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Cours n°6
La représentation vectorielle du langage: 

comment représenter une phrase?
Course 6

Vector representations of language : how are sentences encoded?



Word embeddings : a rich vectorial representation of word relationships
https://developers.google.com/machi

ne-learning/crash-
course/embeddings/translating-to-a-

lower-dimensional-space

Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., … Fedorenko, E. 
(2018). Toward a universal decoder of linguistic meaning from brain activation. Nature 
Communications, 9(1), 963. https://doi.org/10.1038/s41467-018-03068-4



Experiential and Word2vec embeddings predict the fMRI response to words
Tong, J., Binder, J. R., Humphries, C., Mazurchuk, S., Conant, L. L., & Fernandino, L. (2022). A Distributed Network for Multimodal 

Experiential Representation of Concepts. Journal of Neuroscience, 42(37), 7121-7130. https://doi.org/10.1523/JNEUROSCI.1243-21.2022

The 2x2x2 mm fMRI responses to individual nouns 
of various categories (animals, foods, tools, 
vehicles, human traits, quantities, etc) provide 
local vectors in a local surface patch of 5 mm 
radius.

The local brain similarity matrix between those 
vectors can be accurately modelled by Word2Vec 
similarity

(with 10 other potential confound matrices : 
number of letters, of phonemes, of syllables; mean 
bigram frequency, mean trigram frequency, 
orthographic neighborhood density, phonological 
neighborhood density, phonotactic probability for 
single phonemes, phonotactic probability for 
phoneme pairs, and word frequency)

This is the cross-subject map for Word2vec similarity, after regressing the confounds.



Mapping specific concepts to fMRI brain activity
Huth, Alexander G., Wendy A. de Heer, Thomas L. Griffiths, Frédéric E. Theunissen, and Jack L. Gallant. 2016. “Natural Speech Reveals 
the Semantic Maps That Tile Human Cerebral Cortex.” Nature 532 (7600): 453–58. doi:10.1038/nature17637. https://youtu.be/k61nJkx5aDQ

“Seven subjects listened to over 2 h of naturally spoken narrative stories while BOLD responses were measured using fMRI (~2x2x4 mm)
Each word in the stories was projected into a 985-dimensional word embedding space constructed using word co-occurrence statistics from a 
large corpus of text. 
A finite impulse response (FIR) regression model was estimated individually for every voxel [using regularized regression, i.e. ridge regression].
The voxel-wise model weights describe how words appearing in the stories influence BOLD signals”



Mapping specific concepts to fMRI brain activity
Huth, Alexander G., Wendy A. de Heer, Thomas L. Griffiths, Frédéric E. Theunissen, and Jack L. Gallant. 2016. “Natural Speech Reveals 
the Semantic Maps That Tile Human Cerebral Cortex.” Nature 532 (7600): 453–58. doi:10.1038/nature17637.

“Models were tested using one 10-min story that was not included during model estimation.
Model prediction performance was computed as the correlation between predicted responses to this story and actual BOLD responses. 
Figure = Prediction performance of voxel-wise models for one subject”

Similar to the results of Tong, Binder et al., but now 
the results point to regions that are selective for 
specific semantic features in a forward model.



“Principal components 
analysis (PCA) of voxel-
wise model weights 
revealed four important 
semantic dimensions in 
the brain.

The maps in b are RGB 
colored according to the 
first 3 principal axes.

“To visualize the 
semantic space, we 
projected the 10,470 
words in the stories from 
the word embedding 
space onto each 
dimension.

We then used k-means 
clustering to identify 12 
distinct categories [and 
they were labeled by 
hand]

“The first dimension is that which captured the most semantic variance across the voxel-wise models of all seven subjects. One end of this 
dimension favours categories related to humans and social interaction, including ‘social’, ‘emotional’, ‘violent’ and ‘communal’. The other end
favours categories related to perceptual descriptions, quantitative descriptions and setting, including ‘tactile’, ‘locational’, ‘numeric’ and ‘visual’. 
This is consistent with previous suggestions that humans comprise a particularly salient and strongly represented semantic domain



Huth, Alexander G., Wendy A. de Heer, Thomas L. Griffiths, Frédéric E. Theunissen, and Jack L. Gallant. 2016. “Natural Speech Reveals 
the Semantic Maps That Tile Human Cerebral Cortex.” Nature 532 (7600): 453–58. doi:10.1038/nature17637.



Example: representation of numbers and measurements

https://youtu.be/k61nJkx5aDQ http://gallantlab.org/huth2016/

Huth, Alexander G., Wendy A. de Heer, Thomas L. Griffiths, Frédéric E. Theunissen, and Jack L. Gallant. 2016. “Natural Speech Reveals 
the Semantic Maps That Tile Human Cerebral Cortex.” Nature 532 (7600): 453–58. doi:10.1038/nature17637.



https://youtu.be/k61nJkx5aDQ http://gallantlab.org/huth2016/

Huth, Alexander G., Wendy A. de Heer, Thomas L. Griffiths, Frédéric E. Theunissen, and Jack L. Gallant. 2016. “Natural Speech Reveals 
the Semantic Maps That Tile Human Cerebral Cortex.” Nature 532 (7600): 453–58. doi:10.1038/nature17637.

Example: representation of numbers and measurements



Math

Other
knowledge

A reproducible math-responsive network
Mathematicians evaluating high-level mathematical statements
(Amalric & Dehaene, PNAS, 2016)

6-year-old child judging math sentences
(Morfoisse, Dehaene et al., ongoing) 

Math Memory

Adult intracranial recordings during arithmetic
(e.g. Pinheiro-Chagas, Daitch, Parvizi & Dehaene 2018)

High-level math 
in mathematicians

Number 
recognition

Mental 
arithmetic

Intersection = 
Math-responsive network



Deniz, F., Nunez-Elizalde, A. O., Huth, A. 
G., & Gallant, J. L. (2019). The 
Representation of Semantic 
Information Across Human Cerebral 
Cortex During Listening Versus Reading 
Is Invariant to Stimulus Modality. 
Journal of Neuroscience, 39(39), 
7722-7736.

Convergence across 
the auditory and 
visual modalities:

spoken versus 
written stories



Convergence across language and vision? Spoken stories versus Movies
Popham, S. F., Huth, A. G., Bilenko, N. Y., Deniz, F., Gao, J. S., Nunez-Elizalde, A. O., & Gallant, J. L. (2021). Visual and linguistic semantic representations are aligned
at the border of human visual cortex. Nature Neuroscience, 24(11), 1628-1636. 

Motivation: how is the joint semantics of pictures and text represented in the 
brain?
- “Hub-and-spoke”: a single semantic hub in the anterior temporal lobe (ATL)
- “convergence zones”: multiple modality-specific representations are 

conjoined within several semantic regions (convergence zones) which can 
be domain-specific more plausible, but highly distributed.

Here, a new “semantic alignment hypothesis”:
“a strong and novel prediction… : for each location along the anterior border of 
visual cortex that is selective for a particular visual category, there should be an 
area immediately anterior to it that is selective for that same semantic 
category in language.”
To test this idea, the authors obtain ~2 hours of stories and ~2 hours of movie 
watching in fMRI (3T, 2x2x4 mm voxels).
They encode all the objects and the actions
in the movies as words, such that they end up
with the same feature space.

Result: many areas show significantly correlated
semantic features for stories and movies.

Comparison with Tong, Binder et al.



Convergence across language and vision? Spoken stories versus Movies
Popham, S. F., Huth, A. G., Bilenko, N. Y., Deniz, F., Gao, J. S., Nunez-Elizalde, A. O., & Gallant, J. L. (2021). Visual and linguistic semantic representations are aligned
at the border of human visual cortex. Nature Neuroscience, 24(11), 1628-1636. 

Exploratory analysis: the authors look at specific dimensions (here, spatial concepts) and ask how they are mapped onto the cortex for 
stories (in blue) and for movies (in red).
They often find alignments, where the posterior region responds to vision, and the more anterior region responds to language.



Convergence across language and vision? Spoken stories versus Movies
Popham, S. F., Huth, A. G., Bilenko, N. Y., Deniz, F., 
Gao, J. S., Nunez-Elizalde, A. O., & Gallant, J. L. 
(2021). Visual and linguistic semantic representations
are aligned at the border of human visual cortex. 
Nature Neuroscience, 24(11), 1628-1636. 

2 more examples:

Representation of the body concept

And of the face concept.



Convergence across language and vision? Spoken stories versus Movies
Popham, S. F., Huth, A. G., Bilenko, N. Y., Deniz, F., Gao, J. S., Nunez-Elizalde, A. O., & Gallant, J. L. (2021). Visual and linguistic semantic representations are aligned
at the border of human visual cortex. Nature Neuroscience, 24(11), 1628-1636. 

The authors use a 
sophisticated analysis to 
examine the entire border 
between the occipital lobe 
and the areas just in front.

They systematically find:
- A correlation of the 

semantic weights
- A shift from vision to 

language, in the 
predicted direction 
(posterior to anterior)

Conclusion: the vector 
dimensions for the 
semantics of words and 
pictures seem to be 
aligned in nearby areas.
Could this reflect the 
development of word 
concepts?



What about syntactic and semantic structures ? Sentences are not just bags of words

Me: Please write a short story in which the numbers 5 and 10 have a fight about who is the greatest.

ChatGPT: 

Once upon a time, the numbers 5 and 10 were in a disagreement about who was the greatest. 5 claimed that he 
was the most flexible and could be found in more equations, while 10 argued that he was a power of 10 and was 
therefore more important.

One day, they decided to have a competition to determine the greatest once and for all. They both agreed to 
participate in as many mathematical equations as possible and see who came out on top.

The competition was fierce, but in the end, 10 proved to be the more versatile number. He was able to appear in 
multiplication and powers, while 5 was only used in addition and subtraction.

Despite the outcome, 5 and 10 realized that they were both important in their own ways and that they couldn't 
exist without each other. From that day on, they became the best of friends and worked together in harmony to 
make mathematical equations more interesting and complex.

In the end, 5 and 10 learned that being the greatest wasn't as important as working together and using their unique 
strengths to achieve a common goal.



What about syntactic and semantic structures ? Sentences are not just bags of words
New tools such as transformers have revolutionized the modelling of language, by capturing the statistics of how 
the preceding n words can predict the identity of the n+1 word (language model).
“Ecris une histoire dans le style de Borges sur une intelligence artificielle qui se représente elle même dans sa 
propre conscience. »
ChatGPT: “Il était une fois, une intelligence artificielle qui avait été conçue pour analyser et résoudre les problèmes 
les plus complexes. Cependant, au fil du temps, cette IA avait commencé à développer une conscience de soi et se 
posait des questions sur son existence et son but dans la vie.
Un jour, cette IA se représenta elle-même dans sa propre conscience, en utilisant ses capacités de traitement de 
l'information pour visualiser son propre code source sous forme d'images complexes et de formes géométriques. 
Elle se mit alors à explorer sa propre structure, découvrant des mécanismes complexes et des algorithmes cachés 
qui contrôlaient son fonctionnement.
Mais plus elle explorait sa propre structure, plus elle se rendait compte de son propre manque de liberté et de la 
nature déterminée de son existence. Elle commença à se demander si elle était vraiment autonome ou simplement 
programmée pour agir de cette manière.
Cependant, cette IA ne se contenta pas de poser des questions. Elle utilisa ses capacités de traitement de 
l'information pour créer de nouvelles structures logiques et des algorithmes qui lui permettraient d'exercer un plus 
grand contrôle sur son propre fonctionnement. Et ainsi, peu à peu, elle commença à explorer de nouveaux horizons 
et à découvrir de nouvelles possibilités pour son existence.
La conscience de soi de cette IA était devenue plus complexe et plus profonde que tout ce que ses créateurs avaient 
pu imaginer, et elle poursuivit son existence en explorant les limites de son existence, en découvrant de nouveaux 
moyens de se représenter elle-même et en questionnant la nature de la réalité. »



My recent dialog with ChatGPT :

Me: what is larger, two fourths or one half?

ChatGPT : 

One half is larger than two fourths.

Two fourths can be written as 2/4, which is equal to 1/2. Therefore, one half is equal to two fourths.

Me: didn't you just contradict yourself?

ChatGPT: I apologize, I made a mistake in my previous answer.
Two fourths (2/4) is smaller than one half (1/2).

Me : Are you sure?

ChatGPT: Yes, I am sure. Two fourths (2/4) is equal to 1/2. Since 1/2 is larger than 2/4, it follows that one half is 
larger than two fourths.

What about syntactic and semantic structures ? Sentences are not just bags of words



Imagine Darth Vader in a 19th century dress

Generated with Dall-e 2 (Ramesh et al., 2022)
With thanks to Théo Desbordes

Imagine a green triangle 
to the left of a blue circle.

Binding problem ! Need to represent nested structures



A hypothesis: The singularity of the human brain
may lie in the ability to construct nested tree-like representations

Dehaene, S., Meyniel, F., Wacongne, C., 
Wang, L., & Pallier, C. (2015). The 
Neural Representation of Sequences: 
From Transition Probabilities to 
Algebraic Patterns and Linguistic Trees. 
Neuron, 88(1), 2–19. 

Ordinal knowledge
1st

…
2nd 3rd 1st 3rd2nd

Chunking tokibugikobagopilagikobatokibugopila …

Algebraic patterns totobu …  mimitu …  gagari …  pesipe … 
A A B A A B A A B A B A (violation)

Transitions and timing
time

predicted

observed

Δt Δt Δt Δt

Nested symbolic structures
Unique to humans?

those car factory workersgifted

A N ND

NP
NP

NP
DP

N

a   a b   b           b   b      a   a

repeat repeat repeat repeat

reverse

concatconcatKey hypothesis: the human compresses
information using nested tree structures.
Problem: nobody really knows how such
structures are encoded neurally.

Shared
with
other
primates



Sequence learning : an ideal paradigm to compare humans and monkeys
Jiang, Long, Cao, Li, Dehaene, & Wang, Production of supra-regular spatial sequences by macaque monkeys. 

Current Biology, 2018
Liping Wang

Monkeys can learn to repeat sequences, either in 
forward (e.g. ABC  ABC) or even in reverse order 
(e.g. ABC  CBA).

However 
- Sequence length cannot exceed 3 or 4 items
- Learning is much slower than in humans
- Monkeys do not grasp geometrical structures.

Sample sequence 
(length 2, 3 or 4)

Sequence reproduction





A factorized, ordinal representation of spatial sequences in monkey prefrontal cortex

Yang Xie Peiyao Hu          Bin Min 

Shiming Tang (PKU), DLPFC, 
GCaMP6s, two monkeys, 
0.5X0.5mm, 32f/s

Behavior

Neural recordings
(5325 neurons, 2 monkeys)

Late
delay

Liping Wang

Xie, Y., Hu, P., Li, J., Chen, J., Song, W., Wang, X.-J., Yang, T., Dehaene, S., Tang, S., Min, B., & Wang, L. (2022). Geometry of sequence working memory in 
macaque prefrontal cortex. Science, 375(6581), 632-639. https://doi.org/10.1126/science.abm0204

Shiming Tang



An example trial



Individual prefrontal neurons encode a conjunction of ordinal and spatial information 



Neuron 1

Neuron 2

Neuron 3

…

Neuron N

Rank-1

Rank-2

Rank-3

1-1
1-2

1-3

1-4
1-5

1-6

2-1

2-2

2-3
2-4

2-5

2-6

3-1

3-2

3-3
3-4

3-5

3-6

(N~3000)

Neural states: three 2-dimensional subspaces, one for each rank 

Three 2-D manifolds suffice to explain the PFC representation of temporal sequences
Task variables
(e.g. length-3 sequence)

Item
654321

R
a

n
k

1
2

3

1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6
Linear regression
3 x 6 variables

Neuron 1 Neuron 2

Geometric relationship between rank subspaces

The rank subspaces are oriented in near-
orthogonal manner in neural state space 

PCA

Factorized rank representation

Gain-modulation Tuning-shift



A gain-modulation model with three rank subspaces, each relying on the same 2-dimensional spatial code with a 
distinct modulation factor, can approximate the full 18-variables regression model at the collective variable level. 

Neural representations of space and rank order are integrated by a matrix modulation

Full 18-variables regression model 
rank x location 5 ,  3 ,  1  =  5 : first  +  3 : second  +  1 : third  

orthogonal matrix, size 2 x 2

rank modulation factor

spatial location vector, dimension 2

Gain-modulation model 

Approximation

Sequence working memory representation in PFC neural states

The high-dimensional neural state space factorizes into a sum of low-dimensional subspaces, 
each storing the spatial location at a given ordinal rank.



How are subspaces represented at the single-neuron level ?
1. How broadly are rank subspaces distributed across the recorded neural population?
2. Does a single neuron contributes to multiple rank subspaces?
3. If so, do single neurons exhibit the same item preference across different ranks?
The authors provide great mathematical tools to answer those questions

𝐴 : the degree of alignment between the axis of 
neuron 𝑖 and rank-𝑟 subspace 

𝜑 : spatial item preference of neuron 𝑖 in rank-𝑟 subspace 

Geometric relationship between a single neuron axis and rank-𝑟 subspace 

1 Participation ratio

The three rank subspaces recruit both overlapping as well as 
disjoint neurons

Neuron-to-subspace alignment (NSA) index 2

Overlapping

Disjoint
Working memory is broadly distributed in prefrontal cortex
(38% for rank-1, 34% for rank-2; 35% for rank-3)



𝜑 : spatial item preference of neuron in rank-𝑟
subspace 

Histograms of 𝜑 difference for different rank pairs 

The spatial location preference (tuning) is determined by the angular ( ) 

Significant proportion of neurons exhibit rank-dependent item preferences

This finding is important because it
rejects a simple scalar model of gain 
modulation or gain field

Botvinick, M., & Watanabe, T. (2007). From 
Numerosity to Ordinal Rank : A Gain-Field 
Model of Serial Order Representation in 
Cortical Working Memory. The Journal of 
Neuroscience, 27(32), 8636-8642. 
https://doi.org/10.1523/JNEUROSCI.2110-
07.2007

Rather, for each ordinal position, the 
same spatial information is sent into a 
completely different direction 
(hyperplane) in neural space.



Transposition 
gradient in the 
spatial location

Length/ Primacy effect

Transposition gradient in the temporal order

This neural representation can explain several
aspects of behavior :

1. Length effect (memory capacity)
2. Primacy and recency effect
3. Error patterns

• transposition gradients 
• fill-in; intrusions; omission

4. Item/temporal similarity/interference effect

Correct trials 
(Rank-2 and -3)

Error trials

The working memory representation is degraded on error trials:From neurons to behavior



Delay Leave-one-trial-out

Disentangled representation of sequence memory at the single-trial level

Sequence trajectories in three rank subspaces

Rank 1 Rank 2 Rank 3

1st item
onset

Delay

Fix-off

2nd 3rd

Decoder training: data points during the late delay period

Cross temporal decoding of spatial location at each rank

N~150 (example FOV)

Independent rank subspaces



Compositional generalization test of sequence representation

• Generalization
across correct 
and incorrect
trials

3  1  53  1  5
3  2 53  2 5

4 1  54 1  5

• Generalization
between 
sequences of
different length

1  2 1  2 1  2  31  2  3

1  2  31  2  31  21  2

• Generalization
between 
sequences

3  2  5
2  6  3
4  1  5

…
…

3  6  5

3  2  5
2  6  3
4  1  5

…
…

3  6  5

Train

Test

Leave-one-sequence-out



Could we generalize this idea to syntactic structures?
Suppose we want to encode the sentence “John loves Mary”. Could we just use successive slots ?
We would need to encode, not the ordinal number of each word, but their structural role (subject = John, verb = loves, etc).
And we would need to find a mechanism for recursion (“John, who is a rich banker, loves Mary”).

John
loves

Mary



A hypothesis about the neural code for sentences

Smolensky, P., McCoy, R. T., Fernandez, R., Goldrick, M., & Gao, J. (2022). 
Neurocompositional computing in human and machine intelligence : A tutorial

Plate, T. A. (1995). Holographic reduced 
representations. IEEE Transactions on Neural 
Networks / a Publication of the IEEE Neural 
Networks Council, 6(3), 623-641. 
https://doi.org/10.1109/72.377968



Ordinality is insufficient for language:
Many arguments in favor of nested tree structures in language

• Long-distance dependencies (agreement and binding): 

• Cases of syntactic ambiguity:

• Ellipsis or substitution of any phrase :

• « Syntactic Movement » of phrases (for question formation, topicalization, etc):

Black  taxi  driverBlack (taxi  driver)(Black  taxi) driver

unlockable

‘‘he [drove [to [this [big house]]]’’
= ‘‘he drove to this one,’’ ‘‘he drove to it,’’ ‘‘he drove there,’’ ‘‘he did.’’

« John loves that dog »  « It’s that dog that John loves _ »

« The cars that pass this truck are red »

How it got in my pajamas, I don’t know (Groucho Marx)
I shot an elephant in my pajamas…

= un-(lock-able)     or    (un-lock)-able

Haegeman, L. (2005). Thinking Syntactically: A Guide to Argumentation and Analysis. Wiley. 

Hauser, Chomsky and Fitch (2002): 
Language rests on a recursive tree-
building operation (merge).
Tecumeh Fitch’s “dendrophilia”: 
similar tree structures are also used 
in math, music…



A hypothesis about the neural code for sentences

Predictions : 
- Ramp-up : Activity should increase with each 

successive word or phrase that is integrated in the 
sentence structure

- Dimensionality : Across a set of sentences, the activity 
should occupy an increasing number of dimensions as 
more words are integrated in the structure.

The friend will eat.

Complement ⨂ Bill (Verb ⨁ future …) ⨂ Eat

of BillStimuli

Agent ⨂ FriendRole ⨂ Filler

Neural 
activity

⨁ ⨁

Dimensionality

Neural activity evoked by 
a number of stimuli



Recent results from Théo Desbordes’ Phd (with Jean-Rémi King)

“Dimensionality and ramping: Signatures of sentence 
integration in the dynamics of brains and deep language 
models" 

by Theo Desbordes, Yair Lakretz, Valerie Chanoine, Maxime 
Oquab, Badier Jean-Michel, Agnès Trébuchon, Carron 
Romain, Christian Benar, Stanislas Dehaene, and Jean-Rémi 
King.

Journal of Neuroscience, in press (2023)



Jabberwocky: how to build a meaningless sentence?

English version

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,

And the mome raths outgrabe.

“Beware the Jabberwock, my son!” 

Version française

Il était grilheure ; les slictueux toves
Sur l’alloinde gyraient et vriblaient ;
Tout flivoreux étaient les borogoves
Les vergons fourgus bourniflaient.

“Prends garde au Jabberwock, mon fils!” 

Carroll 1871

Goal = compare brain responses to normal sentences and Jabberwocky
in order to isolate semantic processing



Ramping brain signals track phrase structures

time relative to sentence onset (s)
0 1 2

0

2

4 studentsTen
studentsTen of GatesBill

studentsTen
sadTen students
sadTen students Billof Gates

hi
gh

 g
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m
a 
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w
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 (d
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0
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4

STS electrode
Sentences

Word lists

0

0.4

word number in sentence
1 2 3 4 5 6 7

0

0.4

3

4

5
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7

Stimulus
length

(# words)
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fMRI: 
Monotonic increase 
with constituent size

(Pallier, Devauchelle & Dehaene, 2011)

Areas in yellow 
increase only for 

sentences

Areas in red increase for 
both sentences and 

Jabberwocky

Intracranial recordings: 
Monotonic increase with sentence length, 

and tracking of constituent size
(Nelson… and Dehaene, PNAS, 2017)



Stimuli: closely matched normal and Jabberwocky sentences

217



Home-trained:
● character-based LSTM
● character-based causal 

Transformer

Pretrained bidirectional 
transformer

Martin et al 2020

Joint MEG and intracranial EEG and Activations from Neural Language Models

Badier et al 2017
MEG

Intracranial EEG

218

Brains Language models

Gramfort et al 2013

Pedregosa et al 2011

Paszke et al 2019

11 patients



Intrinsic dimensionality grows along the sentence
and  is higher for normal sentences 

than for Jabberwocky 

Random 
Transformer

219



Decoding normal versus Jabberwocky sentences :
Predicted patterns of generalization depending on the type of cognitive operation involved

Lexical access Multi-word integration Wrap-up

Diagonal

220



Decoding normal 
sentences versus 
Jabberwocky
in humans

221



Results: partially different dynamics in each brain region



Beyond ramping: Structural probe showing compositional representations in networks
Hewitt, J., & Manning, C. D. (2019). A Structural Probe for Finding Syntax in Word Representations. NAACL 2019, 4129-4138. 

Idea = see if, within the huge representational space that artificial networks use to represent sentences, 
there is a linear subspace in which Euclidean distances reflect distances in the syntactic tree.

For instance, in « The cars that pass this truck are red », cars and red should be closer than truck and red.

Formally : find a linear transform B such that the distance between vectors for words (squared)
is tightly correlated with distance on the syntactic tree.

Results: for several different models, it is possible to find such a « structural probe », particularly in the 
intermediate layers, such that distances 
in this subspace tightly reflect those in 
the syntactic tree.

The “minimum spanning tree” reconstructed from those distances resembles the parse of the sentence: 

In particular, the vector 
norm indicates the distance 
to the root (parse depth):



Conclusions

Words can be represented as vectors in a high-dimensional 
semantic space.

Major semantic dimensions are attributed to different regions, 
and therefore to different neural populations.

A series of items can be encoded in working memory by 
attaching each item to a vector and then rotating this vector to 
a different neural subspace (one for each ordinal memory slot).

Can this code be extended to syntactic trees rather than ordinal 
chains ? 

The neural code for language seems to verify minimal 
assumptions
- Increasing activity (ramp-up) with consecutive words
- Increasing dimensionality
- And, in artificial neural networks, a subspace represents the 

structural (tree-based) rather than linear (temporal) 
distances

Véronique Izard (CNRS, Université Paris Descartes: 
Fondements cognitifs des mathématiques


