Cours 4 L'effet Efimov pour un système "Léger-Lourd-Lourd"

Chaire Atomes et rayonnement Cours 2022-23 Jean Dalibard

http://pro.college-de-france.fr/jean.dalibard/index.html

courrier à : <u>listes-diffusion.cdf@college-de-france.fr</u> avec pour sujet : subscribe chaire-ar.ipcdf

Prochains séminaires

Vendredi 31 mars : To thermalize or not? Slow particle diffusion in Many-Body Localization Michael FLEISCHHAUER, University of Kaiserslautern-Landau, Allemagne

Vendredi 7 avril : Des doutes d'Einstein aux inégalités de Bell et aux technologies quantiques : la deuxième révolution quantique Alain ASPECT, Institut d'Optique-Université Paris-Saclay

Vendredi 14 avril : *Emergence of topological pumping in atom-light interaction* Tilman ESSLINGER, ETH Zürich, Suisse

I. Bouchoule (Palaiseau), T. Esslinger (Zurich), N. Goldman (Bruxelles), B. Huard (Lyon), L. Mazza (Orsay), A. Nahum (Paris)

Atelier "Open systems in Quantum Many-Body Physics", vendredi 14 avril, 14h00-18h00

Le problème *mMM*

Une particule légère m (par exemple ⁶Li ou ⁷Li) interagit avec deux particules lourdes M (¹³³Cs)

Variante plus simple du schéma initial d'Efimov qui considérait trois corps identiques

On néglige l'interaction MM Peut-on former un édifice lié à trois corps ?

Interaction effective
MM à longue portée :
$$V(R) \propto \frac{1}{R^2}$$

Le déroulement de l'approche adiabatique

Première étape : on fixe la position des particules lourdes en $\pm \mathbf{R}/2$

Quels sont les états propres et les énergies associées pour le mouvement de m dans cette configuration ?

Etat fondamental $E_0(R)$

Deuxième étape : on étudie le mouvement des particules lourdes en traitant $E_0(R)$ comme un potentiel effectif d'interaction

Le bilan de la première étape (cours 3)

Les trois cas étudiés :

a < 0

Energie de l'état fondamental de la particule légère *m* en présence des deux particules lourdes

Discussion en fonction de la longueur de diffusion a pour le problème à deux corps mM (interaction de contact)

$$|a| = +\infty$$

Pas d'état lié à deux corps mM

a > 0

un état lié *mM*

L'énergie de l'état fondamental de la particule légère

W(x): fonction de Lambert

Le programme pour ce cours

Le cœur dur en R_0 empêche une éventuelle "chute vers le centre"

Les particules M sont identiques. Elle peuvent notamment être

Recherche des états liés pour MM avec le potentiel d'interaction

 $V_{\text{eff}}(R) = E_0(R) \qquad \text{si} \quad R > R_0$ $V_{\rm eff}(R) = +\infty$ si $R < R_0$

• des bosons de spin nul (ou polarisés) : fonction d'onde spatiale symétrique $\Psi(-R) = \Psi(R)$ • des fermions polarisés : fonction d'onde spatiale antisymétrique $\Psi(-R) = -\Psi(R)$

Le problème "effectif" à deux corps MM

Problème invariant par rotation

 $\Psi(\mathbf{R}) = \psi(\mathbf{R}) Y_{\ell,m}(\theta,\varphi)$

Les canaux de moment cinétique autorisés pour des bosons ou des fermions polarisés $\begin{array}{c} R \rightarrow -R: \\ \varphi \rightarrow \varphi + \pi \end{array}$

Equation de Schrödinger pour la variable relative

 $Y_{\ell,m}(\pi - \theta, \varphi + \pi) = (-1)^{\ell} Y_{\ell,m}(\theta, \varphi)$

L'effet Efimov pour $|a| = +\infty$

1.

Le problème "effectif" à deux corps MM

Le potentiel total en $1/r^2$

Condition pour l'existence d'états liés

 $\frac{M}{2m} > \frac{(\ell + 1/2)^2}{\Omega^2}$

Particules M bosoniques : le canal de moment cinétique nul

Le spectre attendu pour des bosons ($\ell = 0$)

$$\alpha = \alpha \frac{\hbar^2}{MR^2}$$
 avec $\alpha < -1/4$ $\alpha = -\Omega$

→ nombre infini d'états liés formant une suite géométrique

$$\lambda^2 \qquad \qquad \lambda = \mathrm{e}^{\pi/|s_0|}$$

$$s_0 = \sqrt{\alpha + \frac{1}{4}} \in$$

$$\frac{M}{m} = 20 \Rightarrow$$

$$\lambda \approx 6.2, \ \lambda^2 \approx$$

Le cas des fermions polarisés

Le premier canal de moment cinétique autorisé : $\ell = 1$

- Résultat exact (au delà de l'approximation de Born-Oppenheimer) :

Un couple prometteur : ${}^{6}Li - {}^{171}Yb$ (pas encore testé expérimentalement)

Pour le canal suivant, $\ell = 3$, il faudrait M/m > 76 : pas réalisable en pratique sauf si m = 1 (hydrogène)

• Condition pour avoir un état lié (Born-Oppenheimer): $\alpha < -1/4 \Rightarrow \frac{M}{-} > 14$ т $\frac{M}{-} > 13.6$

2. Autour de la résonance : a < 0 et a > 0

$V(R) = -\frac{\hbar^2}{2m} \left| -\frac{1}{|a|} + \frac{W(e^{R/|a|})}{R} \right|$ Le cas a < 0 pour des bosons (canal $\ell = 0$)

• • •

Potentiel de portée finie : nombre fini d'états liés (contrairement au cas $|a| = +\infty$)

Le nombre d'états liés dépend de deux paramètres sans dimensions :

M	ot	a	
т	el	R_0	

Exemple : M/m = 20

- Pas d'état lié si $|a| < 11 R_0$
- Un seul état lié si $11R_0 < |a| < 73R_0$
- Deux états liés si $73R_0 < |a| < 455R_0$

Le spectre en énergie pour MM dans le cas a < 0

On choisit M/m = 20 ($\lambda \approx 6.2$) et on veut tracer les énergies \mathscr{E} en fonction de $R_0/|a|$.

Grande variation des seuils d'apparition des états

Choix de coordonnées logarithmiques

 $\lambda = \mathrm{e}^{\pi/|s_0|}$

liés:
$$\frac{R_0}{a} = -\frac{1}{11}, -\frac{1}{73}, -\frac{1}{455}, \cdots$$

Autre représentation graphique possible

On prend des coordonnées linéaires (et non logarithmiques), mais on "resserre" les niveaux

Tracé pour $M/m = 20 \Rightarrow \lambda = 6.2$

 $-|\mathscr{E}_n|^{1/4}$

unité d'énergie : \hbar^2/MR_0^2

La symétrie d'échelle

Nous allons montrer la relation générale

$$\mathscr{E}_{n-1}(a/\lambda) \approx \lambda^2 \mathscr{E}_n(a)$$

Deux cas particuliers importants :

• l'axe vertical $\frac{1}{a} = 0$

• l'axe horizontal $\mathscr{E} = 0$

$$V_{\text{eff}}(R) = -\frac{\hbar^2}{2m} \left[-\frac{1}{|a|} + \frac{W(e^2)}{|a|} \right]$$

Test de la symétrie d'échelle

 $\mathscr{E}_{n-1}(a/\lambda) \approx \lambda^2 \mathscr{E}_n(a)$

Excellent dès que $n \ge 2$

-0.2 $-\left(\lambda^{2n}|\mathcal{E}_n|\right)^{1/4}$

-0.4

0

-0.6

unité d'énergie : \hbar^2/MR_0^2

Le cas a > 0 pour des bosons (canal $\ell = 0$)

Potentiel de Yukawa : portée finie $\sim a$

- ħ² 2ma² Nombre fini d'états liés d'énergie
- Pour une énergie supérieure à cette limite, dissociation du trimère :

Le spectre en énergie pour MM dans le cas a > 0

Représentation en coordonnées logarithmiques

Exemple : pour M/m = 20 et $a = 100 R_0$, on trouve 4 états liés

Le spectre en énergie pour *MM* dans le cas a > 0 (suite)

Coordonnées linéaires "resserrées"

unité d'énergie : \hbar^2/MR_0^2

$$\left(R_0/a\right)^{1/2}$$

Test de la symétrie d'échelle dans le cas a > 0

On trouve comme dans le cas a < 0: $\mathscr{E}_{n-1}(a/\lambda) \approx \lambda^2 \mathscr{E}_n(a)$

unité d'énergie : \hbar^2/MR_0^2

Là aussi, loi bien vérifiée dès que $n \geq 2$

Bilan : courbes complètes

coordonnées linéaires resserrées unité d'énergie : \hbar^2/MR_0^2

Etats borroméens

M/m = 20

Les points remarquables

$$\frac{|a_{-}^{(n)}|}{a_{*}^{(n)}} = \text{fonction}(M/m)$$
$$\approx 40 \quad \text{pour } M/m = 20$$

Heidelberg, Chicago : mélange ⁶Li — ¹³³Cs $M/m \approx 22$

Florence, Boulder, Aarhus, Osaka : mélange ³⁹K — ⁸⁷Rb $M/m \approx 2$

Tübingen : mélange ⁷Li — ⁸⁷Rb $M/m \approx 12$

3. Expériences sur le cas mMM

La résonance de Fano-Feshbach ⁶Li—¹³³Cs

Photoassociation par une onde radio-fréquence : détermination précise de l'énergie du dimère en fonction du champ magnétique

$$|a| = + \infty$$
 pour le champ
magnétique $B = B_{res}$

Ulmanis *et al.*, NJP **17**, 55009 (2015)

Recherche des points $a_{-}^{(n)}$

Au voisinage des points $a_{-}^{(n)}$, fort taux de pertes par recombinaison à trois corps : Li + Cs + Cs libres résonnant en a_(n) trimère d'Efimov [Li-Cs-Cs] dimère fortement lié + atome libre

Pertes à trois corps dans un piège optique de Li et Cs

Loin de la résonance Li-Cs

Note: les atomes ⁶Li sont des fermions polarisés froids et le principe de Pauli réduit fortement les pertes Li-Li-Li

Proche de la résonance Li-Cs

Tung et al., Phys. Rev. Lett. **113**, 240402 (2014)

Détermination de $a_{-}^{(n)}$ pour n = 0, 1, 2

Mélange ⁶Li $-^{133}$ Cs : $B_{res} \sim 842.75$ G

Tung et al., Phys. Rev. Lett. **113**, 240402 (2014)

Nombre d'atomes

 $T = 800 \, \mathrm{nK}$

Bilan des mesures pour Li-Cs-Cs

Les interactions Cs-Cs sont-elles importantes ?

Petrov & Werner :

Heidelberg

Chicago

5.00 (1.24)(76)(46) Heidelberg
6.93 (1.50)(1.48)(97) Chicago

erreurs : statistique, systématique, calibration a(B)

calcul à la Born-Oppenheimer: $\lambda = 5.6$

 $a_{mM} = \infty, \ a_{MM} = 0: \quad \lambda = 4.88$

 $a_{mM} = \infty, a_{MM} = \infty : \lambda = 4.80$

4 Les trimères "universels" de Kartavtsev & Malykh

particules M : fermions polarisés

Retour vers les fermions polarisés (côté a > 0)

Canal de moment cinétique $\ell = 1$ pour assurer l'antisymétrie de la fonction d'onde relative

$$V_{\text{tot}}(R) = -\frac{\hbar^2}{2m} \left[\frac{1}{a} + \frac{W(e^{-R/a})}{R} \right]^2 + \frac{2\hbar^2}{MR^2} \qquad \qquad \ell(\ell+1) = 2$$

A courte distance ($R \ll a$), on a $V(R) \approx \alpha \frac{n}{M}$

• Pour $\alpha < -1/4$, i.e. $M/m \gtrsim 14$, effet Efimov

• Que se passe-t-il pour un rapport M/m inférieur à ce seuil ?

$$\frac{\hbar^2}{R^2} \text{ avec } \alpha = -\frac{M}{2m}\Omega^2 + 2$$

Fermions MM polarisés sous la valeur seuil $M/m \approx 14$

Au voisinage de R = 0, $V_{tot}(R) \approx \alpha \frac{\hbar^2}{MR^2}$ avec $\alpha > 0$

Mais possibilité d'un minimum local pour M/m > 5

Y a-t-il un ou plusieurs états liés mMM dans ce minimum de potentiel?

Pas de chute vers le centre, inutile d'introduire un cœur dur en R_0 : situation "universelle"

Les résultats de Kartavtsev & Malykh pour le système *mMM* (2007)

M : fermions polarisés, avec la paire MM dans le canal de moment cinétique $\ell = 1$

"Universel" : la connaissance de M/m et de a est suffisante pour caractériser le trimère (pas de R_0)

Interaction de contact pour mM avec une longueur de diffusion a > 0

Un couple candidat : ⁶Li — ⁵³Cr (M/m = 8.8)

Conclusions

Le cas *mMM* peut être traité quasi-analytiquement pour une interaction de contact *mM* et il révèle les principales caractéristiques de l'effet Efimov :

- Série infinie d'états liés pour $|a| = +\infty$: loi d'échelle pour les énergies
- Etats liés en nombre fini du côté a < 0états borroméens
- Etats liés en nombre fini du côté a > 0compétition entre le trimère et le dimère mM

Premiers tests expérimentaux précis des lois d'échelle

