity loss), one
can use an approach based on Fermi’s golden rule. The treatment is de-
tailed in the Supplemental Material of Laurent, Pierce, et al. (2017) and it is
close to what we have developed for the calculation of the radio frequency
spectrum. The result can be written

Ni = —(C/L%) N, (56)

where the coefficient v involves the coupling function g entering (55), but
does not depend on the value of the scattering length a for the fermion gas.

The strategy adopted by Laurent, Pierce, et al. (2017) was to first cal-
ibrate the v coefficient by making measurements of the loss rate /V; in a
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Figure 9. Variation of "Li impurity loss rate as a function of the density of the °Li
fermion gas. These data were taken at resonance (a = oo for the 1 and | fermion
interaction) and the solid red line indicates the expected n*/® variation law. Figure
extracted from Laurent, Pierce, et al. (2017).

regime where the contact is well known. In practice, these calibration mea-
surements were made for a small and positive, favoring a dimer gas. The
temperature was chosen well above the degeneracy temperature, so that
the gas distribution in the trap was well described by a simple Boltzmann
law.

Once the v coefficient was known, Laurent, Pierce, et al. (2017) placed
their °Li gas at resonance (a = o) to study the contact in a strong interac-
tion regime at a temperature as low as possible, in practice T'/Tr ~ 0.1. We
have seen above [see for example figure 7] that in the unitary regime, we
expect for the contact the following law

% = 27 kpn ni/3. (57)

According to (56), this same law in n%/3 is expected for the impurity loss
rate. We check on figure 9 that this is indeed the case. The fit of the exper-
imental data provides the value 277 ~ 3.1(4) for the coefficient in (57), in
good agreement with the results shown in figure 7.



CHAPITRE VI. THE DIFFERENT FACETS OF THE TWO-BODY CONTACT

§3. Experimental studies on the Fermi gas

‘Z 7& 0\
E = n’k*/2m,
—

Ve (7)

Figure 10. Resonance for a £ # 0 channel due to the presence of a quasi-bound
state.

3-3 The p wave contact

In this chapter we have been interested so far in s-wave interactions, char-
acterized by a scattering length a, and we have introduced the contact
as the thermodynamic quantity conjugate of a (or more precisely 1/a), to
within a multiplicative factor. This interest in s-wave interactions is jus-
tified: whether one takes a gas of polarized bosons or a gas of spin 1/2
fermions, the momentum channel ¢ = 0 is generally dominant over all oth-
ers at low temperature. Recall that this is due to the centrifugal barrier
B26(¢ 4 1) /mr? which exists in all £ # 0 channels. This barrier is notably
larger than the energy of the particles, so that the scattering in these chan-
nels is generally negligible.

Nevertheless, there are situations where scattering in a channel other
than the s-wave can play an important role. Consider for example a po-
larized Fermi gas, so that there are no s-wave collisions. Suppose further
that there exists a scattering resonance for the p-wave channel / = 1. Such
a resonance can occur if there is a near zero energy quasi-bound state in
the well formed by the attractive van der Waals potential and the repul-
sive centrifugal barrier (see figure 10): this is called a shape resonance. This
resonance can also be induced by a coupling between two collision chan-
nels, one open, the other closed, according to the usual scheme of Fano-
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Feshbach resonances.

We discussed in the 2021 lecture series the main characteristics of a p-
wave scattering process:

e Intheregionb < r < 1/k, the expected form for the radial part x(r) of
the wave function ¢ (r, 0, ¢) = x(r) Ye.m (0, ) is a linear combination
of =2 and 7! (compare to the combination of r—! and 7° for the s
wave). We introduce the scattering volume v to fix the relative weight
of these two terms (it plays a similar role to that of the scattering length
a for the s wave):

1 r

b 1/k i 58
<r<l1/ 53, (58)

x(r) o

¢ The p-wave scattering amplitude is given by f(k,8) = 3cos(0) f1(k)
with: . ) L

—— =t — —ik+... 59

A 49

The dominant term also involves the scattering volume v. The next

term k. /2 is an effective range term and the last term written here, the

pure imaginary —ik, is a consequence of the unitarity of the scattering

process (optical theorem).

pwave :

Note that the situation is notably different from the case of the s wave
scattering:

. R S

s wave : o)~ Ta k+§r6k +... (60)
where the effective range term was a priori small in front of —ik, itself small
in front of the scattering length contribution. For a p-wave interacting sys-
tem, it is preferable to keep the two independent parameters v and k. to
obtain a faithful characterization of the scattering process. Let us also note
that for a Fano—Feshbach resonance induced by an external magnetic field
B, this field breaks the rotational invariance of the problem,; it is then nec-
essary to introduce v, and k. ,, with m = —1,0,+1 corresponding to the
three possible orientations of the angular momentum relative to B.

The variation in 1/r? of the relative wave function (58) suggests
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¢ that the two-body correlation function will be dominated at short dis-
tances (while respecting b < r) by a term varying as 1/r?;

e that the probability amplitude to find the momentum k will be pro-
portional to the Fourier transform of 1/ r?, ie. 1/k, leading to a mo-
mentum probability distribution varying as 1/k?.

Detailed analyses conducted by Yoshida & Ueda (2015), Yu, Thywissen,
et al. (2015), and Yu, Thywissen, et al. (2016) confirm this intuition. By
introducing the variable conjugate to the scattering volume

8mm OF
== (3

-5 \ 373 (61)
h? 1/Um))S,N,V,ke

we then find for the distribution of pairs at short distance®:

1 1

pAmT) =

> Yim(#)PCom, (63)

where the function Y; ,,,(7) is the spherical harmonic depending on the
angular variables (6, ¢) marking the direction of the unit vector aligned
with r = r; — ro. Similarly, we find for the momentum distribution

n(k) = 41

m

|Y1,7n(’;7)‘201),7n- (64)

Yu, Thywissen, et al. (2015) further discuss the introduction of the contact
Cy, related to the effective range term k., which for example adds a r—2
component to the pair distribution function and a k=% component to the
momentum distribution [see also Yu, Thywissen, et al. (2016)].

Note that the momentum distribution (64) is not normalizable, the de-
crease in k™2 at infinity being too slow. Setting a cutoff in k is therefore
essential to make sense of this distribution. As explained by Yoshida &
Ueda (2015), this divergence is related to the fact that unlike the s-wave

3In the case where the three contacts C,y, are equal, the following relation on the spherical
harmonics is useful: 3
2o Mm@ =~ (62)
4m

m
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Figure 11. Momentum distribution of a polarized Fermi gas (*°K) in the vicinity
of a p-wave Feshbach resonance for vy,=11 (B = 198.3G). This distribution is
measured by time of flight, with integration along the imaging = axis (chosen par-
allel to the magnetic field). The expected 1/k? law translates here into a variation
in1/k, with k o< (k2 + k) Y2 because of the integration along the imaging beam
axis. Figure extracted from Luciuk, Trotzky, et al. (2016).

case, there is no physical limit of a zero range potential leading to a p-wave
resonant interaction (see also Pricoupenko (2006)).

The evidence of a k=2 component in the momentum distribution was
provided by the Toronto group led by J. Thywissen (Luciuk, Trotzky, et
al. 2016) and the result is shown in figure 11. The set of data of Luciuk,
Trotzky, et al. (2016), obtained both by radio-frequency spectroscopy and
by the measurement of n(k), is plotted in figure 12 for the two contacts C,
and Cj, . As expected, we see that these contacts take significant values in
the regime where a quasi-bound state is close to the characteristic energy
of the atoms, i.e. the Fermi energy.
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Figure 12. Contacts C,, and Cy,, associated with the parameters v and k. (Cj,,
is noted here Cr), and inferred from radio-frequency spectroscopy and from the
momentum distribution. Figure extracted from Luciuk, Trotzky, et al. (2016).

4 Two-body contact for Bose gases

4-1 The various regimes for Bose gases

We are interested here in the case of a gas of spinless or polarized bosons,
with s-wave interactions characterized by the scattering length a. As al-
ways for this course, we assume that the gas is dilute so that nb®> < 1,
where b is the range of the potential. The extension of Tan's results to the
case of bosons was carried out as early as the late 2000s by Combescot,
Alzetto, et al. (2009) (who neglected the three-body effects), and then by
Braaten, Kang, et al. (2011), Werner & Castin (2012a), and Smith, Braaten,
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et al. (2014) (who have taken them into account). The first Bose gas ex-
periments were conducted in the Boulder group by Wild, Makotyn, et al.
(2012) and will be described in §4-3.

We will start by summarizing the different possible situations:

* The case of a gas in weak interaction, na® < 1 with a > 0. At low
temperature, this case can be described by the Bogoliubov approxi-
mation; at higher temperature, the Hartree-Fock method or the virial
expansion can be used.

On the theoretical level, if the interaction potential between atoms is
completely repulsive, with a range b ~ a (this is the case for a hard
sphere potential for example), no instability is to be feared. On a
practical level however, there are always bound states in the inter-
atomic potential for the species used in the laboratory, which can in-
duce losses* of atoms escaping from the trap as diatomic molecules.
These molecules are formed in a three-body collision, in which two
partners form the bound state and the third carries away the energy
released in the creation of the dimer. We recall that these losses are
absent for a spin 1/2 Fermi gas because the Pauli principle forbids to
have three fermions close to each other if only two spin states 1 and |
are available.

Fortunately, as explained in Chapter 3 (§1.1), the condition na® < 1
guarantees that there is a time range during which the gas has reached
its equilibrium state without the losses mentioned above playing an
appreciable role.

* The case of a weak interaction (n|a|? < 1) with a < 0. At low temper-
ature and in three dimensions, the use of the mean field theory leads
to a dynamical instability of the gas and to its collapse.

e The strong interaction regime, nla|> > 1, with a positive or nega-

tive. In this case, which requires |a| > b, a series of weakly bound
three-body states can appear. The number of these states is infinite for

“In fact, these losses are themselves an interesting process, as they may exhibit a universal
character, as shown theoretically by Braaten & Hammer (2013a) and Laurent, Leyronas, et al.
(2014), and studied experimentally by Rem, Grier, et al. (2013), Fletcher, Gaunt, et al. (2013),
and Eismann, Khaykovich, et al. (2016). Furthermore, these losses can lead to a violation of
Tan relations, as shown in the one-dimensional case by Bouchoule & Dubail (2021).
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a = £oo: this is the well-known Efimov (1971) effect [see Naidon &
Endo (2017) for a review]. These states can have a large extension and
it is easy to form them during collisions in the gas. Therefore, the con-
tribution of these states must be taken into account in determining the
thermodynamic equilibrium of the system.

To characterize the thermodynamics of the system, it is then necessary
to introduce, in addition to the two-body contact, another parame-
ter called the three-body contact (Braaten, Kang, et al. 2011, Werner &
Castin 2012a; Smith, Braaten, et al. 2014). The first experimental mea-
surement of this three-body contact was made by Fletcher, Lopes, et
al. (2017). We will not discuss these experiments here because their
explanation requires the development of a specific formalism, which
we defer to a future lecture series.

Moreover, in this regime, the formation of dimers mentioned above
becomes problematic. In the regime close to 7' = 0, the gas does not
have time to reach its equilibrium state before having lost a significant
fraction of its constituents. The study of the thermodynamic equilib-
rium of a strongly interacting Bose gas can therefore only be done in
the non-degenerate regime (Li & Ho 2012; Fletcher, Gaunt, et al. 2013;
Rem, Grier, et al. 2013; Chevy & Salomon 2016).

4-2 Predictions for the two-body contact

We have plotted in table 1 the expected values for the two-body contact of
a Bose gas in the regimes mentioned above. In the non resonant case and
atT = 0, we are dealing with an "ordinary" Bose-FEinstein condensate. The
value of the contact is directly deduced from the mean field prediction for
the energy of the condensate:

1 4rh?
Em,flzignN with ¢g= Tva

C = (4ma)*nN. (65)

Let’s stay in the non resonant case and go to the non degenerate case. Using
the virial expansion, we saw in chapter 1, §2.3, that the interaction energy
is simply doubled compared to the value (65). The contact is therefore
also doubled, this increase being simply a signature of the bunching effect
discovered by Hanbury-Brown & Twiss (1956).
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T =0 | Non degenerate n\> < 1
Off resonance | (47na)? 2 x (47na)?
On resonance | ~ n?/3 32m(n\)?

Table 1. Predicted values for the two-body contact per unit volume C/L? of a
Bose gas.

Let us now turn to the resonant case. The zero temperature value is
given here as a mere scaling law ~ n4/3 (Diederix, Heijst, et al. 2011; Sykes,
Corson, et al. 2014; Smith, Braaten, et al. 2014), but is difficult to test it
experimentally. Indeed, as explained in §4-1, it is not possible to produce a
Bose gas at equilibrium in this regime, given the large three-body loss rate.
In contrast, the prediction in the last box of the table, corresponding to a
non degenerate gas with resonant interactions, is experimentally testable
(Fletcher, Lopes, et al. 2017). We now briefly explain how to arrive at this
value.

We use the virial expansion, already discussed in chapter 1 of this lec-
ture series, which gives the expansion of the grand potential €2 in powers
of the fugacity z = exp(p/kgT):

kpTV o= ,
Q=-PV=-— BAS > b (T)2 (66)

Jj=1

which we truncate to order 2. We use the thermodynamic definition of
contact (recall that b, (T") = 1 for any temperature):

2
C= Srazm (09 = —167°nN\a? bz (67)
h? Oa TV da ) 1

where we used z = n\? at this order of the calculation.

Let us now take the part of b2(T) related to the interactions and calcu-
lated in chapter 1:

“+oo
plint) _ 23/2/ dioe,th?/kaT dk + O(a) 23/ Bue/knT, (68)
2 T Jo dk

Recall that the first contribution comes from the continuum formed by the
scattering states; it involves the phase shift do(k) of an s wave collision,
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given by:

d(SQ —a

-0 __ = 69

dk 1+ k2a2 (69)
The second contribution, due to the possible bound state intervening in
the resonance, of energy Eyouna = —h?/ma?, is present only in the domain

a > 0, hence the Heaviside function O(a).

The calculation consists in taking the derivative of b with respect to
a, then considering the limit a = Fo0. It does not present any difficult
step, even if it is a bit long [see for example Braaten & Hammer (2013b)].
We arrive at the same value in both limits ¢ — —oc (no bound state) and
a — +oo (the bound state contributes). This value is given in table 1. Note
that although the contact C(a) itself is continuous and finite in 1/a = 0, its
left and right derivatives do not coincide due to the singularity introduced
by the function ©(a). The curve C(a) thus exhibits a cusp at resonance.

4-3 Two-body contact and rf spectroscopy

The first experimental determination of the contact for bosons was carried
out by Wild, Makotyn, et al. (2012) on a condensed gas of %Rb. Using
a Feshbach resonance (B = 155G), the scattering length was varied be-
tween 300 ap and 1300 ay, i.e. from 3 to 13 times the range b ~ R,qw of the
van der Waals potential. This determination was based on radio-frequency
spectroscopy, similar to that described for fermions in §2, with the search
for a (w — wp) /% component in the wing of the r.f. spectrum [cf. §2-3]. A
typical result is shown in figure 13 (left).

Wild, Makotyn, et al. (2012) then studied (still in the zero temperature
limit) the variation of the contact with the scattering length a. Using the
link between the contact and 0E/9a, one deduces from the result of Lee,
Huang, et al. (1957) the expected value for C:

C = (4ma)*nNy (1 + 3?;1%\/71(13) . (70)

The experimental result is plotted in figure 13 (right). The mean field pre-
diction (only the "1" in the parenthesis above) is plotted as a solid line. The
dashed line shows the prediction including the v'na? correction. For these
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Figure 13. Left: radio-frequency spectrum measured on a ®°Rb condensate. One
deduces the value of the contact from the wing of the spectrum, fitted by a (w —
wo) %2 law. Right: variation of the contact with the scattering length a. Figure
extracted from Wild, Makotyn, et al. (2012).

data, the average density was ~ 6 x 10'>cm™2 and the maximum value
of Vna3 was ~ 0.04. The precise origin of the discrepancy between the
experimental data and the prediction (70) is not known, but Wild, Mako-
tyn, et al. (2012) mention the dependence of the measured value for C with
B. The quantity B designates here the speed with which the magnetic
field is brought to its final value to fix the value of the scattering length.
One can therefore suspect that slight non-equilibrium effects have affected
these measurements.

Wild, Makotyn, et al. (2012) also looked for a signature of the three-body
contact in their data. The contribution of this contact was expected to be a
wing of the r.f. spectrum varying as G(w)/w?, where G(w) is a log-periodic
function depending on the three-body parameter. However, no measur-
able contribution of this three-body physics was observed in the Boulder
experiment, in contrast with the subsequent experiment of Fletcher, Lopes,
et al. (2017).

4-4 Measurement of the contact by Ramsey spectroscopy

Zou, Bakkali-Hassani, et al. (2021) have carried out a measurement of the
contact of a Bose gas in the non-resonant case, sweeping a wide range of
temperatures from the quasi-non-degenerate regime (phase-space density
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¢, > a : 3D collisions

¢, < 4, & : 2D thermodynamics

Z

I

Figure 14. Quasi- two-dimensional gas used for two-body contact measurement
by Zou, Bakkali-Hassani, et al. (2021).

D ~ 2) to the case of a practically pure condensate (D ~ 70). This measure-
ment has been carried out in a quasi-bidimensional configuration (figure
14): the gas thickness along the "frozen" dimension is small in front of the
thermal wavelength and the healing length, but it remains large in front
of the scattering length a, so that the 3D modeling of a collision process
adopted so far continues to be relevant.

The experimental procedure takes advantage of the fact that the scat-
tering lengths describing the interactions between atoms in a 8’Rb gas are
all close to each other for the different possible internal states compos-
ing the ground electronic level. Starting from a gas in the internal state
1) = |F = 1,m = 0) (a11 = 100.9 ap), Zou, Bakkali-Hassani, et al. (2021)
have measured the energy AF to be supplied to the gas® for achieving a
full transfer of the atoms to the state |2) = |F = 2,m = 0) (a22 = 94.9 ag)
[¢f. figure 15]. The contact is then deduced directly from its thermodynamic
definition: ) )

o 8mma (5‘E> ~ 8mma® AE 1)
h? da ) Nvs R Aa
with Aa = as — a;. The transition takes place (approximately) at constant
entropy because of the small variation of a.

The transfer from |1) to |2) is done by a Ramsey method, with two short
7/2 microwave pulses separated by a waiting time of duration 7 = 10 ms.
We scan the frequency v of the microwave inducing the transfer and we
look for which value of v the transfer is optimal. An example of Ramsey
signal is shown in figure 16, left. We can verify that at the top of the central
fringe (whose position depends on the gas density), the transfer from |1)

Safter subtraction of the energy Nhuio, where hig is the internal energy change for an
isolated atom.
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Figure 15. Transfer between two internal states of 8 Rb to determine the value of

the two-body contact.

to |2) is indeed total.

The link with the contact® is obtained thanks to (71) and the result is
shown in figure 16, right. The results of Zou, Bakkali-Hassani, et al. (2021)
are in good agreement with the existing theories in the two limiting cases
of a non-degenerate gas (virial expansion) and a strongly degenerate gas
(classical field method or Bogoliubov approximation). In the critical zone
where the superfluid transition occurs (phase-space density ~ 8), there
is to our knowledge no theory that has reproduced quantitatively these
experimental results.

°To apply the result (71), it is important that the three scattering lengths a11, a12, a22 are
close to each other, i.e. close to the SU(2) symmetry for this two-state system. The constraint
on a2 comes from the fact that during the waiting time 7 between the two pulses, the two
states |1) and |2) are simultaneously present in the trap [see Zou, Bakkali-Hassani, et al. (2021)
for a detailed description of the evolution of the gas during this phase].
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Figure 16. Left: Ramsey spectroscopy signal, allowing to determine the energy to
be supplied to a 8"Rb gas to make its internal state switch from |F = 1,m = 0)
to |F = 2,m = 0) and thus change its scattering length by the amount Aa =
age — aq1. Right: Value of the contact deduced from (71), plotted in units of the
contact Cy for the Bogoliubov regime. The dashed curve gives the result of the
virial expansion (Ren 2004). The dotted curve corresponds to the predictions of a
classical field theory (Prokof’ev & Svistunov 2002). Figure extracted from Zou,
Bakkali-Hassani, et al. (2021).

116



References

Altmeyer, A, S Riedl, C Kohstall, M] Wright, R Geursen, M Bartenstein, C
Chin, ] Hecker-Denschlag & R Grimm (2007), “Precision measurements
of collective oscillations in the BEC-BCS crossover”, in Physical review
letters 98.4, p. 040401.

Baym, Gordon, CJ Pethick, Zhenhua Yu & Martin W Zwierlein (2007), “Co-
herence and clock shifts in ultracold Fermi gases with resonant interac-
tions”, in Physical review letters 99.19, p. 190407.

Beliaev, ST (1958a), “ Application of the methods of quantum field theory to
a system of bosons”, in SOVIET PHYSICS JETP-USSR 7.2, pp. 289-299.

- (1958b), “Energy spectrum of a non-ideal Bose gas”, in Sov. Phys. JETP
7.2, pp. 299-307.

Beth, Erich & George E Uhlenbeck (1937), “The quantum theory of the non-
ideal gas. II. Behaviour at low temperatures”, in Physica 4.10, pp. 915-
924.

Blume, D. & K. M. Daily (2009), “Universal relations for a trapped four-
fermion system with arbitrary s-wave scattering length”, in Phys. Rev. A
80 (5), p. 053626.

Bogoliubov, N. N. (1947), “On the theory of superfluidity”, in J. Phys.
(USSR) 11, p. 23.

Bookjans, Eva M., Christopher D. Hamley & Michael S. Chapman (2011),
“Strong Quantum Spin Correlations Observed in Atomic Spin Mixing”,
in Phys. Rev. Lett. 107 (21), p. 210406.

Bottcher, Fabian, Jan-Niklas Schmidt, Jens Hertkorn, Kevin Ng, Sean Gra-
ham, Mingyang Guo, Tim Langen & Tilman Pfau (2021), “New states of
matter with fine-tuned interactions: quantum droplets and dipolar su-
persolids”, in Reports on Progress in Physics 84, p. 012403.

Bottcher, Fabian, Jan-Niklas Schmidt, Matthias Wenzel, Jens Hertkorn,
Mingyang Guo, Tim Langen & Tilman Pfau (2019), “Transient supersolid

117

properties in an array of dipolar quantum droplets”, in Physical Review
X 9.1, p. 011051.

Bouchoule, I. & J. Dubail (2021), “Breakdown of Tan’s Relation in Lossy
One-Dimensional Bose Gases”, in Phys. Rev. Lett. 126 (16), p. 160603.

Bouchoule, Isabelle, Léa Dubois & Léo-Paul Barbier (2021), “Losses in in-
teracting quantum gases: Ultraviolet divergence and its regularization”,
in Phys. Rev. A 104 (3), p. L031304.

Braaten, Eric (2011), “Universal Relations for Fermions with Large Scat-
tering Length”, in BCS-BEC Crossover and the Unitary Fermi Gas, ed. by
Wilhelm Zwerger, Springer.

Braaten, Eric & H.-W. Hammer (Nov. 2013a), “Universal Relation for the
Inelastic Two-Body Loss Rate”en, in Journal of Physics B: Atomic, Molecu-
lar and Optical Physics 46.21arXiv: 1302.5617, p. 215203.

Braaten, Eric & HW Hammer (2013b), “Universal relation for the inelastic
two-body loss rate”, in Journal of Physics B: Atomic, Molecular and Optical
Physics 46.21, p. 215203.

Braaten, Eric, Daekyoung Kang & Lucas Platter (2010), “Short-Time Op-
erator Product Expansion for rf Spectroscopy of a Strongly Interacting
Fermi Gas”, in Phys. Rev. Lett. 104 (22), p. 223004.

— (2011), “Universal Relations for Identical Bosons from Three-Body
Physics”, in Phys. Rev. Lett. 106 (15), p. 153005.

Braaten, Eric, Masaoki Kusunoki & Dongqing Zhang (2008), “Scattering
Models for Ultracold Atoms”, in Annals of Physics 323.7, pp. 1770-1815.

Braaten, Eric & Lucas Platter (May 2008), “Exact Relations for a Strongly
Interacting Fermi Gas from the Operator Product Expansion”en, in Phys-
ical Review Letters 100.20, p. 205301.

Brodsky, I. V., M. Yu. Kagan, A. V. Klaptsov, R. Combescot & X. Leyronas
(2006), “Exact diagrammatic approach for dimer-dimer scattering and



bound states of three and four resonantly interacting particles”, in Phys.
Rev. A 73 (3), p. 032724.

Cabrera, CR, L Tanzi, ] Sanz, B Naylor, P Thomas, P Cheiney & L Tarruell
(2018), “Quantum liquid droplets in a mixture of Bose-Einstein conden-
sates”, in Science 359.6373, pp. 301-304.

Campana, LS, A Caramico D’Auria, L Cesare & U Esposito (1979), “On
the validity of the Bogoliubov approximation for a high-density Bose
model”, in Lettere al Nuovo Cimento (1971-1985) 24.5, pp. 147-150.

Carcy, C., S. Hoinka, M. G. Lingham, P. Dyke, C. C. N. Kuhn, H. Hu & C.
J. Vale (2019), “Contact and Sum Rules in a Near-Uniform Fermi Gas at
Unitarity”, in Phys. Rev. Lett. 122 (20), p. 203401.

Carlen, Eric A, Markus Holzmann, Ian Jauslin & Elliott H Lieb (2021),
“Simplified approach to the repulsive Bose gas from low to high den-
sities and its numerical accuracy”, in Physical Review A 103.5, p. 053309.

Castin, Y. & R. Dum (1998), “Low-temperature Bose-Einstein conden-
sates in time-dependent traps: Beyond the U(1) symmetry-breaking ap-
proach”, in Phys. Rev. A 57 (4), pp. 3008-3021.

Castin, Yvan, Christophe Mora & Ludovic Pricoupenko (2010), “Four-Body
Efimov Effect for Three Fermions and a Lighter Particle”, in Phys. Rev.
Lett. 105 (22), p. 223201.

Castin, Yvan & Félix Werner (2011), “Single-particle momentum distribu-
tion of an Efimov trimer”, in Phys. Rev. A 83 (6), p. 063614.

Castin, Yvan & Félix Werner (May 2013), “Troisiéme coefficient du viriel du
gaz de Bose unitaire”, in Canadian Journal of Physics 91, pp. 382-389.

Cayla, Hugo, Salvatore Butera, Cécile Carcy, Antoine Tenart, Gaétan
Hercé, Marco Mancini, Alain Aspect, lacopo Carusotto & David Clé-
ment (2020), “Hanbury Brown and Twiss Bunching of Phonons and of
the Quantum Depletion in an Interacting Bose Gas”, in Physical Review
Letters 125.16, p. 165301.

Ceperley, D., G. V. Chester & M. H. Kalos (1978), “Monte Carlo study of
the ground state of bosons interacting with Yukawa potentials”, in Phys.
Rev. B 17 (3), pp. 1070-1081.

Cheiney, P, CR Cabrera, ] Sanz, B Naylor, L Tanzi & L Tarruell (2018),
“Bright soliton to quantum droplet transition in a mixture of Bose-
Einstein condensates”, in Physical review letters 120.13, p. 135301.

Chevy, E, V. Bretin, P. Rosenbusch, K. W. Madison & J. Dalibard (2001),
“Transverse Breathing Mode of an Elongated Bose-Einstein Conden-
sate”, in Phys. Rev. Lett. 88, p. 250402.

118

Chevy, F & C Salomon (2016), “Strongly correlated Bose gases”, in Journal
of Physics B: Atomic, Molecular and Optical Physics 49.19, p. 192001.

Chin, Cheng & Paul S. Julienne (Jan. 2005), “Radio-frequency transitions
on weakly bound ultracold molecules”en, in Physical Review A 71.1,
p- 012713.

Chomaz, L, S Baier, D Petter, MJ] Mark, F Wachtler, Luis Santos & F Fer-
laino (2016), “Quantum-fluctuation-driven crossover from a dilute Bose-
Einstein condensate to a macrodroplet in a dipolar quantum fluid”, in
Physical Review X 6.4, p. 041039.

Chomaz, L, D Petter, P Ilzhofer, G Natale, A Trautmann, C Politi, G Duras-
tante, RMW Van Bijnen, A Patscheider, M Sohmen, et al. (2019), “Long-
lived and transient supersolid behaviors in dipolar quantum gases”, in
Physical Review X 9.2, p. 021012.

Cohen-Tannoudji, Claude, Bernard Diu & Franck Laloé (2021), Mécanique
quantique-Tome 3, EDP sciences.

Cohen-Tannoudji, Claude, Bernard Diu & Frank Laloe (1986), “Quantum
Mechanics, Volume 27, in Quantum Mechanics 2, p. 626.

Combescot, R., F. Alzetto & X. Leyronas (2009), “Particle distribution tail
and related energy formula”, in Phys. Rev. A 79 (5), p. 053640.

Diederix, J. M., T. C. . van Heijst & H. T. C. Stoof (2011), “Ground state of
a resonantly interacting Bose gas”, in Phys. Rev. A 84 (3), p. 033618.

Donnelly, R. ]., J. A. Donnelly & R. N. Hills (1981), “Specific heat and dis-
persion curve for helium II”, in Journal of Low Temperature Physics 44.5,
pp- 471-489.

Drut, Joaquin E., Timo A. Lihde & Timour Ten (2011), “Momentum Distri-
bution and Contact of the Unitary Fermi Gas”, in Phys. Rev. Lett. 106 (20),
p- 205302.

Duan, L.-M., A. Sgrensen, J. I. Cirac & P. Zoller (2000), “Squeezing and
Entanglement of Atomic Beams”, in Phys. Rev. Lett. 85 (19), p. 3991.

Efimov, V (1971), “Weakly-bound states of three resonantly-interacting par-
ticles”, in Sov. J. Nucl. Phys 12.589, p. 101.

Eismann, Ulrich, Lev Khaykovich, Sébastien Laurent, Igor Ferrier-Barbut,
Benno S. Rem, et al. (2016), “Universal Loss Dynamics in a Unitary Bose
Gas”, in Phys. Rev. X 6 (2), p. 021025.

Endo, Shimpei (2020), “Virial expansion coefficients in the unitary Fermi
gas”, in SciPost Physics Proceedings 3, p. 049.

Endo, Shimpei & Yvan Castin (2015), “Absence of a four-body Efimov ef-
fect in the 2 + 2 fermionic problem”, in Phys. Rev. A 92 (5), p. 053624.



— (2016a), “The interaction-sensitive states of a trapped two-component
ideal Fermi gas and application to the virial expansion of the unitary
Fermi gas”, in Journal of Physics A: Mathematical and Theoretical 49.26,
p- 265301.

— (2016b), “Unitary boson-boson and boson-fermion mixtures: third virial
coefficient and three-body parameter on a narrow Feshbach resonance”,
in The European Physical Journal D 70.11, p. 238.

Evrard, Bertrand, An Qu, Jean Dalibard & Fabrice Gerbier (2021), “From
Many-Body Oscillations to Thermalization in an Isolated Spinor Gas”,
in Phys. Rev. Lett. 126 (6), p. 063401.

Fedichev, PO, MW Reynolds & GV Shlyapnikov (1996), “Three-body re-
combination of ultracold atoms to a weakly bound s level”, in Physical
review letters 77.14, p. 2921.

Ferrier-Barbut, Igor (2019), “Ultradilute quantum droplets”, in Physics To-
day 72.4, pp. 46-52.

Ferrier-Barbut, Igor, Holger Kadau, Matthias Schmitt, Matthias Wenzel
& Tilman Pfau (2016), “Observation of quantum droplets in a strongly
dipolar Bose gas”, in Physical review letters 116.21, p. 215301.

Feynman, R. P. (1954), “Atomic Theory of the Two-Fluid Model of Liquid
Helium”, in Phys. Rev. 94 (2), pp. 262-277.

Fletcher, Richard J., Alexander L. Gaunt, Nir Navon, Robert P. Smith &
Zoran Hadzibabic (2013), “Stability of a Unitary Bose Gas”, in Phys. Rev.
Lett. 111 (12), p. 125303.

Fletcher, Richard J, Raphael Lopes, Jay Man, Nir Navon, Robert P Smith,
Martin W Zwierlein & Zoran Hadzibabic (2017), “Two-and three-body
contacts in the unitary Bose gas”, in Science 355.6323, pp. 377-380.

Foldy, Leslie L (1961), “Charged boson gas”, in Physical Review 124.3, p. 649.

Garcia-Colin, Leopoldo S (1960), “Pair Distribution Function of a Hard
Sphere Bose System Calculated by the Pseudo-Potential Method”, in
Journal of Mathematical Physics 1.2, pp. 87-96.

Gardiner, C. W. (1997), “Particle-number-conserving Bogoliubov method
which demonstrates the validity of the time-dependent Gross-Pitaevskii
equation for a highly condensed Bose gas”, in Phys. Rev. A 56 (2),
pp. 1414-1423.

Gavoret, ] & Ph Nozieres (1964), “Structure of the perturbation expan-
sion for the Bose liquid at zero temperature”, in Annals of Physics 28.3,
pp- 349-399.

119

Gavoret, Jean (1963), “Application de la théorie des perturbations a I’étude
d’un liquide de Bose au zéro absolu”, in Annales de Physique, vol. 13, 8,
EDP Sciences, , pp. 441-491.

Girardeau, M (1962), “Ground state of the charged Bose gas”, in Physical
Review 127.5, p. 18009.

Glyde, H. R, R. T. Azuah & W. G. Stirling (2000), “Condensate, momentum
distribution, and final-state effects in liquid “He”, in Phys. Rev. B 62 (21),
pp. 14337-14349.

Glyde, H. R, S. O. Diallo, R. T. Azuah, O. Kirichek & J. W. Taylor (2011),
“ Atomic momentum distribution and Bose-Einstein condensation in lig-
uid “He under pressure”, in Phys. Rev. B 84 (18), p. 184506.

Griffin, Allan (1993), Excitations in a Bose-condensed liquid, 4, Cambridge
University Press.

Gross, C., T. Zibold, E. Nicklas, J. Esteve & M. K. Oberthaler (2010), “Non-
linear atom interferometer surpasses classical precision limit”, in Nature
464, 1165 EP —.

Guarrera, Vera, Peter Wiirtz, Arne Ewerbeck, Andreas Vogler, Giovanni
Barontini & Herwig Ott (2011), “Observation of local temporal cor-
relations in trapped quantum gases”, in Physical review letters 107.16,
p- 160403.

Guggenheim, E Ao (1945), “The principle of corresponding states”, in The
Journal of Chemical Physics 13.7, pp. 253-261.

Guo, Zhichao, Fan Jia, Lintao Li, Yinfeng Ma, Jeremy M. Hutson, Xiaoling
Cui & Dajun Wang (2021), “Lee-Huang-Yang effects in the ultracold mix-
ture of 2>Na and 3"Rb with attractive interspecies interactions”, in Phys.
Rev. Research 3 (3), p. 033247.

Gupta, S, Z Hadzibabic, MW Zwierlein, CA Stan, K Dieckmann, CH
Schunck, EGM Van Kempen, B] Verhaar & W Ketterle (2003), “Radio-
frequency spectroscopy of ultracold fermions”, in Science 300.5626,
pp. 1723-1726.

Halinen, Jani, Vesa Apaja & Mikko Saarela (2000), “Role of short-and long-
range interactions in quantum Bose fluids”, in Physica B: Condensed Mat-
ter 284, pp. 3-4.

Hanbury-Brown, R. & R. Q. Twiss (1956), “Correlation between photons in
two coherent beams of light”, in Nature 177, pp. 27-29.

Haussmann, R. (1994), “Properties of a Fermi liquid at the superfluid tran-
sition in the crossover region between BCS superconductivity and Bose-
Einstein condensation”, in Phys. Rev. B 49 (18), pp. 12975-12983.



Haussmann, Rudolf, Matthias Punk & Wilhelm Zwerger (2009), “Spectral
functions and rf response of ultracold fermionic atoms”, in Physical Re-
view A 80.6, p. 063612.

Ho, Tin-Lun & Erich J. Mueller (2004), “High Temperature Expansion Ap-
plied to Fermions near Feshbach Resonance”, in Phys. Rev. Lett. 92 (16),
p. 160404.

Ho, Tin-Lun & Qi Zhou (2010), “Obtaining the phase diagram and thermo-
dynamic quantities of bulk systems from the densities of trapped gases”,
in Nature Physics 6.2, pp. 131-134.

Hofmann, Johannes & Wilhelm Zwerger (2017), “Deep Inelastic Scattering
on Ultracold Gases”, in Phys. Rev. X 7 (1), p. 011022.

Hohenberg, P. C. & P. M. Platzman (1966), “High-Energy Neutron Scatter-
ing from Liquid He*”, in Phys. Rev. 152 (1), pp. 198-200.

Holzmann, Markus & Yvan Castin (1999), “Pair correlation function of
an inhomogeneous interacting Bose-Einstein condensate”, in The Euro-
pean Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 7.3,
pp. 425-432.

Hou, Y. & J. E. Drut (2020), “Fourth- and Fifth-Order Virial Coefficients
from Weak Coupling to Unitarity”, in Phys. Rev. Lett. 125 (5), p. 050403.
Hou, Y, KJ Morrell, A] Czejdo & JE Drut (2021), “Fourth-and fifth-order
virial expansion of harmonically trapped fermions at unitarity”, in Phys-

ical Review Research 3.3, p. 033099.

Hugenholtz, N. M. & D. Pines (1959), “Ground-State Energy and Excita-
tion Spectrum of a System of Interacting Bosons”, in Phys. Rev. 116 (3),
pp. 489-506.

Kaplan, David B. & Sichun Sun (2011), “New Field-Theoretic Method for
the Virial Expansion”, in Phys. Rev. Lett. 107 (3), p. 030601.

Khramov, Alexander Y., Anders H. Hansen, Alan O. Jamison, William H.
Dowd & Subhadeep Gupta (2012), “Dynamics of Feshbach molecules in
an ultracold three-component mixture”, in Phys. Rev. A 86 (3), p. 032705.

Klempt, C., O. Topic, G. Gebreyesus, M. Scherer, T. Henninger, P. Hyllus,
W. Ertmer, L. Santos & J. J. Arlt (2010), “Parametric Amplification of Vac-
uum Fluctuations in a Spinor Condensate”, in Phys. Rev. Lett. 104 (19),
p- 195303.

Ku, Mark JH, Ariel T Sommer, Lawrence W Cheuk & Martin W Zwier-
lein (2012), “Revealing the superfluid lambda transition in the universal
thermodynamics of a unitary Fermi gas”, in Science 335.6068, pp. 563—
567.

120

Landau, L. D. & E. M. Lifshitz (1975), Physique Statistique, Editions Mir.

Larsen, David M (1963), “Binary mixtures of dilute bose gases with repul-
sive interactions at low temperature”, in Annals of Physics (New York)(US)
24.

Laurent, Sébastien, Xavier Leyronas & Frédéric Chevy (2014), “Momentum
Distribution of a Dilute Unitary Bose Gas with Three-Body Losses”, in
Phys. Rev. Lett. 113 (22), p. 220601.

Laurent, Sébastien, Matthieu Pierce, Marion Delehaye, Tarik Yefsah,
Frédéric Chevy & Christophe Salomon (2017), “Connecting Few-Body
Inelastic Decay to Quantum Correlations in a Many-Body System: A
Weakly Coupled Impurity in a Resonant Fermi Gas”, in Phys. Rev. Lett.
118 (10), p. 103403.

Law, C. K., H. Pu & N. P. Bigelow (1998), “Quantum Spin Mixing in Spinor
Bose-Einstein Condensates”, in Phys. Rev. Lett. 81, p. 5257.

Lebowitz, J. L. & O. Penrose (1964), “Convergence of Virial Expansions”,
in Journal of Mathematical Physics 5.7, pp. 841-847.

Lee, Tsin D, Kerson Huang & Chen N Yang (1957), “Eigenvalues and eigen-
functions of a Bose system of hard spheres and its low-temperature prop-
erties”, in Physical Review 106.6, p. 1135.

Leggett, A.J. (2001), “Bose-Einstein condensation in the alkali gases”, in
Rev. Mod. Phys. 73, p. 333.

- (2006), Quantum Liquids, Oxford University Press.

Leyronas, X. (2011), “Virial expansion with Feynman diagrams”, in Phys.
Rev. A 84 (5), p. 053633.

Li, Weiran & Tin-Lun Ho (2012), “Bose Gases near Unitarity”, in Phys. Rev.
Lett. 108 (19), p. 195301.

Lieb, Elliott H, Robert Seiringer, Jan Philip Solovej & Jakob Yngvason
(2005), The mathematics of the Bose gas and its condensation, vol. 34, Springer
Science & Business Media.

Liu, Xia-Ji (2013), “Virial expansion for a strongly correlated Fermi system
and its application to ultracold atomic Fermi gases”, in Physics Reports
524.2, pp. 37-83.

Liu, Xia-Ji, Hui Hu & Peter D. Drummond (2009), “Virial Expansion for a
Strongly Correlated Fermi Gas”, in Phys. Rev. Lett. 102 (16), p. 160401.
Lopes, Raphael, Christoph Eigen, Adam Barker, Konrad G. H. Viebahn,
Martin Robert-de Saint-Vincent, Nir Navon, Zoran Hadzibabic & Robert
P. Smith (2017a), “Quasiparticle Energy in a Strongly Interacting Ho-



mogeneous Bose-Einstein Condensate”, in Phys. Rev. Lett. 118 (21),
p- 210401.

Lopes, Raphael, Christoph Eigen, Nir Navon, David Clément, Robert P.
Smith & Zoran Hadzibabic (2017b), “Quantum Depletion of a Homoge-
neous Bose-Einstein Condensate”, in Phys. Rev. Lett. 119 (19), p. 190404.

Luciuk, Christopher, Stefan Trotzky, Scott Smale, Zhenhua Yu, Shizhong
Zhang & Joseph H Thywissen (2016), “Evidence for universal rela-
tions describing a gas with p-wave interactions”, in Nature Physics 12.6,
pp. 599-605.

Mias, George 1., Nigel R. Cooper & S. M. Girvin (2008), “Quantum noise,
scaling, and domain formation in a spinor Bose-Einstein condensate”, in
Phys. Rev. A 77 (2), p. 023616.

Minardi, F, F Ancilotto, A Burchianti, C D’Errico, C Fort & M Modugno
(2019), “Effective expression of the Lee-Huang-Yang energy functional
for heteronuclear mixtures”, in Physical Review A 100.6, p. 063636.

Minguzzi, A., P. Vignolo & M.P. Tosi (2002), “High-momentum tail in
the Tonks gas under harmonic confinement”, in Physics Letters A 294,
pp. 222-226.

Mohling, F. & A. Sirlin (1960), “Low-Lying Excitations in a Bose Gas of
Hard Spheres”, in Phys. Rev. 118 (2), pp. 370-378.

Moroni, S., D. E. Galli, S. Fantoni & L. Reatto (1998), “Variational theory of
bulk “He with shadow wave functions: Ground state and the phonon-
maxon-roton spectrum”, in Phys. Rev. B 58 (2), pp. 909-924.

Mukherjee, Biswaroop, Parth B. Patel, Zhenjie Yan, Richard ]. Fletcher, Ju-
lian Struck & Martin W. Zwierlein (2019), “Spectral Response and Con-
tact of the Unitary Fermi Gas”, in Phys. Rev. Lett. 122 (20), p. 203402.

Naidon, Pascal & Shimpei Endo (May 2017), “Efimov physics: a review”,
in Reports on Progress in Physics 80.5, p. 056001.

Naraschewski, M & RJ Glauber (1999), “Spatial coherence and density cor-
relations of trapped Bose gases”, in Physical Review A 59.6, p. 4595.

Nascimbene, Sylvain, Nir Navon, KJ Jiang, Frédéric Chevy & Christophe
Salomon (2010), “Exploring the thermodynamics of a universal Fermi
gas”, in Nature 463.7284, pp. 1057-1060.

Nation, PD, JR Johansson, MP Blencowe & Franco Nori (2012), “Collo-
quium: Stimulating uncertainty: Amplifying the quantum vacuum with
superconducting circuits”, in Reviews of Modern Physics 84.1, p. 1.

Navon, Nir, Swann Piatecki, Kenneth Giinter, Benno Rem, Trong Canh
Nguyen, Frédéric Chevy, Werner Krauth & Christophe Salomon (2011),

121

“Dynamics and thermodynamics of the low-temperature strongly inter-
acting Bose gas”, in Physical review letters 107.13, p. 135301.

Ngampruetikorn, Vudtiwat, Meera M. Parish & Jesper Levinsen (2015),
“High-temperature limit of the resonant Fermi gas”, in Phys. Rev. A 91
(1), p. 013606.

Nozieres, P. & D. Pines (1990), The Theory of Quantum Liquids, Superfluid
Bose Liquids, Addison-Wesley.

Olshanii, Maxim & Vanja Dunjko (2003), “Short-Distance Correlation
Properties of the Lieb-Liniger System and Momentum Distributions of
Trapped One-Dimensional Atomic Gases”, in Phys. Rev. Lett. 91 (9),
p- 090401.

Olshanii, Maxim & Ludovic Pricoupenko (2001), “Rigorous Approach to
the Problem of Ultraviolet Divergencies in Dilute Bose Gases”, in Phys.
Rev. Lett. 88 (1), p. 010402.

Papp, SB, J]M Pino, RJ Wild, S Ronen, Carl E Wieman, Deborah S Jin &
Eric A Cornell (2008), “Bragg spectroscopy of a strongly interacting rb
85 bose-einstein condensate”, in Physical review letters 101.13, p. 135301.

Partridge, G. B., K. E. Strecker, R. I. Kamar, M. W. Jack & R. G. Hulet (2005),
“Molecular Probe of Pairing in the BEC-BCS Crossover”, in Phys. Rev.
Lett. 95 (2), p. 020404.

Pethick, Christopher & Henrik Smith (2008), Bose-Einstein condensation in
dilute gases, 2nd ed, Cambridge ; New York: Cambridge University Press.

Petrov, D. S. (Jan. 2003), “Three-body problem in Fermi gases with short-
range interparticle interaction”en, in Physical Review A 67.1, p. 010703.

— (2004), “Three-Boson Problem near a Narrow Feshbach Resonance”, in
Phys. Rev. Lett. 93, p. 143201.

Petrov, D. S., C. Salomon & G. V. Shlyapnikov (2004), “Weakly Bound
Dimers of Fermionic Atoms”, in Phys. Rev. Lett. 93 (9), p. 090404.

Petrov, DS (2015), “Quantum mechanical stabilization of a collapsing Bose-
Bose mixture”, in Physical Review Letters 115.15, p. 155302.

Pezze, Luca, Augusto Smerzi, Markus K. Oberthaler, Roman Schmied &
Philipp Treutlein (2018), “Quantum metrology with nonclassical states
of atomic ensembles”, in Rev. Mod. Phys. 90 (3), p. 035005.

Pieri, Pierbiagio, Andrea Perali & Giancarlo Calvanese Strinati (2009), “En-
hanced paraconductivity-like fluctuations in the radiofrequency spectra
of ultracold Fermi atoms”, in Nature Physics 5.10, pp. 736-740.

Pitaevskii, L. & S. Stringari (2016), Bose—Einstein Condensation and Superflu-
idity, 2nd edition, Oxford: Oxford University Press.



Pitaevskii, L. P. & A. Rosch (1997), “Breathing mode and hidden symmetry
of trapped atoms in two dimensions”, in Phys. Rev. A 55, R853.

Pricoupenko, Ludovic (2006), “Modeling Interactions for Resonant p-Wave
Scattering”, in Phys. Rev. Lett. 96 (5), p. 050401.

Prokof’ev, N. V. & B. V. Svistunov (2002), “Two-dimensional weakly inter-
acting Bose gas in the fluctuation region”, in Phys. Rev. A 66, p. 043608.
Pu, H. & P. Meystre (2000), “Creating Macroscopic Atomic Einstein-
Podolsky-Rosen States from Bose-Einstein Condensates”, in Phys. Rev.

Lett. 85 (19), pp. 3987-3990.

Punk, M & W Zwerger (2007), “Theory of rf-spectroscopy of strongly in-
teracting fermions”, in Physical review letters 99.17, p. 170404.

Rakshit, D., K. M. Daily & D. Blume (2012), “Natural and unnatural parity
states of small trapped equal-mass two-component Fermi gases at uni-
tarity and fourth-order virial coefficient”, in Phys. Rev. A 85 (3), p. 033634.

Rem, B.S., A. T. Grier, I. Ferrier-Barbut, U. Eismann, T. Langen, et al. (2013),
“Lifetime of the Bose Gas with Resonant Interactions”, in Phys. Rev. Lett.
110 (16), p. 163202.

Ren, Hai-cang (2004), “The virial expansion of a dilute Bose gas in two
dimensions”, in Journal of statistical physics 114.1-2, pp. 481-501.

Ronen, Shai (2009), “The dispersion relation of a Bose gas in the
intermediate-and high-momentum regimes”, in Journal of Physics B:
Atomic, Molecular and Optical Physics 42.5, p. 055301.

Rossi, R., T. Ohgoe, K. Van Houcke & F. Werner (2018), “Resummation of
Diagrammatic Series with Zero Convergence Radius for Strongly Corre-
lated Fermions”, in Phys. Rev. Lett. 121 (13), p. 130405.

Rupak, Gautam (2007), “Universality in a 2-Component Fermi System at
Finite Temperature”, in Phys. Rev. Lett. 98 (9), p. 090403.

Sadler, LE, JM Higbie, SR Leslie, M Vengalattore & DM Stamper-Kurn
(2006), “Spontaneous symmetry breaking in a quenched ferromagnetic
spinor Bose-Einstein condensate”, in Nature 443.7109, pp. 312-315.

Sagi, Yoav, Tara E Drake, Rabin Paudel & Deborah S Jin (2012), “Measure-
ment of the homogeneous contact of a unitary Fermi gas”, in Physical
review letters 109.22, p. 220402.

Schmitt, Matthias, Matthias Wenzel, Fabian Bottcher, Igor Ferrier-Barbut &
Tilman Pfau (2016), “Self-bound droplets of a dilute magnetic quantum
liquid”, in Nature 539.7628, pp. 259-262.

Semeghini, G, G Ferioli, L Masi, C Mazzinghi, L Wolswijk, F Minardi, M
Modugno, G Modugno, M Inguscio & M Fattori (2018), “Self-bound

122

quantum droplets of atomic mixtures in free space”, in Physical review
letters 120.23, p. 235301.

Shi, Hao, Simone Chiesa & Shiwei Zhang (2015), “Ground-state properties
of strongly interacting Fermi gases in two dimensions”, in Phys. Rev. A
92 (3), p. 033603.

Smith, D. Hudson, Eric Braaten, Daekyoung Kang & Lucas Platter (2014),
“Two-Body and Three-Body Contacts for Identical Bosons near Unitar-
ity”, in Phys. Rev. Lett. 112 (11), p. 110402.

Sokol, PE. (1995), “Bose-Einstein Condensation”, in , ed. by A. Griffin,
D. W. Snoke & S. Stringari, Cambridge University Press, chap. 4. Bose-
Einstein condensation in liquid helium.

Spiegelhalder, F. M., A. Trenkwalder, D. Naik, G. Hendl, F. Schreck & R.
Grimm (2009a), “Collisional Stability of *°K Immersed in a Strongly In-
teracting Fermi Gas of °Li”, in Phys. Rev. Lett. 103 (22), p. 223203.

- (2009b), “Collisional Stability of “°K Immersed in a Strongly Interacting
Fermi Gas of °Li”, in Phys. Rev. Lett. 103 (22), p. 223203.

Steinhauer, J., R. Ozeri, N. Katz & N. Davidson (2002), “Excitation spec-
trum of a Bose-Einstein condensate”, in Phys. Phys. Lett. 88.12, p. 120407.

Stewart, JT, JP Gaebler, TE Drake & DS Jin (2010), “Verification of universal
relations in a strongly interacting Fermi gas”, in Physical Review Letters
104.23, p. 235301.

Stringari, S (2004), “Collective oscillations of a trapped superfluid Fermi
gas near a Feshbach resonance”, in EPL (Europhysics Letters) 65.6, p. 749.

Sykes, AG, JP Corson, JP D’Incao, AP Koller, CH Greene, Ana Maria Rey,
KRA Hazzard & JL Bohn (2014), “Quenching to unitarity: Quantum
dynamics in a three-dimensional Bose gas”, in Physical Review A 89.2,
p- 021601.

Tan, Shina (2008a), “Energetics of a strongly correlated Fermi gas”, in An-
nals of Physics 323.12, pp. 2952-2970.

— (2008b), “Generalized virial theorem and pressure relation for a strongly
correlated Fermi gas”, in Annals of Physics 323.12, pp. 2987-2990.

— (2008c), “Large momentum part of a strongly correlated Fermi gas”, in
Annals of Physics 323.12, pp. 2971-2986.

— (2008d), “Three-boson problem at low energy and implications for dilute
Bose-Einstein condensates”, in Phys. Rev. A 78 (1), p. 013636.

Tanzi, Luca, Eleonora Lucioni, Francesca Fama, Jacopo Catani, Andrea
Fioretti, Carlo Gabbanini, Russell N Bisset, Luis Santos & Giovanni Mod-



ugno (2019), “Observation of a dipolar quantum gas with metastable su-
persolid properties”, in Physical review letters 122.13, p. 130405.

Tenart, Antoine, Gaétan Hercé, Jan-Philipp Bureik, Alexandre Dareau &
David Clément (2021), “Observation of pairs of atoms at opposite mo-
menta in an equilibrium interacting Bose gas”, in Nature Physics, pp. 1-
5.

Timmermans, Eddy (1998), “Phase separation of Bose-Einstein conden-
sates”, in Phys. Phys. Lett. 81.26, p. 5718.

Uhlenbeck, George E & Erich Beth (1936), “The quantum theory of the non-
ideal gas I. Deviations from the classical theory”, in Physica 3.8, pp. 729-
745.

Walls, D. F. & G. J. Milburn (1988), Quantum optics, Berlin: Springer-Verlag.

Walls, Daniel F & Gerard ] Milburn (2007), Quantum optics, Springer Science
& Business Media.

Werner, F, L. Tarruell & Y. Castin (Apr. 2009), “Number of closed-channel
molecules in the BEC-BCS crossover”en, in The European Physical Journal
B 68.3, pp. 401-415.

Werner, Félix (Aug. 2008), “Virial theorems for trapped cold atoms”en, in
Physical Review A 78.2, p. 025601.

Werner, Félix & Yvan Castin (2006), “Unitary Quantum Three-Body Prob-
lem in a Harmonic Trap”, in Phys. Rev. Lett. 97 (15), p. 150401.

Werner, Félix & Yvan Castin (Nov. 2012a), “General relations for quantum
gases in two and three dimensions. II. Bosons and mixtures”, in Physical
Review A 86.5, p. 0563633.

— (July 2012b), “General relations for quantum gases in two and three
dimensions: Two-component fermions”en, in Physical Review A 86.1,
p. 013626.

Wild, RJ, P Makotyn, JM Pino, EA Cornell & DS Jin (2012), “Measurements
of Tan’s contact in an atomic Bose-Einstein condensate”, in Physical re-
view letters 108.14, p. 145305.

Wu, Tai Tsun (1959), “Ground State of a Bose System of Hard Spheres”, in
Phys. Rev. 115 (6), pp. 1390-1404.

Xu, K., Y. Liu, D. E. Miller, J. K. Chin, W. Setiawan & W. Ketterle (2006),
“Observation of Strong Quantum Depletion in a Gaseous Bose-Einstein
Condensate”, in Phys. Rev. Lett. 96 (18), p. 180405.

Yan, Yangqian & D. Blume (2016), “Path-Integral Monte Carlo Determina-
tion of the Fourth-Order Virial Coefficient for a Unitary Two-Component

123

Fermi Gas with Zero-Range Interactions”, in Phys. Rev. Lett. 116 (23),
p- 230401.

Yin, XY & D Blume (2015), “Trapped unitary two-component Fermi gases
with up to ten particles”, in Physical Review A 92.1, p. 013608.

Yoshida, Shuhei M. & Masahito Ueda (2015), “Universal High-Momentum
Asymptote and Thermodynamic Relations in a Spinless Fermi Gas with
a Resonant p-Wave Interaction”, in Phys. Rev. Lett. 115 (13), p. 135303.

Yu, Z. & G. Baym (2006), “Spin-correlation functions in ultracold paired
atomic-fermion systems: Sum rules, self-consistent approximations, and
mean fields”, in Phys. Rev. A 73 (6), p. 063601.

Yu, Zhenhua, Georg M. Bruun & Gordon Baym (2009), “Short-range cor-
relations and entropy in ultracold-atom Fermi gases”, in Phys. Rev. A 80
(2), p. 023615.

Yu, Zhenhua, Joseph H. Thywissen & Shizhong Zhang (2015), “Universal
Relations for a Fermi Gas Close to a p-Wave Interaction Resonance”, in
Phys. Rev. Lett. 115 (13), p. 135304.

— (2016), “Erratum: Universal Relations for a Fermi Gas Close to a p-Wave
Interaction Resonance [Phys. Rev. Lett. 115, 135304 (2015)]”, in Phys. Rev.
Lett. 117 (1), p. 019901.

Zhang, Shizhong & Anthony J. Leggett (2009), “Universal properties of the
ultracold Fermi gas”, in Phys. Rev. A 79 (2), p. 023601.

Zou, Y-Q, B Bakkali-Hassani, C Maury, E Le Cerf, S Nascimbene, J Dal-
ibard & ] Beugnon (2021), “Tan’s two-body contact across the superfluid
transition of a planar Bose gas”, in Nature communications 12.1, pp. 1-6.

Zwerger, Wilhelm, ed. (2012), The BCS-BEC crossover and the unitary fermi
gasen, Lecture notes in physics 836, OCLC: 844865150, Heidelberg:
Springer.



	Introduction
	The virial expansion
	The virial expansion
	Equation of state of a fluid
	The classical ideal gas (Boltzmann)
	The Quantum Ideal Gases
	The principle of virial expansion

	The second virial coefficient
	Center of mass and relative motion
	s wave interactions away from resonance
	Pressure and internal energy of gas
	The neighborhood of a scattering resonance

	The unitary Fermi gas
	Virial expansion for a spinor gas
	The b3 coefficient
	Experimental Results
	Beyond three-body effects


	The Quantum Bogoliubov Approach
	The quadratic approximation for 
	Preliminary : Hartree term, Fock term
	N body Hamiltonian in second quantization
	The assumptions of the Bogoliubov approach
	Grand canonical vs. canonical approach

	The two-mode Bogoliubov Hamiltonian
	Perturbative approach
	Canonical transformation
	Ground state of the Hamiltonian

	Example : spin 1 gas in "zero dimension"
	s-wave interactions 
	The single mode approximation
	Zeeman effect and Bogoliubov Hamiltonian
	Response of the gas to a magnetic field jump


	Lee-Huang-Yang energy and quantum depletion
	Preliminary remarks
	Preliminary 1: The Born expansion
	Preliminary 2: The different sectors for k
	Illustration: the excitation spectrum

	LHY energy and quantum depletion
	The energy of the ground state
	Calculation of the energy ELHY
	Quantum depletion

	Bogoliubov Hamiltonian for pp
	Contact potential and pseudo-potential pp
	The subtleties of the pseudopotential
	Bogoliubov method for the pseudo-potential
	The energy of the ground state

	Measures of quantum depletion
	The case of liquid helium
	Measurement on an atomic gas
	Pairs of atoms in the Bogoliubov vacuum


	Ground state of the Bose gas 
	LHY energy measurements
	The three-body loss problem
	Use of the breathing mode
	Determination of the equation of state
	Momentum distribution and kinetic energy

	The excitation spectrum of a condensate
	Summing the Born expansion
	Measurement of the Bogoliubov spectrum
	Boulder and Cambridge experiments: q1/a
	Back to Beliaev's approach
	The Feynman Formula
	Problem solved?

	Quantum mixtures and droplets
	Position of the problem
	Mean-field stability of a binary mixture
	LHY energy for a mixture
	Droplet stabilization


	The two-body contact
	Scope of the contact concept
	Contribution of bound states
	Conditions of application : fermions vs. bosons
	Reminder on the Fermi gas
	Wide or narrow Feshbach resonances?

	Contact and two-body correlations
	Reminder : scattering states close to E=0
	A qualitative argument
	Two-body spatial correlation function
	Pair distribution
	Momentum distribution

	Thermodynamic definition of contact
	A new thermodynamic variable
	A useful lemma
	Variation of a and contact
	The case of the non-zero temperature
	Contact and virial theorem

	First measurements of the contact
	Momentum distribution of a Fermi gas
	Scaling laws for contact
	Numerical studies
	Feshbach resonance and molecular fraction


	The different facets of the two-body contact
	Contact and pseudo-potential
	Reminder on the definition of the contact
	The zero-range limit
	The pseudo-potential approach
	The case of a potential in "true" Dirac

	Contact and radio frequency spectroscopy
	Position of the problem
	Center of mass of the spectrum
	The wing of the radio frequency spectrum

	Experimental studies on the Fermi gas
	Radio-frequency spectroscopy
	Measurement of contact by atom loss
	The p wave contact

	Two-body contact for Bose gases
	The various regimes for Bose gases
	Predictions for the two-body contact
	Two-body contact and rf spectroscopy
	Measurement of the contact by Ramsey spectroscopy


	References

