
Verification of
Functional Data Structures

Correctness and Complexity

Tobias Nipkow

Technical University of Munich

1

Tobias Nipkow, Jasmin Blanchette,
Manuel Eberl, Alejandro Gómez-Londoño,
Peter Lammich, Christian Sternagel,
Simon Wimmer, Bohua Zhan

Functional Algorithms,
Verified!

datatype a tree Leaf Node a tree a a tree

lg

QEDQ
uo

d

Era
t Demostrandum

Isabelle/HOL

March 15, 2023

2

A compendium of
functional data structures and algorithms

Formally verified (in Isabelle/HOL)
Both functional correctness and (amortized) runnig time

3

A compendium of
functional data structures and algorithms

Formally verified (in Isabelle/HOL)

Both functional correctness and (amortized) runnig time

3

A compendium of
functional data structures and algorithms

Formally verified (in Isabelle/HOL)
Both functional correctness and (amortized) runnig time

3

Inspired by …

4

Inspired by …

4

Inspired by …

4

… but with both textual
and (online) machine checked proofs

5

Topics

Sorting, Selection, Binary Trees, Binary Search Trees,
Abstract Data Types, 2-3 Trees, Red-Black Trees, AVL
Trees, Just Join, Braun Trees, Tries, Huffman’s
Algorithm, Priority Queues, Leftist Heaps, Leftist Heaps,
Dynamic Programming, Amortized Analysis, Queues,
Splay Trees, Skew Heaps, Pairing Heaps

Graph Algorithms,
αβ-Search, Quadtrees,
Burrows-Wheeler Transformation
…

6

Topics

Sorting, Selection, Binary Trees, Binary Search Trees,
Abstract Data Types, 2-3 Trees, Red-Black Trees, AVL
Trees, Just Join, Braun Trees, Tries, Huffman’s
Algorithm, Priority Queues, Leftist Heaps, Leftist Heaps,
Dynamic Programming, Amortized Analysis, Queues,
Splay Trees, Skew Heaps, Pairing Heaps

Graph Algorithms,
αβ-Search, Quadtrees,
Burrows-Wheeler Transformation
…

6

1 Time

2 Real Time Queue

3 Real Time Double-Ended Queue

4 Skew Heap

7

1 Time

2 Real Time Queue

3 Real Time Double-Ended Queue

4 Skew Heap

8

The idea

Running time complexity ≈ number of function calls

For each f :: τ → τ ′

there is a Tf :: τ → nat that counts function calls

Proofs about both f and Tf follow the same principles:
induction, case analyses, equational reasoning, logic, …

Where does Tf come from?

9

The idea

Running time complexity ≈ number of function calls

For each f :: τ → τ ′

there is a Tf :: τ → nat that counts function calls

Proofs about both f and Tf follow the same principles:
induction, case analyses, equational reasoning, logic, …

Where does Tf come from?

9

The idea

Running time complexity ≈ number of function calls

For each f :: τ → τ ′

there is a Tf :: τ → nat

that counts function calls

Proofs about both f and Tf follow the same principles:
induction, case analyses, equational reasoning, logic, …

Where does Tf come from?

9

The idea

Running time complexity ≈ number of function calls

For each f :: τ → τ ′

there is a Tf :: τ → nat that counts function calls

Proofs about both f and Tf follow the same principles:
induction, case analyses, equational reasoning, logic, …

Where does Tf come from?

9

The idea

Running time complexity ≈ number of function calls

For each f :: τ → τ ′

there is a Tf :: τ → nat that counts function calls

Proofs about both f and Tf follow the same principles:
induction, case analyses, equational reasoning, logic, …

Where does Tf come from?

9

The idea

Running time complexity ≈ number of function calls

For each f :: τ → τ ′

there is a Tf :: τ → nat that counts function calls

Proofs about both f and Tf follow the same principles:
induction, case analyses, equational reasoning, logic, …

Where does Tf come from?

9

Example
f xs ys = case xs of []⇒ ys | x#xs ⇒ x # f xs ys

Tf xs ys = case xs of []⇒ 1 | x#xs ⇒ 1 + 1 + Tf xs ys

Principle: Tf is abstract interpretation of f
Can be automated (easily for call-by-value)
Additive constants can be reduced to 1

10

Example
f xs ys = case xs of []⇒ ys | x#xs ⇒ x # f xs ys
Tf xs ys = case xs of []⇒ 1 | x#xs ⇒ 1 + 1 + Tf xs ys

Principle: Tf is abstract interpretation of f
Can be automated (easily for call-by-value)
Additive constants can be reduced to 1

10

Example
f xs ys = case xs of []⇒ ys | x#xs ⇒ x # f xs ys
Tf xs ys = case xs of []⇒ 1 | x#xs ⇒ 1 + 1 + Tf xs ys

Principle: Tf is abstract interpretation of f

Can be automated (easily for call-by-value)
Additive constants can be reduced to 1

10

Example
f xs ys = case xs of []⇒ ys | x#xs ⇒ x # f xs ys
Tf xs ys = case xs of []⇒ 1 | x#xs ⇒ 1 + 1 + Tf xs ys

Principle: Tf is abstract interpretation of f
Can be automated

(easily for call-by-value)
Additive constants can be reduced to 1

10

Example
f xs ys = case xs of []⇒ ys | x#xs ⇒ x # f xs ys
Tf xs ys = case xs of []⇒ 1 | x#xs ⇒ 1 + 1 + Tf xs ys

Principle: Tf is abstract interpretation of f
Can be automated (easily for call-by-value)

Additive constants can be reduced to 1

10

Example
f xs ys = case xs of []⇒ ys | x#xs ⇒ x # f xs ys
Tf xs ys = case xs of []⇒ 1 | x#xs ⇒ 1 + 1 + Tf xs ys

Principle: Tf is abstract interpretation of f
Can be automated (easily for call-by-value)
Additive constants can be reduced to 1

10

Alternative: Monadic approach

• Purpose: define f and Tf simultaneously
• Implementation: define function on (value, time)

pairs
• Monadic notation hides time

Basic combinators:
return v = (v, 1)
bind (a,m) f = (let (b, n) = f a in (b,m + n)
Notation: {x ← e1; e2} = bind e1 (λx. e2)

How to define your algorithms:
Define monadic fm :: · · · → (τ, nat)
Then define f = value ◦ fm and Tf = time ◦ fm

11

Alternative: Monadic approach
• Purpose: define f and Tf simultaneously

• Implementation: define function on (value, time)
pairs

• Monadic notation hides time

Basic combinators:
return v = (v, 1)
bind (a,m) f = (let (b, n) = f a in (b,m + n)
Notation: {x ← e1; e2} = bind e1 (λx. e2)

How to define your algorithms:
Define monadic fm :: · · · → (τ, nat)
Then define f = value ◦ fm and Tf = time ◦ fm

11

Alternative: Monadic approach
• Purpose: define f and Tf simultaneously
• Implementation: define function on (value, time)

pairs

• Monadic notation hides time

Basic combinators:
return v = (v, 1)
bind (a,m) f = (let (b, n) = f a in (b,m + n)
Notation: {x ← e1; e2} = bind e1 (λx. e2)

How to define your algorithms:
Define monadic fm :: · · · → (τ, nat)
Then define f = value ◦ fm and Tf = time ◦ fm

11

Alternative: Monadic approach
• Purpose: define f and Tf simultaneously
• Implementation: define function on (value, time)

pairs
• Monadic notation hides time

Basic combinators:
return v = (v, 1)
bind (a,m) f = (let (b, n) = f a in (b,m + n)
Notation: {x ← e1; e2} = bind e1 (λx. e2)

How to define your algorithms:
Define monadic fm :: · · · → (τ, nat)
Then define f = value ◦ fm and Tf = time ◦ fm

11

Alternative: Monadic approach
• Purpose: define f and Tf simultaneously
• Implementation: define function on (value, time)

pairs
• Monadic notation hides time

Basic combinators:

return v = (v, 1)
bind (a,m) f = (let (b, n) = f a in (b,m + n)
Notation: {x ← e1; e2} = bind e1 (λx. e2)

How to define your algorithms:
Define monadic fm :: · · · → (τ, nat)
Then define f = value ◦ fm and Tf = time ◦ fm

11

Alternative: Monadic approach
• Purpose: define f and Tf simultaneously
• Implementation: define function on (value, time)

pairs
• Monadic notation hides time

Basic combinators:
return v = (v, 1)

bind (a,m) f = (let (b, n) = f a in (b,m + n)
Notation: {x ← e1; e2} = bind e1 (λx. e2)

How to define your algorithms:
Define monadic fm :: · · · → (τ, nat)
Then define f = value ◦ fm and Tf = time ◦ fm

11

Alternative: Monadic approach
• Purpose: define f and Tf simultaneously
• Implementation: define function on (value, time)

pairs
• Monadic notation hides time

Basic combinators:
return v = (v, 1)
bind (a,m) f = (let (b, n) = f a in (b,m + n)

Notation: {x ← e1; e2} = bind e1 (λx. e2)

How to define your algorithms:
Define monadic fm :: · · · → (τ, nat)
Then define f = value ◦ fm and Tf = time ◦ fm

11

Alternative: Monadic approach
• Purpose: define f and Tf simultaneously
• Implementation: define function on (value, time)

pairs
• Monadic notation hides time

Basic combinators:
return v = (v, 1)
bind (a,m) f = (let (b, n) = f a in (b,m + n)
Notation: {x ← e1; e2} = bind e1 (λx. e2)

How to define your algorithms:
Define monadic fm :: · · · → (τ, nat)
Then define f = value ◦ fm and Tf = time ◦ fm

11

Alternative: Monadic approach
• Purpose: define f and Tf simultaneously
• Implementation: define function on (value, time)

pairs
• Monadic notation hides time

Basic combinators:
return v = (v, 1)
bind (a,m) f = (let (b, n) = f a in (b,m + n)
Notation: {x ← e1; e2} = bind e1 (λx. e2)

How to define your algorithms:

Define monadic fm :: · · · → (τ, nat)
Then define f = value ◦ fm and Tf = time ◦ fm

11

Alternative: Monadic approach
• Purpose: define f and Tf simultaneously
• Implementation: define function on (value, time)

pairs
• Monadic notation hides time

Basic combinators:
return v = (v, 1)
bind (a,m) f = (let (b, n) = f a in (b,m + n)
Notation: {x ← e1; e2} = bind e1 (λx. e2)

How to define your algorithms:
Define monadic fm :: · · · → (τ, nat)

Then define f = value ◦ fm and Tf = time ◦ fm

11

Alternative: Monadic approach
• Purpose: define f and Tf simultaneously
• Implementation: define function on (value, time)

pairs
• Monadic notation hides time

Basic combinators:
return v = (v, 1)
bind (a,m) f = (let (b, n) = f a in (b,m + n)
Notation: {x ← e1; e2} = bind e1 (λx. e2)

How to define your algorithms:
Define monadic fm :: · · · → (τ, nat)
Then define f = value ◦ fm and Tf = time ◦ fm

11

Example
fm [] ys = return []

fm (x#xs) ys = {xys ← fm xs ys; return(x # xys)
f xs ys = val(fm xs ys) Tf xs ys = time(fm xs ys)

For proving properties of f and Tf :

Derive original recursive definitions of f and Tf
by automatic inductive proof

12

Example
fm [] ys = return []
fm (x#xs) ys = {xys ← fm xs ys; return(x # xys)

f xs ys = val(fm xs ys) Tf xs ys = time(fm xs ys)

For proving properties of f and Tf :

Derive original recursive definitions of f and Tf
by automatic inductive proof

12

Example
fm [] ys = return []
fm (x#xs) ys = {xys ← fm xs ys; return(x # xys)
f xs ys = val(fm xs ys) Tf xs ys = time(fm xs ys)

For proving properties of f and Tf :

Derive original recursive definitions of f and Tf
by automatic inductive proof

12

Example
fm [] ys = return []
fm (x#xs) ys = {xys ← fm xs ys; return(x # xys)
f xs ys = val(fm xs ys) Tf xs ys = time(fm xs ys)

For proving properties of f and Tf :

Derive original recursive definitions of f and Tf
by automatic inductive proof

12

The rest of the presentation, mostly
• Focus on persistence and constant time access

• No need to analyze time
because all functions non-recursive

13

The rest of the presentation, mostly
• Focus on persistence and constant time access
• No need to analyze time

because all functions non-recursive

13

1 Time

2 Real Time Queue

3 Real Time Double-Ended Queue

4 Skew Heap

14

Queue

enq deq

How to implement a functional queue efficiently?
As a list: either enq or deq take linear time

15

Queue

enq deq

How to implement a functional queue efficiently?

As a list: either enq or deq take linear time

15

Queue

enq deq

How to implement a functional queue efficiently?
As a list: either enq or deq take linear time

15

Two stacks

enq

deq

rear

front

Problem: what if front becomes empty?
Need to reverse rear — linear time!
However: amortized running time of each operation
(averaged over a sequnce of operations) is constant

16

Two stacks

enq

deq

rear

front

Problem: what if front becomes empty?
Need to reverse rear — linear time!
However: amortized running time of each operation
(averaged over a sequnce of operations) is constant

16

Two stacks

enq

deq

rear

front

Problem: what if front becomes empty?

Need to reverse rear — linear time!
However: amortized running time of each operation
(averaged over a sequnce of operations) is constant

16

Two stacks

enq

deq

rear

front

Problem: what if front becomes empty?
Need to reverse rear — linear time!

However: amortized running time of each operation
(averaged over a sequnce of operations) is constant

16

Two stacks

enq

deq

rear

front

Problem: what if front becomes empty?
Need to reverse rear — linear time!
However: amortized running time of each operation
(averaged over a sequnce of operations) is constant

16

Challenge: Real Time Queue
All operations have worst-case constant running time

17

One solution: laziness

Implementation with eager/call-by-value evaluation?

18

One solution: laziness

Implementation with eager/call-by-value evaluation?

18

Real Time Queue
with call-by-value

• Do not wait for front = []

• Compute new front front @ rev rear
early and incrementally

• Incremental reversal by pair of stacks:
([a, b, c], [])→ ([b, c], [a])→ ([c], [b, a])→
([], [c, b, a])

• Using a ‘copy’ of front and rear
“shadow queue”

• In parallel with enq and deq calls

19

Real Time Queue
with call-by-value

• Do not wait for front = []

• Compute new front front @ rev rear
early and incrementally

• Incremental reversal by pair of stacks:
([a, b, c], [])→ ([b, c], [a])→ ([c], [b, a])→
([], [c, b, a])

• Using a ‘copy’ of front and rear
“shadow queue”

• In parallel with enq and deq calls

19

Real Time Queue
with call-by-value

• Do not wait for front = []

• Compute new front front @ rev rear
early and incrementally

• Incremental reversal by pair of stacks:
([a, b, c], [])

→ ([b, c], [a])→ ([c], [b, a])→
([], [c, b, a])

• Using a ‘copy’ of front and rear
“shadow queue”

• In parallel with enq and deq calls

19

Real Time Queue
with call-by-value

• Do not wait for front = []

• Compute new front front @ rev rear
early and incrementally

• Incremental reversal by pair of stacks:
([a, b, c], [])→ ([b, c], [a])

→ ([c], [b, a])→
([], [c, b, a])

• Using a ‘copy’ of front and rear
“shadow queue”

• In parallel with enq and deq calls

19

Real Time Queue
with call-by-value

• Do not wait for front = []

• Compute new front front @ rev rear
early and incrementally

• Incremental reversal by pair of stacks:
([a, b, c], [])→ ([b, c], [a])→ ([c], [b, a])

→
([], [c, b, a])

• Using a ‘copy’ of front and rear
“shadow queue”

• In parallel with enq and deq calls

19

Real Time Queue
with call-by-value

• Do not wait for front = []

• Compute new front front @ rev rear
early and incrementally

• Incremental reversal by pair of stacks:
([a, b, c], [])→ ([b, c], [a])→ ([c], [b, a])→
([], [c, b, a])

• Using a ‘copy’ of front and rear
“shadow queue”

• In parallel with enq and deq calls

19

Real Time Queue
with call-by-value

• Do not wait for front = []

• Compute new front front @ rev rear
early and incrementally

• Incremental reversal by pair of stacks:
([a, b, c], [])→ ([b, c], [a])→ ([c], [b, a])→
([], [c, b, a])

• Using a ‘copy’ of front and rear

“shadow queue”
• In parallel with enq and deq calls

19

Real Time Queue
with call-by-value

• Do not wait for front = []

• Compute new front front @ rev rear
early and incrementally

• Incremental reversal by pair of stacks:
([a, b, c], [])→ ([b, c], [a])→ ([c], [b, a])→
([], [c, b, a])

• Using a ‘copy’ of front and rear
“shadow queue”

• In parallel with enq and deq calls

19

Real Time Queue
with call-by-value

• Do not wait for front = []

• Compute new front front @ rev rear
early and incrementally

• Incremental reversal by pair of stacks:
([a, b, c], [])→ ([b, c], [a])→ ([c], [b, a])→
([], [c, b, a])

• Using a ‘copy’ of front and rear
“shadow queue”

• In parallel with enq and deq calls

19

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:
1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′

and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′
2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′) = ([], f @ rev r)

When to start? When m = n + 1!
• Requires n + 1 + n steps
• Need to finish before original front becomes empty
• Need to perform 2 steps per enq/deq
• +1 initial step

20

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:

1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′
and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′

2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′) = ([], f @ rev r)

When to start? When m = n + 1!
• Requires n + 1 + n steps
• Need to finish before original front becomes empty
• Need to perform 2 steps per enq/deq
• +1 initial step

20

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:
1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′

and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′
2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′) = ([], f @ rev r)

When to start? When m = n + 1!
• Requires n + 1 + n steps
• Need to finish before original front becomes empty
• Need to perform 2 steps per enq/deq
• +1 initial step

20

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:
1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′

and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′

2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′) = ([], f @ rev r)

When to start? When m = n + 1!
• Requires n + 1 + n steps
• Need to finish before original front becomes empty
• Need to perform 2 steps per enq/deq
• +1 initial step

20

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:
1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′

and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′
2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′)

= ([], f @ rev r)
When to start? When m = n + 1!
• Requires n + 1 + n steps
• Need to finish before original front becomes empty
• Need to perform 2 steps per enq/deq
• +1 initial step

20

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:
1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′

and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′
2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′) = ([], f @ rev r)

When to start? When m = n + 1!
• Requires n + 1 + n steps
• Need to finish before original front becomes empty
• Need to perform 2 steps per enq/deq
• +1 initial step

20

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:
1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′

and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′
2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′) = ([], f @ rev r)

When to start?

When m = n + 1!
• Requires n + 1 + n steps
• Need to finish before original front becomes empty
• Need to perform 2 steps per enq/deq
• +1 initial step

20

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:
1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′

and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′
2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′) = ([], f @ rev r)

When to start? When m = n + 1!

• Requires n + 1 + n steps
• Need to finish before original front becomes empty
• Need to perform 2 steps per enq/deq
• +1 initial step

20

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:
1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′

and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′
2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′) = ([], f @ rev r)

When to start? When m = n + 1!
• Requires n + 1 + n steps

• Need to finish before original front becomes empty
• Need to perform 2 steps per enq/deq
• +1 initial step

20

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:
1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′

and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′
2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′) = ([], f @ rev r)

When to start? When m = n + 1!
• Requires n + 1 + n steps
• Need to finish before original front becomes empty

• Need to perform 2 steps per enq/deq
• +1 initial step

20

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:
1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′

and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′
2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′) = ([], f @ rev r)

When to start? When m = n + 1!
• Requires n + 1 + n steps
• Need to finish before original front becomes empty
• Need to perform 2 steps per enq/deq

• +1 initial step

20

Reversal strategy
Aim: (r , f)→∗ ([], f @ rev r)

In two phases:
1 Reverse r = [b1, . . . , bm]→m [bm, . . . , b1] =: r ′

and f = [a1, . . . , an]→n [an, . . . , a1] =: f ′
2 Reverse f ′ onto r ′:
(f ′, r ′)→n ([], rev f ′ @ r ′) = ([], f @ rev r)

When to start? When m = n + 1!
• Requires n + 1 + n steps
• Need to finish before original front becomes empty
• Need to perform 2 steps per enq/deq
• +1 initial step

20

Complication

deq from the original front

Cannot easily remove them from the shadow queue

Solution:
• Remember how many elements have been removed
• Better: how many elements are still valid

enq into new (initially empty) rear.
Reversal fast enough to ensure |new rear| ≤ |new front|
at the end

21

Complication
deq from the original front

Cannot easily remove them from the shadow queue

Solution:
• Remember how many elements have been removed
• Better: how many elements are still valid

enq into new (initially empty) rear.
Reversal fast enough to ensure |new rear| ≤ |new front|
at the end

21

Complication
deq from the original front

Cannot easily remove them from the shadow queue

Solution:
• Remember how many elements have been removed
• Better: how many elements are still valid

enq into new (initially empty) rear.
Reversal fast enough to ensure |new rear| ≤ |new front|
at the end

21

Complication
deq from the original front

Cannot easily remove them from the shadow queue

Solution:

• Remember how many elements have been removed
• Better: how many elements are still valid

enq into new (initially empty) rear.
Reversal fast enough to ensure |new rear| ≤ |new front|
at the end

21

Complication
deq from the original front

Cannot easily remove them from the shadow queue

Solution:
• Remember how many elements have been removed

• Better: how many elements are still valid

enq into new (initially empty) rear.
Reversal fast enough to ensure |new rear| ≤ |new front|
at the end

21

Complication
deq from the original front

Cannot easily remove them from the shadow queue

Solution:
• Remember how many elements have been removed
• Better: how many elements are still valid

enq into new (initially empty) rear.
Reversal fast enough to ensure |new rear| ≤ |new front|
at the end

21

Complication
deq from the original front

Cannot easily remove them from the shadow queue

Solution:
• Remember how many elements have been removed
• Better: how many elements are still valid

enq into new (initially empty) rear.

Reversal fast enough to ensure |new rear| ≤ |new front|
at the end

21

Complication
deq from the original front

Cannot easily remove them from the shadow queue

Solution:
• Remember how many elements have been removed
• Better: how many elements are still valid

enq into new (initially empty) rear.
Reversal fast enough to ensure |new rear| ≤ |new front|
at the end

21

Implementation

22

The shadow queue

datatype ′a status =
Idle |
Rev (nat) (′a list) (′a list) (′a list) (′a list) |
App (nat) (′a list) (′a list) |
Done (′a list)

23

Shadow step

exec :: ′a status ⇒ ′a status
exec Idle = Idle
exec (Rev ok (x # f) f ′ (y # r) r ′)
= Rev (ok + 1) f (x # f ′) r (y # r ′)
exec (Rev ok [] f ′ [y] r ′) = App ok f ′ (y # r ′)
exec (App (ok + 1) (x # f ′) r ′) = App ok f ′ (x # r ′)
exec (App 0 f ′ r ′) = Done r ′

exec (Done v) = Done v

24

Dequeue from shadow queue

invalidate :: ′a status ⇒ ′a status
invalidate Idle = Idle
invalidate (Rev ok f f ′ r r ′) = Rev (ok − 1) f f ′ r r ′

invalidate (App (ok + 1) f ′ r ′) = App ok f ′ r ′

invalidate (App 0 f ′ (x # r ′)) = Done r ′

invalidate (Done v) = Done v

25

The whole queue

record ′a queue = front :: ′a list
lenf :: nat
rear :: ′a list
lenr :: nat
status :: ′a status

26

enq and deq

enq x q =
check (q(|rear := x # rear q, lenr := lenr q + 1|))

deq q =
check
(q(|lenf := lenf q − 1, front := tl (front q),

status := invalidate (status q)|))

27

check q =
(if lenr q ≤ lenf q then exec2 q
else let newstate =

Rev 0 (front q) [] (rear q) []
in exec2

(q(|lenf := lenf q + lenr q,
status := newstate,
rear := [], lenr := 0|)))

exec2 q = (case exec (exec q) of
Done fr ⇒ q(|status = Idle, front = fr|) |
newstatus ⇒ q(|status = newstatus|))

28

Model oriented specification

Model data structure by existing mathematical types
Example: queue by list
Assume abstraction function (α) from queue to list
Specify each queue function by a corresponding list
function
Formally: require that α is a homomorphism
Correctness proof of an implementation:
define α and prove Spec

29

Model oriented specification

Model data structure by existing mathematical types

Example: queue by list
Assume abstraction function (α) from queue to list
Specify each queue function by a corresponding list
function
Formally: require that α is a homomorphism
Correctness proof of an implementation:
define α and prove Spec

29

Model oriented specification

Model data structure by existing mathematical types
Example: queue by list

Assume abstraction function (α) from queue to list
Specify each queue function by a corresponding list
function
Formally: require that α is a homomorphism
Correctness proof of an implementation:
define α and prove Spec

29

Model oriented specification

Model data structure by existing mathematical types
Example: queue by list
Assume abstraction function (α) from queue to list

Specify each queue function by a corresponding list
function
Formally: require that α is a homomorphism
Correctness proof of an implementation:
define α and prove Spec

29

Model oriented specification

Model data structure by existing mathematical types
Example: queue by list
Assume abstraction function (α) from queue to list
Specify each queue function by a corresponding list
function

Formally: require that α is a homomorphism
Correctness proof of an implementation:
define α and prove Spec

29

Model oriented specification

Model data structure by existing mathematical types
Example: queue by list
Assume abstraction function (α) from queue to list
Specify each queue function by a corresponding list
function
Formally: require that α is a homomorphism

Correctness proof of an implementation:
define α and prove Spec

29

Model oriented specification

Model data structure by existing mathematical types
Example: queue by list
Assume abstraction function (α) from queue to list
Specify each queue function by a corresponding list
function
Formally: require that α is a homomorphism
Correctness proof of an implementation:

define α and prove Spec

29

Model oriented specification

Model data structure by existing mathematical types
Example: queue by list
Assume abstraction function (α) from queue to list
Specify each queue function by a corresponding list
function
Formally: require that α is a homomorphism
Correctness proof of an implementation:
define α and prove Spec

29

Queue specification
interface empty :: ′a queue

enq :: ′a ⇒ ′a queue ⇒ ′a queue
deq :: ′a queue ⇒ ′a queue
first :: ′a queue ⇒ ′a

abstraction list :: ′a queue ⇒ ′a list
invariant invar :: ′a queue ⇒ bool
specification
invar q =⇒ list (enq x q) = list q @ [x]
invar q =⇒ list (deq q) = tail (list q)
invar q ∧ list q 6= [] =⇒ first q = head (list q)
...

30

Queue specification
interface empty :: ′a queue

enq :: ′a ⇒ ′a queue ⇒ ′a queue
deq :: ′a queue ⇒ ′a queue
first :: ′a queue ⇒ ′a

abstraction list :: ′a queue ⇒ ′a list

invariant invar :: ′a queue ⇒ bool
specification
invar q =⇒ list (enq x q) = list q @ [x]
invar q =⇒ list (deq q) = tail (list q)
invar q ∧ list q 6= [] =⇒ first q = head (list q)
...

30

Queue specification
interface empty :: ′a queue

enq :: ′a ⇒ ′a queue ⇒ ′a queue
deq :: ′a queue ⇒ ′a queue
first :: ′a queue ⇒ ′a

abstraction list :: ′a queue ⇒ ′a list
invariant invar :: ′a queue ⇒ bool

specification
invar q =⇒ list (enq x q) = list q @ [x]
invar q =⇒ list (deq q) = tail (list q)
invar q ∧ list q 6= [] =⇒ first q = head (list q)
...

30

Queue specification
interface empty :: ′a queue

enq :: ′a ⇒ ′a queue ⇒ ′a queue
deq :: ′a queue ⇒ ′a queue
first :: ′a queue ⇒ ′a

abstraction list :: ′a queue ⇒ ′a list
invariant invar :: ′a queue ⇒ bool
specification
invar q =⇒ list (enq x q) = list q @ [x]

invar q =⇒ list (deq q) = tail (list q)
invar q ∧ list q 6= [] =⇒ first q = head (list q)
...

30

Queue specification
interface empty :: ′a queue

enq :: ′a ⇒ ′a queue ⇒ ′a queue
deq :: ′a queue ⇒ ′a queue
first :: ′a queue ⇒ ′a

abstraction list :: ′a queue ⇒ ′a list
invariant invar :: ′a queue ⇒ bool
specification
invar q =⇒ list (enq x q) = list q @ [x]
invar q =⇒ list (deq q) = tail (list q)
invar q ∧ list q 6= [] =⇒ first q = head (list q)
...

30

Correctness

The proof is
• easy because all functions are non-recursive

(=⇒ constant running time!)
• tricky because of invariant and abstraction function

700 lines of Isabelle (by Alejandro Gómez-Londoño)

31

Correctness

The proof is

• easy because all functions are non-recursive
(=⇒ constant running time!)

• tricky because of invariant and abstraction function
700 lines of Isabelle (by Alejandro Gómez-Londoño)

31

Correctness

The proof is
• easy because all functions are non-recursive

(=⇒ constant running time!)
• tricky because of invariant and abstraction function

700 lines of Isabelle (by Alejandro Gómez-Londoño)

31

Correctness

The proof is
• easy because all functions are non-recursive

(=⇒ constant running time!)

• tricky because of invariant and abstraction function
700 lines of Isabelle (by Alejandro Gómez-Londoño)

31

Correctness

The proof is
• easy because all functions are non-recursive

(=⇒ constant running time!)
• tricky because of invariant and abstraction function

700 lines of Isabelle (by Alejandro Gómez-Londoño)

31

Correctness

The proof is
• easy because all functions are non-recursive

(=⇒ constant running time!)
• tricky because of invariant and abstraction function

700 lines of Isabelle (by Alejandro Gómez-Londoño)

31

status invariant

inv st (Rev ok f f ′ r r ′) =
(|f| + 1 = |r| ∧ |f ′| = |r ′| ∧ ok ≤ |f ′|)
inv st (App ok f ′ r ′) = (ok ≤ |f ′| ∧ |f ′| < |r ′|)
inv st Idle = True
inv st (Done) = True

32

Queue invariant
invar q =
(lenf q = |front list q| ∧
lenr q = |rev (rear q)| ∧
lenr q ≤ lenf q ∧
(case status q of

Rev ok f f ′ r r ′⇒
2 ∗ lenr q ≤ |f ′| ∧
ok 6= 0 ∧ 2 ∗ |f| + ok + 2 ≤ 2 ∗ |front q|

| App ok f r ⇒
2 ∗ lenr q ≤ |r| ∧ ok + 1 ≤ 2 ∗ |front q|

| ⇒ True) ∧
(∃ rest. front list q = front q @ rest) ∧
(@ fr. status q = Done fr) ∧ inv st (status q))

33

Abstraction function

list q = front list q @ rear list q
front list q =
(case status q of

Idle ⇒ front q
| Rev ok f f ′ r r ′⇒ rev (take ok f ′) @ f @ rev r @ r ′
| App ok f ′ x ⇒ rev (take ok f ′) @ x
| Done f ⇒ f)

34

The inventors

Robert Hood and Robert Melville.
Real-Time Queue Operation in Pure LISP.
Information Processing Letters, 1981.

35

https://doi.org/10.1016/0020-0190(81)90030-2

1 Time

2 Real Time Queue

3 Real Time Double-Ended Queue

4 Skew Heap

36

Double-Ended Queue
(“Deque”)

enqL

deqL deqR

endR

37

Two stacks
enqL

deqL
enqR

deqR

Amortized constant time enq/deq:

If one stack becomes empty,
reverse the botttom half of the other one

38

Two stacks
enqL

deqL
enqR

deqR

Amortized constant time enq/deq:

If one stack becomes empty,
reverse the botttom half of the other one

38

Two stacks
enqL

deqL
enqR

deqR

Amortized constant time enq/deq:

If one stack becomes empty,

reverse the botttom half of the other one

38

Two stacks
enqL

deqL
enqR

deqR

Amortized constant time enq/deq:

If one stack becomes empty,

reverse the botttom half of the other one

38

Two stacks
enqL

deqL
enqR

deqR

Amortized constant time enq/deq:

If one stack becomes empty,
reverse the botttom half of the other one

38

Real Time Deque

One solution: laziness

Implementation with eager/call-by-value evaluation?

39

Real Time Deque

One solution: laziness

Implementation with eager/call-by-value evaluation?

39

Real Time Deque
Call-by-value

• Do not wait for []

• When the stacks become “too unbalanced”:
Move part of bigger stack to smaller stack

• Aim for equal size of both stacks after reversal:

40

Real Time Deque
Call-by-value

• Do not wait for []
• When the stacks become “too unbalanced”:

Move part of bigger stack to smaller stack
• Aim for equal size of both stacks after reversal:

40

Real Time Deque
Call-by-value

• Do not wait for []
• When the stacks become “too unbalanced”:

Move part of bigger stack to smaller stack

• Aim for equal size of both stacks after reversal:

40

Real Time Deque
Call-by-value

• Do not wait for []
• When the stacks become “too unbalanced”:

Move part of bigger stack to smaller stack
• Aim for equal size of both stacks after reversal:

40

Real Time Deque
Call-by-value

• Do not wait for []
• When the stacks become “too unbalanced”:

Move part of bigger stack to smaller stack
• Aim for equal size of both stacks after reversal:

40

Main invariant

S is smaller stack, B bigger stack, m = |S |, n = |B|.

3m ≥ n

When is 3m ≥ n destroyed by enq or deq?
When 3m ≈ n (≈ means we ignore the fine details)

41

Main invariant

S is smaller stack, B bigger stack, m = |S |, n = |B|.

3m ≥ n

When is 3m ≥ n destroyed by enq or deq?
When 3m ≈ n (≈ means we ignore the fine details)

41

Main invariant

S is smaller stack, B bigger stack, m = |S |, n = |B|.

3m ≥ n

When is 3m ≥ n destroyed by enq or deq?

When 3m ≈ n (≈ means we ignore the fine details)

41

Main invariant

S is smaller stack, B bigger stack, m = |S |, n = |B|.

3m ≥ n

When is 3m ≥ n destroyed by enq or deq?
When 3m ≈ n

(≈ means we ignore the fine details)

41

Main invariant

S is smaller stack, B bigger stack, m = |S |, n = |B|.

3m ≥ n

When is 3m ≥ n destroyed by enq or deq?
When 3m ≈ n (≈ means we ignore the fine details)

41

Rebalancing strategy

Start: B = B12@B3 where |B12| = 2m and |B3| = m.

Aim: B12@B3, S B12, S@ ~B3

B12@B3

→2m ~B12 →2m B12

B3 →m ~B3 →m S@ ~B3

S

→m ~S

Requires 4m micro-steps, 4 per enq/deq step

42

Rebalancing strategy

Start: B = B12@B3 where |B12| = 2m and |B3| = m.
Aim: B12@B3, S B12, S@ ~B3

B12@B3

→2m ~B12 →2m B12

B3 →m ~B3 →m S@ ~B3

S

→m ~S

Requires 4m micro-steps, 4 per enq/deq step

42

Rebalancing strategy

Start: B = B12@B3 where |B12| = 2m and |B3| = m.
Aim: B12@B3, S B12, S@ ~B3

B12@B3

→2m ~B12 →2m B12

B3 →m ~B3 →m S@ ~B3

S

→m ~S

Requires 4m micro-steps, 4 per enq/deq step

42

Rebalancing strategy

Start: B = B12@B3 where |B12| = 2m and |B3| = m.
Aim: B12@B3, S B12, S@ ~B3

B12@B3 →2m ~B12

→2m B12

B3

→m ~B3 →m S@ ~B3

S

→m ~S

Requires 4m micro-steps, 4 per enq/deq step

42

Rebalancing strategy

Start: B = B12@B3 where |B12| = 2m and |B3| = m.
Aim: B12@B3, S B12, S@ ~B3

B12@B3 →2m ~B12

→2m B12

B3

→m ~B3 →m S@ ~B3

S →m ~S

Requires 4m micro-steps, 4 per enq/deq step

42

Rebalancing strategy

Start: B = B12@B3 where |B12| = 2m and |B3| = m.
Aim: B12@B3, S B12, S@ ~B3

B12@B3 →2m ~B12 →2m B12

B3

→m ~B3 →m S@ ~B3

S →m ~S

Requires 4m micro-steps, 4 per enq/deq step

42

Rebalancing strategy

Start: B = B12@B3 where |B12| = 2m and |B3| = m.
Aim: B12@B3, S B12, S@ ~B3

B12@B3 →2m ~B12 →2m B12

B3 →m ~B3

→m S@ ~B3

S →m ~S

Requires 4m micro-steps, 4 per enq/deq step

42

Rebalancing strategy

Start: B = B12@B3 where |B12| = 2m and |B3| = m.
Aim: B12@B3, S B12, S@ ~B3

B12@B3 →2m ~B12 →2m B12

B3 →m ~B3 →m S@ ~B3

S →m ~S

Requires 4m micro-steps, 4 per enq/deq step

42

Rebalancing strategy

Start: B = B12@B3 where |B12| = 2m and |B3| = m.
Aim: B12@B3, S B12, S@ ~B3

B12@B3 →2m ~B12 →2m B12

B3 →m ~B3 →m S@ ~B3

S →m ~S

Requires 4m micro-steps, 4 per enq/deq step

42

Two deques

Rebalancing happens on shadow deque

enq/deq happens on current deque

43

Two deques

Rebalancing happens on shadow deque
enq/deq happens on current deque

43

Another complication

At the end of rebalancing:

Need to combine results of rebalancing
and newly enq’ed elements, without using @ !
=⇒ New stacks pair of lists
(No need for triples etc)

(Why not a problem with real time queue?)

44

Another complication

At the end of rebalancing:
Need to combine results of rebalancing
and newly enq’ed elements,

without using @ !
=⇒ New stacks pair of lists
(No need for triples etc)

(Why not a problem with real time queue?)

44

Another complication

At the end of rebalancing:
Need to combine results of rebalancing
and newly enq’ed elements, without using @ !

=⇒ New stacks pair of lists
(No need for triples etc)

(Why not a problem with real time queue?)

44

Another complication

At the end of rebalancing:
Need to combine results of rebalancing
and newly enq’ed elements, without using @ !
=⇒ New stacks pair of lists

(No need for triples etc)

(Why not a problem with real time queue?)

44

Another complication

At the end of rebalancing:
Need to combine results of rebalancing
and newly enq’ed elements, without using @ !
=⇒ New stacks pair of lists
(No need for triples etc)

(Why not a problem with real time queue?)

44

Another complication

At the end of rebalancing:
Need to combine results of rebalancing
and newly enq’ed elements, without using @ !
=⇒ New stacks pair of lists
(No need for triples etc)

(Why not a problem with real time queue?)

44

Another detail

Deques of size ≤ 3 are represented as normal lists

45

No problems

Rebalancing needs m steps
and yields two stacks of size 2m each.
Two extremes during rebalancing:
• m × enq at one end:

in the end the stacks have size 2m and 3m X
• m × deq of S : S has m elements X

in the end the stacks have size m and 2m X

46

No problems

Rebalancing needs m steps
and yields two stacks of size 2m each.

Two extremes during rebalancing:
• m × enq at one end:

in the end the stacks have size 2m and 3m X
• m × deq of S : S has m elements X

in the end the stacks have size m and 2m X

46

No problems

Rebalancing needs m steps
and yields two stacks of size 2m each.
Two extremes during rebalancing:
• m × enq at one end:

in the end the stacks have size 2m and 3m X
• m × deq of S : S has m elements X

in the end the stacks have size m and 2m X

46

No problems

Rebalancing needs m steps
and yields two stacks of size 2m each.
Two extremes during rebalancing:
• m × enq at one end:

in the end the stacks have size 2m and 3m X

• m × deq of S : S has m elements X
in the end the stacks have size m and 2m X

46

No problems

Rebalancing needs m steps
and yields two stacks of size 2m each.
Two extremes during rebalancing:
• m × enq at one end:

in the end the stacks have size 2m and 3m X
• m × deq of S :

S has m elements X
in the end the stacks have size m and 2m X

46

No problems

Rebalancing needs m steps
and yields two stacks of size 2m each.
Two extremes during rebalancing:
• m × enq at one end:

in the end the stacks have size 2m and 3m X
• m × deq of S : S has m elements X

in the end the stacks have size m and 2m X

46

No problems

Rebalancing needs m steps
and yields two stacks of size 2m each.
Two extremes during rebalancing:
• m × enq at one end:

in the end the stacks have size 2m and 3m X
• m × deq of S : S has m elements X

in the end the stacks have size m and 2m X

46

The full story

500 lines of code
3900 lines of invariants, abstraction functions and proofs
(by Balazs Toth)

Based on
Chuang and Goldberg.
Real-time deques, multihead turing machines, and purely
functional programming. In FPCA 1993.
Already sketched in Hood’s PhD thesis 1982

47

The full story

500 lines of code
3900 lines of invariants, abstraction functions and proofs
(by Balazs Toth)

Based on
Chuang and Goldberg.
Real-time deques, multihead turing machines, and purely
functional programming. In FPCA 1993.

Already sketched in Hood’s PhD thesis 1982

47

The full story

500 lines of code
3900 lines of invariants, abstraction functions and proofs
(by Balazs Toth)

Based on
Chuang and Goldberg.
Real-time deques, multihead turing machines, and purely
functional programming. In FPCA 1993.
Already sketched in Hood’s PhD thesis 1982

47

1 Time

2 Real Time Queue

3 Real Time Double-Ended Queue

4 Skew Heap

48

A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del min
have amortized logarithmic complexity.

Functions insert and del min are defined via merge

49

A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del min
have amortized logarithmic complexity.

Functions insert and del min are defined via merge

49

A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del min
have amortized logarithmic complexity.

Functions insert and del min are defined via merge

49

Implementation type

Ordinary binary trees

Invariant: heap

50

Implementation type

Ordinary binary trees

Invariant: heap

50

merge

merge 〈〉 t = t
merge h 〈〉 = h

Swap subtrees when descending:
merge (〈l1, a1, r1〉 =: t1) (〈l2, a2, r2〉 =: t2) =
(if a1 ≤ a2 then 〈merge t2 r1, a1, l1〉
else 〈merge t1 r2, a2, l2〉)

51

merge

merge 〈〉 t = t
merge h 〈〉 = h
Swap subtrees when descending:

merge (〈l1, a1, r1〉 =: t1) (〈l2, a2, r2〉 =: t2) =
(if a1 ≤ a2 then 〈merge t2 r1, a1, l1〉
else 〈merge t1 r2, a2, l2〉)

51

merge

merge 〈〉 t = t
merge h 〈〉 = h
Swap subtrees when descending:
merge (〈l1, a1, r1〉 =: t1) (〈l2, a2, r2〉 =: t2) =
(if a1 ≤ a2 then 〈merge t2 r1, a1, l1〉
else 〈merge t1 r2, a2, l2〉)

51

Functional correctness proofs

Straightforward

52

Logarithmic amortized complexity

Theorem
T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ 3 ∗ log2 (|t1|1 + |t2|1) + 1

53

Towards the proof

Right heavy:
rh l r = (if |l| < |r| then 1 else 0)

Number of right heavy nodes on left spine:
lrh 〈〉 = 0
lrh 〈l, , r〉 = rh l r + lrh l

Lemma
2lrh t ≤ |t| + 1

Corollary
lrh t ≤ log2 |t|1

54

Towards the proof
Right heavy:
rh l r = (if |l| < |r| then 1 else 0)

Number of right heavy nodes on left spine:
lrh 〈〉 = 0
lrh 〈l, , r〉 = rh l r + lrh l

Lemma
2lrh t ≤ |t| + 1

Corollary
lrh t ≤ log2 |t|1

54

Towards the proof
Right heavy:
rh l r = (if |l| < |r| then 1 else 0)

Number of right heavy nodes on left spine:
lrh 〈〉 = 0
lrh 〈l, , r〉 = rh l r + lrh l

Lemma
2lrh t ≤ |t| + 1

Corollary
lrh t ≤ log2 |t|1

54

Towards the proof
Right heavy:
rh l r = (if |l| < |r| then 1 else 0)

Number of right heavy nodes on left spine:
lrh 〈〉 = 0
lrh 〈l, , r〉 = rh l r + lrh l

Lemma
2lrh t ≤ |t| + 1

Corollary
lrh t ≤ log2 |t|1

54

Towards the proof
Right heavy:
rh l r = (if |l| < |r| then 1 else 0)

Number of right heavy nodes on left spine:
lrh 〈〉 = 0
lrh 〈l, , r〉 = rh l r + lrh l

Lemma
2lrh t ≤ |t| + 1

Corollary
lrh t ≤ log2 |t|1

54

Towards the proof
Right heavy:
rh l r = (if |l| < |r| then 1 else 0)

Number of not right heavy nodes on right spine:
rlh 〈〉 = 0
rlh 〈l, , r〉 = 1 − rh l r + rlh r

Lemma
2rlh t ≤ |t| + 1

Corollary
rlh t ≤ log2 |t|1

55

Potential
The potential is the number of right heavy nodes:

Φ 〈〉 = 0
Φ 〈l, , r〉 = Φ l + Φ r + rh l r
merge descends on the right
=⇒ right heavy nodes are bad

Lemma
T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
by(induction t1 t2 rule: merge.induct)(auto)

56

Potential
The potential is the number of right heavy nodes:
Φ 〈〉 = 0
Φ 〈l, , r〉 = Φ l + Φ r + rh l r

merge descends on the right
=⇒ right heavy nodes are bad

Lemma
T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
by(induction t1 t2 rule: merge.induct)(auto)

56

Potential
The potential is the number of right heavy nodes:
Φ 〈〉 = 0
Φ 〈l, , r〉 = Φ l + Φ r + rh l r
merge descends on the right
=⇒ right heavy nodes are bad

Lemma
T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
by(induction t1 t2 rule: merge.induct)(auto)

56

Potential
The potential is the number of right heavy nodes:
Φ 〈〉 = 0
Φ 〈l, , r〉 = Φ l + Φ r + rh l r
merge descends on the right
=⇒ right heavy nodes are bad

Lemma
T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

by(induction t1 t2 rule: merge.induct)(auto)

56

Potential
The potential is the number of right heavy nodes:
Φ 〈〉 = 0
Φ 〈l, , r〉 = Φ l + Φ r + rh l r
merge descends on the right
=⇒ right heavy nodes are bad

Lemma
T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
by(induction t1 t2 rule: merge.induct)(auto)

56

Node-Node case
Let t1 = 〈l1, a1, r1〉, t2 = 〈l2, a2, r2〉.

Case a1 ≤ a2. Let m = merge t2 r1

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
= T merge t2 r1 + 1 + Φ m + Φ l1 + rh m l1
− Φ t1 − Φ t2

= T merge t2 r1 + 1 + Φ m + rh m l1
− Φ r1 − rh l1 r1 − Φ t2
≤ lrh m + rlh t2 + rlh r1 + rh m l1 + 2 − rh l1 r1

by IH
= lrh m + rlh t2 + rlh t1 + rh m l1 + 1
= lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

57

Node-Node case
Let t1 = 〈l1, a1, r1〉, t2 = 〈l2, a2, r2〉.
Case a1 ≤ a2.

Let m = merge t2 r1

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
= T merge t2 r1 + 1 + Φ m + Φ l1 + rh m l1
− Φ t1 − Φ t2

= T merge t2 r1 + 1 + Φ m + rh m l1
− Φ r1 − rh l1 r1 − Φ t2
≤ lrh m + rlh t2 + rlh r1 + rh m l1 + 2 − rh l1 r1

by IH
= lrh m + rlh t2 + rlh t1 + rh m l1 + 1
= lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

57

Node-Node case
Let t1 = 〈l1, a1, r1〉, t2 = 〈l2, a2, r2〉.
Case a1 ≤ a2. Let m = merge t2 r1

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
= T merge t2 r1 + 1 + Φ m + Φ l1 + rh m l1
− Φ t1 − Φ t2

= T merge t2 r1 + 1 + Φ m + rh m l1
− Φ r1 − rh l1 r1 − Φ t2
≤ lrh m + rlh t2 + rlh r1 + rh m l1 + 2 − rh l1 r1

by IH
= lrh m + rlh t2 + rlh t1 + rh m l1 + 1
= lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

57

Node-Node case
Let t1 = 〈l1, a1, r1〉, t2 = 〈l2, a2, r2〉.
Case a1 ≤ a2. Let m = merge t2 r1

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2

= T merge t2 r1 + 1 + Φ m + Φ l1 + rh m l1
− Φ t1 − Φ t2

= T merge t2 r1 + 1 + Φ m + rh m l1
− Φ r1 − rh l1 r1 − Φ t2
≤ lrh m + rlh t2 + rlh r1 + rh m l1 + 2 − rh l1 r1

by IH
= lrh m + rlh t2 + rlh t1 + rh m l1 + 1
= lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

57

Node-Node case
Let t1 = 〈l1, a1, r1〉, t2 = 〈l2, a2, r2〉.
Case a1 ≤ a2. Let m = merge t2 r1

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
= T merge t2 r1 + 1 + Φ m + Φ l1 + rh m l1
− Φ t1 − Φ t2

= T merge t2 r1 + 1 + Φ m + rh m l1
− Φ r1 − rh l1 r1 − Φ t2
≤ lrh m + rlh t2 + rlh r1 + rh m l1 + 2 − rh l1 r1

by IH
= lrh m + rlh t2 + rlh t1 + rh m l1 + 1
= lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

57

Node-Node case
Let t1 = 〈l1, a1, r1〉, t2 = 〈l2, a2, r2〉.
Case a1 ≤ a2. Let m = merge t2 r1

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
= T merge t2 r1 + 1 + Φ m + Φ l1 + rh m l1
− Φ t1 − Φ t2

= T merge t2 r1 + 1 + Φ m + rh m l1
− Φ r1 − rh l1 r1 − Φ t2

≤ lrh m + rlh t2 + rlh r1 + rh m l1 + 2 − rh l1 r1
by IH

= lrh m + rlh t2 + rlh t1 + rh m l1 + 1
= lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

57

Node-Node case
Let t1 = 〈l1, a1, r1〉, t2 = 〈l2, a2, r2〉.
Case a1 ≤ a2. Let m = merge t2 r1

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
= T merge t2 r1 + 1 + Φ m + Φ l1 + rh m l1
− Φ t1 − Φ t2

= T merge t2 r1 + 1 + Φ m + rh m l1
− Φ r1 − rh l1 r1 − Φ t2
≤ lrh m + rlh t2 + rlh r1 + rh m l1 + 2 − rh l1 r1

by IH

= lrh m + rlh t2 + rlh t1 + rh m l1 + 1
= lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

57

Node-Node case
Let t1 = 〈l1, a1, r1〉, t2 = 〈l2, a2, r2〉.
Case a1 ≤ a2. Let m = merge t2 r1

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
= T merge t2 r1 + 1 + Φ m + Φ l1 + rh m l1
− Φ t1 − Φ t2

= T merge t2 r1 + 1 + Φ m + rh m l1
− Φ r1 − rh l1 r1 − Φ t2
≤ lrh m + rlh t2 + rlh r1 + rh m l1 + 2 − rh l1 r1

by IH
= lrh m + rlh t2 + rlh t1 + rh m l1 + 1

= lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

57

Node-Node case
Let t1 = 〈l1, a1, r1〉, t2 = 〈l2, a2, r2〉.
Case a1 ≤ a2. Let m = merge t2 r1

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
= T merge t2 r1 + 1 + Φ m + Φ l1 + rh m l1
− Φ t1 − Φ t2

= T merge t2 r1 + 1 + Φ m + rh m l1
− Φ r1 − rh l1 r1 − Φ t2
≤ lrh m + rlh t2 + rlh r1 + rh m l1 + 2 − rh l1 r1

by IH
= lrh m + rlh t2 + rlh t1 + rh m l1 + 1
= lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

57

Main proof

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2

≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
≤ log2 |merge t1 t2|1 + log2 |t1|1 + log2 |t2|1 + 1
= log2 (|t1|1 + |t2|1 − 1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + 2 ∗ log2 (|t1|1 + |t2|1) + 1

because log2 x + log2 y ≤ 2 ∗ log2 (x + y) if x,y > 0
= 3 ∗ log2 (|t1|1 + |t2|1) + 1

58

Main proof

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

≤ log2 |merge t1 t2|1 + log2 |t1|1 + log2 |t2|1 + 1
= log2 (|t1|1 + |t2|1 − 1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + 2 ∗ log2 (|t1|1 + |t2|1) + 1

because log2 x + log2 y ≤ 2 ∗ log2 (x + y) if x,y > 0
= 3 ∗ log2 (|t1|1 + |t2|1) + 1

58

Main proof

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
≤ log2 |merge t1 t2|1 + log2 |t1|1 + log2 |t2|1 + 1

= log2 (|t1|1 + |t2|1 − 1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + 2 ∗ log2 (|t1|1 + |t2|1) + 1

because log2 x + log2 y ≤ 2 ∗ log2 (x + y) if x,y > 0
= 3 ∗ log2 (|t1|1 + |t2|1) + 1

58

Main proof

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
≤ log2 |merge t1 t2|1 + log2 |t1|1 + log2 |t2|1 + 1
= log2 (|t1|1 + |t2|1 − 1) + log2 |t1|1 + log2 |t2|1 + 1

≤ log2 (|t1|1 + |t2|1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + 2 ∗ log2 (|t1|1 + |t2|1) + 1

because log2 x + log2 y ≤ 2 ∗ log2 (x + y) if x,y > 0
= 3 ∗ log2 (|t1|1 + |t2|1) + 1

58

Main proof

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
≤ log2 |merge t1 t2|1 + log2 |t1|1 + log2 |t2|1 + 1
= log2 (|t1|1 + |t2|1 − 1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + log2 |t1|1 + log2 |t2|1 + 1

≤ log2 (|t1|1 + |t2|1) + 2 ∗ log2 (|t1|1 + |t2|1) + 1
because log2 x + log2 y ≤ 2 ∗ log2 (x + y) if x,y > 0

= 3 ∗ log2 (|t1|1 + |t2|1) + 1

58

Main proof

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
≤ log2 |merge t1 t2|1 + log2 |t1|1 + log2 |t2|1 + 1
= log2 (|t1|1 + |t2|1 − 1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + 2 ∗ log2 (|t1|1 + |t2|1) + 1

because log2 x + log2 y ≤ 2 ∗ log2 (x + y) if x,y > 0

= 3 ∗ log2 (|t1|1 + |t2|1) + 1

58

Main proof

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
≤ log2 |merge t1 t2|1 + log2 |t1|1 + log2 |t2|1 + 1
= log2 (|t1|1 + |t2|1 − 1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + 2 ∗ log2 (|t1|1 + |t2|1) + 1

because log2 x + log2 y ≤ 2 ∗ log2 (x + y) if x,y > 0
= 3 ∗ log2 (|t1|1 + |t2|1) + 1

58

Sources
The inventors of skew heaps:
Daniel Sleator and Robert Tarjan.
Self-adjusting Heaps.
SIAM J. Computing, 1986.

The formalization is based on
Anne Kaldewaij and Berry Schoenmakers.
The Derivation of a Tighter Bound for Top-down Skew
Heaps. Information Processing Letters, 1991.

Formalisation: TN

59

Sources
The inventors of skew heaps:
Daniel Sleator and Robert Tarjan.
Self-adjusting Heaps.
SIAM J. Computing, 1986.

The formalization is based on
Anne Kaldewaij and Berry Schoenmakers.
The Derivation of a Tighter Bound for Top-down Skew
Heaps. Information Processing Letters, 1991.

Formalisation: TN

59

Sources
The inventors of skew heaps:
Daniel Sleator and Robert Tarjan.
Self-adjusting Heaps.
SIAM J. Computing, 1986.

The formalization is based on
Anne Kaldewaij and Berry Schoenmakers.
The Derivation of a Tighter Bound for Top-down Skew
Heaps. Information Processing Letters, 1991.

Formalisation: TN

59

Conclusion
The Verification Perspective

Invariants and abstract functions are key

Main invariants are good for intuition
Formal proof needs much more

Often unsuitable for presentation in
seminar, paper or even book

Can the queue verifications be automated more?
Verification of lazy versions?

60

Conclusion
The Verification Perspective

Invariants and abstract functions are key
Main invariants are good for intuition

Formal proof needs much more
Often unsuitable for presentation in

seminar, paper or even book
Can the queue verifications be automated more?

Verification of lazy versions?

60

Conclusion
The Verification Perspective

Invariants and abstract functions are key
Main invariants are good for intuition

Formal proof needs much more

Often unsuitable for presentation in
seminar, paper or even book

Can the queue verifications be automated more?
Verification of lazy versions?

60

Conclusion
The Verification Perspective

Invariants and abstract functions are key
Main invariants are good for intuition

Formal proof needs much more
Often unsuitable for presentation in

seminar, paper or even book

Can the queue verifications be automated more?
Verification of lazy versions?

60

Conclusion
The Verification Perspective

Invariants and abstract functions are key
Main invariants are good for intuition

Formal proof needs much more
Often unsuitable for presentation in

seminar, paper or even book
Can the queue verifications be automated more?

Verification of lazy versions?

60

Conclusion
The Verification Perspective

Invariants and abstract functions are key
Main invariants are good for intuition

Formal proof needs much more
Often unsuitable for presentation in

seminar, paper or even book
Can the queue verifications be automated more?

Verification of lazy versions?

60

