Verification of
 Functional Data Structures
 Correctness and Complexity

Tobias Nipkow

Technical University of Munich

Tobias Nipkow, Jasmin Blanchette,
Manuel Eberl, Alejandro Gómez-Londoño,
Peter Lammich, Christian Sternagel, Simon Wimmer, Bohua Zhan

Functional Algorithms, Verified!

A compendium of
 functional data structures and algorithms

A compendium of
functional data structures and algorithms
Formally verified (in Isabelle/HOL)

A compendium of
 functional data structures and algorithms
 Formally verified (in Isabelle/HOL)

Both functional correctness and (amortized) runnig time

Inspired by ...

Inspired by ...

Inspired by ...

... but with both textual and (online) machine checked proofs

Topics

Sorting, Selection, Binary Trees, Binary Search Trees, Abstract Data Types, 2-3 Trees, Red-Black Trees, AVL Trees, Just Join, Braun Trees, Tries, Huffman's Algorithm, Priority Queues, Leftist Heaps, Leftist Heaps, Dynamic Programming, Amortized Analysis, Queues, Splay Trees, Skew Heaps, Pairing Heaps

Topics

Sorting, Selection, Binary Trees, Binary Search Trees, Abstract Data Types, 2-3 Trees, Red-Black Trees, AVL Trees, Just Join, Braun Trees, Tries, Huffman's Algorithm, Priority Queues, Leftist Heaps, Leftist Heaps, Dynamic Programming, Amortized Analysis, Queues, Splay Trees, Skew Heaps, Pairing Heaps

Graph Algorithms,
$\alpha \beta$-Search, Quadtrees,
Burrows-Wheeler Transformation
(1) Time
(2) Real Time Queue
(3) Real Time Double-Ended Queue
(4) Skew Heap
(1) Time

(2) Real Time Queue

(3) Real Time Double-Ended Queue

(4) Skew Heap

The idea

Running time complexity \approx number of function calls

The idea

Running time complexity \approx number of function calls
For each $\quad f:: \tau \rightarrow \tau^{\prime}$

The idea

Running time complexity \approx number of function calls
For each $\quad f:: \tau \rightarrow \tau^{\prime}$
there is a $T_{f}:: \tau \rightarrow$ nat

The idea

Running time complexity \approx number of function calls
For each $\quad f:: \tau \rightarrow \tau^{\prime}$
there is a $T_{f}:: \tau \rightarrow$ nat that counts function calls

The idea

Running time complexity \approx number of function calls
For each $f:: \tau \rightarrow \tau^{\prime}$
there is a $T_{f}:: \tau \rightarrow$ nat that counts function calls
Proofs about both f and T_{f} follow the same principles: induction, case analyses, equational reasoning, logic, ...

The idea

Running time complexity \approx number of function calls
For each $f:: \tau \rightarrow \tau^{\prime}$
there is a $T_{f}:: \tau \rightarrow$ nat that counts function calls
Proofs about both f and T_{f} follow the same principles: induction, case analyses, equational reasoning, logic, ...

Where does T_{f} come from?

Example
 $f x s y s=$ case $x s$ of []$\Rightarrow y s \mid x \# x s \Rightarrow x \# f$ xs $y s$

Example

$f x s y s=$ case $x s$ of []$\Rightarrow y s \mid x \# x s \Rightarrow x \# f$ xs ys
T_{f} xs $y s=$ case $x s$ of []$\Rightarrow 1 \mid x \# x s \Rightarrow 1+1+T_{f}$ xs ys

Example

$f x s y s=$ case $x s$ of []$\Rightarrow y s \mid x \# x s \Rightarrow x \# f$ xs ys
T_{f} xs $y s=$ case $x s$ of []$\Rightarrow 1 \mid x \# x s \Rightarrow 1+1+T_{f}$ xs ys
Principle: T_{f} is abstract interpretation of f

Example

$f x s y s=$ case $x s$ of []$\Rightarrow y s \mid x \# x s \Rightarrow x \# f$ xs ys
$T_{f} x s y s=$ case $x s$ of []$\Rightarrow 1 \mid x \# x s \Rightarrow 1+1+T_{f}$ xs ys
Principle: T_{f} is abstract interpretation of f
Can be automated

Example

$f x s y s=$ case $x s$ of []$\Rightarrow y s \mid x \# x s \Rightarrow x \# f$ xs ys
$T_{f} x s y s=$ case $x s$ of []$\Rightarrow 1 \mid x \# x s \Rightarrow 1+1+T_{f}$ xs ys
Principle: T_{f} is abstract interpretation of f
Can be automated (easily for call-by-value)

Example

$f x s y s=$ case $x s$ of []$\Rightarrow y s \mid x \# x s \Rightarrow x \# f x s$ ys
$T_{f} x s$ ys $=$ case $x s$ of []$\Rightarrow 1 \mid x \# x s \Rightarrow 1+1+T_{f}$ xs ys
Principle: T_{f} is abstract interpretation of f
Can be automated (easily for call-by-value)
Additive constants can be reduced to 1

Alternative: Monadic approach

Alternative: Monadic approach

- Purpose: define f and T_{f} simultaneously

Alternative: Monadic approach

- Purpose: define f and T_{f} simultaneously
- Implementation: define function on (value, time) pairs

Alternative: Monadic approach

- Purpose: define f and T_{f} simultaneously
- Implementation: define function on (value, time) pairs
- Monadic notation hides time

Alternative: Monadic approach

- Purpose: define f and T_{f} simultaneously
- Implementation: define function on (value, time) pairs
- Monadic notation hides time

Basic combinators:

Alternative: Monadic approach

- Purpose: define f and T_{f} simultaneously
- Implementation: define function on (value, time) pairs
- Monadic notation hides time

Basic combinators:
return $v=(v, 1)$

Alternative: Monadic approach

- Purpose: define f and T_{f} simultaneously
- Implementation: define function on (value, time) pairs
- Monadic notation hides time

Basic combinators:
return $v=(v, 1)$
bind $(a, m) f=(\operatorname{let}(b, n)=f a$ in $(b, m+n)$

Alternative: Monadic approach

- Purpose: define f and T_{f} simultaneously
- Implementation: define function on (value, time) pairs
- Monadic notation hides time

Basic combinators:
return $v=(v, 1)$
bind $(a, m) f=($ let $(b, n)=f a$ in $(b, m+n)$
Notation: $\left\{x \leftarrow e_{1} ; e_{2}\right\}=$ bind $e_{1}\left(\lambda x . e_{2}\right)$

Alternative: Monadic approach

- Purpose: define f and T_{f} simultaneously
- Implementation: define function on (value, time) pairs
- Monadic notation hides time

Basic combinators:
return $v=(v, 1)$
bind $(a, m) f=($ let $(b, n)=f a$ in $(b, m+n)$
Notation: $\left\{x \leftarrow e_{1} ; e_{2}\right\}=$ bind $e_{1}\left(\lambda x . e_{2}\right)$
How to define your algorithms:

Alternative: Monadic approach

- Purpose: define f and T_{f} simultaneously
- Implementation: define function on (value, time) pairs
- Monadic notation hides time

Basic combinators:
return $v=(v, 1)$
bind $(a, m) f=($ let $(b, n)=f a$ in $(b, m+n)$
Notation: $\left\{x \leftarrow e_{1} ; e_{2}\right\}=$ bind $e_{1}\left(\lambda x . e_{2}\right)$
How to define your algorithms:
Define monadic $f m:: \cdots \rightarrow(\tau, n a t)$

Alternative: Monadic approach

- Purpose: define f and T_{f} simultaneously
- Implementation: define function on (value, time) pairs
- Monadic notation hides time

Basic combinators:
return $v=(v, 1)$
bind $(a, m) f=($ let $(b, n)=f a$ in $(b, m+n)$
Notation: $\left\{x \leftarrow e_{1} ; e_{2}\right\}=$ bind $e_{1}\left(\lambda x . e_{2}\right)$
How to define your algorithms:
Define monadic $\mathrm{fm}:: \cdots \rightarrow(\tau, n a t)$
Then define $f=$ value $\circ f m$ and $T_{f}=t i m e \circ f m$

Example

fm [] ys = return []

Example

fm [] ys = return []
$f m(x \# x s) y s=\{x y s \leftarrow f m$ xs ys; return $(x \#$ xys $)$

Example

fm [] ys = return []

$f m(x \# x s) y s=\{x y s \leftarrow f m$ xs ys; return $(x \#$ xys $)$
$f x s y s=\operatorname{val}(f m x s y s) \quad T_{f} x s y s=\operatorname{time}(f m x s y s)$

Example

fm [] ys = return []
$f m(x \# x s) y s=\{x y s \leftarrow f m$ xs ys; return $(x \#$ xys $)$
f xs ys $=\operatorname{val}(f m x s y s) \quad T_{f} x s y s=\operatorname{time}(f m x s y s)$
For proving properties of f and T_{f} :
Derive original recursive definitions of f and T_{f} by automatic inductive proof

The rest of the presentation, mostly

- Focus on persistence and constant time access

The rest of the presentation, mostly

- Focus on persistence and constant time access
- No need to analyze time because all functions non-recursive

(1) Time

(2) Real Time Queue

(3) Real Time Double-Ended Queue

(4) Skew Heap

Queue

Queue

How to implement a functional queue efficiently?

Queue

How to implement a functional queue efficiently?
As a list: either enq or deq take linear time

Two stacks

Two stacks

Two stacks

Problem: what if front becomes empty?

Two stacks

Problem: what if front becomes empty?
Need to reverse rear - linear time!

Two stacks

Problem: what if front becomes empty?
Need to reverse rear - linear time!
However: amortized running time of each operation (averaged over a sequnce of operations) is constant

Challenge: Real Time Queue
All operations have worst-case constant running time

One solution: laziness

One solution: laziness

Implementation with eager/call-by-value evaluation?

Real Time Queue

with call-by-value

- Do not wait for front $=[]$

Real Time Queue

with call-by-value

- Do not wait for front $=[]$
- Compute new front front @ rev rear early and incrementally

Real Time Queue

with call-by-value

- Do not wait for front $=[]$
- Compute new front front @ rev rear early and incrementally
- Incremental reversal by pair of stacks:
([a, b, c], [])

Real Time Queue

with call-by-value

- Do not wait for front $=[]$
- Compute new front front @ rev rear early and incrementally
- Incremental reversal by pair of stacks:
$([a, b, c],[]) \rightarrow([b, c],[a])$

Real Time Queue

with call-by-value

- Do not wait for front $=[]$
- Compute new front front @ rev rear early and incrementally
- Incremental reversal by pair of stacks:
$([a, b, c],[]) \rightarrow([b, c],[a]) \rightarrow([c],[b, a])$

Real Time Queue

with call-by-value

- Do not wait for front $=[]$
- Compute new front front @ rev rear early and incrementally
- Incremental reversal by pair of stacks:
$([a, b, c],[]) \rightarrow([b, c],[a]) \rightarrow([c],[b, a]) \rightarrow$
([], $[c, b, a])$

Real Time Queue

with call-by-value

- Do not wait for front = []
- Compute new front front @ rev rear early and incrementally
- Incremental reversal by pair of stacks:
$([a, b, c],[]) \rightarrow([b, c],[a]) \rightarrow([c],[b, a]) \rightarrow$
([], $[c, b, a])$
- Using a 'copy' of front and rear

Real Time Queue

with call-by-value

- Do not wait for front = []
- Compute new front front @ rev rear early and incrementally
- Incremental reversal by pair of stacks:
$([a, b, c],[]) \rightarrow([b, c],[a]) \rightarrow([c],[b, a]) \rightarrow$
([], $[c, b, a])$
- Using a 'copy' of front and rear "shadow queue"

Real Time Queue

with call-by-value

- Do not wait for front = []
- Compute new front front @ rev rear early and incrementally
- Incremental reversal by pair of stacks:
$([a, b, c],[]) \rightarrow([b, c],[a]) \rightarrow([c],[b, a]) \rightarrow$
([], $[c, b, a])$
- Using a 'copy' of front and rear "shadow queue"
- In parallel with $e n q$ and $d e q$ calls

Reversal strategy

$\operatorname{Aim}:(r, f) \rightarrow^{*}([], f$ @ rev $r)$

Reversal strategy

$$
\operatorname{Aim}:(r, f) \rightarrow^{*}([], f @ \operatorname{rev} r)
$$

In two phases:

Reversal strategy

$$
\operatorname{Aim}:(r, f) \rightarrow^{*}([], f @ \operatorname{rev} r)
$$

In two phases:
(1) Reverse $r=\left[b_{1}, \ldots, b_{m}\right] \rightarrow^{m}\left[b_{m}, \ldots, b_{1}\right]=: r^{\prime}$

Reversal strategy

$$
\operatorname{Aim}:(r, f) \rightarrow^{*}([], f @ \operatorname{rev} r)
$$

In two phases:
(1) Reverse $r=\left[b_{1}, \ldots, b_{m}\right] \rightarrow^{m}\left[b_{m}, \ldots, b_{1}\right]=: r^{\prime}$ and $\quad f=\left[a_{1}, \ldots, a_{n}\right] \rightarrow^{n}\left[a_{n}, \ldots, a_{1}\right]=: f^{\prime}$

Reversal strategy

Aim: $(r, f) \rightarrow^{*}([], f$ @ rev $r)$

In two phases:
(1) Reverse $r=\left[b_{1}, \ldots, b_{m}\right] \rightarrow^{m}\left[b_{m}, \ldots, b_{1}\right]=: r^{\prime}$ and $\quad f=\left[a_{1}, \ldots, a_{n}\right] \rightarrow^{n}\left[a_{n}, \ldots, a_{1}\right]=: f^{\prime}$
(2) Reverse f^{\prime} onto r^{\prime} :

$$
\left(f^{\prime}, r^{\prime}\right) \rightarrow^{n} \quad\left([], \text { rev } f^{\prime} @ r^{\prime}\right)
$$

Reversal strategy

Aim: $(r, f) \rightarrow^{*}([], f$ @ rev $r)$

In two phases:
(1) Reverse $r=\left[b_{1}, \ldots, b_{m}\right] \rightarrow^{m}\left[b_{m}, \ldots, b_{1}\right]=: r^{\prime}$ and $\quad f=\left[a_{1}, \ldots, a_{n}\right] \rightarrow^{n}\left[a_{n}, \ldots, a_{1}\right]=: f^{\prime}$
(2) Reverse f^{\prime} onto r^{\prime} :

$$
\left(f^{\prime}, r^{\prime}\right) \rightarrow^{n}\left([], \text { rev } f^{\prime} @ r^{\prime}\right)=([], f @ \operatorname{rev} r)
$$

Reversal strategy

Aim: $(r, f) \rightarrow^{*}([], f$ @ rev $r)$

In two phases:
(1) Reverse $r=\left[b_{1}, \ldots, b_{m}\right] \rightarrow^{m}\left[b_{m}, \ldots, b_{1}\right]=: r^{\prime}$ and $\quad f=\left[a_{1}, \ldots, a_{n}\right] \rightarrow^{n}\left[a_{n}, \ldots, a_{1}\right]=: f^{\prime}$
(2) Reverse f^{\prime} onto r^{\prime} :

$$
\left(f^{\prime}, r^{\prime}\right) \rightarrow^{n}\left([], \text { rev } f^{\prime} @ r^{\prime}\right)=([], f @ \operatorname{rev} r)
$$

When to start?

Reversal strategy

Aim: $(r, f) \rightarrow^{*}([], f$ @ rev $r)$

In two phases:
(1) Reverse $r=\left[b_{1}, \ldots, b_{m}\right] \rightarrow^{m}\left[b_{m}, \ldots, b_{1}\right]=: r^{\prime}$ and $\quad f=\left[a_{1}, \ldots, a_{n}\right] \rightarrow^{n}\left[a_{n}, \ldots, a_{1}\right]=: f^{\prime}$
(2) Reverse f^{\prime} onto r^{\prime} :

$$
\left(f^{\prime}, r^{\prime}\right) \rightarrow^{n} \quad\left([], r e v f^{\prime} @ r^{\prime}\right)=([], f @ \operatorname{rev} r)
$$

When to start? When $m=n+1$!

Reversal strategy

Aim: $(r, f) \rightarrow^{*}([], f$ @ rev $r)$

In two phases:
(1) Reverse $r=\left[b_{1}, \ldots, b_{m}\right] \rightarrow^{m}\left[b_{m}, \ldots, b_{1}\right]=: r^{\prime}$ and $\quad f=\left[a_{1}, \ldots, a_{n}\right] \rightarrow^{n}\left[a_{n}, \ldots, a_{1}\right]=: f^{\prime}$
(2) Reverse f^{\prime} onto r^{\prime} :

$$
\left(f^{\prime}, r^{\prime}\right) \rightarrow^{n} \quad\left([], r e v f^{\prime} @ r^{\prime}\right)=([], f @ \operatorname{rev} r)
$$

When to start? When $m=n+1$!

- Requires $n+1+n$ steps

Reversal strategy

Aim: $(r, f) \rightarrow^{*}([], f$ @ rev $r)$

In two phases:
(1) Reverse $r=\left[b_{1}, \ldots, b_{m}\right] \rightarrow^{m}\left[b_{m}, \ldots, b_{1}\right]=: r^{\prime}$ and $\quad f=\left[a_{1}, \ldots, a_{n}\right] \rightarrow^{n}\left[a_{n}, \ldots, a_{1}\right]=: f^{\prime}$
(2) Reverse f^{\prime} onto r^{\prime} :

$$
\left(f^{\prime}, r^{\prime}\right) \rightarrow^{n} \quad\left([], r e v f^{\prime} @ r^{\prime}\right)=([], f @ \operatorname{rev} r)
$$

When to start? When $m=n+1$!

- Requires $n+1+n$ steps
- Need to finish before original front becomes empty

Reversal strategy

Aim: $(r, f) \rightarrow^{*}([], f$ @ rev $r)$

In two phases:
(1) Reverse $r=\left[b_{1}, \ldots, b_{m}\right] \rightarrow^{m}\left[b_{m}, \ldots, b_{1}\right]=: r^{\prime}$ and $\quad f=\left[a_{1}, \ldots, a_{n}\right] \rightarrow^{n}\left[a_{n}, \ldots, a_{1}\right]=: f^{\prime}$
(2) Reverse f^{\prime} onto r^{\prime} :

$$
\left(f^{\prime}, r^{\prime}\right) \rightarrow^{n} \quad\left([], r e v f^{\prime} @ r^{\prime}\right)=([], f @ \operatorname{rev} r)
$$

When to start? When $m=n+1$!

- Requires $n+1+n$ steps
- Need to finish before original front becomes empty
- Need to perform 2 steps per enq/deq

Reversal strategy

Aim: $(r, f) \rightarrow^{*}([], f$ @ rev $r)$

In two phases:
(1) Reverse $r=\left[b_{1}, \ldots, b_{m}\right] \rightarrow^{m}\left[b_{m}, \ldots, b_{1}\right]=: r^{\prime}$ and $\quad f=\left[a_{1}, \ldots, a_{n}\right] \rightarrow^{n}\left[a_{n}, \ldots, a_{1}\right]=: f^{\prime}$
(2) Reverse f^{\prime} onto r^{\prime} :

$$
\left(f^{\prime}, r^{\prime}\right) \rightarrow^{n} \quad\left([], r e v f^{\prime} @ r^{\prime}\right)=([], f @ \operatorname{rev} r)
$$

When to start? When $m=n+1$!

- Requires $n+1+n$ steps
- Need to finish before original front becomes empty
- Need to perform 2 steps per enq/deq
- +1 initial step

Complication

Complication

deq from the original front

Complication

deq from the original front
Cannot easily remove them from the shadow queue

Complication

deq from the original front
Cannot easily remove them from the shadow queue Solution:

Complication

deq from the original front
Cannot easily remove them from the shadow queue

Solution:

- Remember how many elements have been removed

Complication

deq from the original front
Cannot easily remove them from the shadow queue

Solution:

- Remember how many elements have been removed
- Better: how many elements are still valid

Complication

deq from the original front
Cannot easily remove them from the shadow queue
Solution:

- Remember how many elements have been removed
- Better: how many elements are still valid
enq into new (initially empty) rear.

Complication

deq from the original front
Cannot easily remove them from the shadow queue
Solution:

- Remember how many elements have been removed
- Better: how many elements are still valid
en q into new (initially empty) rear.
Reversal fast enough to ensure \mid new rear $|\leq|$ new front \mid at the end

Implementation

The shadow queue

datatype ' a status $=$

```
Idle
    Rev (nat) ('a list) ('a list) ('a list) ('a list) |
    App (nat) ('a list) ('a list) |
    Done ('a list)
```


Shadow step

exec :: 'a status \Rightarrow ' a status
exec Idle $=$ Idle
exec (Rev ok $\left.(x \# f) f^{\prime}(y \# r) r^{\prime}\right)$
$=\operatorname{Rev}(o k+1) f\left(x \# f^{\prime}\right) r\left(y \# r^{\prime}\right)$
exec $\left(\right.$ Rev ok [] $\left.f^{\prime}[y] r^{\prime}\right)=\operatorname{App}$ ok $f^{\prime}\left(y \# r^{\prime}\right)$
$\operatorname{exec}\left(\operatorname{App}(o k+1)\left(x \# f^{\prime}\right) r^{\prime}\right)=\operatorname{App}$ ok $f^{\prime}\left(x \# r^{\prime}\right)$
exec $\left(\right.$ App $\left.0 f^{\prime} r^{\prime}\right)=$ Done r^{\prime}
exec $($ Done $v)=$ Done v

Dequeue from shadow queue

invalidate :: 'a status \Rightarrow 'a status
invalidate Idle $=$ Idle
invalidate $\left(\operatorname{Rev}\right.$ okff $\left.f^{\prime} r r^{\prime}\right)=\operatorname{Rev}(o k-1) f f^{\prime} r r^{\prime}$
invalidate $\left(\operatorname{App}(o k+1) f^{\prime} r^{\prime}\right)=A p p$ ok $f^{\prime} r^{\prime}$
invalidate $\left(\operatorname{App} 0 f^{\prime}\left(x \# r^{\prime}\right)\right)=$ Done r^{\prime}
invalidate $($ Done $v)=$ Done v

The whole queue

record 'a queue $=$ front $::$ ' a list

$$
\begin{aligned}
& \text { lenf }:: \text { nat } \\
& \text { rear }:: \text { 'a list } \\
& \text { lenr }:: \text { nat } \\
& \text { status }:: \text { 'a status }
\end{aligned}
$$

$e n q$ and $d e q$

en $q x q=$
$\operatorname{check}(q \backslash$ rear $:=x \#$ rear q, lenr $:=\operatorname{lenr} q+1))$
$\operatorname{deq} q=$
check
(q (lenf $:=\operatorname{lenf} q-1$, front $:=t l($ front $q)$,
status $:=$ invalidate (status $q)$)
check $q=$
(if lenr $q \leq \operatorname{lenf} q$ then $\operatorname{exec} 2 q$
else let newstate $=$

$$
\text { Rev } 0(\text { front } q) \text { [] (rear q) [] }
$$

in exec 2

$$
\begin{aligned}
& (q(\text { lenf }:=\text { lenf } q+\text { lenr } q \\
& \quad \text { status }:=\text { newstate }, \\
& \quad \text { rear }:=[], \text { lenr }:=0 \mid))
\end{aligned}
$$

exec $2 q=$ (case exec (exec q) of

$$
\begin{aligned}
& \text { Done } f r \Rightarrow q(\text { status }=\text { Idle, front }=f r) \mid \\
& \text { newstatus } \Rightarrow q(\text { status }=\text { newstatus }))
\end{aligned}
$$

Model oriented specification

Model oriented specification

Model data structure by existing mathematical types

Model oriented specification

Model data structure by existing mathematical types
Example: queue by list

Model oriented specification

Model data structure by existing mathematical types
Example: queue by list
Assume abstraction function (α) from queue to list

Model oriented specification

Model data structure by existing mathematical types Example: queue by list
Assume abstraction function (α) from queue to list Specify each queue function by a corresponding list function

Model oriented specification

Model data structure by existing mathematical types Example: queue by list
Assume abstraction function (α) from queue to list Specify each queue function by a corresponding list function
Formally: require that α is a homomorphism

Model oriented specification

Model data structure by existing mathematical types Example: queue by list
Assume abstraction function (α) from queue to list Specify each queue function by a corresponding list function
Formally: require that α is a homomorphism
Correctness proof of an implementation:

Model oriented specification

Model data structure by existing mathematical types Example: queue by list
Assume abstraction function (α) from queue to list Specify each queue function by a corresponding list function
Formally: require that α is a homomorphism
Correctness proof of an implementation: define α and prove Spec

Queue specification

interface empty :: 'a queue

$$
\begin{aligned}
& \text { enq }:: \text { ' } a \Rightarrow \text { 'a queue } \Rightarrow \text { 'a queue } \\
& \text { deq :: 'a queue } \Rightarrow \text { 'a queue } \\
& \text { first :: 'a queue } \Rightarrow \text { 'a }
\end{aligned}
$$

Queue specification

interface empty :: 'a queue

$$
\begin{aligned}
& \text { enq }:: \text { ' } a \Rightarrow \text { 'a queue } \Rightarrow \text { 'a queue } \\
& \text { deq :: 'a queue } \Rightarrow \text { 'a queue } \\
& \text { first :: 'a queue } \Rightarrow \text { 'a }
\end{aligned}
$$

abstraction list :: 'a queue \Rightarrow 'a list

Queue specification

interface empty :: 'a queue

$$
\begin{aligned}
& \text { enq }:: \text { ' } a \Rightarrow \text { 'a queue } \Rightarrow \text { 'a queue } \\
& \text { deq :: 'a queue } \Rightarrow \text { 'a queue } \\
& \text { first :: 'a queue } \Rightarrow \text { 'a }
\end{aligned}
$$

abstraction list :: 'a queue \Rightarrow ' a list
invariant invar :: 'a queue \Rightarrow bool

Queue specification

interface empty :: 'a queue

$$
\begin{aligned}
& \text { enq }:: \text { ' } a \Rightarrow \text { 'a queue } \Rightarrow \text { 'a queue } \\
& \text { deq :: 'a queue } \Rightarrow \text { 'a queue } \\
& \text { first :: 'a queue } \Rightarrow \text { 'a }
\end{aligned}
$$

abstraction list :: 'a queue \Rightarrow ' a list
invariant invar :: 'a queue \Rightarrow bool specification
invar $q \Longrightarrow$ list $(e n q x q)=$ list $q @[x]$

Queue specification

interface empty :: 'a queue

$$
\begin{aligned}
& \text { enq }:: \text { ' } a \Rightarrow \text { 'a queue } \Rightarrow \text { 'a queue } \\
& \text { deq :: 'a queue } \Rightarrow \text { 'a queue } \\
& \text { first :: 'a queue } \Rightarrow \text { 'a }
\end{aligned}
$$

abstraction list :: 'a queue \Rightarrow 'a list
invariant invar :: 'a queue \Rightarrow bool specification
invar $q \Longrightarrow$ list $(e n q x q)=$ list q @ $[x]$
invar $q \Longrightarrow$ list $(\operatorname{deq} q)=$ tail (list $q)$
invar $q \wedge$ list $q \neq[] \Longrightarrow$ first $q=$ head (list q)
\vdots

Correctness

Correctness

The proof is

Correctness

The proof is

- easy because all functions are non-recursive

Correctness

The proof is

- easy because all functions are non-recursive (\Longrightarrow constant running time!)

Correctness

The proof is

- easy because all functions are non-recursive (\Longrightarrow constant running time!)
- tricky because of invariant and abstraction function

Correctness

The proof is

- easy because all functions are non-recursive (\Longrightarrow constant running time!)
- tricky because of invariant and abstraction function 700 lines of Isabelle (by Alejandro Gómez-Londoño)

status invariant

inv_st $\left(\right.$ Rev ok $\left.f f^{\prime} r r^{\prime}\right)=$
$\left(|f|+1=|r| \wedge\left|f^{\prime}\right|=\left|r^{\prime}\right| \wedge o k \leq\left|f^{\prime}\right|\right)$
inv_st $\left(\right.$ App ok $\left.f^{\prime} r^{\prime}\right)=\left(o k \leq\left|f^{\prime}\right| \wedge\left|f^{\prime}\right|<\left|r^{\prime}\right|\right)$
inv_st Idle $=$ True
inv_st (Done _) $=$ True

Queue invariant

invar $q=$
(lent $q=\mid$ front_list $q \mid \wedge$
lent $q=\mid$ rev $($ rear $q) \mid \wedge$
lent $q \leq \operatorname{lenf} q \wedge$
(case status q of
Rev ok $f f^{\prime} r r^{\prime} \Rightarrow$
$2 *$ lent $q \leq\left|f^{\prime}\right| \wedge$
$o k \neq 0 \wedge 2 *|f|+o k+2 \leq 2 * \mid$ front $q \mid$
| App ok $f r \Rightarrow$
$2 *$ lent $q \leq|r| \wedge o k+1 \leq 2 * \mid$ front $q \mid$
$\mid-\Rightarrow$ True $) \wedge$
$(\exists$ rest. front_list $q=$ front q @ rest $) \wedge$
$(\nexists f r$. status $q=$ Done $f r) \wedge$ inv_st $($ status $q))$

Abstraction function

list $q=$ front_list q @ rear_list q
front_list $q=$
(case status q of
Idle \Rightarrow front q
|Revokff $f^{\prime} r^{\prime} \Rightarrow \operatorname{rev}\left(\right.$ take ok $\left.f^{\prime}\right) @ f @ r e v r @ r^{\prime}$ App ok $f^{\prime} x \Rightarrow \operatorname{rev}\left(\right.$ take ok $\left.f^{\prime}\right) @ x$
Done $f \Rightarrow f$)

The inventors

Robert Hood and Robert Melville. Real-Time Queue Operation in Pure LISP. Information Processing Letters, 1981.

(1) Time

(2) Real Time Queue

(3) Real Time Double-Ended Queue

(4) Skew Heap

Double-Ended Queue ("Deque")

Two stacks

Two stacks

Amortized constant time enq/deq:

Two stacks

Amortized constant time enq/deq:
If one stack becomes empty,

Two stacks

Amortized constant time enq/deq:
If one stack becomes empty,

Two stacks

Amortized constant time enq/deq:
If one stack becomes empty, reverse the botttom half of the other one

Real Time Deque

One solution: laziness

Real Time Deque

One solution: laziness

Implementation with eager/call-by-value evaluation?

Real Time Deque
 Call-by-value

- Do not wait for []

Real Time Deque
 Call-by-value

- Do not wait for []
- When the stacks become "too unbalanced":

Real Time Deque
 Call-by-value

- Do not wait for []
- When the stacks become "too unbalanced": Move part of bigger stack to smaller stack

Real Time Deque
 Call-by-value

- Do not wait for []
- When the stacks become "too unbalanced": Move part of bigger stack to smaller stack
- Aim for equal size of both stacks after reversal:

Real Time Deque Call-by-value

- Do not wait for []
- When the stacks become "too unbalanced": Move part of bigger stack to smaller stack
- Aim for equal size of both stacks after reversal:

Main invariant

S is smaller stack, B bigger stack, $m=|S|, n=|B|$.

Main invariant

S is smaller stack, B bigger stack, $m=|S|, n=|B|$.

$$
3 m \geq n
$$

Main invariant

S is smaller stack, B bigger stack, $m=|S|, n=|B|$.

$$
3 m \geq n
$$

When is $3 m \geq n$ destroyed by en q or deq?

Main invariant

S is smaller stack, B bigger stack, $m=|S|, n=|B|$.

$$
3 m \geq n
$$

When is $3 m \geq n$ destroyed by en q or deq? When $3 m \approx n$

Main invariant

S is smaller stack, B bigger stack, $m=|S|, n=|B|$.

$$
3 m \geq n
$$

When is $3 m \geq n$ destroyed by $e n q$ or $d e q$? When $3 m \approx n$ (\approx means we ignore the fine details)

Rebalancing strategy

Start: $B=B_{12} @ B_{3}$ where $\left|B_{12}\right|=2 m$ and $\left|B_{3}\right|=m$.

Rebalancing strategy

Start: $B=B_{12} @ B_{3}$ where $\left|B_{12}\right|=2 m$ and $\left|B_{3}\right|=m$. Aim: $B_{12} @ B_{3}, S \rightsquigarrow B_{12}, S @ \overline{B_{3}}$

Rebalancing strategy

Start: $B=B_{12} @ B_{3}$ where $\left|B_{12}\right|=2 m$ and $\left|B_{3}\right|=m$. Aim: $B_{12} @ B_{3}, S \rightsquigarrow B_{12}, S @ \overline{B_{3}}$

$$
B_{12} @ B_{3}
$$

$$
S
$$

Rebalancing strategy

Start: $B=B_{12} @ B_{3}$ where $\left|B_{12}\right|=2 m$ and $\left|B_{3}\right|=m$. Aim: $B_{12} @ B_{3}, S \rightsquigarrow B_{12}, S @ \overline{B_{3}}$

$$
\begin{array}{rll}
B_{12} @ B_{3} & \rightarrow^{2 m} & \stackrel{+}{B_{12}} \\
& B_{3}
\end{array}
$$

$$
S
$$

Rebalancing strategy

Start: $B=B_{12} @ B_{3}$ where $\left|B_{12}\right|=2 m$ and $\left|B_{3}\right|=m$. Aim: $B_{12} @ B_{3}, S \rightsquigarrow B_{12}, S @ \overline{B_{3}}$

$$
\begin{array}{lll}
B_{12} @ B_{3} & \rightarrow^{2 m} & \stackrel{\leftarrow}{B_{12}} \\
& & B_{3} \\
S & \rightarrow^{m} & \stackrel{\leftarrow}{S}
\end{array}
$$

Rebalancing strategy

Start: $B=B_{12} @ B_{3}$ where $\left|B_{12}\right|=2 m$ and $\left|B_{3}\right|=m$. Aim: $B_{12} @ B_{3}, S \rightsquigarrow B_{12}, S @ B_{3}$

$$
\begin{array}{lll}
B_{12} @ B_{3} & \rightarrow^{2 m} & \stackrel{\leftarrow}{B_{12}} \\
& & B_{3} \\
S & \rightarrow^{m} & \stackrel{\leftarrow}{S}
\end{array}
$$

Rebalancing strategy

Start: $B=B_{12} @ B_{3}$ where $\left|B_{12}\right|=2 m$ and $\left|B_{3}\right|=m$. Aim: $B_{12} @ B_{3}, S \rightsquigarrow B_{12}, S @ B_{3}$

$$
\begin{array}{lllll}
B_{12} @ B_{3} & \rightarrow^{2 m} & \stackrel{\leftarrow}{B_{12}} & & \rightarrow \\
& & B_{3} & \rightarrow^{m} & \overleftarrow{B_{3}} \\
S & \rightarrow^{m} & \overleftarrow{S} & &
\end{array}
$$

Rebalancing strategy

Start: $B=B_{12} @ B_{3}$ where $\left|B_{12}\right|=2 m$ and $\left|B_{3}\right|=m$. Aim: $B_{12} @ B_{3}, S \rightsquigarrow B_{12}, S @ B_{3}$

$$
\begin{array}{lllllll}
B_{12} @ B_{3} & \rightarrow^{2 m} & \stackrel{\leftarrow}{B_{12}} & & \rightarrow^{2 m} & & B_{12} \\
& & B_{3} & \rightarrow^{m} & \overleftarrow{B_{3}} & \rightarrow^{m} & S @ \overleftarrow{B_{3}} \\
S & \rightarrow^{m} & \overleftarrow{S} & & & &
\end{array}
$$

Rebalancing strategy

Start: $B=B_{12} @ B_{3}$ where $\left|B_{12}\right|=2 m$ and $\left|B_{3}\right|=m$. Aim: $B_{12} @ B_{3}, S \rightsquigarrow B_{12}, S @ B_{3}$

$$
\begin{array}{lllllll}
B_{12} @ B_{3} & \rightarrow^{2 m} & \stackrel{\leftarrow}{B_{12}} & & \rightarrow^{2 m} & & B_{12} \\
& & B_{3} & \rightarrow^{m} & \stackrel{\overleftarrow{B_{3}}}{m} & \rightarrow^{m} & S @ \overleftarrow{B_{3}} \\
S & \rightarrow^{m} & & & &
\end{array}
$$

Requires $4 m$ micro-steps, 4 per enq/deq step

Two deques

Rebalancing happens on shadow deque

Two deques

Rebalancing happens on shadow deque enq/deq happens on current deque

Another complication

At the end of rebalancing:

Another complication

At the end of rebalancing:
Need to combine results of rebalancing and newly enq'ed elements,

Another complication

At the end of rebalancing:
Need to combine results of rebalancing
and newly enq'ed elements, without using @ !

Another complication

At the end of rebalancing:
Need to combine results of rebalancing
and newly enq'ed elements, without using @ !
\Longrightarrow New stacks pair of lists

Another complication

At the end of rebalancing:
Need to combine results of rebalancing
and newly enq'ed elements, without using @ !
\Longrightarrow New stacks pair of lists
(No need for triples etc)

Another complication

At the end of rebalancing:
Need to combine results of rebalancing
and newly enq'ed elements, without using @ !
\Longrightarrow New stacks pair of lists
(No need for triples etc)
(Why not a problem with real time queue?)

Another detail

Deques of size ≤ 3 are represented as normal lists

No problems

No problems

Rebalancing needs m steps
and yields two stacks of size $2 m$ each.

No problems

Rebalancing needs m steps
and yields two stacks of size $2 m$ each.
Two extremes during rebalancing:

- $m \times e n q$ at one end:

No problems

Rebalancing needs m steps
and yields two stacks of size $2 m$ each.
Two extremes during rebalancing:

- $m \times e n q$ at one end:
in the end the stacks have size $2 m$ and $3 m \checkmark$

No problems

Rebalancing needs m steps
and yields two stacks of size $2 m$ each.
Two extremes during rebalancing:

- $m \times e n q$ at one end:
in the end the stacks have size $2 m$ and $3 m \checkmark$
- $m \times d e q$ of S :

No problems

Rebalancing needs m steps
and yields two stacks of size $2 m$ each.
Two extremes during rebalancing:

- $m \times e n q$ at one end:
in the end the stacks have size $2 m$ and $3 m \checkmark$
- $m \times d e q$ of $S: S$ has m elements \checkmark

No problems

Rebalancing needs m steps
and yields two stacks of size $2 m$ each.
Two extremes during rebalancing:

- $m \times e n q$ at one end:
in the end the stacks have size $2 m$ and $3 m \checkmark$
- $m \times d e q$ of $S: S$ has m elements \checkmark in the end the stacks have size m and $2 m \checkmark$

The full story

500 lines of code 3900 lines of invariants, abstraction functions and proofs (by Balazs Toth)

The full story

500 lines of code 3900 lines of invariants, abstraction functions and proofs (by Balazs Toth)

Based on
Chuang and Goldberg.
Real-time deques, multihead turing machines, and purely functional programming. In FPCA 1993.

The full story

500 lines of code 3900 lines of invariants, abstraction functions and proofs (by Balazs Toth)

Based on
Chuang and Goldberg.
Real-time deques, multihead turing machines, and purely functional programming. In FPCA 1993.
Already sketched in Hood's PhD thesis 1982

(1) Time

(2) Real Time Queue

(3) Real Time Double-Ended Queue

(4) Skew Heap

A skew heap is a self-adjusting heap (priority queue)

A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del_min have amortized logarithmic complexity.

A skew heap is a self-adjusting heap (priority queue)
Functions insert, merge and del_min have amortized logarithmic complexity.

Functions insert and del_min are defined via merge

Implementation type

Ordinary binary trees

Implementation type

Ordinary binary trees
Invariant: heap

merge

merge $\rangle t=t$
merge $h\rangle=h$

merge

merge $\rangle t=t$
merge $h\rangle=h$
Swap subtrees when descending:

merge

merge $\rangle t=t$
merge $h\rangle=h$
Swap subtrees when descending: merge $\left(\left\langle l_{1}, a_{1}, r_{1}\right\rangle=: t_{1}\right)\left(\left\langle l_{2}, a_{2}, r_{2}\right\rangle=: t_{2}\right)=$ (if $a_{1} \leq a_{2}$ then $\left\langle\right.$ merge $\left.t_{2} r_{1}, a_{1}, l_{1}\right\rangle$ else $\left\langle\right.$ merge $\left.t_{1} r_{2}, a_{2}, l_{2}\right\rangle$)

Functional correctness proofs

Straightforward

Logarithmic amortized complexity

Theorem

$$
\begin{aligned}
& \text { T_merge } t_{1} t_{2}+\Phi\left(\text { merge }_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2} \\
& \leq 3 * \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+1
\end{aligned}
$$

Towards the proof

Towards the proof

Right heavy:
rh $l r=($ if $|l|<|r|$ then 1 else 0)

Towards the proof

Right heavy:
rh $l r=($ if $|l|<|r|$ then 1 else 0)
Number of right heavy nodes on left spine:
$l r h\rangle=0$
$l r h\langle l,-r\rangle=r h l r+l r h$
l

Towards the proof

Right heavy:
rh $l r=($ if $|l|<|r|$ then 1 else 0)
Number of right heavy nodes on left spine:
$\operatorname{lrh}\rangle=0$
$l r h\langle l,-, r\rangle=r h l r+\operatorname{lrh} l$
Lemma
$2^{l r h t} \leq|t|+1$

Towards the proof

Right heavy:
rh $l r=($ if $|l|<|r|$ then 1 else 0)
Number of right heavy nodes on left spine:
$\operatorname{lrh}\rangle=0$
$l r h\langle l,-, r\rangle=r h l r+l r h l$
Lemma
$2^{l r h t} \leq|t|+1$
Corollary
$\operatorname{lrh} t \leq \log _{2}|t|_{1}$

Towards the proof

Right heavy: rh $l r=($ if $|l|<|r|$ then 1 else 0)

Number of not right heavy nodes on right spine:
$r l h\rangle=0$
$r l h\langle l,-r\rangle=1-r h l r+r l h r$
Lemma
$2^{r l h} t \leq|t|+1$
Corollary
$r l h t \leq \log _{2}|t|_{1}$

Potential

The potential is the number of right heavy nodes:

Potential

The potential is the number of right heavy nodes:
$\Phi\rangle=0$
$\Phi\langle l, \quad, r\rangle=\Phi l+\Phi r+r h l r$

Potential

The potential is the number of right heavy nodes:
$\Phi\rangle=0$
$\Phi\langle l, \quad, r\rangle=\Phi l+\Phi r+r h l r$
merge descends on the right
\Longrightarrow right heavy nodes are bad

Potential

The potential is the number of right heavy nodes:
$\Phi\rangle=0$
$\Phi\langle l, \quad, r\rangle=\Phi l+\Phi r+r h l r$
merge descends on the right
\Longrightarrow right heavy nodes are bad
Lemma
T_{-}merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left.t_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$\leq \operatorname{lrh}\left(\right.$ merge $\left._{1} t_{2}\right)+r l h t_{1}+r l h t_{2}+1$

Potential

The potential is the number of right heavy nodes:
$\Phi\rangle=0$
$\Phi\langle l, \quad, r\rangle=\Phi l+\Phi r+r h l r$
merge descends on the right
\Longrightarrow right heavy nodes are bad
Lemma
T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left.t_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$\leq \operatorname{lrh}\left(\right.$ merge $\left._{1} t_{2}\right)+r l h t_{1}+r l h t_{2}+1$
by(induction t1 t2 rule: merge.induct) (auto)

Node-Node case

$$
\text { Let } t_{1}=\left\langle l_{1}, a_{1}, r_{1}\right\rangle, t_{2}=\left\langle l_{2}, a_{2}, r_{2}\right\rangle
$$

Node-Node case

Let $t_{1}=\left\langle l_{1}, a_{1}, r_{1}\right\rangle, t_{2}=\left\langle l_{2}, a_{2}, r_{2}\right\rangle$.
Case $a_{1} \leq a_{2}$.

Node-Node case

Let $t_{1}=\left\langle l_{1}, a_{1}, r_{1}\right\rangle, t_{2}=\left\langle l_{2}, a_{2}, r_{2}\right\rangle$.
Case $a_{1} \leq a_{2}$. Let $m=$ merge $t_{2} r_{1}$

Node-Node case

Let $t_{1}=\left\langle l_{1}, a_{1}, r_{1}\right\rangle, t_{2}=\left\langle l_{2}, a_{2}, r_{2}\right\rangle$.
Case $a_{1} \leq a_{2}$. Let $m=$ merge $t_{2} r_{1}$
T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left._{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$

Node-Node case

Let $t_{1}=\left\langle l_{1}, a_{1}, r_{1}\right\rangle, t_{2}=\left\langle l_{2}, a_{2}, r_{2}\right\rangle$.
Case $a_{1} \leq a_{2}$. Let $m=$ merge $t_{2} r_{1}$

$$
\begin{aligned}
& \text { T_merge } t_{1} t_{2}+\Phi\left(\text { merge }_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2} \\
& =T_{-} \text {merge } t_{2} r_{1}+1+\Phi m+\Phi l_{1}+r h m l_{1} \\
& \quad-\Phi t_{1}-\Phi t_{2}
\end{aligned}
$$

Node-Node case

Let $t_{1}=\left\langle l_{1}, a_{1}, r_{1}\right\rangle, t_{2}=\left\langle l_{2}, a_{2}, r_{2}\right\rangle$.
Case $a_{1} \leq a_{2}$. Let $m=$ merge $t_{2} r_{1}$

$$
\begin{aligned}
& \text { T_merge } t_{1} t_{2}+\Phi\left(\text { merge }_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2} \\
& =T_{-m e r g e ~}^{t} t_{2} r_{1}+1+\Phi m+\Phi l_{1}+r h m l_{1} \\
& \quad-\Phi t_{1}-\Phi t_{2} \\
& =T _m e r g e t_{2} r_{1}+1+\Phi m+r h m l_{1} \\
& \quad-\Phi r_{1}-r h l_{1} r_{1}-\Phi t_{2}
\end{aligned}
$$

Node-Node case

Let $t_{1}=\left\langle l_{1}, a_{1}, r_{1}\right\rangle, t_{2}=\left\langle l_{2}, a_{2}, r_{2}\right\rangle$.
Case $a_{1} \leq a_{2}$. Let $m=$ merge $t_{2} r_{1}$
T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left.t_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$=T_{-}$merge $t_{2} r_{1}+1+\Phi m+\Phi l_{1}+r h m l_{1}$ $-\Phi t_{1}-\Phi t_{2}$
$=T_{_}$merge $t_{2} r_{1}+1+\Phi m+r h m l_{1}$ $-\Phi r_{1}-r h l_{1} r_{1}-\Phi t_{2}$
$\leq \operatorname{lrh} m+r l h t_{2}+r l h r_{1}+r h m l_{1}+2-r h l_{1} r_{1}$ by IH

Node-Node case

Let $t_{1}=\left\langle l_{1}, a_{1}, r_{1}\right\rangle, t_{2}=\left\langle l_{2}, a_{2}, r_{2}\right\rangle$.
Case $a_{1} \leq a_{2}$. Let $m=$ merge $t_{2} r_{1}$
T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left.t_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$=T_{-}$merge $t_{2} r_{1}+1+\Phi m+\Phi l_{1}+r h m l_{1}$ $-\Phi t_{1}-\Phi t_{2}$
$=T_{_}$merge $t_{2} r_{1}+1+\Phi m+r h m l_{1}$ $-\Phi r_{1}-r h l_{1} r_{1}-\Phi t_{2}$
$\leq \operatorname{lrh} m+r l h t_{2}+r l h r_{1}+r h m l_{1}+2-r h l_{1} r_{1}$ by IH
$=\operatorname{lrh} m+r l h t_{2}+r l h t_{1}+r h m l_{1}+1$

Node-Node case

Let $t_{1}=\left\langle l_{1}, a_{1}, r_{1}\right\rangle, t_{2}=\left\langle l_{2}, a_{2}, r_{2}\right\rangle$.
Case $a_{1} \leq a_{2}$. Let $m=$ merge $t_{2} r_{1}$
T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left.t_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$=T_{-}$merge $t_{2} r_{1}+1+\Phi m+\Phi l_{1}+r h m l_{1}$ $-\Phi t_{1}-\Phi t_{2}$
$=T_{_}$merge $t_{2} r_{1}+1+\Phi m+r h m l_{1}$ $-\Phi r_{1}-r h l_{1} r_{1}-\Phi t_{2}$
$\leq \operatorname{lrh} m+r l h t_{2}+r l h r_{1}+r h m l_{1}+2-r h l_{1} r_{1}$ by IH
$=l r h m+r l h t_{2}+r l h t_{1}+r h m l_{1}+1$
$=\operatorname{lrh}\left(\right.$ merge $\left._{1} t_{2}\right)+r l h t_{1}+r l h t_{2}+1$

Main proof

$$
T_{-} \text {merge } t_{1} t_{2}+\Phi\left(\text { merge }_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}
$$

Main proof

$$
\begin{aligned}
& T_{-} \text {merge } t_{1} t_{2}+\Phi\left({\text { merge } \left.t_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}}_{\leq \operatorname{lrh}\left(\text { merge } t_{1} t_{2}\right)+r l h t_{1}+r l h t_{2}+1}\right.
\end{aligned}
$$

Main proof

T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left._{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$\leq \operatorname{lrh}\left(\right.$ merge $\left._{1} t_{2}\right)+\operatorname{rlh} t_{1}+r l h t_{2}+1$
$\leq \log _{2} \mid$ merge $\left.t_{1} t_{2}\right|_{1}+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$

Main proof

T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left._{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$\leq \operatorname{lrh}\left(\right.$ merge $\left.t_{1} t_{2}\right)+r l h t_{1}+r l h t_{2}+1$
$\leq \log _{2} \mid$ merge $\left.t_{1} t_{2}\right|_{1}+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$=\log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}-1\right)+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$

Main proof

T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left._{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$\leq \operatorname{lrh}\left(\right.$ merge $\left._{1} t_{2}\right)+r l h t_{1}+r l h t_{2}+1$
$\leq \log _{2} \mid$ merge $\left.t_{1} t_{2}\right|_{1}+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$=\log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}-1\right)+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$\leq \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$

Main proof

T_{-}merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left.t_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$\leq \operatorname{lrh}\left(\right.$ merge $\left.t_{1} t_{2}\right)+r l h t_{1}+r l h t_{2}+1$
$\leq \log _{2} \mid$ merge $\left.t_{1} t_{2}\right|_{1}+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$=\log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}-1\right)+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$\leq \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$\leq \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+2 * \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+1$
because $\log _{2} x+\log _{2} y \leq 2 * \log _{2}(x+y)$ if $x, y>0$

Main proof

T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left.t_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$\leq \operatorname{lrh}\left(\right.$ merge $\left.t_{1} t_{2}\right)+r l h t_{1}+r l h t_{2}+1$
$\leq \log _{2} \mid$ merge $\left.t_{1} t_{2}\right|_{1}+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$=\log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}-1\right)+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$\leq \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$\leq \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+2 * \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+1$
because $\log _{2} x+\log _{2} y \leq 2 * \log _{2}(x+y)$ if $x, y>0$
$=3 * \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+1$

Sources

The inventors of skew heaps:
Daniel Sleator and Robert Tarjan.
Self-adjusting Heaps.
SIAM J. Computing, 1986.

Sources

The inventors of skew heaps:
Daniel Sleator and Robert Tarjan.
Self-adjusting Heaps.
SIAM J. Computing, 1986.
The formalization is based on
Anne Kaldewaij and Berry Schoenmakers.
The Derivation of a Tighter Bound for Top-down Skew Heaps. Information Processing Letters, 1991.

Sources

The inventors of skew heaps:
Daniel Sleator and Robert Tarjan.
Self-adjusting Heaps.
SIAM J. Computing, 1986.
The formalization is based on
Anne Kaldewaij and Berry Schoenmakers.
The Derivation of a Tighter Bound for Top-down Skew Heaps. Information Processing Letters, 1991.

Formalisation: TN

Conclusion

The Verification Perspective

Invariants and abstract functions are key

Conclusion

The Verification Perspective

Invariants and abstract functions are key
Main invariants are good for intuition

Conclusion

The Verification Perspective

Invariants and abstract functions are key
Main invariants are good for intuition
Formal proof needs much more

Conclusion

The Verification Perspective

Invariants and abstract functions are key
Main invariants are good for intuition
Formal proof needs much more
Often unsuitable for presentation in seminar, paper or even book

Conclusion

The Verification Perspective

Invariants and abstract functions are key
Main invariants are good for intuition
Formal proof needs much more
Often unsuitable for presentation in seminar, paper or even book
Can the queue verifications be automated more?

Conclusion

The Verification Perspective

Invariants and abstract functions are key
Main invariants are good for intuition
Formal proof needs much more
Often unsuitable for presentation in seminar, paper or even book
Can the queue verifications be automated more?
Verification of lazy versions?

