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Une situation efimovienne

Trois bosons indiscernables : symétrie d’échange pour Ψ(r1, r2, r3)

Poten]el à deux corps

Efimov 1970, 1971

m
m

m

• de longueur de diffusion  

• de portée   (pseudopoten]el : ) 

a

b ≪ |a | b → 0

On explore le voisinage d’une résonance de diffusion, pour laquelle un état lié à deux corps apparaît :

1/a

0

a < 0 a > 0|a | = + ∞

un état faiblement lié  
à deux corps existe

pas d’état faiblement lié  
à deux corps

Edim = −
ℏ2

ma2
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Le diagramme énergétique d’Efimov

 E

1/a

a < 0 a > 0
a = ± ∞

trimère n

trimère n + 1 Edimère = − ℏ2/ma2

E/λ2

a(n+1)
*

a(n)
− a(n+1)

− a(n)
*

Résultats obtenus pour le pseudo-poten]el, mais qui restent valables 
pour un poten]el à deux corps régulier  (cf. atome d’hélium)

a × λ a × λ

Facteur d’homothé]e :

λ = eπ/|s0| ≈ 22.7

|s0 | = 1.00624⋯

λ2 ≈ 515

Points remarquables : 
a(n)

− , a(n)
*
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Comment explorer ce diagramme avec des atomes froids

U]lisa]on d’une résonance de Fano-Feshbach pour le poten]el à deux corps

0
Canal d’entrée ouvert

Canal fermé
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Il y a généralement plusieurs états fortement liés à deux corps, en plus de l’éventuel état faiblement lié

Ils joueront collec6vement un rôle dans la suite
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Quels sont les effets physiques observables ?

Perte d’atomes dans un processus à trois corps

1

the measured a− values should begin to deviate from the
universal a− ¼ −9.7rvdW value; see Fig. 1. However, this
conclusion is only tentative due to large experimental
uncertainties in the measured a− [17], unexpected temper-
ature dependence [45], and large systematic uncertainties in
the parameters of the underlying two-body Feshbach
resonance [17,37,38,43]. Although there are intriguing
experimental [15,46–55] and theoretical [52,56–58] results
for the heteronuclear cases, the possible influence of many
additional parameters (mass ratio, quantum statistics, and
inter- and intraspecies scattering lengths) makes the ques-
tion of universality in those systems a topic for an entirely
separate investigation.
In this Letter, we present a precise test of van der Waals

universality near a Feshbach resonance with sres ¼ 2.57
[19], which is intermediate between the narrow (sres ≪ 1)
and broad (sres ≫ 1) regimes. Specifically, we accurately
determine the value of a− by having precise control of
critical experimental parameters such as temperature,
density, and scattering length. Because of our tight control
of both systematic and statistical errors, ours is the first
measurement of a compelling nonuniversal a− value in a
homonuclear Efimov resonance.
A thorough characterization of the Feshbach resonance

and an accurate map of the scattering length are required
for precise determination of the a− value. Accordingly, we
perform high-precision spectroscopy on a pure gas of

Feshbach dimers and accurately determine their binding
energies. This measurement enables us to refine our two-
body model and accurately predict the scattering length in
our Efimov measurements [19]. In other Feshbach reso-
nance studies, methods based on number loss or thermal-
ization rate have occasionally given inconsistent results. By
contrast, dissociation spectroscopy of Feshbach dimers
isolates two-body physics and accurately determines res-
onance properties [59–62].
Precision molecular spectroscopy requires long inter-

rogation times under unperturbed conditions. We stabilize
the magnetic field to the milligauss-level and eject all
unpaired atoms, whose presence affects dimer lifetimes and
complicates the spectroscopy. A pure molecular sample is
prepared by starting with∼105 atoms confined in an optical
dipole trap and a temperature of ∼300 nK. We transfer a
fraction of atoms in the jF ¼ 1; mF ¼ −1i hyperfine state to
the dimer state bymagnetoassociation [63]. Subsequently, all
residual unpaired atoms are blasted away by multiple radio-
frequency (rf) and optical pulses, leaving a pure sample of
∼104 molecules. Lastly, the magnetic field B is ramped to
various values, corresponding to different binding energies,
where we perform rf spectroscopy.
We dissociate molecules by transferring one atom of the

pair from the jF ¼ 1; mF ¼ −1i interacting state to the
jF ¼ 1; mF ¼ 0i imaging state. The final state being nearly
noninteracting enables us to directly probe the dimer
binding energy. Additionally, the transition being magneti-
cally less sensitive near B values of interest allows long
molecular interrogation times, limited only by dimer life-
times, to achieve high spectral resolution. We scan the rf
frequency and measure the transferred fraction, keeping the
pulse energy low to limit saturation effects and dissociate a
maximum 50% of molecules. We fit the measured spectrum
to a functional form given by the Franck-Condon factor of
the bound-free transition [59], and we extract the molecular
binding energy Eb [19,64]. We repeat this procedure to
determine Eb at different magnetic field values, as depicted
in Fig. 2.
The universal expression Eb ¼ ℏ2=ðma2Þ is always

accurate for large enough a. A more refined expression
Eb ¼ ℏ2=½mða − āÞ2%, which introduces the mean scatter-
ing length ā ≈ 0.956rvdW [66], is valid at smaller values of
a as long as a ≫ rvdW=sres [65]. However, such treatments
are inadequate for narrow and intermediate resonances.
To better compare to our experimental data, we developed a
coupled-channel model [19] capable of describing our
high-precision Eb data. We fine-tune the model’s param-
eters, the singlet and triplet scattering potentials, to accu-
rately match most of our measurements to within 1%, as
depicted in Fig. 2’s inset. As a result, we determine a
particular linear combination of the singlet and triplet
scattering lengths of 0.2470aS þ 0.9690aT ¼ 1.926ð2Þa0
[19], further constraining the previously reported values
of aS ¼ 138.49ð12Þa0 and aT ¼ −33.48ð18Þa0 [67,68].
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FIG. 1. Survey of experimental a− values in homonuclear
systems, inspired by [15]. Previous results (blue circles)
[3,17,37,41–45] show a tentative dependence of the a− value
on the Feshbach resonance strength parameter sres. Our meas-
urement (red star; red band in the inset) is the strongest evidence
of departure from the −9.7' 15%rvdW value (dashed line and
gray area) predicted by van der Waals universality [4,5,7,9]. The
inset shows calculations for a− based on a single van der Waals
potential [7] with N ¼ 1 − 7 s-wave two-body bound states
(green squares) and results from our multichannel model [19]
with N ¼ 2 − 5 (black triangles).
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between r and rþ dr in regions of high local velocity@kLðrÞ, which is proportional to [mdr=@kLðrÞ] (m being
the particle mass), the time spent classically in that interval
dr (see Ref. [26]). It is possible that there could be an
additional suppression as well, through quantum reflection
from a potential cliff [27]. Systems supporting many bound
states, such as the neutral atoms used in ultracold experi-
ments with their strong van der Waals attraction, clearly
exhibit this suppression. In general, a finite-range two-
body potential that supports many bound states decreases
steeply with decreasing interparticle distance r, starting
when r=rvdW & 1, at which point the potential cliff plays
a role analogous to a repulsive potential for low-energy
scattering. We demonstrate this fact by showing that the
three-body parameter in the presence of many two-body
bound states roughly coincides with that for a 100% re-
flective two-body model potential, where the two-body
short-range potential well is replaced by a hard sphere.

The starting point for our investigation of the universal-
ity of the three-body parameter is the adiabatic hyper-
spherical representation [18,28]. This representation
offers a simple and conceptually clear description by re-
ducing the problem to the solution of the ‘‘hyperradial’’
Schrödinger equation:

!
$ @2
2!

d2

dR2þW"ðRÞ
"
F"ðRÞþ

X

"0!"

W""0ðRÞF"0ðRÞ¼EF"ðRÞ:

(1)

Here, the hyperradius R describes the overall size of the
system; " is the channel index; ! ¼ m=

ffiffiffi
3

p
is the three-

body reduced mass for particle masses m; E is the total
energy; and F" is the hyperradial wave function. The
nonadiabatic couplings W""0 drive inelastic transitions,
and the effective hyperradial potentials W" support bound
and resonant states. To treat problems with deep two-body
interactions—necessary to see strong inside-the-well sup-
pression—requires us to solve Eq. (1) for two-body model
interactions that support many bound states, a challenge for
most theoretical approaches. Using our recently developed
methodology [29], however, we have treated systems with
up to 100 two-body rovibrational bound states and have
solved Eq. (1) beyond the adiabatic approximation. Here,
the universality of the three-body parameter is analyzed for
a number of model potentials, one of then being the usual
Lennard-Jones potential:

va
#ðrÞ ¼ $C6

r6
ð1$ #6=r6Þ; (2)

where # is adjusted to give the desired value of a and
number of bound states. The other short-ranged potential
models used here, namely, vsch, v

b
# and v

hs
vdW, can be found

in Ref. [26].
Figure 1(a) shows the adiabatic potentialsU" at jaj ¼ 1

obtained using the potential va
# above supporting 25 dimer

bound states. At first glance, it is difficult to identify any
universal properties of these potentials. Efimov physics,
however, occurs at a very small energy scale near the

FIG. 1 (color online). (a) Full energy landscape for the three-body potentials at a ¼ 1 for our va
# model potential. (b) Effective

diabatic potentials W" relevant for Efimov physics for va
# with an increasingly large number of bound states (#&

n is the value of # that
produces a ¼ 1 and n s-wave bound states). The W" converge to a universal potential displaying the repulsive barrier at R ' 2rvdW
that prevents particles’ access to short distances. (c)–(e) demonstrate the suppression of the wave function inside the potential well
through the channel functions !"ðR; $; ’Þ for R fixed near the minima of the Efimov potentials in (b). (c) shows the mapping of the
geometrical configurations onto the hyperangles $ and ’. (d) and (e) show the channel functions, where the ‘‘distance’’ from the origin
determines j!"j1=2, for two distinct cases: in (d) when there is a substantial probability to find two particles inside the potential well
(defined by the region containing the gray disks) and in (e) with a reduced probability—see also our discussion in Fig. 2. In (d) and (e),
we used the potentials vsch and va

#, respectively, both with n ¼ 3.
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the measured a− values should begin to deviate from the
universal a− ¼ −9.7rvdW value; see Fig. 1. However, this
conclusion is only tentative due to large experimental
uncertainties in the measured a− [17], unexpected temper-
ature dependence [45], and large systematic uncertainties in
the parameters of the underlying two-body Feshbach
resonance [17,37,38,43]. Although there are intriguing
experimental [15,46–55] and theoretical [52,56–58] results
for the heteronuclear cases, the possible influence of many
additional parameters (mass ratio, quantum statistics, and
inter- and intraspecies scattering lengths) makes the ques-
tion of universality in those systems a topic for an entirely
separate investigation.
In this Letter, we present a precise test of van der Waals

universality near a Feshbach resonance with sres ¼ 2.57
[19], which is intermediate between the narrow (sres ≪ 1)
and broad (sres ≫ 1) regimes. Specifically, we accurately
determine the value of a− by having precise control of
critical experimental parameters such as temperature,
density, and scattering length. Because of our tight control
of both systematic and statistical errors, ours is the first
measurement of a compelling nonuniversal a− value in a
homonuclear Efimov resonance.
A thorough characterization of the Feshbach resonance

and an accurate map of the scattering length are required
for precise determination of the a− value. Accordingly, we
perform high-precision spectroscopy on a pure gas of

Feshbach dimers and accurately determine their binding
energies. This measurement enables us to refine our two-
body model and accurately predict the scattering length in
our Efimov measurements [19]. In other Feshbach reso-
nance studies, methods based on number loss or thermal-
ization rate have occasionally given inconsistent results. By
contrast, dissociation spectroscopy of Feshbach dimers
isolates two-body physics and accurately determines res-
onance properties [59–62].
Precision molecular spectroscopy requires long inter-

rogation times under unperturbed conditions. We stabilize
the magnetic field to the milligauss-level and eject all
unpaired atoms, whose presence affects dimer lifetimes and
complicates the spectroscopy. A pure molecular sample is
prepared by starting with∼105 atoms confined in an optical
dipole trap and a temperature of ∼300 nK. We transfer a
fraction of atoms in the jF ¼ 1; mF ¼ −1i hyperfine state to
the dimer state bymagnetoassociation [63]. Subsequently, all
residual unpaired atoms are blasted away by multiple radio-
frequency (rf) and optical pulses, leaving a pure sample of
∼104 molecules. Lastly, the magnetic field B is ramped to
various values, corresponding to different binding energies,
where we perform rf spectroscopy.
We dissociate molecules by transferring one atom of the

pair from the jF ¼ 1; mF ¼ −1i interacting state to the
jF ¼ 1; mF ¼ 0i imaging state. The final state being nearly
noninteracting enables us to directly probe the dimer
binding energy. Additionally, the transition being magneti-
cally less sensitive near B values of interest allows long
molecular interrogation times, limited only by dimer life-
times, to achieve high spectral resolution. We scan the rf
frequency and measure the transferred fraction, keeping the
pulse energy low to limit saturation effects and dissociate a
maximum 50% of molecules. We fit the measured spectrum
to a functional form given by the Franck-Condon factor of
the bound-free transition [59], and we extract the molecular
binding energy Eb [19,64]. We repeat this procedure to
determine Eb at different magnetic field values, as depicted
in Fig. 2.
The universal expression Eb ¼ ℏ2=ðma2Þ is always

accurate for large enough a. A more refined expression
Eb ¼ ℏ2=½mða − āÞ2%, which introduces the mean scatter-
ing length ā ≈ 0.956rvdW [66], is valid at smaller values of
a as long as a ≫ rvdW=sres [65]. However, such treatments
are inadequate for narrow and intermediate resonances.
To better compare to our experimental data, we developed a
coupled-channel model [19] capable of describing our
high-precision Eb data. We fine-tune the model’s param-
eters, the singlet and triplet scattering potentials, to accu-
rately match most of our measurements to within 1%, as
depicted in Fig. 2’s inset. As a result, we determine a
particular linear combination of the singlet and triplet
scattering lengths of 0.2470aS þ 0.9690aT ¼ 1.926ð2Þa0
[19], further constraining the previously reported values
of aS ¼ 138.49ð12Þa0 and aT ¼ −33.48ð18Þa0 [67,68].
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FIG. 1. Survey of experimental a− values in homonuclear
systems, inspired by [15]. Previous results (blue circles)
[3,17,37,41–45] show a tentative dependence of the a− value
on the Feshbach resonance strength parameter sres. Our meas-
urement (red star; red band in the inset) is the strongest evidence
of departure from the −9.7' 15%rvdW value (dashed line and
gray area) predicted by van der Waals universality [4,5,7,9]. The
inset shows calculations for a− based on a single van der Waals
potential [7] with N ¼ 1 − 7 s-wave two-body bound states
(green squares) and results from our multichannel model [19]
with N ¼ 2 − 5 (black triangles).
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between r and rþ dr in regions of high local velocity@kLðrÞ, which is proportional to [mdr=@kLðrÞ] (m being
the particle mass), the time spent classically in that interval
dr (see Ref. [26]). It is possible that there could be an
additional suppression as well, through quantum reflection
from a potential cliff [27]. Systems supporting many bound
states, such as the neutral atoms used in ultracold experi-
ments with their strong van der Waals attraction, clearly
exhibit this suppression. In general, a finite-range two-
body potential that supports many bound states decreases
steeply with decreasing interparticle distance r, starting
when r=rvdW & 1, at which point the potential cliff plays
a role analogous to a repulsive potential for low-energy
scattering. We demonstrate this fact by showing that the
three-body parameter in the presence of many two-body
bound states roughly coincides with that for a 100% re-
flective two-body model potential, where the two-body
short-range potential well is replaced by a hard sphere.

The starting point for our investigation of the universal-
ity of the three-body parameter is the adiabatic hyper-
spherical representation [18,28]. This representation
offers a simple and conceptually clear description by re-
ducing the problem to the solution of the ‘‘hyperradial’’
Schrödinger equation:
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is the three-

body reduced mass for particle masses m; E is the total
energy; and F" is the hyperradial wave function. The
nonadiabatic couplings W""0 drive inelastic transitions,
and the effective hyperradial potentials W" support bound
and resonant states. To treat problems with deep two-body
interactions—necessary to see strong inside-the-well sup-
pression—requires us to solve Eq. (1) for two-body model
interactions that support many bound states, a challenge for
most theoretical approaches. Using our recently developed
methodology [29], however, we have treated systems with
up to 100 two-body rovibrational bound states and have
solved Eq. (1) beyond the adiabatic approximation. Here,
the universality of the three-body parameter is analyzed for
a number of model potentials, one of then being the usual
Lennard-Jones potential:

va
#ðrÞ ¼ $C6

r6
ð1$ #6=r6Þ; (2)

where # is adjusted to give the desired value of a and
number of bound states. The other short-ranged potential
models used here, namely, vsch, v
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# and v

hs
vdW, can be found

in Ref. [26].
Figure 1(a) shows the adiabatic potentialsU" at jaj ¼ 1

obtained using the potential va
# above supporting 25 dimer

bound states. At first glance, it is difficult to identify any
universal properties of these potentials. Efimov physics,
however, occurs at a very small energy scale near the

FIG. 1 (color online). (a) Full energy landscape for the three-body potentials at a ¼ 1 for our va
# model potential. (b) Effective

diabatic potentials W" relevant for Efimov physics for va
# with an increasingly large number of bound states (#&

n is the value of # that
produces a ¼ 1 and n s-wave bound states). The W" converge to a universal potential displaying the repulsive barrier at R ' 2rvdW
that prevents particles’ access to short distances. (c)–(e) demonstrate the suppression of the wave function inside the potential well
through the channel functions !"ðR; $; ’Þ for R fixed near the minima of the Efimov potentials in (b). (c) shows the mapping of the
geometrical configurations onto the hyperangles $ and ’. (d) and (e) show the channel functions, where the ‘‘distance’’ from the origin
determines j!"j1=2, for two distinct cases: in (d) when there is a substantial probability to find two particles inside the potential well
(defined by the region containing the gray disks) and in (e) with a reduced probability—see also our discussion in Fig. 2. In (d) and (e),
we used the potentials vsch and va

#, respectively, both with n ¼ 3.
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the measured a− values should begin to deviate from the
universal a− ¼ −9.7rvdW value; see Fig. 1. However, this
conclusion is only tentative due to large experimental
uncertainties in the measured a− [17], unexpected temper-
ature dependence [45], and large systematic uncertainties in
the parameters of the underlying two-body Feshbach
resonance [17,37,38,43]. Although there are intriguing
experimental [15,46–55] and theoretical [52,56–58] results
for the heteronuclear cases, the possible influence of many
additional parameters (mass ratio, quantum statistics, and
inter- and intraspecies scattering lengths) makes the ques-
tion of universality in those systems a topic for an entirely
separate investigation.
In this Letter, we present a precise test of van der Waals

universality near a Feshbach resonance with sres ¼ 2.57
[19], which is intermediate between the narrow (sres ≪ 1)
and broad (sres ≫ 1) regimes. Specifically, we accurately
determine the value of a− by having precise control of
critical experimental parameters such as temperature,
density, and scattering length. Because of our tight control
of both systematic and statistical errors, ours is the first
measurement of a compelling nonuniversal a− value in a
homonuclear Efimov resonance.
A thorough characterization of the Feshbach resonance

and an accurate map of the scattering length are required
for precise determination of the a− value. Accordingly, we
perform high-precision spectroscopy on a pure gas of

Feshbach dimers and accurately determine their binding
energies. This measurement enables us to refine our two-
body model and accurately predict the scattering length in
our Efimov measurements [19]. In other Feshbach reso-
nance studies, methods based on number loss or thermal-
ization rate have occasionally given inconsistent results. By
contrast, dissociation spectroscopy of Feshbach dimers
isolates two-body physics and accurately determines res-
onance properties [59–62].
Precision molecular spectroscopy requires long inter-

rogation times under unperturbed conditions. We stabilize
the magnetic field to the milligauss-level and eject all
unpaired atoms, whose presence affects dimer lifetimes and
complicates the spectroscopy. A pure molecular sample is
prepared by starting with∼105 atoms confined in an optical
dipole trap and a temperature of ∼300 nK. We transfer a
fraction of atoms in the jF ¼ 1; mF ¼ −1i hyperfine state to
the dimer state bymagnetoassociation [63]. Subsequently, all
residual unpaired atoms are blasted away by multiple radio-
frequency (rf) and optical pulses, leaving a pure sample of
∼104 molecules. Lastly, the magnetic field B is ramped to
various values, corresponding to different binding energies,
where we perform rf spectroscopy.
We dissociate molecules by transferring one atom of the

pair from the jF ¼ 1; mF ¼ −1i interacting state to the
jF ¼ 1; mF ¼ 0i imaging state. The final state being nearly
noninteracting enables us to directly probe the dimer
binding energy. Additionally, the transition being magneti-
cally less sensitive near B values of interest allows long
molecular interrogation times, limited only by dimer life-
times, to achieve high spectral resolution. We scan the rf
frequency and measure the transferred fraction, keeping the
pulse energy low to limit saturation effects and dissociate a
maximum 50% of molecules. We fit the measured spectrum
to a functional form given by the Franck-Condon factor of
the bound-free transition [59], and we extract the molecular
binding energy Eb [19,64]. We repeat this procedure to
determine Eb at different magnetic field values, as depicted
in Fig. 2.
The universal expression Eb ¼ ℏ2=ðma2Þ is always

accurate for large enough a. A more refined expression
Eb ¼ ℏ2=½mða − āÞ2%, which introduces the mean scatter-
ing length ā ≈ 0.956rvdW [66], is valid at smaller values of
a as long as a ≫ rvdW=sres [65]. However, such treatments
are inadequate for narrow and intermediate resonances.
To better compare to our experimental data, we developed a
coupled-channel model [19] capable of describing our
high-precision Eb data. We fine-tune the model’s param-
eters, the singlet and triplet scattering potentials, to accu-
rately match most of our measurements to within 1%, as
depicted in Fig. 2’s inset. As a result, we determine a
particular linear combination of the singlet and triplet
scattering lengths of 0.2470aS þ 0.9690aT ¼ 1.926ð2Þa0
[19], further constraining the previously reported values
of aS ¼ 138.49ð12Þa0 and aT ¼ −33.48ð18Þa0 [67,68].
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FIG. 1. Survey of experimental a− values in homonuclear
systems, inspired by [15]. Previous results (blue circles)
[3,17,37,41–45] show a tentative dependence of the a− value
on the Feshbach resonance strength parameter sres. Our meas-
urement (red star; red band in the inset) is the strongest evidence
of departure from the −9.7' 15%rvdW value (dashed line and
gray area) predicted by van der Waals universality [4,5,7,9]. The
inset shows calculations for a− based on a single van der Waals
potential [7] with N ¼ 1 − 7 s-wave two-body bound states
(green squares) and results from our multichannel model [19]
with N ¼ 2 − 5 (black triangles).
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between r and rþ dr in regions of high local velocity@kLðrÞ, which is proportional to [mdr=@kLðrÞ] (m being
the particle mass), the time spent classically in that interval
dr (see Ref. [26]). It is possible that there could be an
additional suppression as well, through quantum reflection
from a potential cliff [27]. Systems supporting many bound
states, such as the neutral atoms used in ultracold experi-
ments with their strong van der Waals attraction, clearly
exhibit this suppression. In general, a finite-range two-
body potential that supports many bound states decreases
steeply with decreasing interparticle distance r, starting
when r=rvdW & 1, at which point the potential cliff plays
a role analogous to a repulsive potential for low-energy
scattering. We demonstrate this fact by showing that the
three-body parameter in the presence of many two-body
bound states roughly coincides with that for a 100% re-
flective two-body model potential, where the two-body
short-range potential well is replaced by a hard sphere.

The starting point for our investigation of the universal-
ity of the three-body parameter is the adiabatic hyper-
spherical representation [18,28]. This representation
offers a simple and conceptually clear description by re-
ducing the problem to the solution of the ‘‘hyperradial’’
Schrödinger equation:
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Here, the hyperradius R describes the overall size of the
system; " is the channel index; ! ¼ m=
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is the three-

body reduced mass for particle masses m; E is the total
energy; and F" is the hyperradial wave function. The
nonadiabatic couplings W""0 drive inelastic transitions,
and the effective hyperradial potentials W" support bound
and resonant states. To treat problems with deep two-body
interactions—necessary to see strong inside-the-well sup-
pression—requires us to solve Eq. (1) for two-body model
interactions that support many bound states, a challenge for
most theoretical approaches. Using our recently developed
methodology [29], however, we have treated systems with
up to 100 two-body rovibrational bound states and have
solved Eq. (1) beyond the adiabatic approximation. Here,
the universality of the three-body parameter is analyzed for
a number of model potentials, one of then being the usual
Lennard-Jones potential:

va
#ðrÞ ¼ $C6

r6
ð1$ #6=r6Þ; (2)

where # is adjusted to give the desired value of a and
number of bound states. The other short-ranged potential
models used here, namely, vsch, v

b
# and v

hs
vdW, can be found

in Ref. [26].
Figure 1(a) shows the adiabatic potentialsU" at jaj ¼ 1

obtained using the potential va
# above supporting 25 dimer

bound states. At first glance, it is difficult to identify any
universal properties of these potentials. Efimov physics,
however, occurs at a very small energy scale near the

FIG. 1 (color online). (a) Full energy landscape for the three-body potentials at a ¼ 1 for our va
# model potential. (b) Effective

diabatic potentials W" relevant for Efimov physics for va
# with an increasingly large number of bound states (#&

n is the value of # that
produces a ¼ 1 and n s-wave bound states). The W" converge to a universal potential displaying the repulsive barrier at R ' 2rvdW
that prevents particles’ access to short distances. (c)–(e) demonstrate the suppression of the wave function inside the potential well
through the channel functions !"ðR; $; ’Þ for R fixed near the minima of the Efimov potentials in (b). (c) shows the mapping of the
geometrical configurations onto the hyperangles $ and ’. (d) and (e) show the channel functions, where the ‘‘distance’’ from the origin
determines j!"j1=2, for two distinct cases: in (d) when there is a substantial probability to find two particles inside the potential well
(defined by the region containing the gray disks) and in (e) with a reduced probability—see also our discussion in Fig. 2. In (d) and (e),
we used the potentials vsch and va

#, respectively, both with n ¼ 3.
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Photoassocia>on et spectroscopie cohérente

superposition state of Feshbach dimers and Efimov trimers.
After a variable time of its coherent evolution we apply a
second pulse to observe the accumulated phase difference
between the two constituents of the superposition state. The
resulting oscillations reveal the Efimov trimer energy level
with nearly tenfold improvement in precision and much
higher resolution limit compared to the previously applied
experimental method [33]. Even more importantly, we
observe the decay of the coherent oscillations which can
be related to different decoherence mechanisms such as the
trimers’ lifetime and the elastic atom-dimer and/or atom-
trimer collision rates. Note, finally, that we benefit from the
fourfold interferometric enhancement of the signal and
demonstrate high sensitivity in probing a small population
of trimers.
The experiment is performed on 7Li atoms, polarized in

the jF ¼ 1; mF ¼ 0i state and evaporatively cooled to a
temperature of T ≈ 1.5 μK in a crossed-beam optical trap in
the vicinity of a Feshbach resonance [45]. The magnetic
field bias is set to 880.25 G which corresponds to a
scattering length of ∼300a0 and a Feshbach dimer binding
energy of Ed ¼ −h × 6 MHz [see Fig. 1(a)] [46].
According to an earlier study described in Ref. [33], the
first excited Efimov trimer energy level is predicted to be
just ∼100 kHz below Ed, i.e., Et − Ed ≈ −h × 100 kHz,
where Et is the energy of the trimer state. In Ref. [33],
Et − Ed was measured in the region of 0.5 MHz < Ed=h <
4 MHz by means of loss spectroscopy. The frequency

dependent magnetic field modulation was applied for tens
to hundreds of milliseconds, and the induced atom loss
resonances were related to the positions of dimer and trimer
energy levels. The accessible region of the trimer’s binding
energies was constrained by the finite resolution limit to be
≳110 kHz. Thus, our current measurement probes the
region which was out of reach for the previous exper-
imental technique.
The concept of the interferometer relies on a clear

separation of energy scales in the system: Ed ≫ Et − Ed >
kBT. The first step of the interferometer, shown in
Figs. 1(b) and 1(c), is the beam splitter at time t1. The
bias field is modulated at νm ¼ 6 MHz for a FWHM
duration of τm ¼ 10 μs by a single auxiliary coil. The
modulation amplitude at the atom position is b ≈ 1.5 G
[45]. The Fourier transform limited bandwidth of the pulse
is 100 kHz at FWHM which allows us to address both
(dimer and trimer) energy levels simultaneously while
covering the full thermal distribution of the free-atom
continuum (∼30 kHz for T ≈ 1.5 μK). The pulse projects
the three-atom continuum to a coherent superposition state
of a dimer þ free atom and a trimer, denoted hereafter as
DITRIS (dimer-trimer superposition) state. The system
then evolves freely for a variable time t ≫ τm during
which the two constituents of the DITRIS accumulate a
relative phase difference of ϕðtÞ ¼ ðEt − EdÞt=ℏ, assuming
that the energy of the free atom in the dimer þ atom
pathway is negligible (see the discussion of the results
below). At time t2 ¼ t1 þ t an identical modulation pulse
projects the two paths back to free atoms and serves as an
output port of the interferometer. When ϕðtÞ ¼ 2πn, where
n ∈ Z, constructive interference between the two paths
projects the three atoms into the three-atom continuum as
shown in Fig. 1(b). In contrast, Fig. 1(c) represents the case
where ϕðtÞ ¼ πð2nþ 1Þ when destructive interference
suppresses dissociation of the bound states. This produces
a time dependent periodic variation in the number of free
atoms with a peak-to-peak amplitude proportional to ND,
where ND is the number of DITRIS states produced by the
first pulse. This two-path interferometer picture neglects
the contribution of the third path where the three atoms
remain in the three-atom continuum. However, due to our
experimental conditions (Ed ≫ Et − Ed) this channel con-
tributes oscillations at ∼Ed=h which are averaged to zero in
the range of interest, namely ðEt − EdÞ=h [45].
The results of our interferometer at the output port are

shown in Fig. 2, where we measure the number of free
atoms, NðtÞ, as a function of the free evolution time t. Each
point represents the mean of 2–8 individual measurements.
It is evident from the data that the signal-to-noise ratio
(SNR) is small. We, hence, begin the analysis with the data
for short evolution times [80 μs < t < 220 μs; Fig. 2(a)],
where the oscillations can be visually appreciated.
Assuming constant amplitude oscillations, we apply three
different analyses: (i) a fast Fourier transform (FFT), (ii) a

(a)

(b)

(c)

FIG. 1. Illustration of the energy levels and of the interferom-
eter. (a) Dimer (orange) and trimer (blue) energy levels (not to
scale) are shown schematically as a function of the inverse
scattering length. The grey arrow indicates the parameter regime
of our work and illustrates the effect of the modulation pulse. (b),
(c) Two pulse sequence results in constructive (b) or destructive
(c) interference.
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1. 
La recombinaison à trois corps
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Le taux de pertes pour un gaz de Bose Volume ,  atomes𝒱 NA

Gaz non dégénéré :  ρAλ3
dB ≪ 1

ρA =
NA

𝒱
dNA

dt
= − L3 ρ2

A NA

Effet de sta]s]que quan]que : 

Ψ(1,2,3) =
1

6
( |1 : pa; 2 : pb; 3 : pc⟩ + |1 : pb; 2 : pc; 3 : pa⟩ + ⋯) 6 termes au total pour un 

gaz non dégénéré

L3
L3

6
Gaz non dégénéré Gaz complètement dégénéré

Pour un gaz complètement dégénéré (tous les atomes dans le même état  ) :pa

Ψ(1,2,3) = |1 : pa; 2 : pa; 3 : pa⟩ 1 seul terme

Effet Hanbury Brown  
& Twiss



Le coefficient de pertes à trois corps L3

Analyse dimensionnelle

dNA

dt
= − L3 ρ2

A NA    (longueur)ρA : −3 L3 =
(longueur)6

temps

Si la longueur de diffusion  est la seule échelle de longueur disponible, la seule échelle de temps esta

ℏ
ma2

=
1

temps L3 ∝
ℏ

ma2
× a6 =

ℏa4

m

Le problème à trois corps nécessite l’introduc6on du paramètre à trois 
corps  (ou , ou ) : nouvelle échelle de longueurR0 a(n)

− a(n)
*

On va écrire   sous la forme :L3 L3 = 3 C(a)
ℏa4

m
C(a) ≡ C ( a

R0 )
9
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Le côté  de la résonancea < 0

1

the measured a− values should begin to deviate from the
universal a− ¼ −9.7rvdW value; see Fig. 1. However, this
conclusion is only tentative due to large experimental
uncertainties in the measured a− [17], unexpected temper-
ature dependence [45], and large systematic uncertainties in
the parameters of the underlying two-body Feshbach
resonance [17,37,38,43]. Although there are intriguing
experimental [15,46–55] and theoretical [52,56–58] results
for the heteronuclear cases, the possible influence of many
additional parameters (mass ratio, quantum statistics, and
inter- and intraspecies scattering lengths) makes the ques-
tion of universality in those systems a topic for an entirely
separate investigation.
In this Letter, we present a precise test of van der Waals

universality near a Feshbach resonance with sres ¼ 2.57
[19], which is intermediate between the narrow (sres ≪ 1)
and broad (sres ≫ 1) regimes. Specifically, we accurately
determine the value of a− by having precise control of
critical experimental parameters such as temperature,
density, and scattering length. Because of our tight control
of both systematic and statistical errors, ours is the first
measurement of a compelling nonuniversal a− value in a
homonuclear Efimov resonance.
A thorough characterization of the Feshbach resonance

and an accurate map of the scattering length are required
for precise determination of the a− value. Accordingly, we
perform high-precision spectroscopy on a pure gas of

Feshbach dimers and accurately determine their binding
energies. This measurement enables us to refine our two-
body model and accurately predict the scattering length in
our Efimov measurements [19]. In other Feshbach reso-
nance studies, methods based on number loss or thermal-
ization rate have occasionally given inconsistent results. By
contrast, dissociation spectroscopy of Feshbach dimers
isolates two-body physics and accurately determines res-
onance properties [59–62].
Precision molecular spectroscopy requires long inter-

rogation times under unperturbed conditions. We stabilize
the magnetic field to the milligauss-level and eject all
unpaired atoms, whose presence affects dimer lifetimes and
complicates the spectroscopy. A pure molecular sample is
prepared by starting with∼105 atoms confined in an optical
dipole trap and a temperature of ∼300 nK. We transfer a
fraction of atoms in the jF ¼ 1; mF ¼ −1i hyperfine state to
the dimer state bymagnetoassociation [63]. Subsequently, all
residual unpaired atoms are blasted away by multiple radio-
frequency (rf) and optical pulses, leaving a pure sample of
∼104 molecules. Lastly, the magnetic field B is ramped to
various values, corresponding to different binding energies,
where we perform rf spectroscopy.
We dissociate molecules by transferring one atom of the

pair from the jF ¼ 1; mF ¼ −1i interacting state to the
jF ¼ 1; mF ¼ 0i imaging state. The final state being nearly
noninteracting enables us to directly probe the dimer
binding energy. Additionally, the transition being magneti-
cally less sensitive near B values of interest allows long
molecular interrogation times, limited only by dimer life-
times, to achieve high spectral resolution. We scan the rf
frequency and measure the transferred fraction, keeping the
pulse energy low to limit saturation effects and dissociate a
maximum 50% of molecules. We fit the measured spectrum
to a functional form given by the Franck-Condon factor of
the bound-free transition [59], and we extract the molecular
binding energy Eb [19,64]. We repeat this procedure to
determine Eb at different magnetic field values, as depicted
in Fig. 2.
The universal expression Eb ¼ ℏ2=ðma2Þ is always

accurate for large enough a. A more refined expression
Eb ¼ ℏ2=½mða − āÞ2%, which introduces the mean scatter-
ing length ā ≈ 0.956rvdW [66], is valid at smaller values of
a as long as a ≫ rvdW=sres [65]. However, such treatments
are inadequate for narrow and intermediate resonances.
To better compare to our experimental data, we developed a
coupled-channel model [19] capable of describing our
high-precision Eb data. We fine-tune the model’s param-
eters, the singlet and triplet scattering potentials, to accu-
rately match most of our measurements to within 1%, as
depicted in Fig. 2’s inset. As a result, we determine a
particular linear combination of the singlet and triplet
scattering lengths of 0.2470aS þ 0.9690aT ¼ 1.926ð2Þa0
[19], further constraining the previously reported values
of aS ¼ 138.49ð12Þa0 and aT ¼ −33.48ð18Þa0 [67,68].
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FIG. 1. Survey of experimental a− values in homonuclear
systems, inspired by [15]. Previous results (blue circles)
[3,17,37,41–45] show a tentative dependence of the a− value
on the Feshbach resonance strength parameter sres. Our meas-
urement (red star; red band in the inset) is the strongest evidence
of departure from the −9.7' 15%rvdW value (dashed line and
gray area) predicted by van der Waals universality [4,5,7,9]. The
inset shows calculations for a− based on a single van der Waals
potential [7] with N ¼ 1 − 7 s-wave two-body bound states
(green squares) and results from our multichannel model [19]
with N ¼ 2 − 5 (black triangles).
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between r and rþ dr in regions of high local velocity@kLðrÞ, which is proportional to [mdr=@kLðrÞ] (m being
the particle mass), the time spent classically in that interval
dr (see Ref. [26]). It is possible that there could be an
additional suppression as well, through quantum reflection
from a potential cliff [27]. Systems supporting many bound
states, such as the neutral atoms used in ultracold experi-
ments with their strong van der Waals attraction, clearly
exhibit this suppression. In general, a finite-range two-
body potential that supports many bound states decreases
steeply with decreasing interparticle distance r, starting
when r=rvdW & 1, at which point the potential cliff plays
a role analogous to a repulsive potential for low-energy
scattering. We demonstrate this fact by showing that the
three-body parameter in the presence of many two-body
bound states roughly coincides with that for a 100% re-
flective two-body model potential, where the two-body
short-range potential well is replaced by a hard sphere.

The starting point for our investigation of the universal-
ity of the three-body parameter is the adiabatic hyper-
spherical representation [18,28]. This representation
offers a simple and conceptually clear description by re-
ducing the problem to the solution of the ‘‘hyperradial’’
Schrödinger equation:

!
$ @2
2!

d2

dR2þW"ðRÞ
"
F"ðRÞþ

X

"0!"

W""0ðRÞF"0ðRÞ¼EF"ðRÞ:

(1)

Here, the hyperradius R describes the overall size of the
system; " is the channel index; ! ¼ m=

ffiffiffi
3

p
is the three-

body reduced mass for particle masses m; E is the total
energy; and F" is the hyperradial wave function. The
nonadiabatic couplings W""0 drive inelastic transitions,
and the effective hyperradial potentials W" support bound
and resonant states. To treat problems with deep two-body
interactions—necessary to see strong inside-the-well sup-
pression—requires us to solve Eq. (1) for two-body model
interactions that support many bound states, a challenge for
most theoretical approaches. Using our recently developed
methodology [29], however, we have treated systems with
up to 100 two-body rovibrational bound states and have
solved Eq. (1) beyond the adiabatic approximation. Here,
the universality of the three-body parameter is analyzed for
a number of model potentials, one of then being the usual
Lennard-Jones potential:

va
#ðrÞ ¼ $C6

r6
ð1$ #6=r6Þ; (2)

where # is adjusted to give the desired value of a and
number of bound states. The other short-ranged potential
models used here, namely, vsch, v

b
# and v

hs
vdW, can be found

in Ref. [26].
Figure 1(a) shows the adiabatic potentialsU" at jaj ¼ 1

obtained using the potential va
# above supporting 25 dimer

bound states. At first glance, it is difficult to identify any
universal properties of these potentials. Efimov physics,
however, occurs at a very small energy scale near the

FIG. 1 (color online). (a) Full energy landscape for the three-body potentials at a ¼ 1 for our va
# model potential. (b) Effective

diabatic potentials W" relevant for Efimov physics for va
# with an increasingly large number of bound states (#&

n is the value of # that
produces a ¼ 1 and n s-wave bound states). The W" converge to a universal potential displaying the repulsive barrier at R ' 2rvdW
that prevents particles’ access to short distances. (c)–(e) demonstrate the suppression of the wave function inside the potential well
through the channel functions !"ðR; $; ’Þ for R fixed near the minima of the Efimov potentials in (b). (c) shows the mapping of the
geometrical configurations onto the hyperangles $ and ’. (d) and (e) show the channel functions, where the ‘‘distance’’ from the origin
determines j!"j1=2, for two distinct cases: in (d) when there is a substantial probability to find two particles inside the potential well
(defined by the region containing the gray disks) and in (e) with a reduced probability—see also our discussion in Fig. 2. In (d) and (e),
we used the potentials vsch and va

#, respectively, both with n ¼ 3.
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the measured a− values should begin to deviate from the
universal a− ¼ −9.7rvdW value; see Fig. 1. However, this
conclusion is only tentative due to large experimental
uncertainties in the measured a− [17], unexpected temper-
ature dependence [45], and large systematic uncertainties in
the parameters of the underlying two-body Feshbach
resonance [17,37,38,43]. Although there are intriguing
experimental [15,46–55] and theoretical [52,56–58] results
for the heteronuclear cases, the possible influence of many
additional parameters (mass ratio, quantum statistics, and
inter- and intraspecies scattering lengths) makes the ques-
tion of universality in those systems a topic for an entirely
separate investigation.
In this Letter, we present a precise test of van der Waals

universality near a Feshbach resonance with sres ¼ 2.57
[19], which is intermediate between the narrow (sres ≪ 1)
and broad (sres ≫ 1) regimes. Specifically, we accurately
determine the value of a− by having precise control of
critical experimental parameters such as temperature,
density, and scattering length. Because of our tight control
of both systematic and statistical errors, ours is the first
measurement of a compelling nonuniversal a− value in a
homonuclear Efimov resonance.
A thorough characterization of the Feshbach resonance

and an accurate map of the scattering length are required
for precise determination of the a− value. Accordingly, we
perform high-precision spectroscopy on a pure gas of

Feshbach dimers and accurately determine their binding
energies. This measurement enables us to refine our two-
body model and accurately predict the scattering length in
our Efimov measurements [19]. In other Feshbach reso-
nance studies, methods based on number loss or thermal-
ization rate have occasionally given inconsistent results. By
contrast, dissociation spectroscopy of Feshbach dimers
isolates two-body physics and accurately determines res-
onance properties [59–62].
Precision molecular spectroscopy requires long inter-

rogation times under unperturbed conditions. We stabilize
the magnetic field to the milligauss-level and eject all
unpaired atoms, whose presence affects dimer lifetimes and
complicates the spectroscopy. A pure molecular sample is
prepared by starting with∼105 atoms confined in an optical
dipole trap and a temperature of ∼300 nK. We transfer a
fraction of atoms in the jF ¼ 1; mF ¼ −1i hyperfine state to
the dimer state bymagnetoassociation [63]. Subsequently, all
residual unpaired atoms are blasted away by multiple radio-
frequency (rf) and optical pulses, leaving a pure sample of
∼104 molecules. Lastly, the magnetic field B is ramped to
various values, corresponding to different binding energies,
where we perform rf spectroscopy.
We dissociate molecules by transferring one atom of the

pair from the jF ¼ 1; mF ¼ −1i interacting state to the
jF ¼ 1; mF ¼ 0i imaging state. The final state being nearly
noninteracting enables us to directly probe the dimer
binding energy. Additionally, the transition being magneti-
cally less sensitive near B values of interest allows long
molecular interrogation times, limited only by dimer life-
times, to achieve high spectral resolution. We scan the rf
frequency and measure the transferred fraction, keeping the
pulse energy low to limit saturation effects and dissociate a
maximum 50% of molecules. We fit the measured spectrum
to a functional form given by the Franck-Condon factor of
the bound-free transition [59], and we extract the molecular
binding energy Eb [19,64]. We repeat this procedure to
determine Eb at different magnetic field values, as depicted
in Fig. 2.
The universal expression Eb ¼ ℏ2=ðma2Þ is always

accurate for large enough a. A more refined expression
Eb ¼ ℏ2=½mða − āÞ2%, which introduces the mean scatter-
ing length ā ≈ 0.956rvdW [66], is valid at smaller values of
a as long as a ≫ rvdW=sres [65]. However, such treatments
are inadequate for narrow and intermediate resonances.
To better compare to our experimental data, we developed a
coupled-channel model [19] capable of describing our
high-precision Eb data. We fine-tune the model’s param-
eters, the singlet and triplet scattering potentials, to accu-
rately match most of our measurements to within 1%, as
depicted in Fig. 2’s inset. As a result, we determine a
particular linear combination of the singlet and triplet
scattering lengths of 0.2470aS þ 0.9690aT ¼ 1.926ð2Þa0
[19], further constraining the previously reported values
of aS ¼ 138.49ð12Þa0 and aT ¼ −33.48ð18Þa0 [67,68].
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FIG. 1. Survey of experimental a− values in homonuclear
systems, inspired by [15]. Previous results (blue circles)
[3,17,37,41–45] show a tentative dependence of the a− value
on the Feshbach resonance strength parameter sres. Our meas-
urement (red star; red band in the inset) is the strongest evidence
of departure from the −9.7' 15%rvdW value (dashed line and
gray area) predicted by van der Waals universality [4,5,7,9]. The
inset shows calculations for a− based on a single van der Waals
potential [7] with N ¼ 1 − 7 s-wave two-body bound states
(green squares) and results from our multichannel model [19]
with N ¼ 2 − 5 (black triangles).
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between r and rþ dr in regions of high local velocity@kLðrÞ, which is proportional to [mdr=@kLðrÞ] (m being
the particle mass), the time spent classically in that interval
dr (see Ref. [26]). It is possible that there could be an
additional suppression as well, through quantum reflection
from a potential cliff [27]. Systems supporting many bound
states, such as the neutral atoms used in ultracold experi-
ments with their strong van der Waals attraction, clearly
exhibit this suppression. In general, a finite-range two-
body potential that supports many bound states decreases
steeply with decreasing interparticle distance r, starting
when r=rvdW & 1, at which point the potential cliff plays
a role analogous to a repulsive potential for low-energy
scattering. We demonstrate this fact by showing that the
three-body parameter in the presence of many two-body
bound states roughly coincides with that for a 100% re-
flective two-body model potential, where the two-body
short-range potential well is replaced by a hard sphere.

The starting point for our investigation of the universal-
ity of the three-body parameter is the adiabatic hyper-
spherical representation [18,28]. This representation
offers a simple and conceptually clear description by re-
ducing the problem to the solution of the ‘‘hyperradial’’
Schrödinger equation:
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Here, the hyperradius R describes the overall size of the
system; " is the channel index; ! ¼ m=
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is the three-

body reduced mass for particle masses m; E is the total
energy; and F" is the hyperradial wave function. The
nonadiabatic couplings W""0 drive inelastic transitions,
and the effective hyperradial potentials W" support bound
and resonant states. To treat problems with deep two-body
interactions—necessary to see strong inside-the-well sup-
pression—requires us to solve Eq. (1) for two-body model
interactions that support many bound states, a challenge for
most theoretical approaches. Using our recently developed
methodology [29], however, we have treated systems with
up to 100 two-body rovibrational bound states and have
solved Eq. (1) beyond the adiabatic approximation. Here,
the universality of the three-body parameter is analyzed for
a number of model potentials, one of then being the usual
Lennard-Jones potential:
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where # is adjusted to give the desired value of a and
number of bound states. The other short-ranged potential
models used here, namely, vsch, v
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# and v

hs
vdW, can be found

in Ref. [26].
Figure 1(a) shows the adiabatic potentialsU" at jaj ¼ 1

obtained using the potential va
# above supporting 25 dimer

bound states. At first glance, it is difficult to identify any
universal properties of these potentials. Efimov physics,
however, occurs at a very small energy scale near the

FIG. 1 (color online). (a) Full energy landscape for the three-body potentials at a ¼ 1 for our va
# model potential. (b) Effective

diabatic potentials W" relevant for Efimov physics for va
# with an increasingly large number of bound states (#&

n is the value of # that
produces a ¼ 1 and n s-wave bound states). The W" converge to a universal potential displaying the repulsive barrier at R ' 2rvdW
that prevents particles’ access to short distances. (c)–(e) demonstrate the suppression of the wave function inside the potential well
through the channel functions !"ðR; $; ’Þ for R fixed near the minima of the Efimov potentials in (b). (c) shows the mapping of the
geometrical configurations onto the hyperangles $ and ’. (d) and (e) show the channel functions, where the ‘‘distance’’ from the origin
determines j!"j1=2, for two distinct cases: in (d) when there is a substantial probability to find two particles inside the potential well
(defined by the region containing the gray disks) and in (e) with a reduced probability—see also our discussion in Fig. 2. In (d) and (e),
we used the potentials vsch and va

#, respectively, both with n ¼ 3.
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Relaxa]on vers un dimère fortement lié (non décrit par 
la théorie du pseudo-poten]el)

Fonc]on d’onde à courte distance (en l’absence de pertes) :

ϕ(R) ∼
1

R
sin [ |s0 | ln(R/R0)] ∼

1

R
[ei|s0|ln(R/R0) − e−i|s0|ln(R/R0)]

Descrip]on de la collision à trois corps en terme d’hyperrayon :

R ∝ (r2
12 + r2

23 + r2
31)1/20 R0



Le taux de pertes  du côté L3 a < 0
1
a

E

R ∝ (r2
12 + r2

23 + r2
31)1/20 R0

ϕ(R) ∼
1

R
[e−2η ei|s0|ln(R/R0) − e−i|s0|ln(R/R0)]

Modifica]on “à la main” de la condi]on aux limites :

coefficient de pertes

On arrive alors à  (Braaten & Hammer):

C(a) ≈ C′ 

sinh(2η)
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the measured a− values should begin to deviate from the
universal a− ¼ −9.7rvdW value; see Fig. 1. However, this
conclusion is only tentative due to large experimental
uncertainties in the measured a− [17], unexpected temper-
ature dependence [45], and large systematic uncertainties in
the parameters of the underlying two-body Feshbach
resonance [17,37,38,43]. Although there are intriguing
experimental [15,46–55] and theoretical [52,56–58] results
for the heteronuclear cases, the possible influence of many
additional parameters (mass ratio, quantum statistics, and
inter- and intraspecies scattering lengths) makes the ques-
tion of universality in those systems a topic for an entirely
separate investigation.
In this Letter, we present a precise test of van der Waals

universality near a Feshbach resonance with sres ¼ 2.57
[19], which is intermediate between the narrow (sres ≪ 1)
and broad (sres ≫ 1) regimes. Specifically, we accurately
determine the value of a− by having precise control of
critical experimental parameters such as temperature,
density, and scattering length. Because of our tight control
of both systematic and statistical errors, ours is the first
measurement of a compelling nonuniversal a− value in a
homonuclear Efimov resonance.
A thorough characterization of the Feshbach resonance

and an accurate map of the scattering length are required
for precise determination of the a− value. Accordingly, we
perform high-precision spectroscopy on a pure gas of

Feshbach dimers and accurately determine their binding
energies. This measurement enables us to refine our two-
body model and accurately predict the scattering length in
our Efimov measurements [19]. In other Feshbach reso-
nance studies, methods based on number loss or thermal-
ization rate have occasionally given inconsistent results. By
contrast, dissociation spectroscopy of Feshbach dimers
isolates two-body physics and accurately determines res-
onance properties [59–62].
Precision molecular spectroscopy requires long inter-

rogation times under unperturbed conditions. We stabilize
the magnetic field to the milligauss-level and eject all
unpaired atoms, whose presence affects dimer lifetimes and
complicates the spectroscopy. A pure molecular sample is
prepared by starting with∼105 atoms confined in an optical
dipole trap and a temperature of ∼300 nK. We transfer a
fraction of atoms in the jF ¼ 1; mF ¼ −1i hyperfine state to
the dimer state bymagnetoassociation [63]. Subsequently, all
residual unpaired atoms are blasted away by multiple radio-
frequency (rf) and optical pulses, leaving a pure sample of
∼104 molecules. Lastly, the magnetic field B is ramped to
various values, corresponding to different binding energies,
where we perform rf spectroscopy.
We dissociate molecules by transferring one atom of the

pair from the jF ¼ 1; mF ¼ −1i interacting state to the
jF ¼ 1; mF ¼ 0i imaging state. The final state being nearly
noninteracting enables us to directly probe the dimer
binding energy. Additionally, the transition being magneti-
cally less sensitive near B values of interest allows long
molecular interrogation times, limited only by dimer life-
times, to achieve high spectral resolution. We scan the rf
frequency and measure the transferred fraction, keeping the
pulse energy low to limit saturation effects and dissociate a
maximum 50% of molecules. We fit the measured spectrum
to a functional form given by the Franck-Condon factor of
the bound-free transition [59], and we extract the molecular
binding energy Eb [19,64]. We repeat this procedure to
determine Eb at different magnetic field values, as depicted
in Fig. 2.
The universal expression Eb ¼ ℏ2=ðma2Þ is always

accurate for large enough a. A more refined expression
Eb ¼ ℏ2=½mða − āÞ2%, which introduces the mean scatter-
ing length ā ≈ 0.956rvdW [66], is valid at smaller values of
a as long as a ≫ rvdW=sres [65]. However, such treatments
are inadequate for narrow and intermediate resonances.
To better compare to our experimental data, we developed a
coupled-channel model [19] capable of describing our
high-precision Eb data. We fine-tune the model’s param-
eters, the singlet and triplet scattering potentials, to accu-
rately match most of our measurements to within 1%, as
depicted in Fig. 2’s inset. As a result, we determine a
particular linear combination of the singlet and triplet
scattering lengths of 0.2470aS þ 0.9690aT ¼ 1.926ð2Þa0
[19], further constraining the previously reported values
of aS ¼ 138.49ð12Þa0 and aT ¼ −33.48ð18Þa0 [67,68].
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FIG. 1. Survey of experimental a− values in homonuclear
systems, inspired by [15]. Previous results (blue circles)
[3,17,37,41–45] show a tentative dependence of the a− value
on the Feshbach resonance strength parameter sres. Our meas-
urement (red star; red band in the inset) is the strongest evidence
of departure from the −9.7' 15%rvdW value (dashed line and
gray area) predicted by van der Waals universality [4,5,7,9]. The
inset shows calculations for a− based on a single van der Waals
potential [7] with N ¼ 1 − 7 s-wave two-body bound states
(green squares) and results from our multichannel model [19]
with N ¼ 2 − 5 (black triangles).
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between r and rþ dr in regions of high local velocity@kLðrÞ, which is proportional to [mdr=@kLðrÞ] (m being
the particle mass), the time spent classically in that interval
dr (see Ref. [26]). It is possible that there could be an
additional suppression as well, through quantum reflection
from a potential cliff [27]. Systems supporting many bound
states, such as the neutral atoms used in ultracold experi-
ments with their strong van der Waals attraction, clearly
exhibit this suppression. In general, a finite-range two-
body potential that supports many bound states decreases
steeply with decreasing interparticle distance r, starting
when r=rvdW & 1, at which point the potential cliff plays
a role analogous to a repulsive potential for low-energy
scattering. We demonstrate this fact by showing that the
three-body parameter in the presence of many two-body
bound states roughly coincides with that for a 100% re-
flective two-body model potential, where the two-body
short-range potential well is replaced by a hard sphere.

The starting point for our investigation of the universal-
ity of the three-body parameter is the adiabatic hyper-
spherical representation [18,28]. This representation
offers a simple and conceptually clear description by re-
ducing the problem to the solution of the ‘‘hyperradial’’
Schrödinger equation:

!
$ @2
2!

d2

dR2þW"ðRÞ
"
F"ðRÞþ

X

"0!"

W""0ðRÞF"0ðRÞ¼EF"ðRÞ:

(1)

Here, the hyperradius R describes the overall size of the
system; " is the channel index; ! ¼ m=

ffiffiffi
3

p
is the three-

body reduced mass for particle masses m; E is the total
energy; and F" is the hyperradial wave function. The
nonadiabatic couplings W""0 drive inelastic transitions,
and the effective hyperradial potentials W" support bound
and resonant states. To treat problems with deep two-body
interactions—necessary to see strong inside-the-well sup-
pression—requires us to solve Eq. (1) for two-body model
interactions that support many bound states, a challenge for
most theoretical approaches. Using our recently developed
methodology [29], however, we have treated systems with
up to 100 two-body rovibrational bound states and have
solved Eq. (1) beyond the adiabatic approximation. Here,
the universality of the three-body parameter is analyzed for
a number of model potentials, one of then being the usual
Lennard-Jones potential:

va
#ðrÞ ¼ $C6

r6
ð1$ #6=r6Þ; (2)

where # is adjusted to give the desired value of a and
number of bound states. The other short-ranged potential
models used here, namely, vsch, v

b
# and v

hs
vdW, can be found

in Ref. [26].
Figure 1(a) shows the adiabatic potentialsU" at jaj ¼ 1

obtained using the potential va
# above supporting 25 dimer

bound states. At first glance, it is difficult to identify any
universal properties of these potentials. Efimov physics,
however, occurs at a very small energy scale near the

FIG. 1 (color online). (a) Full energy landscape for the three-body potentials at a ¼ 1 for our va
# model potential. (b) Effective

diabatic potentials W" relevant for Efimov physics for va
# with an increasingly large number of bound states (#&

n is the value of # that
produces a ¼ 1 and n s-wave bound states). The W" converge to a universal potential displaying the repulsive barrier at R ' 2rvdW
that prevents particles’ access to short distances. (c)–(e) demonstrate the suppression of the wave function inside the potential well
through the channel functions !"ðR; $; ’Þ for R fixed near the minima of the Efimov potentials in (b). (c) shows the mapping of the
geometrical configurations onto the hyperangles $ and ’. (d) and (e) show the channel functions, where the ‘‘distance’’ from the origin
determines j!"j1=2, for two distinct cases: in (d) when there is a substantial probability to find two particles inside the potential well
(defined by the region containing the gray disks) and in (e) with a reduced probability—see also our discussion in Fig. 2. In (d) and (e),
we used the potentials vsch and va

#, respectively, both with n ¼ 3.
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the measured a− values should begin to deviate from the
universal a− ¼ −9.7rvdW value; see Fig. 1. However, this
conclusion is only tentative due to large experimental
uncertainties in the measured a− [17], unexpected temper-
ature dependence [45], and large systematic uncertainties in
the parameters of the underlying two-body Feshbach
resonance [17,37,38,43]. Although there are intriguing
experimental [15,46–55] and theoretical [52,56–58] results
for the heteronuclear cases, the possible influence of many
additional parameters (mass ratio, quantum statistics, and
inter- and intraspecies scattering lengths) makes the ques-
tion of universality in those systems a topic for an entirely
separate investigation.
In this Letter, we present a precise test of van der Waals

universality near a Feshbach resonance with sres ¼ 2.57
[19], which is intermediate between the narrow (sres ≪ 1)
and broad (sres ≫ 1) regimes. Specifically, we accurately
determine the value of a− by having precise control of
critical experimental parameters such as temperature,
density, and scattering length. Because of our tight control
of both systematic and statistical errors, ours is the first
measurement of a compelling nonuniversal a− value in a
homonuclear Efimov resonance.
A thorough characterization of the Feshbach resonance

and an accurate map of the scattering length are required
for precise determination of the a− value. Accordingly, we
perform high-precision spectroscopy on a pure gas of

Feshbach dimers and accurately determine their binding
energies. This measurement enables us to refine our two-
body model and accurately predict the scattering length in
our Efimov measurements [19]. In other Feshbach reso-
nance studies, methods based on number loss or thermal-
ization rate have occasionally given inconsistent results. By
contrast, dissociation spectroscopy of Feshbach dimers
isolates two-body physics and accurately determines res-
onance properties [59–62].
Precision molecular spectroscopy requires long inter-

rogation times under unperturbed conditions. We stabilize
the magnetic field to the milligauss-level and eject all
unpaired atoms, whose presence affects dimer lifetimes and
complicates the spectroscopy. A pure molecular sample is
prepared by starting with∼105 atoms confined in an optical
dipole trap and a temperature of ∼300 nK. We transfer a
fraction of atoms in the jF ¼ 1; mF ¼ −1i hyperfine state to
the dimer state bymagnetoassociation [63]. Subsequently, all
residual unpaired atoms are blasted away by multiple radio-
frequency (rf) and optical pulses, leaving a pure sample of
∼104 molecules. Lastly, the magnetic field B is ramped to
various values, corresponding to different binding energies,
where we perform rf spectroscopy.
We dissociate molecules by transferring one atom of the

pair from the jF ¼ 1; mF ¼ −1i interacting state to the
jF ¼ 1; mF ¼ 0i imaging state. The final state being nearly
noninteracting enables us to directly probe the dimer
binding energy. Additionally, the transition being magneti-
cally less sensitive near B values of interest allows long
molecular interrogation times, limited only by dimer life-
times, to achieve high spectral resolution. We scan the rf
frequency and measure the transferred fraction, keeping the
pulse energy low to limit saturation effects and dissociate a
maximum 50% of molecules. We fit the measured spectrum
to a functional form given by the Franck-Condon factor of
the bound-free transition [59], and we extract the molecular
binding energy Eb [19,64]. We repeat this procedure to
determine Eb at different magnetic field values, as depicted
in Fig. 2.
The universal expression Eb ¼ ℏ2=ðma2Þ is always

accurate for large enough a. A more refined expression
Eb ¼ ℏ2=½mða − āÞ2%, which introduces the mean scatter-
ing length ā ≈ 0.956rvdW [66], is valid at smaller values of
a as long as a ≫ rvdW=sres [65]. However, such treatments
are inadequate for narrow and intermediate resonances.
To better compare to our experimental data, we developed a
coupled-channel model [19] capable of describing our
high-precision Eb data. We fine-tune the model’s param-
eters, the singlet and triplet scattering potentials, to accu-
rately match most of our measurements to within 1%, as
depicted in Fig. 2’s inset. As a result, we determine a
particular linear combination of the singlet and triplet
scattering lengths of 0.2470aS þ 0.9690aT ¼ 1.926ð2Þa0
[19], further constraining the previously reported values
of aS ¼ 138.49ð12Þa0 and aT ¼ −33.48ð18Þa0 [67,68].
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FIG. 1. Survey of experimental a− values in homonuclear
systems, inspired by [15]. Previous results (blue circles)
[3,17,37,41–45] show a tentative dependence of the a− value
on the Feshbach resonance strength parameter sres. Our meas-
urement (red star; red band in the inset) is the strongest evidence
of departure from the −9.7' 15%rvdW value (dashed line and
gray area) predicted by van der Waals universality [4,5,7,9]. The
inset shows calculations for a− based on a single van der Waals
potential [7] with N ¼ 1 − 7 s-wave two-body bound states
(green squares) and results from our multichannel model [19]
with N ¼ 2 − 5 (black triangles).
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between r and rþ dr in regions of high local velocity@kLðrÞ, which is proportional to [mdr=@kLðrÞ] (m being
the particle mass), the time spent classically in that interval
dr (see Ref. [26]). It is possible that there could be an
additional suppression as well, through quantum reflection
from a potential cliff [27]. Systems supporting many bound
states, such as the neutral atoms used in ultracold experi-
ments with their strong van der Waals attraction, clearly
exhibit this suppression. In general, a finite-range two-
body potential that supports many bound states decreases
steeply with decreasing interparticle distance r, starting
when r=rvdW & 1, at which point the potential cliff plays
a role analogous to a repulsive potential for low-energy
scattering. We demonstrate this fact by showing that the
three-body parameter in the presence of many two-body
bound states roughly coincides with that for a 100% re-
flective two-body model potential, where the two-body
short-range potential well is replaced by a hard sphere.

The starting point for our investigation of the universal-
ity of the three-body parameter is the adiabatic hyper-
spherical representation [18,28]. This representation
offers a simple and conceptually clear description by re-
ducing the problem to the solution of the ‘‘hyperradial’’
Schrödinger equation:
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Here, the hyperradius R describes the overall size of the
system; " is the channel index; ! ¼ m=

ffiffiffi
3

p
is the three-

body reduced mass for particle masses m; E is the total
energy; and F" is the hyperradial wave function. The
nonadiabatic couplings W""0 drive inelastic transitions,
and the effective hyperradial potentials W" support bound
and resonant states. To treat problems with deep two-body
interactions—necessary to see strong inside-the-well sup-
pression—requires us to solve Eq. (1) for two-body model
interactions that support many bound states, a challenge for
most theoretical approaches. Using our recently developed
methodology [29], however, we have treated systems with
up to 100 two-body rovibrational bound states and have
solved Eq. (1) beyond the adiabatic approximation. Here,
the universality of the three-body parameter is analyzed for
a number of model potentials, one of then being the usual
Lennard-Jones potential:

va
#ðrÞ ¼ $C6

r6
ð1$ #6=r6Þ; (2)

where # is adjusted to give the desired value of a and
number of bound states. The other short-ranged potential
models used here, namely, vsch, v

b
# and v

hs
vdW, can be found

in Ref. [26].
Figure 1(a) shows the adiabatic potentialsU" at jaj ¼ 1

obtained using the potential va
# above supporting 25 dimer

bound states. At first glance, it is difficult to identify any
universal properties of these potentials. Efimov physics,
however, occurs at a very small energy scale near the

FIG. 1 (color online). (a) Full energy landscape for the three-body potentials at a ¼ 1 for our va
# model potential. (b) Effective

diabatic potentials W" relevant for Efimov physics for va
# with an increasingly large number of bound states (#&

n is the value of # that
produces a ¼ 1 and n s-wave bound states). The W" converge to a universal potential displaying the repulsive barrier at R ' 2rvdW
that prevents particles’ access to short distances. (c)–(e) demonstrate the suppression of the wave function inside the potential well
through the channel functions !"ðR; $; ’Þ for R fixed near the minima of the Efimov potentials in (b). (c) shows the mapping of the
geometrical configurations onto the hyperangles $ and ’. (d) and (e) show the channel functions, where the ‘‘distance’’ from the origin
determines j!"j1=2, for two distinct cases: in (d) when there is a substantial probability to find two particles inside the potential well
(defined by the region containing the gray disks) and in (e) with a reduced probability—see also our discussion in Fig. 2. In (d) and (e),
we used the potentials vsch and va

#, respectively, both with n ¼ 3.
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2. 
Observa]on des principales caractéris]ques



Premières observations sur le césium

Gaz d’atomes préparés dans l’état hyperfin fondamental | f = 3, m = 3⟩

Résonance de Fano-Feshbach

Innsbruck, 2006

Trimère d’Efimov  observé du côté borroméen (ne croise jamais le dimère, comme pour He)n = 0

Efimov Resonances in Ultracold Quantum Gases 117

Fig. 2 Calculated magnetic field B dependence of the two-body s-wave scattering length a in the absolute ground state |F =
3, m F = 3〉 in 133Cs. Main panel Overview of the s-wave scattering length in the accessible experimental region. Only contri-
butions from molecular states with zero angular momentum are considered. I–IV Zoom in of the relevant magnetic field regions
including s-, d- and g-wave bound states. I Feshbach resonance at −12.3 G gives rise to a strong variation of a(B) in the low
magnetic field region. Several high order resonances sit both on positive and negative values of scattering length. II Four d-wave
resonance deeply shape the region around 500 G, the broadest ones is centered at about 495 G. III The two overlapping s and g
resonances near 550 G. IV The region between 800 G and 900 G is dominated by the broad s-wave resonance centered at 787.16 G
and by the broad d-wave resonance at 820.37 G. Letters in the different panels refer to the orbital angular momenta of the narrow
resonances

Gauss. An important additional feature is a broad d-wave resonance near 820 G, which occurs at a very large
and negative background scattering length of about −4200 a0.

3 The Efimov Effect

The Efimov effect [1] is a fascinating and counterintuitive phenomenon occurring in a resonantly interacting
three-body system. For extensive review on Efimov physics and related universal phenomena the reader may be
referred to Refs. [23,25]. Here we present the basic elements of Efimov’s scenario and we discuss its particular
impact on experiments with ultracold gases.

3.1 The Efimov scenario

Figure 3 illustrates the Efimov scenario, consisting of a geometric series of trimer states for large values of the
scattering length a. The ladder of three-body bound states is plotted versus the inverse scattering length 1/a.
Zero energy corresponds to the tri-atomic threshold, and for positive energy (E > 0) the system consists of
three free atoms with nonzero kinetic energy. Below the tri-atomic threshold (E < 0), one can identify two
different regions. For a >0, the pair-wise potential supports a universal weakly-bound dimer state with binding
energy given by Eq. (4). The corresponding threshold in the three-body picture is the atom-dimer threshold.
The a <0 region is called the Borromean region, where counter-intuitively a series of three-body bound states
can form although the two-body sub-systems are unbound. For a <0 the n-th trimer state crosses the tri-atomic
threshold at a(n)

− and for a >0 the states merge with the atom-dimer threshold at a(n)
∗ , where n ≥ 0 is an integer

number. With this convention, the Efimov state with largest binding energy is referred to as the first state and
it is labelled with n = 0. While this state crosses the tri-atomic threshold at a(0)

− , within Efimov’s window of
universality3, it may leave this window at the a > 0 side, therefore losing its Efimov character. In this case,

3 Efimov’s window of universality corresponds to the region 1/|a|%1/r0 and Eb % h̄2/(mr2
0 ).
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Fig. 4 Recombination length ρ3calculated within effective field theory for (a) negative and (b) positive values of the scattering
length according to Eqs. (9a) and (9b), respectively. For the free parameters a−(+) and η−(+), we have chosen the values corre-
sponding to the Cs Efimov features [2]; see Table 2. The solid grey lines result from setting the sin2-terms to 1. The unitarity
limited recombination length is also shown for 100, 10, 1 and 0.1 nK (from light to dark regions)

field theory, and need to be experimentally determined [42]. As we will discuss in the next section, Eqs.(8),
(9a), and (9b) are commonly used to fit the experimentally measured values for the recombination rate, with
all the four quantities a−, a+, η− and η+ being left as free parameters5.

For ultralow, but finite temperatures the three-body recombination length is unitarity limited [43] to

ρmax
3 = 5.2

h̄√
mkB T

. (10)

The unitarity limit imposes an upper value for the measurable recombination length. At T =10 nK, this limit
corresponds to ρmax

3 =6 × 104 a0 and at T =100 nK it is about a factor of three lower. As shown in Fig. 4, the
unitarity limit also sets the number of Efimov features that can be realistically observed in the experiments.
While the first Efimov maximum is visible even for comparatively high temperatures (T $ 100 nK), the next
maximum requires a temperature of about a factor of 500 lower to be observable. Such a low temperature
is hardly accessible in current experiments. This limitation clarifies the reason why none of the experiments
on Efimov physics was able to unambiguously observe two consecutive maxima6, although two neighboring
minima have been successfully revealed [6,9]; see Sect. 6.

The above discussion has focused on the three-body behavior at the tri-atomic threshold. Similar argu-
ments apply to the atom-dimer threshold (a > 0). When an atom-dimer system resonantly couples to an
Efimov trimer the scattering rate resonantly increases. Here the dominant loss mechanism is collisional relax-
ation, also known as vibrational quenching. During an atom-dimer collision, the dimer can relax into a more
deeply bound two-body state and the binding energy is converted into kinetic energy. This two-body process
is described by the rate equation ṅD = ṅA = −βnDnA, where nD(A) is the dimer (atom) density and β is the
relaxation-rate coefficient. At the atom-dimer Efimov resonance position a =a∗ the relaxation rate exhibits a
resonant increase. Effective field theory provides a universal formula for the relaxation-rate coefficient β at
zero temperature [44–46]

β = CAD(a)
h̄a
m

, (11)

where CAD(a) incorporates the typical log-periodic oscillator behavior of the Efimov effect and reads as

CAD(a) = 20.3 sinh(2η∗)
sin2 [s0 ln(a/a∗)] + sinh2 η∗

. (12)

5 To analyze experiments the data for a > 0 and a < 0 are often fitted independently. The comparison of the results for a−
and a+ then provides a test for the universal relation.

6 Using an updated scattering length determination [11] the second maximum observed in Ref. [9] may be interpreted as
resulting from the pole of the Feshbach resonance and not from an Efimov state.
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field theory, and need to be experimentally determined [42]. As we will discuss in the next section, Eqs.(8),
(9a), and (9b) are commonly used to fit the experimentally measured values for the recombination rate, with
all the four quantities a−, a+, η− and η+ being left as free parameters5.

For ultralow, but finite temperatures the three-body recombination length is unitarity limited [43] to

ρmax
3 = 5.2

h̄√
mkB T

. (10)

The unitarity limit imposes an upper value for the measurable recombination length. At T =10 nK, this limit
corresponds to ρmax

3 =6 × 104 a0 and at T =100 nK it is about a factor of three lower. As shown in Fig. 4, the
unitarity limit also sets the number of Efimov features that can be realistically observed in the experiments.
While the first Efimov maximum is visible even for comparatively high temperatures (T $ 100 nK), the next
maximum requires a temperature of about a factor of 500 lower to be observable. Such a low temperature
is hardly accessible in current experiments. This limitation clarifies the reason why none of the experiments
on Efimov physics was able to unambiguously observe two consecutive maxima6, although two neighboring
minima have been successfully revealed [6,9]; see Sect. 6.

The above discussion has focused on the three-body behavior at the tri-atomic threshold. Similar argu-
ments apply to the atom-dimer threshold (a > 0). When an atom-dimer system resonantly couples to an
Efimov trimer the scattering rate resonantly increases. Here the dominant loss mechanism is collisional relax-
ation, also known as vibrational quenching. During an atom-dimer collision, the dimer can relax into a more
deeply bound two-body state and the binding energy is converted into kinetic energy. This two-body process
is described by the rate equation ṅD = ṅA = −βnDnA, where nD(A) is the dimer (atom) density and β is the
relaxation-rate coefficient. At the atom-dimer Efimov resonance position a =a∗ the relaxation rate exhibits a
resonant increase. Effective field theory provides a universal formula for the relaxation-rate coefficient β at
zero temperature [44–46]

β = CAD(a)
h̄a
m

, (11)

where CAD(a) incorporates the typical log-periodic oscillator behavior of the Efimov effect and reads as

CAD(a) = 20.3 sinh(2η∗)
sin2 [s0 ln(a/a∗)] + sinh2 η∗

. (12)

5 To analyze experiments the data for a > 0 and a < 0 are often fitted independently. The comparison of the results for a−
and a+ then provides a test for the universal relation.

6 Using an updated scattering length determination [11] the second maximum observed in Ref. [9] may be interpreted as
resulting from the pole of the Feshbach resonance and not from an Efimov state.

Efimov Resonances in Ultracold Quantum Gases 121

The parameter η∗ is again related to the trimer lifetime. Within effective field theory η∗ =η− =η+, while for
convenience all these three parameters are treated as independent when fitting the theoretical expression to
experimental results.

4 Efimov Resonances in Ultracold Quantum Gases of Cs Atoms

In summer 2005, an Efimov trimer state was observed in experiments performed by our group in Innsbruck
[2]. These experiments, conducted on optically trapped ultracold gases of Cs atoms, provided signatures of
both a tri-atomic Efimov resonance and a recombination minimum. Later experiments showed the appearance
of an atom-dimer Efimov resonance [58]. Figure 5 summarizes the main observations of Efimov resonances
in Cs for both the a < 0 and the a > 0 side.

All these experiments were based on the magnetically tunable interaction properties of Cs atoms in a mag-
netic field range between 0 and 150 G, henceforth referred to as the low-field region (region I in Fig. 2). The
accessible magnetic field range was technically limited by our previous magnetic coil setup, restricting the
tunability of the s-wave scattering length a to a range between −2500 a0 and 1600 a0. In 2010, we performed
a major upgrade of our setup, which now allows us to produce magnetic fields of up to 1.4 kG. With this new
setup, we have studied Efimov physics in the 550 region and in the 800 G region [19], henceforth referred
to as the high-field region, where two broad s-wave Feshbach resonances allow for a wide tunability of the
scattering length [31].

In this Section, we first present our observations on the tri-atomic Efimov resonances in both the low-
field and the high-field region (Sect. 4.1) and on the atom-dimer Efimov resonance observed in the low-field
region (Sect. 4.2). We then describe further Efimov resonances observed on other Feshbach resonances in Cs
(Sect. 4.3), and we discuss the behavior of the three-body parameter in our observations (Sect. 4.4).

4.1 Triatomic Efimov Resonances

To reveal the Efimov resonances at the tri-atomic threshold, we prepare an optically trapped thermal sample
of up to 5 × 104 Cs atoms at temperatures ranging from 10 to 250 nK. Our experimental procedure is based on
an all-optical cooling approach as presented in Refs. [47–49]. The atoms are prepared in their lowest internal
spin state (F = 3, m F = 3), where three-body recombination collisions are the dominant loss mechanism.
We measure the three-body loss rate L3 by recording the time evolution of the atom number N and the atom
temperature T for different magnetic field values in the region of interest [2,40]. In the following, we discuss
separately the recombination results obtained in the low- and high-field region.
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Fig. 5 Efimov resonances observed in ultracold cesium at low magnetic fields. a Observation of a triatomic Efimov resonance
in measurements of three-body recombination. The recombination length ρ3 is plotted as a function of the scattering length a.
The squares and the empty triangles show the experimental data for initial temperatures around 10 nK, and 200 nK, respectively
[2]. The solid curve represents the analytic model from effective field theory [23], where the scattering-length to magnetic-field
conversion is from [19]. The inset shows an expanded view for small positive scattering lengths with a minimum near 210 a0. The
displayed error bars refer to statistical uncertainties only. b Two-body loss rate coefficient β measured for inelastic atom-dimer
collisions [58] at two different temperatures, 40 nK (open triangles) and 170 nK (filled squares). Here a prominent atom-dimer
Efimov resonance shows up for a > 0. The solid lines represent fits based on universal effective field theory
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Etudes indépendantes à Innsbruck (cesium), Bar Ilan (lithium), Florence (potassium), Houston (lithium)

Compared to other atomic species currently available for
laser cooling techniques, lithium has the smallest range of
van der Waals potential, r0 ! 31a0. In addition, a number
of Feshbach resonances available for different Zeeman
sublevels of the jF ¼ 1i hyperfine state makes 7Li an
appropriate candidate for study of Efimov physics. In this
experiment, we work with a spin polarized sample in the
jF ¼ 1; mF ¼ 0i state, which is the one but lowest Zeeman
state [14]. In principle, two-body losses are possible from
this state; however, they are not large, as could be the case
for heavier atoms. For instance, 133Cs experiences large
dipolar losses caused by the second-order spin-orbit inter-
action [15]. We calculated the dipolar relaxation rate co-
efficients as a function of magnetic field via a coupled-
channels calculation by using recent interaction potentials
[16] and found them to be#3 orders of magnitude smaller
than the corresponding measured rate coefficients, if the
experimental losses were treated as purely two-body re-
lated. Moreover, the field-dependent profile of the calcu-
lated rates is qualitatively very different from the observed
rates. As a result, we exclude two-body losses and deter-
mine that the loss processes in the region of interest are
related to three-body recombination.

The jF ¼ 1; mF ¼ 0i state possesses two Feshbach
resonances, a narrow and a wide one, which we experi-
mentally detect by atom loss measurement at 845.8(7) G
and 894.2(7) G, respectively. The position of the wide
resonance is independently measured at 894.63(24) G by
molecule association technique [17]. These positions are in
agreement with theory within the uncertainty of the mag-
netic field calibration ($ 0:5%). In Fig. 1, two collision
properties are shown as a function of magnetic field: the
scattering length a and the effective range Re. These
quantities are extracted from the scattering phase shift
!ðkÞ at small relative wave numbers k by using the effec-
tive range expansion k cot!ðkÞ ¼ '1=aþ Rek

2=2 [18].
The region of universality strongly depends on the width

of the Feshbach resonance which is inversely proportional
to the effective range close to the resonance’s center

[19,20]. As a measure for the influence of the effective
range, the resonance strength sres ¼ 2r0=jRej has been
introduced [7,21]. In this way, a narrow or ‘‘closed-channel
dominated’’ resonance is characterized by sres ) 1 and has
a very narrow region of universality, for which jaj * jRej.
In this case, Re comes on a similar footing as and in
addition to the three-body parameter to determine the
short-range physics [19,22]. In contrast, a wide or ‘‘open-
channel dominated’’ resonance is characterized by sres *
1. Here, the universal region spans over a broad range of
magnetic field strengths for which a * r0 and the scatter-
ing problem can be described in terms of an effective
single-channel model [7].
The effective range is very large in the vicinity of the

narrow resonance which signifies its ‘‘close-channel domi-
nated’’ character while around the wide resonance, the
effective range is small and crosses zero near the pole of
the resonance (Fig. 1). This is a clear demonstration of an
‘‘open-channel dominated’’ resonance which expects to
provide a wide region of universality extended to tens of
Gauss around the resonance where sresðBÞ * 1.
In the experiment, we perform measurements of three-

body recombination loss as a function of magnetic field
near the wide Feshbach resonance. Each loss rate coeffi-
cient is calculated from a fit of a lifetime measurement
to the solution of the atom loss rate equation: _N ¼
'K3hn2iN ' !N, where K3 and ! are the three- and
single-body loss rates, respectively. ! is determined in-
dependently by measuring a very long decay tail of a low
density sample. This simplified model does not include
effects such as saturation of K3 to a maximal value Kmax

due to finite temperature (unitarity limit) [23], recombina-
tion heating and ‘‘anti-evaporation’’ [24]. The first and the
second effects can be neglected for K3 values which are
much smaller than Kmax. In our case, the highest measured
K3 values are at least an order of magnitude smaller than
Kmax, and therefore this assumption is reasonable. As for
the latter, we treat the evolution of our data to no more than
#30% decrease in atom number for which ‘‘anti-
evaporation’’ is estimated to induce a systematic error of
#23% towards higher values ofK3. This effect is evaluated
not to limit the accuracy of the reported results.
Our experimental setup is described in details elsewhere

[14]. In brief, we load atoms directly from a magneto-
optical trap into a single-beam far-detuned optical dipole
trap and perform a preliminary forced evaporation at the
wing of the narrow resonance at 824 G. During a second
evaporation step, we add a second beam which intersects
with the first, and the atoms are loaded into a tightly
confined crossed-beam dipole trap. A final evaporation
step is performed at a slightly higher magnetic field of
832 G. Evaporation at this step can proceed all the way to
the Bose-Einstein condensation (BEC) threshold but it is
interrupted before a degeneracy is reached. A transition to
the magnetic field of interest in which a lifetime measure-
ment will be taken is performed in two main steps. The first
is a rapid change in magnetic field over the position of the

FIG. 1 (color online). The scattering length a (solid line) and
the effective range Re (dashed line) as a function of magnetic
field near the two Feshbach resonances of the jF ¼ 1; mF ¼ 0i
state.
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Feshbach resonance to avoid strong inelastic losses. The
second is an adiabatic approach to the target magnetic
field. After different waiting times, the remaining atoms’
number is determined by in situ absorption imaging.

For measurements in the positive scattering lengths, we
cut the evaporation at T ! 2 !K and "105 atoms with
peak density of"5# 1012 cm$3. We then shift rapidly to a
magnetic field of 858 G in less than 1 ms while crossing the
narrow resonance and wait for 500 ms to let the system
relax. Then, we ramp the magnetic field in 25 ms to 880 G,
roughly in the center of the region of interest, and wait
there for another 100 ms before the last move to the final
magnetic field (in 5 ms) where the measurements of life-
time and temperature are performed. For the negative
scattering lengths, we cut the evaporation at T ! 1 !K,
just on the verge of a BEC. A fast jump is then made to a
magnetic field of 930 G, far beyond the position of the wide
resonance. After a relaxation time, we slowly move to
915 G and wait there again before a last ramp to the final
magnetic field is performed.

For the treatment of three-body recombination loss in
the domain of universality, we adopt the language of
Refs. [4,5]. The convenient form to represent the theoreti-
cally predicted loss rate coefficient is K3 ¼ 3C&ðaÞ@a4=m
where m is the atomic mass and where & hints at the
positive (þ) or negative ($) region of the scattering
length. In that form, an a4 dependence [25] is separated
from the additional log-periodic behavior C&ðaÞ ¼
C&ð22:7aÞ which reflects the Efimov physics of infinite
series of weakly bound trimers. An effective field theory
provides analytic expressions for C&ðaÞ that we use in the
form presented in Refs. [4,5] to fit our experimental results.
For a > 0, CþðaÞ includes oscillations on log scale be-
tween the maximum recombination loss of CþðaÞ " 70
and the minimum which in an ideal system can be vanish-

ingly small [1]. For a < 0, C$ðaÞ displays resonance be-
havior each time an Efimov trimer state hits the continuum
threshold. The free parameters of the theory are a& which
are connected to the unknown short-range part of the
effective three-body potential and "& which describe the
unknown decay rate of Efimov states. Moreover, a$ de-
fines the resonance position in the decay rate and "& are
assumed to be equal.
Our experimental results are shown in Fig. 2. For posi-

tive scattering lengths, we observe a pronounced minimum
in the three-body recombination rate at a scattering length
of a ! 1160a0 which is much larger than r0 and in that
sense occurs deep within the universal region [26]. The
upper limit for universality, due to finite temperature, is
estimated to be at a ! 2800a0 (Kmax ! 6# 10$21 cm6=s)
[23]. Adjacent minima are expected at 1160a0=22:7 !
50a0, which is too close to the nonuniversal region, and
at 1160a0 # 22:7 ! 26000a0, well above the finite tem-
perature limit. Our measurements are fitted remarkably
well with the analytical expression of CþðaÞ for a large
range of scattering lengths as shown by a solid line in
Fig. 2. For lower scattering lengths, K3 saturates at
"130a0 (870 G). Interestingly, it occurs when sresðBÞ !
0:4, and it roughly corresponds to the position where the
effective range ReðBÞ starts to diverge due to the presence
of the scattering length’s zero crossing (see Fig. 1), and its
absolute value is about the same as that of the scattering
length [ReðB ¼ 870 GÞ ! $170a0]. From the fit, we ob-
tain aþ ¼ 243ð35Þa0,"þ ¼ 0:232ð55Þ. The upper limit for
the three-body recombination rate (dashed line in Fig. 2) is
represented by CþðaÞ ! 54:7, which is smaller than the
commonly known value of CþðaÞ ! 70 due to the rela-
tively large value of "þ.
Measurements of three-body recombination rates for

negative scattering lengths reveal a region of significant

FIG. 2 (color online). Three-body loss coefficient K3 is shown as a function of magnetic field and scattering length (insets). The solid
lines represent fittings to the analytical expressions of universal theory. The dashed lines represent the upper (lower) limit of K3 for
a > 0 (a < 0). The error bars consist of two contributions: the uncertainty in temperature measurement ("20%) which affects the
estimated atom density and the fitting error of the lifetime measurement.
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Feshbachresonancetoavoidstronginelasticlosses.The
secondisanadiabaticapproachtothetargetmagnetic
field.Afterdifferentwaitingtimes,theremainingatoms’
numberisdeterminedbyinsituabsorptionimaging.

Formeasurementsinthepositivescatteringlengths,we
cuttheevaporationatT!2!Kand"105atomswith
peakdensityof"5#1012cm$3.Wethenshiftrapidlytoa
magneticfieldof858Ginlessthan1mswhilecrossingthe
narrowresonanceandwaitfor500mstoletthesystem
relax.Then,werampthemagneticfieldin25msto880G,
roughlyinthecenteroftheregionofinterest,andwait
thereforanother100msbeforethelastmovetothefinal
magneticfield(in5ms)wherethemeasurementsoflife-
timeandtemperatureareperformed.Forthenegative
scatteringlengths,wecuttheevaporationatT!1!K,
justonthevergeofaBEC.Afastjumpisthenmadetoa
magneticfieldof930G,farbeyondthepositionofthewide
resonance.Afterarelaxationtime,weslowlymoveto
915Gandwaitthereagainbeforealastramptothefinal
magneticfieldisperformed.

Forthetreatmentofthree-bodyrecombinationlossin
thedomainofuniversality,weadoptthelanguageof
Refs.[4,5].Theconvenientformtorepresentthetheoreti-
callypredictedlossratecoefficientisK3¼3C&ðaÞ@a4=m
wheremistheatomicmassandwhere&hintsatthe
positive(þ)ornegative($)regionofthescattering
length.Inthatform,ana4dependence[25]isseparated
fromtheadditionallog-periodicbehaviorC&ðaÞ¼
C&ð22:7aÞwhichreflectstheEfimovphysicsofinfinite
seriesofweaklyboundtrimers.Aneffectivefieldtheory
providesanalyticexpressionsforC&ðaÞthatweuseinthe
formpresentedinRefs.[4,5]tofitourexperimentalresults.
Fora>0,CþðaÞincludesoscillationsonlogscalebe-
tweenthemaximumrecombinationlossofCþðaÞ"70
andtheminimumwhichinanidealsystemcanbevanish-

inglysmall[1].Fora<0,C$ðaÞdisplaysresonancebe-
havioreachtimeanEfimovtrimerstatehitsthecontinuum
threshold.Thefreeparametersofthetheoryarea&which
areconnectedtotheunknownshort-rangepartofthe
effectivethree-bodypotentialand"&whichdescribethe
unknowndecayrateofEfimovstates.Moreover,a$de-
finestheresonancepositioninthedecayrateand"&are
assumedtobeequal.

OurexperimentalresultsareshowninFig.2.Forposi-
tivescatteringlengths,weobserveapronouncedminimum
inthethree-bodyrecombinationrateatascatteringlength
ofa!1160a0whichismuchlargerthanr0andinthat
senseoccursdeepwithintheuniversalregion[26].The
upperlimitforuniversality,duetofinitetemperature,is
estimatedtobeata!2800a0(Kmax!6#10$21cm6=s)
[23].Adjacentminimaareexpectedat1160a0=22:7!
50a0,whichistooclosetothenonuniversalregion,and
at1160a0#22:7!26000a0,wellabovethefinitetem-
peraturelimit.Ourmeasurementsarefittedremarkably
wellwiththeanalyticalexpressionofCþðaÞforalarge
rangeofscatteringlengthsasshownbyasolidlinein
Fig.2.Forlowerscatteringlengths,K3saturatesat
"130a0(870G).Interestingly,itoccurswhensresðBÞ!
0:4,anditroughlycorrespondstothepositionwherethe
effectiverangeReðBÞstartstodivergeduetothepresence
ofthescatteringlength’szerocrossing(seeFig.1),andits
absolutevalueisaboutthesameasthatofthescattering
length[ReðB¼870GÞ!$170a0].Fromthefit,weob-
tainaþ¼243ð35Þa0,"þ¼0:232ð55Þ.Theupperlimitfor
thethree-bodyrecombinationrate(dashedlineinFig.2)is
representedbyCþðaÞ!54:7,whichissmallerthanthe
commonlyknownvalueofCþðaÞ!70duetotherela-
tivelylargevalueof"þ.

Measurementsofthree-bodyrecombinationratesfor
negativescatteringlengthsrevealaregionofsignificant

FIG.2(coloronline).Three-bodylosscoefficientK3isshownasafunctionofmagneticfieldandscatteringlength(insets).Thesolid
linesrepresentfittingstotheanalyticalexpressionsofuniversaltheory.Thedashedlinesrepresenttheupper(lower)limitofK3for
a>0(a<0).Theerrorbarsconsistoftwocontributions:theuncertaintyintemperaturemeasurement("20%)whichaffectsthe
estimatedatomdensityandthefittingerrorofthelifetimemeasurement.
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Feshbach resonance to avoid strong inelastic losses. The
second is an adiabatic approach to the target magnetic
field. After different waiting times, the remaining atoms’
number is determined by in situ absorption imaging.

For measurements in the positive scattering lengths, we
cut the evaporation at T ! 2 !K and "105 atoms with
peak density of"5# 1012 cm$3. We then shift rapidly to a
magnetic field of 858 G in less than 1 ms while crossing the
narrow resonance and wait for 500 ms to let the system
relax. Then, we ramp the magnetic field in 25 ms to 880 G,
roughly in the center of the region of interest, and wait
there for another 100 ms before the last move to the final
magnetic field (in 5 ms) where the measurements of life-
time and temperature are performed. For the negative
scattering lengths, we cut the evaporation at T ! 1 !K,
just on the verge of a BEC. A fast jump is then made to a
magnetic field of 930 G, far beyond the position of the wide
resonance. After a relaxation time, we slowly move to
915 G and wait there again before a last ramp to the final
magnetic field is performed.

For the treatment of three-body recombination loss in
the domain of universality, we adopt the language of
Refs. [4,5]. The convenient form to represent the theoreti-
cally predicted loss rate coefficient is K3 ¼ 3C&ðaÞ@a4=m
where m is the atomic mass and where & hints at the
positive (þ) or negative ($) region of the scattering
length. In that form, an a4 dependence [25] is separated
from the additional log-periodic behavior C&ðaÞ ¼
C&ð22:7aÞ which reflects the Efimov physics of infinite
series of weakly bound trimers. An effective field theory
provides analytic expressions for C&ðaÞ that we use in the
form presented in Refs. [4,5] to fit our experimental results.
For a > 0, CþðaÞ includes oscillations on log scale be-
tween the maximum recombination loss of CþðaÞ " 70
and the minimum which in an ideal system can be vanish-

ingly small [1]. For a < 0, C$ðaÞ displays resonance be-
havior each time an Efimov trimer state hits the continuum
threshold. The free parameters of the theory are a& which
are connected to the unknown short-range part of the
effective three-body potential and "& which describe the
unknown decay rate of Efimov states. Moreover, a$ de-
fines the resonance position in the decay rate and "& are
assumed to be equal.
Our experimental results are shown in Fig. 2. For posi-

tive scattering lengths, we observe a pronounced minimum
in the three-body recombination rate at a scattering length
of a ! 1160a0 which is much larger than r0 and in that
sense occurs deep within the universal region [26]. The
upper limit for universality, due to finite temperature, is
estimated to be at a ! 2800a0 (Kmax ! 6# 10$21 cm6=s)
[23]. Adjacent minima are expected at 1160a0=22:7 !
50a0, which is too close to the nonuniversal region, and
at 1160a0 # 22:7 ! 26000a0, well above the finite tem-
perature limit. Our measurements are fitted remarkably
well with the analytical expression of CþðaÞ for a large
range of scattering lengths as shown by a solid line in
Fig. 2. For lower scattering lengths, K3 saturates at
"130a0 (870 G). Interestingly, it occurs when sresðBÞ !
0:4, and it roughly corresponds to the position where the
effective range ReðBÞ starts to diverge due to the presence
of the scattering length’s zero crossing (see Fig. 1), and its
absolute value is about the same as that of the scattering
length [ReðB ¼ 870 GÞ ! $170a0]. From the fit, we ob-
tain aþ ¼ 243ð35Þa0,"þ ¼ 0:232ð55Þ. The upper limit for
the three-body recombination rate (dashed line in Fig. 2) is
represented by CþðaÞ ! 54:7, which is smaller than the
commonly known value of CþðaÞ ! 70 due to the rela-
tively large value of "þ.
Measurements of three-body recombination rates for

negative scattering lengths reveal a region of significant

FIG. 2 (color online). Three-body loss coefficient K3 is shown as a function of magnetic field and scattering length (insets). The solid
lines represent fittings to the analytical expressions of universal theory. The dashed lines represent the upper (lower) limit of K3 for
a > 0 (a < 0). The error bars consist of two contributions: the uncertainty in temperature measurement ("20%) which affects the
estimated atom density and the fitting error of the lifetime measurement.
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≈ − 0.21Aqendu : Trouvé expérimentalement : a−

a+
≈ − 0.23
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“This seems like an observa=on of the long hunted universal behavior of a three-body 
observable in a physical system with resonantly enhanced two-body interac=ons”
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La suite géométrique d’Efimov

Lien entre deux branches de trimères successives

• Observé sur un mélange  avec un rapport  rela]vement 
favorable ( 4.9 pour 6Li-133Cs)

mMM λ
λ =

• Neqement plus difficile pour trois par]cules iden]ques : λ = 22.7

Groupe d’Innsbruck 
133Cs avec  G 

piège op]que 
B ∼ 800

∼ 5 μm

2011 : a(0)
− = − 51.0(6) nm

2014 : pic de  pour          L3 −900(60) nm ⟶ a(1)
− = − 1068(63) nm

correc>on liée à la température non nulle ( nK)∼ 10

Rapport trouvé expérimentalement :  , compa]ble avec la prédic]on d’Efimov
1068
51.0

= 21.0 (1.3)
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Le croisement dimère-trimère

a(n)
*

Boulder 2019, 2020 : expériences sur 39K

Détermina]on “standard” de a(0)
− = − 48.0(6) nm

On conver]t une par]e du gaz d’atomes en dimères par un 
balayage du champ magné]que autour de la résonance

  Magnéto-associa>on⟶

Evolu]on dans le temps du nombre de dimères

dND

dt
= − βAD ρA ND

Le coefficient  décrit la relaxa]on vers des états fortement liés (comme pour le côté )βAD a < 0

1
a

E

trimère 0

trimère 1
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Observation du croisement dimère-trimère 

Boulder 2019, 2020 : expériences sur 39K

dND

dt
= − βAD ρA ND

a(n)
*

E

We determine the strength of the second-order spin-orbit
coupling, which was previously neglected [49] but signifi-
cantly influences the balance between paths here [33]. The
dashed line in Fig. 2(a) shows the resulting theoretical
curve. On top of this two-body inelastic process, we
observe that the dimers become shorter lived due to their
reaction with atoms. By subtracting out the dimer one-body
decay rate from the dimer total decay rate [33], we extract
the atom-dimer relaxation coefficient βAD at different
temperatures as plotted in Fig. 2(b). A resonant peak is
pronounced at all temperatures. The highest-temperature
data were collected with multiple atom densities in order to
verify the negligible role of four-body processes.
To quantitatively study the resonant behavior of βAD, we

fit the data [Fig. 2(b)] with a zero-range effective-field
theory [50] that provides a convenient parametrization of
atom-dimer scattering at finite energy. There are two free
parameters in this model, a! and η! [33]. a! denotes the
position of the resonance where an Efimov state merges

into the atom-dimer scattering threshold; η! is the inelas-
ticity parameter that characterizes the probability of decay
into an energetic atom and deep dimer. We include an
additional parameter in the fitting function, the global
magnitude A!, which serves as a diagnostic indicator of
the overall consistency between experiment and theory. The
temperature of the sample, which is an input parameter to
this model, is measured with absorption images on atoms
after a long time of flight. As depicted by the set of solid
lines, this finite-temperature model captures the shape of
the atom-dimer resonance peak across the whole temper-
ature range accessed in our experiment.
The variation of the fitting parameters with temperature

is summarized in Fig. 3. We contrast the fit results from the
above-mentioned finite-temperature model [51] [panel (a)
and (b)] and from a zero-temperature model [2] [panel (c)
and (d)]. The former model reveals an energy-independent
parameter að1Þ! that is approached by the phenomenological
peak location from the latter model as T → 0. We deter-
mine að1Þ! ¼ 884ð14Þa0 ¼ 13.7ð2ÞrvdW from the weighted
mean of the four experimental points [Fig. 3(a)]. Notably,
the inelasticity parameter ηð1Þ! ¼ 0.28ð2Þ overlaps with the
previously measured ηð0Þ− ¼ 0.25ð1Þ for a < 0 within
uncertainty [Fig. 3(b)], indicating that the same parameter
characterizes Efimov states on both sides of the two-body
resonance.
We determine the remaining two Efimov features for

a > 0 through measurements of three-body recombination
coefficient L3. Unlike for a < 0, there are no expected
three-body resonances in L3 for a > 0. Instead, two

(a) (c)

(d)(b)

FIG. 3. Summary of the fit results on atom-dimer resonance and
comparison with MC-vdW theory. (a) að1Þ! and (b) ηð1Þ! extracted
from the finite-temperature model fits (magenta circles). The
horizontal line indicates the mean value of the four points. ηð1Þ! is
found to be consistent with ηð0Þ− reported in our previous work
[31]. (c) Phenomenological peak location and (d) inelasticity
extracted from the zero-temperature fits to the finite-temperature
data (black diamonds) or model (green squares). Finite-temper-
ature effects not only shift the peak location but also greatly
broaden the peaks. Both behaviors are captured by our MC-vdW
model.

(a)

(b)

FIG. 2. Temperature dependence of atom-dimer relaxation
coefficient βAD as a function of a. (a) Lifetimes of dimers with
and without atoms being present. The black circles represent the
intrinsic lifetimes of the dimers measured on dimer samples with
hnDi ¼ 2 × 109 cm−3, T ¼ 70 nK. Error bars are extracted from
the fitting routine and include only the statistical noise on dimer
number. The dashed line represents a coupled-channel model that
includes spin-spin dipolar interaction plus second-order spin-
orbit coupling [33]. (b) βAD measured at various temperatures.
Atomic densities differ by a factor of 3 between the two highest
temperature datasets. Error bars stand for 1σ propagated un-
certainty involving the statistical error of atom density as well as
the uncertainty of dimer lifetimes. Solid lines are fitting curves
with a finite-temperature model [50]. The navy dashed line is an
independent prediction of our three-body multichannel (MC-
vdW) model with no adjustable parameters at 62 nK, obtained
using 4 (3) s-wave singlet (triplet) two-body bound states [33].
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a(1)
* = 46.8 (7) nm

On sait par ailleurs  a(0)
− = − 48.0(6) nm

a(1)
*

a(0)
−

=
46.8

−48.0
= − 0.97

Valeur aqendue : −1.065

Bon accord avec la théorie même pour 
les premières branches de trimères
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Bilan de ces mesures

Pour une branche donnée du trimère, rela>ons entre points remarquables 

• Côté , seuil d’appari]on du trimère  a < 0 a(n)
−

• Côté , minimum en  du taux  pour un gaz d’atomesa > 0 a(n)
+ L3

• Côté , croisement en des branches trimère et dimèrea > 0 a(n)
*

Lien entre deux branches successives du trimère,  et a(0)
− a(1)

−

Bon accord entre le modèle d’Efimov et les résultats expérimentaux, avec des dévia6ons résiduelles 
expliquées (température non nulle, limite inhérente aux branches  et )n = 0 n = 1

E

1/a
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3. 

Le paramètre à trois corps
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Un paramètre indépendant ?

Approche pseudo-poten]el : le paramètre à trois corps  sert à régulariser l’équa]on radialeR0

−
d2ϕ
dR2

+
α
R2

ϕ(R) = ϵ ϕ(R) ϵ =
mE
ℏ2α = − ( |s0 |2 +

1
4 )

Solu]on d’énergie nulle : ϕ(r) =
1

R
sin [ |s0 | ln(R/R0)]

Une fois  fixé, on en déduit la posi6on des points “observables” :  R0 a(n)
− , a(n)

* , a(n)
+

Pour un poten]el à deux corps  de portée finie , y a-t-il un lien entre ceqe portée et  ?V(r12) b R0

Premières réponses théoriques pour des poten>els à deux corps de type  : pas vraiment… V0 e−r12/b

RR0

Poten]el à  
trois corps
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La valeur de  pour différents gaz d’atomes neutresa(0)
−

1

the measured a− values should begin to deviate from the
universal a− ¼ −9.7rvdW value; see Fig. 1. However, this
conclusion is only tentative due to large experimental
uncertainties in the measured a− [17], unexpected temper-
ature dependence [45], and large systematic uncertainties in
the parameters of the underlying two-body Feshbach
resonance [17,37,38,43]. Although there are intriguing
experimental [15,46–55] and theoretical [52,56–58] results
for the heteronuclear cases, the possible influence of many
additional parameters (mass ratio, quantum statistics, and
inter- and intraspecies scattering lengths) makes the ques-
tion of universality in those systems a topic for an entirely
separate investigation.
In this Letter, we present a precise test of van der Waals

universality near a Feshbach resonance with sres ¼ 2.57
[19], which is intermediate between the narrow (sres ≪ 1)
and broad (sres ≫ 1) regimes. Specifically, we accurately
determine the value of a− by having precise control of
critical experimental parameters such as temperature,
density, and scattering length. Because of our tight control
of both systematic and statistical errors, ours is the first
measurement of a compelling nonuniversal a− value in a
homonuclear Efimov resonance.
A thorough characterization of the Feshbach resonance

and an accurate map of the scattering length are required
for precise determination of the a− value. Accordingly, we
perform high-precision spectroscopy on a pure gas of

Feshbach dimers and accurately determine their binding
energies. This measurement enables us to refine our two-
body model and accurately predict the scattering length in
our Efimov measurements [19]. In other Feshbach reso-
nance studies, methods based on number loss or thermal-
ization rate have occasionally given inconsistent results. By
contrast, dissociation spectroscopy of Feshbach dimers
isolates two-body physics and accurately determines res-
onance properties [59–62].
Precision molecular spectroscopy requires long inter-

rogation times under unperturbed conditions. We stabilize
the magnetic field to the milligauss-level and eject all
unpaired atoms, whose presence affects dimer lifetimes and
complicates the spectroscopy. A pure molecular sample is
prepared by starting with∼105 atoms confined in an optical
dipole trap and a temperature of ∼300 nK. We transfer a
fraction of atoms in the jF ¼ 1; mF ¼ −1i hyperfine state to
the dimer state bymagnetoassociation [63]. Subsequently, all
residual unpaired atoms are blasted away by multiple radio-
frequency (rf) and optical pulses, leaving a pure sample of
∼104 molecules. Lastly, the magnetic field B is ramped to
various values, corresponding to different binding energies,
where we perform rf spectroscopy.
We dissociate molecules by transferring one atom of the

pair from the jF ¼ 1; mF ¼ −1i interacting state to the
jF ¼ 1; mF ¼ 0i imaging state. The final state being nearly
noninteracting enables us to directly probe the dimer
binding energy. Additionally, the transition being magneti-
cally less sensitive near B values of interest allows long
molecular interrogation times, limited only by dimer life-
times, to achieve high spectral resolution. We scan the rf
frequency and measure the transferred fraction, keeping the
pulse energy low to limit saturation effects and dissociate a
maximum 50% of molecules. We fit the measured spectrum
to a functional form given by the Franck-Condon factor of
the bound-free transition [59], and we extract the molecular
binding energy Eb [19,64]. We repeat this procedure to
determine Eb at different magnetic field values, as depicted
in Fig. 2.
The universal expression Eb ¼ ℏ2=ðma2Þ is always

accurate for large enough a. A more refined expression
Eb ¼ ℏ2=½mða − āÞ2%, which introduces the mean scatter-
ing length ā ≈ 0.956rvdW [66], is valid at smaller values of
a as long as a ≫ rvdW=sres [65]. However, such treatments
are inadequate for narrow and intermediate resonances.
To better compare to our experimental data, we developed a
coupled-channel model [19] capable of describing our
high-precision Eb data. We fine-tune the model’s param-
eters, the singlet and triplet scattering potentials, to accu-
rately match most of our measurements to within 1%, as
depicted in Fig. 2’s inset. As a result, we determine a
particular linear combination of the singlet and triplet
scattering lengths of 0.2470aS þ 0.9690aT ¼ 1.926ð2Þa0
[19], further constraining the previously reported values
of aS ¼ 138.49ð12Þa0 and aT ¼ −33.48ð18Þa0 [67,68].
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FIG. 1. Survey of experimental a− values in homonuclear
systems, inspired by [15]. Previous results (blue circles)
[3,17,37,41–45] show a tentative dependence of the a− value
on the Feshbach resonance strength parameter sres. Our meas-
urement (red star; red band in the inset) is the strongest evidence
of departure from the −9.7' 15%rvdW value (dashed line and
gray area) predicted by van der Waals universality [4,5,7,9]. The
inset shows calculations for a− based on a single van der Waals
potential [7] with N ¼ 1 − 7 s-wave two-body bound states
(green squares) and results from our multichannel model [19]
with N ¼ 2 − 5 (black triangles).
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  “force” de la résonancesres :

La descrip6on à un canal de collision adoptée 
dans ce cours est valable si sres > 1

|a(0)
− |

RvdW

RvdW =
1
2 ( mC6

ℏ2 )
1/4

Le paramètre à trois corps n’est pas “aléatoire”, mais au contraire “verrouillé” sur  :  RvdW
a(0)

−

RvdW
≈ − 9.7 ± 1.5
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Les résultats numériques pour un potentiel de van der Waals

Poten]el à deux corps de Lennard-Jones:

Va
λ (r) = −

C6

r6
+

C12

r12

On ajuste  pour varier la profondeur du puits 
et donc le nombre d’états liés à deux corps

C12

vhs
vdW result. The average of the experimental values differs

from the present vhs
vdW result by less than 3%.

Previous treatments have failed to predict the universal-
ity of the three-body parameter for various reasons. In
treatments using zero-range interactions, for instance, the

three-body parameter enters as a free parameter to cure the
Thomas collapse [32], preventing any statement about its
universality. Finite range models devoid of a van der Waals
tail, like those used in some of our own treatments [18]
[corresponding to the results for vsch with n ¼ 2 and 3 in
Figs. 4(a) and 4(b)], have failed for lack of substantial
suppression of the probability density in the two-body
wells. Such models, however, are more appropriate to
describe light nuclei having few bound states and shallow
attraction. In contrast to Ref. [18], other models [24,33–38]
have found better agreement with experiments. Our analy-
sis of these treatments, however, indicates that the two-
body models used have many of the characteristics of our
vhs
vdW, therefore satisfying the prerequisite for a universal

three-body parameter. A recent attempt [39] to explain this
universality used an ad hoc hyperradial potential that bore
little resemblance to ours [see Fig. 3(b)]. This ad hoc three-
body potential displayed strong attraction at short distances
in contrast to our key finding, which to reiterate, is that a
cliff of attraction for two bodies produces a universal
repulsive barrier in the three-body system.
In summary, our theoretical examination shows that the

three-body parameter controlling much of universal
Efimov physics can also be a universal parameter under
certain circumstances which should be realized in most
ultracold neutral atom experiments. Provided the under-
lying two-body short-range interaction supports a large
number of bound states, or it has some other property
leading to the suppression of the wave function at short
distances, three-body properties associated with Efimov
physics can be expected to be universal. This surprising
new scenario could not have been, and was not, anticipated
from the simple model calculations to date. Ironically,
increasing the complexity of the model simplified the
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FIG. 3 (color online). (a) Efimov potential obtained from the
different two-body potential models used here. The reasonably
good agreement between the results obtained using models
supporting many bound states (vsch, va

! and vb
!) and vhs

vdW

[obtained by replacing the deep potential well with a hard wall
but having only one (zero-energy) bound state] supports our
conclusion that the inside-the-well suppression of the wave
function is the main physical mechanism behind the universality
of the three-body effective potentials. The differences between
these potentials are seen to cause differences of a few percent in
the three-body parameter. (b) Comparison between the effective
potential proposed by Ref. [39] (green dashed curve) and the
one (red solid curve) constructed to describe our findings:
2"r2vdWWu

# ðRÞ=@2$%ðs20þ1=4Þ=X2%b3=X
3%b4=X

4%b5=X
5þ

b16=X
16, where X ¼ R=rvdW and b3 ¼ 2:334, b4 ¼ 1:348, b5 ¼

44:52, b16 ¼ 4:0' 104.
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FIG. 4 (color online). Values for the three-body parameter (a) $( and (b) a
%
3b as functions of the number n of two-body s-wave bound

states for each of the potential models studied here. (c) Experimental values for a%3b for 133Cs [3] (red: ', þ, h, and *), 39K [4]
(magenta: 4), 7Li [5] (blue: )) and [6,7] (green: j and *), 6Li [8,9] (cyan: m and 5) and [10,11] (brown: . and r), and 85Rb [12]
(black: r). The gray region specifies a band where there is a +15% deviation from the vhs

vdW results. The inset of (a) shows the
suppression parameter %in

p (Eq. (S.5) in Ref. [26]) which can be roughly understood as the degree of sensitivity to nonuniversal
corrections. Since %in

p is always finite—even in the large n limit—nonuniversal effects associated with the details of the short-range
interactions can still play an important role. One example is the large deviation in $( found for the vsch (n ¼ 6) model, caused by a
weakly bound g-wave state. For n > 10 we expect $( and a%3b to lie within the range of +15% established for n , 10.
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treatments using zero-range interactions, for instance, the

three-body parameter enters as a free parameter to cure the
Thomas collapse [32], preventing any statement about its
universality. Finite range models devoid of a van der Waals
tail, like those used in some of our own treatments [18]
[corresponding to the results for vsch with n ¼ 2 and 3 in
Figs. 4(a) and 4(b)], have failed for lack of substantial
suppression of the probability density in the two-body
wells. Such models, however, are more appropriate to
describe light nuclei having few bound states and shallow
attraction. In contrast to Ref. [18], other models [24,33–38]
have found better agreement with experiments. Our analy-
sis of these treatments, however, indicates that the two-
body models used have many of the characteristics of our
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universality used an ad hoc hyperradial potential that bore
little resemblance to ours [see Fig. 3(b)]. This ad hoc three-
body potential displayed strong attraction at short distances
in contrast to our key finding, which to reiterate, is that a
cliff of attraction for two bodies produces a universal
repulsive barrier in the three-body system.
In summary, our theoretical examination shows that the
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certain circumstances which should be realized in most
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lying two-body short-range interaction supports a large
number of bound states, or it has some other property
leading to the suppression of the wave function at short
distances, three-body properties associated with Efimov
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adapté de Wang et al,  
Phys. Rev. Lett. 108, 263001 (2012)

a(0)
−

RvdW

nombre d’états liés à deux corps

RvdW =
1
2 ( mC6

ℏ2 )
1/4

Confirma>on du lien trouvé expérimentalement : 
a(0)

−

RvdW
≈ − 9.7 ± 1.5
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L’approche hypersphérique

Comment résoudre l’équa]on de Schrödinger pour un poten]el binaire quelconque ?

r1

r2

r3

Système de coordonnées dans le référen]el du centre de masse :  

hyperrayon (1) + hyperangles (5) :   (R, ⃗Ω)

Structure de l’équa]on de Schrödinger

Solu]on (formelle) du problème angulaire 

Structure de l’équa]on radiale 

Emergence de poten]els “géométriques” 
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Le potentiel à trois corps “total” Wang et al,  
Phys. Rev. Lett. 108, 263001 (2012)

Calcul fait pour |a | = + ∞

• On retrouve le poten]el en  à 
longue distance

R−2

• Emergence d’un poten]el fortement 
répulsif en R ≈ 2 RvdW

Origine de la répulsion : déforma]on rapide du “triangle atomique” 
forme allongée à grande distance , forme quasi-équilatérale à courte distanceR

1

the measured a− values should begin to deviate from the
universal a− ¼ −9.7rvdW value; see Fig. 1. However, this
conclusion is only tentative due to large experimental
uncertainties in the measured a− [17], unexpected temper-
ature dependence [45], and large systematic uncertainties in
the parameters of the underlying two-body Feshbach
resonance [17,37,38,43]. Although there are intriguing
experimental [15,46–55] and theoretical [52,56–58] results
for the heteronuclear cases, the possible influence of many
additional parameters (mass ratio, quantum statistics, and
inter- and intraspecies scattering lengths) makes the ques-
tion of universality in those systems a topic for an entirely
separate investigation.
In this Letter, we present a precise test of van der Waals

universality near a Feshbach resonance with sres ¼ 2.57
[19], which is intermediate between the narrow (sres ≪ 1)
and broad (sres ≫ 1) regimes. Specifically, we accurately
determine the value of a− by having precise control of
critical experimental parameters such as temperature,
density, and scattering length. Because of our tight control
of both systematic and statistical errors, ours is the first
measurement of a compelling nonuniversal a− value in a
homonuclear Efimov resonance.
A thorough characterization of the Feshbach resonance

and an accurate map of the scattering length are required
for precise determination of the a− value. Accordingly, we
perform high-precision spectroscopy on a pure gas of

Feshbach dimers and accurately determine their binding
energies. This measurement enables us to refine our two-
body model and accurately predict the scattering length in
our Efimov measurements [19]. In other Feshbach reso-
nance studies, methods based on number loss or thermal-
ization rate have occasionally given inconsistent results. By
contrast, dissociation spectroscopy of Feshbach dimers
isolates two-body physics and accurately determines res-
onance properties [59–62].
Precision molecular spectroscopy requires long inter-

rogation times under unperturbed conditions. We stabilize
the magnetic field to the milligauss-level and eject all
unpaired atoms, whose presence affects dimer lifetimes and
complicates the spectroscopy. A pure molecular sample is
prepared by starting with∼105 atoms confined in an optical
dipole trap and a temperature of ∼300 nK. We transfer a
fraction of atoms in the jF ¼ 1; mF ¼ −1i hyperfine state to
the dimer state bymagnetoassociation [63]. Subsequently, all
residual unpaired atoms are blasted away by multiple radio-
frequency (rf) and optical pulses, leaving a pure sample of
∼104 molecules. Lastly, the magnetic field B is ramped to
various values, corresponding to different binding energies,
where we perform rf spectroscopy.
We dissociate molecules by transferring one atom of the

pair from the jF ¼ 1; mF ¼ −1i interacting state to the
jF ¼ 1; mF ¼ 0i imaging state. The final state being nearly
noninteracting enables us to directly probe the dimer
binding energy. Additionally, the transition being magneti-
cally less sensitive near B values of interest allows long
molecular interrogation times, limited only by dimer life-
times, to achieve high spectral resolution. We scan the rf
frequency and measure the transferred fraction, keeping the
pulse energy low to limit saturation effects and dissociate a
maximum 50% of molecules. We fit the measured spectrum
to a functional form given by the Franck-Condon factor of
the bound-free transition [59], and we extract the molecular
binding energy Eb [19,64]. We repeat this procedure to
determine Eb at different magnetic field values, as depicted
in Fig. 2.
The universal expression Eb ¼ ℏ2=ðma2Þ is always

accurate for large enough a. A more refined expression
Eb ¼ ℏ2=½mða − āÞ2%, which introduces the mean scatter-
ing length ā ≈ 0.956rvdW [66], is valid at smaller values of
a as long as a ≫ rvdW=sres [65]. However, such treatments
are inadequate for narrow and intermediate resonances.
To better compare to our experimental data, we developed a
coupled-channel model [19] capable of describing our
high-precision Eb data. We fine-tune the model’s param-
eters, the singlet and triplet scattering potentials, to accu-
rately match most of our measurements to within 1%, as
depicted in Fig. 2’s inset. As a result, we determine a
particular linear combination of the singlet and triplet
scattering lengths of 0.2470aS þ 0.9690aT ¼ 1.926ð2Þa0
[19], further constraining the previously reported values
of aS ¼ 138.49ð12Þa0 and aT ¼ −33.48ð18Þa0 [67,68].
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FIG. 1. Survey of experimental a− values in homonuclear
systems, inspired by [15]. Previous results (blue circles)
[3,17,37,41–45] show a tentative dependence of the a− value
on the Feshbach resonance strength parameter sres. Our meas-
urement (red star; red band in the inset) is the strongest evidence
of departure from the −9.7' 15%rvdW value (dashed line and
gray area) predicted by van der Waals universality [4,5,7,9]. The
inset shows calculations for a− based on a single van der Waals
potential [7] with N ¼ 1 − 7 s-wave two-body bound states
(green squares) and results from our multichannel model [19]
with N ¼ 2 − 5 (black triangles).
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between r and rþ dr in regions of high local velocity@kLðrÞ, which is proportional to [mdr=@kLðrÞ] (m being
the particle mass), the time spent classically in that interval
dr (see Ref. [26]). It is possible that there could be an
additional suppression as well, through quantum reflection
from a potential cliff [27]. Systems supporting many bound
states, such as the neutral atoms used in ultracold experi-
ments with their strong van der Waals attraction, clearly
exhibit this suppression. In general, a finite-range two-
body potential that supports many bound states decreases
steeply with decreasing interparticle distance r, starting
when r=rvdW & 1, at which point the potential cliff plays
a role analogous to a repulsive potential for low-energy
scattering. We demonstrate this fact by showing that the
three-body parameter in the presence of many two-body
bound states roughly coincides with that for a 100% re-
flective two-body model potential, where the two-body
short-range potential well is replaced by a hard sphere.

The starting point for our investigation of the universal-
ity of the three-body parameter is the adiabatic hyper-
spherical representation [18,28]. This representation
offers a simple and conceptually clear description by re-
ducing the problem to the solution of the ‘‘hyperradial’’
Schrödinger equation:

!
$ @2
2!

d2

dR2þW"ðRÞ
"
F"ðRÞþ

X

"0!"

W""0ðRÞF"0ðRÞ¼EF"ðRÞ:

(1)

Here, the hyperradius R describes the overall size of the
system; " is the channel index; ! ¼ m=

ffiffiffi
3

p
is the three-

body reduced mass for particle masses m; E is the total
energy; and F" is the hyperradial wave function. The
nonadiabatic couplings W""0 drive inelastic transitions,
and the effective hyperradial potentials W" support bound
and resonant states. To treat problems with deep two-body
interactions—necessary to see strong inside-the-well sup-
pression—requires us to solve Eq. (1) for two-body model
interactions that support many bound states, a challenge for
most theoretical approaches. Using our recently developed
methodology [29], however, we have treated systems with
up to 100 two-body rovibrational bound states and have
solved Eq. (1) beyond the adiabatic approximation. Here,
the universality of the three-body parameter is analyzed for
a number of model potentials, one of then being the usual
Lennard-Jones potential:

va
#ðrÞ ¼ $C6

r6
ð1$ #6=r6Þ; (2)

where # is adjusted to give the desired value of a and
number of bound states. The other short-ranged potential
models used here, namely, vsch, v

b
# and v

hs
vdW, can be found

in Ref. [26].
Figure 1(a) shows the adiabatic potentialsU" at jaj ¼ 1

obtained using the potential va
# above supporting 25 dimer

bound states. At first glance, it is difficult to identify any
universal properties of these potentials. Efimov physics,
however, occurs at a very small energy scale near the

FIG. 1 (color online). (a) Full energy landscape for the three-body potentials at a ¼ 1 for our va
# model potential. (b) Effective

diabatic potentials W" relevant for Efimov physics for va
# with an increasingly large number of bound states (#&

n is the value of # that
produces a ¼ 1 and n s-wave bound states). The W" converge to a universal potential displaying the repulsive barrier at R ' 2rvdW
that prevents particles’ access to short distances. (c)–(e) demonstrate the suppression of the wave function inside the potential well
through the channel functions !"ðR; $; ’Þ for R fixed near the minima of the Efimov potentials in (b). (c) shows the mapping of the
geometrical configurations onto the hyperangles $ and ’. (d) and (e) show the channel functions, where the ‘‘distance’’ from the origin
determines j!"j1=2, for two distinct cases: in (d) when there is a substantial probability to find two particles inside the potential well
(defined by the region containing the gray disks) and in (e) with a reduced probability—see also our discussion in Fig. 2. In (d) and (e),
we used the potentials vsch and va

#, respectively, both with n ¼ 3.
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ϵ0(R) + 𝒱0(R) [ℏ2/mR2
vdW]

R/RvdW

calculé avec  
en Lennard-Jones
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4. 

Au delà de l’effet Efimov “standard” 

Trois bosons iden]ques 

fermions vs. bosons

quatre, cinq, … par]cules
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Trois fermions identiques (polarisés)

Pas d’interac]on binaire en onde  (fonc]on d’onde spa]ale an]symétrique) s

Collision en onde  :p
1

f1(k)
≈ −

1
k2v

+
ke

2
− ik   volume de diffusion,  portée effec]vev : ke :

Résonance de diffusion pour |v | → + ∞

Jona-Lasinio et al., 2008 : pas d’effet Efimov (i.e., pas de série infinie de trimères liés)

• deux trimères liés, y compris du côté  : trimères borroméens  (pas d’état lié à deux corps) v < 0

En revanche :

• pas besoin d’introduire un paramètre à trois corps pour caractériser ces trimères

1

the measured a− values should begin to deviate from the
universal a− ¼ −9.7rvdW value; see Fig. 1. However, this
conclusion is only tentative due to large experimental
uncertainties in the measured a− [17], unexpected temper-
ature dependence [45], and large systematic uncertainties in
the parameters of the underlying two-body Feshbach
resonance [17,37,38,43]. Although there are intriguing
experimental [15,46–55] and theoretical [52,56–58] results
for the heteronuclear cases, the possible influence of many
additional parameters (mass ratio, quantum statistics, and
inter- and intraspecies scattering lengths) makes the ques-
tion of universality in those systems a topic for an entirely
separate investigation.
In this Letter, we present a precise test of van der Waals

universality near a Feshbach resonance with sres ¼ 2.57
[19], which is intermediate between the narrow (sres ≪ 1)
and broad (sres ≫ 1) regimes. Specifically, we accurately
determine the value of a− by having precise control of
critical experimental parameters such as temperature,
density, and scattering length. Because of our tight control
of both systematic and statistical errors, ours is the first
measurement of a compelling nonuniversal a− value in a
homonuclear Efimov resonance.
A thorough characterization of the Feshbach resonance

and an accurate map of the scattering length are required
for precise determination of the a− value. Accordingly, we
perform high-precision spectroscopy on a pure gas of

Feshbach dimers and accurately determine their binding
energies. This measurement enables us to refine our two-
body model and accurately predict the scattering length in
our Efimov measurements [19]. In other Feshbach reso-
nance studies, methods based on number loss or thermal-
ization rate have occasionally given inconsistent results. By
contrast, dissociation spectroscopy of Feshbach dimers
isolates two-body physics and accurately determines res-
onance properties [59–62].
Precision molecular spectroscopy requires long inter-

rogation times under unperturbed conditions. We stabilize
the magnetic field to the milligauss-level and eject all
unpaired atoms, whose presence affects dimer lifetimes and
complicates the spectroscopy. A pure molecular sample is
prepared by starting with∼105 atoms confined in an optical
dipole trap and a temperature of ∼300 nK. We transfer a
fraction of atoms in the jF ¼ 1; mF ¼ −1i hyperfine state to
the dimer state bymagnetoassociation [63]. Subsequently, all
residual unpaired atoms are blasted away by multiple radio-
frequency (rf) and optical pulses, leaving a pure sample of
∼104 molecules. Lastly, the magnetic field B is ramped to
various values, corresponding to different binding energies,
where we perform rf spectroscopy.
We dissociate molecules by transferring one atom of the

pair from the jF ¼ 1; mF ¼ −1i interacting state to the
jF ¼ 1; mF ¼ 0i imaging state. The final state being nearly
noninteracting enables us to directly probe the dimer
binding energy. Additionally, the transition being magneti-
cally less sensitive near B values of interest allows long
molecular interrogation times, limited only by dimer life-
times, to achieve high spectral resolution. We scan the rf
frequency and measure the transferred fraction, keeping the
pulse energy low to limit saturation effects and dissociate a
maximum 50% of molecules. We fit the measured spectrum
to a functional form given by the Franck-Condon factor of
the bound-free transition [59], and we extract the molecular
binding energy Eb [19,64]. We repeat this procedure to
determine Eb at different magnetic field values, as depicted
in Fig. 2.
The universal expression Eb ¼ ℏ2=ðma2Þ is always

accurate for large enough a. A more refined expression
Eb ¼ ℏ2=½mða − āÞ2%, which introduces the mean scatter-
ing length ā ≈ 0.956rvdW [66], is valid at smaller values of
a as long as a ≫ rvdW=sres [65]. However, such treatments
are inadequate for narrow and intermediate resonances.
To better compare to our experimental data, we developed a
coupled-channel model [19] capable of describing our
high-precision Eb data. We fine-tune the model’s param-
eters, the singlet and triplet scattering potentials, to accu-
rately match most of our measurements to within 1%, as
depicted in Fig. 2’s inset. As a result, we determine a
particular linear combination of the singlet and triplet
scattering lengths of 0.2470aS þ 0.9690aT ¼ 1.926ð2Þa0
[19], further constraining the previously reported values
of aS ¼ 138.49ð12Þa0 and aT ¼ −33.48ð18Þa0 [67,68].
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FIG. 1. Survey of experimental a− values in homonuclear
systems, inspired by [15]. Previous results (blue circles)
[3,17,37,41–45] show a tentative dependence of the a− value
on the Feshbach resonance strength parameter sres. Our meas-
urement (red star; red band in the inset) is the strongest evidence
of departure from the −9.7' 15%rvdW value (dashed line and
gray area) predicted by van der Waals universality [4,5,7,9]. The
inset shows calculations for a− based on a single van der Waals
potential [7] with N ¼ 1 − 7 s-wave two-body bound states
(green squares) and results from our multichannel model [19]
with N ¼ 2 − 5 (black triangles).
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between r and rþ dr in regions of high local velocity@kLðrÞ, which is proportional to [mdr=@kLðrÞ] (m being
the particle mass), the time spent classically in that interval
dr (see Ref. [26]). It is possible that there could be an
additional suppression as well, through quantum reflection
from a potential cliff [27]. Systems supporting many bound
states, such as the neutral atoms used in ultracold experi-
ments with their strong van der Waals attraction, clearly
exhibit this suppression. In general, a finite-range two-
body potential that supports many bound states decreases
steeply with decreasing interparticle distance r, starting
when r=rvdW & 1, at which point the potential cliff plays
a role analogous to a repulsive potential for low-energy
scattering. We demonstrate this fact by showing that the
three-body parameter in the presence of many two-body
bound states roughly coincides with that for a 100% re-
flective two-body model potential, where the two-body
short-range potential well is replaced by a hard sphere.

The starting point for our investigation of the universal-
ity of the three-body parameter is the adiabatic hyper-
spherical representation [18,28]. This representation
offers a simple and conceptually clear description by re-
ducing the problem to the solution of the ‘‘hyperradial’’
Schrödinger equation:
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X
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W""0ðRÞF"0ðRÞ¼EF"ðRÞ:
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Here, the hyperradius R describes the overall size of the
system; " is the channel index; ! ¼ m=

ffiffiffi
3

p
is the three-

body reduced mass for particle masses m; E is the total
energy; and F" is the hyperradial wave function. The
nonadiabatic couplings W""0 drive inelastic transitions,
and the effective hyperradial potentials W" support bound
and resonant states. To treat problems with deep two-body
interactions—necessary to see strong inside-the-well sup-
pression—requires us to solve Eq. (1) for two-body model
interactions that support many bound states, a challenge for
most theoretical approaches. Using our recently developed
methodology [29], however, we have treated systems with
up to 100 two-body rovibrational bound states and have
solved Eq. (1) beyond the adiabatic approximation. Here,
the universality of the three-body parameter is analyzed for
a number of model potentials, one of then being the usual
Lennard-Jones potential:

va
#ðrÞ ¼ $C6

r6
ð1$ #6=r6Þ; (2)

where # is adjusted to give the desired value of a and
number of bound states. The other short-ranged potential
models used here, namely, vsch, v

b
# and v

hs
vdW, can be found

in Ref. [26].
Figure 1(a) shows the adiabatic potentialsU" at jaj ¼ 1

obtained using the potential va
# above supporting 25 dimer

bound states. At first glance, it is difficult to identify any
universal properties of these potentials. Efimov physics,
however, occurs at a very small energy scale near the

FIG. 1 (color online). (a) Full energy landscape for the three-body potentials at a ¼ 1 for our va
# model potential. (b) Effective

diabatic potentials W" relevant for Efimov physics for va
# with an increasingly large number of bound states (#&

n is the value of # that
produces a ¼ 1 and n s-wave bound states). The W" converge to a universal potential displaying the repulsive barrier at R ' 2rvdW
that prevents particles’ access to short distances. (c)–(e) demonstrate the suppression of the wave function inside the potential well
through the channel functions !"ðR; $; ’Þ for R fixed near the minima of the Efimov potentials in (b). (c) shows the mapping of the
geometrical configurations onto the hyperangles $ and ’. (d) and (e) show the channel functions, where the ‘‘distance’’ from the origin
determines j!"j1=2, for two distinct cases: in (d) when there is a substantial probability to find two particles inside the potential well
(defined by the region containing the gray disks) and in (e) with a reduced probability—see also our discussion in Fig. 2. In (d) and (e),
we used the potentials vsch and va

#, respectively, both with n ¼ 3.
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Trois particules discernables

Aucune contrainte sur la symétrie d’échange de  Ψ(r1, r2, r3)

Tous les résultats obtenus pour les bosons (universalité d’Efimov, suite géométrique pour 
les énergies des niveaux pour ) restent valables si les  sont égaux entre eux|a | = + ∞ aij

Pour que l’effet Efimov se produise, il faut qu’au moins deux  
présentent simultanément un comportement résonnant

aij
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Quatre bosons identiques

1
a

EY a-t-il une série infinie de tétramères 
liés au seuil d’appari]on du trimère ?

Réponse néga]ve [Amado & Greenwood (1973)]

En revanche, il existe deux branches de tétramères 
“universels” (pas de paramètre à 4 corps) aqachées à 
chaque branche de trimère  

Evidence for Universal Four-Body States Tied to an Efimov Trimer

F. Ferlaino,1 S. Knoop,1 M. Berninger,1 W. Harm,1 J. P. D’Incao,2,3 H.-C. Nägerl,1 and R. Grimm1,2
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We report on the measurement of four-body recombination rate coefficients in an atomic gas. Our

results obtained with an ultracold sample of cesium atoms at negative scattering lengths show a resonant

enhancement of losses and provide strong evidence for the existence of a pair of four-body states, which is

strictly connected to Efimov trimers via universal relations. Our findings confirm recent theoretical

predictions and demonstrate the enrichment of the Efimov scenario when a fourth particle is added to the

generic three-body problem.

DOI: 10.1103/PhysRevLett.102.140401 PACS numbers: 03.75.!b, 21.45.!v, 34.50.Cx, 67.85.!d

Few-body physics produces bizarre and counterintuitive
phenomena, with the Efimov effect representing the major
paradigm of the field [1]. Early in the 1970s, Efimov found
a solution to the quantum three-body problem, predicting
the existence of an infinite series of universal weakly
bound three-body states. Surprisingly, these Efimov
trimers can even exist under conditions where a weakly
bound dimer state is absent [2–4]. An essential prerequisite
for the Efimov effect is a large two-body scattering length
a, far exceeding the characteristic range of the interaction
potential. Ultracold atomic systems with tunable interac-
tions [5] have opened up unprecedented possibilities to
explore such few-body quantum systems under well con-
trollable experimental conditions. In particular, a can be
made much larger than the van der Waals length rvdW [6],
the range of the interatomic interaction.

In the past few years, signatures of Efimov states have
been observed in ultracold atomic and molecular gases of
cesium atoms [7,8], and recently in three-component Fermi
gases of 6Li [9,10], in a Bose gas of 39K atoms [11], and in
mixtures of 41K and 87Rb atoms [12]. In all these experi-
ments, Efimov states manifest themselves as resonantly en-
hanced losses, either in atomic three-body recombination
or in atom-dimer relaxation processes.

As a next step in complexity, a system of four identical
bosons with resonant two-body interaction challenges our
understanding of few-body physics. The extension of uni-
versality to four-body systems has been attracting increas-
ing interest both in theory [13–18] and experiment [19]. A
particular question under debate is the possible relation
between universal three- and four-body states [13–16,18].
In this context, Hammer and Platter predicted the four-
body system to support universal tetramer states in close
connection with Efimov trimers [16].

Recently, von Stecher, D’Incao, and Greene presented
key predictions for universal four-body states [18]. For
each Efimov trimer, they demonstrate the existence of a
pair of universal tetramer states according to the conjecture
of Ref. [16]. Such tetramer states are tied to the corre-

sponding trimer through simple universal relations that do
not invoke any four-body parameter [13,15,18]. The au-
thors of Ref. [18] suggest resonantly enhanced four-body
recombination in an atomic gas as a probe for such univer-
sal tetramer states. They also find hints on the existence of
one of the predicted four-body resonances by reinterpret-
ing our earlier recombination measurements on 133Cs
atoms at large negative scattering lengths [7]. In this
Letter, we present new measurements on the Cs system
dedicated to four-body recombination in the particular
region of interest near a triatomic Efimov resonance. Our

FIG. 1 (color online). Extended Efimov scenario describing a
universal system of four identical bosons. Energies are plotted as
a function of the inverse scattering length. The red solid lines
illustrate the pairs of universal tetramer states (Tetra1 and
Tetra2) associated with each Efimov trimer (T). For illustrative
purposes, we have artificially reduced the universal Efimov
scaling factor from 22.7 to about 2. The shaded regions indicate
the scattering continuum associated with the relevant dissocia-
tion threshold. The four-body threshold is at zero energy and
refers to four free atoms (Aþ Aþ Aþ A). In the a > 0 region,
the dimer-atom-atom threshold (Dþ Aþ A) and the dimer-
dimer threshold (DþD) are also depicted. The weakly bound
dimer, only existing for a # rvdW > 0, has universal halo char-
acter and its binding energy is given by @2=ðma2Þ [2,19]. The
open arrow marks the intersection of the first Efimov trimer (T)
with the atomic threshold, while the filled arrows indicate the
corresponding locations of the two universal tetramer states.

PRL 102, 140401 (2009)

Selected for a Viewpoint in Physics
PHY S I CA L R EV I EW LE T T E R S

week ending
10 APRIL 2009

0031-9007=09=102(14)=140401(4) 140401-1 ! 2009 The American Physical Society

Prédic]on : Hammer & Plaqer (2007) 
Observa]on : Ferlaino et al. (2009)

PRL 102, 140401 (2009)

a(0)
−



33

Quatre = trois (fermions) + une autre particule

Trois fermions de masse  + une autre par]cule de masse M m

Efimov (1973) 

Endo & Cas]n (2015) : le cas 4 = 2 (fermions) + 2 (fermions) ne conduit pas à un effet Efimov

(2 + 1)

M/m
Trimère univ. (a > 0) Efimov

8.173 13.607

(3 + 1)

M/m
Tétramère univ. (a > 0) Efim.

8.862 13.384

(4 + 1)

M/m
Pentamère univ. (a > 0) Efim.

9.672 13.279

Kartavtsek & Malykh (2007)

Castin, Mora, Pricoupenko (2010)

Il existe un intervalle pour  pour lequel le problème à quatre corps 
est efimovien sans que le problème à trois corps le soit !

M/m

Blume (2012), Bazak & Petrov (2017)

(2 + 1)

M/m
Trimère univ. (a > 0) Efimov

8.173 13.607

(3 + 1)

M/m
Tétramère univ. (a > 0) Efim.

8.862 13.384

(4 + 1)

M/m
Pentamère univ. (a > 0) Efim.

9.672 13.279
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Le problème à  particules (dont  fermions polarisés)N + 1 N

Bazak & Petrov (2017)

Castin et al. (2010)

Bazak (2020) : pas d’effet Efimov dans ce cas pour  ni pour 5 + 1 6 + 1

Ces cas     et    sont les seules extensions connues du résultat d’Efimov 3 + 1 4 + 1

(2 + 1)

M/m
Trimère univ. (a > 0) Efimov

8.173 13.607

(3 + 1)

M/m
Tétramère univ. (a > 0) Efim.

8.862 13.384

(4 + 1)

M/m
Pentamère univ. (a > 0) Efim.

9.672 13.279
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En résumé…

Défi intellectuel considérable posé 
par le problème à trois corps dans 
l’histoire des sciences

1

Efimov : solu>on exacte pour un modèle simple (interac>on de contact quasi-résonnante) 

Universalité de l’ensemble des résultats, qui ne 
dépendent que d’un paramètre ( ) R0

Champ d’applica]on a priori vaste : physique des 
par]cules, physique nucléaire, physique atomique 

Tests les plus précis des mul6ples face^es de l’effet Efimov : gaz d’atomes ultra-froids 
Forces à longue portée  

dans les gaz quantiques :  
le problème à trois corps  

et l’effet Efimov

10 mars > 14 avril 2023
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