Programming and proving distributed systems
with
bersistent data structures

“KC” Sivaramakrishnan

[T

N
z i~
<\)
ON 5 AN
78 - ‘;.
ety 7

/) Tarides

Collaborative Apps

»>g Airtable E gFigma @Notion 6verleaf
Google Docs

Network Partitions

»>g Airtable E gFigma @Notion 6verleaf
Google Docs

Network Partitions — Google docs

() Saving

You cannot edit offine because offline sync is enabled for another user, kaycee.srk@gmail.com

Enabling offline sync for one account prevents other
accounts from working offline

Local-first software

% Airtable E #Figma [N]Notion Bverleat

Google Docs

Local-first software

% Airtable E #Figma [N]Notion Bverleat
Google Docs

How do we build such applications?

Make data types aware of replication

CRDTs

e Conflict-free Replicated Data Types (CRDTs)

+ Multiple replicas of the data types
e Supports local operations

e Share updates asynchronously and ensure convergence

+ Strong eventual consistency

[I] Nuno Preguica et al. “Confict-free Replicated Data Types”, arXiv:1805.06358

https://arxiv.org/abs/1805.06358

Grow-only Set

e Supports add and lookup operations

add(3)

1

1

1

1

1 .
1 ¢'

, U

L 4
L d
L d
L d
L d
m

add(4)

L 4
L 4
L 4
L 4
L 4
L d
L 4
L 4
L 4

A set with only add and lookup is monotonic

Include remove operation

e [et’s include remove operation

+ No longer monotonic

rem(1)

The effect of remove is lost

Iwo-phase set

e Represent the set with a pair of sets to track additions and
removals — A * R

+ Lookup is performed inA /R

+ Merge is pair-wise union of A and R sets

rem(1l)

Uty
lookup (12 False

Two-phase set — Observations

l rem(1)

¢ Monotonic — Simulate remove with adds

e Remove-wins semantics

® Reengineer the set implementation

¢ Tombstones — elements removed by adding to R set!

® Removed elements gone forever

Challenges with CRDTs

e Monotonicity forces reengineering of data structures from scratch
+ Challenges proving correctness of even sequential operations

¢ Not space and time-efficient
+ Tombstones affect time- and space-efficiency

e [ittle attention has been paid to composition of RDTs

+ Parametric polymorphism for RDTs

% Like to compose 'a set witha counter toget counter set

+ How to compose proofs of correctness?

Can we do better?

Sequential data types
+

Git

Distributed Version Control Systems

Lowest common
ancestor (LCA)

Mergeable Replicated Data Types

e MRDTs — DVCS for data types rather than just text files

+ Branches are replica states

e Sequential data type + 3-way merge = replicated data type!

Counter MRDT

Counter : sig

t

read : t int

add : t int t

mult : t int t

merge : lca:t vli:t v2:t t
end struct

t o= int T T
read x = X x”}<
add x d = x +d T ——
mult x n = X * n
merge
lca + (vl - lca) + (v2 - lca 22 =7 + (8-7) + (21 -7)

end +1 +14

Set MRDT

let merge ~lca ~vl ~v2 =
(lca n vl n v2) (% common elements %) isomorphic to counter

u (vl - lca) (* added in v1 x) merge if you squint
u (v2 - lca) (* added in v2 x)
{1,2} {1,2}

rem(1l)

-
-
4
-
-
L d
-
-
'4
-

m The effect of remove is lost

Set MRDT

let merge ~lca ~vl ~v2 =
(lca n vl n v2) (*x common elements x)
u (vl - 1lca) (x added in v1)
u (v2 - lca) (x added in v2 x)

Ica

V2
vi

{2} (% common)
U {} (x added in v1)
U {} (% added in v2 x)

v No tombstones
v Local operations are efficient

v' Removed elements can be
added back

Set MRDT — Add after Remove

Ica

add(1)

V2

vi lIIIIE!III'
{2} (% common x) m
U {} (% added in v1 x)

U {1} (x added in v2 x)

MRDTs and Causal History

e How did we get away with no tombstones in MRDT set?
e Tombstones in CRDTs record history

® Git records the causal history in MRDTs!

+ Presented via LCA in 3-way merge

e How does Git keep track of causal history efficiently?

Persistent Data Structures

Git store

- .~

Blob
. Tag store : Block store
® Branches / tags ® Stores the files under version control
e Mutable ® |mmutable, append-only & content addressed

® hash — object

Block store and persistence

Added original k
J Third Commit ba y .
/text.txt at new.txt
1a410e
/bak/teXt.tXt “teSt.tXt”

“Version 2”

IRWEYE
“test.txt”’

Added /new.txt Second Commit
Modified /test.txt

cac@ca “new.txt” " "
NEYAIE

fa49b0

First Commit Tree “Version |”’

fdf4fc d8329f

Added /test.txt “test.txt”

83baae

Example from Pro Git book: https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

lrmin store

o A Git-like distributed database

e MRDTs are executed on top of Irmin

Block store

--

Immutable, content-addressed

Persistent algebraic data types: , :
Kaki et al,““Mergeable Replicated Data Types”,

Stacks, Queues, Ropes, Balanced binary
trees, etc. OOPSLA 2019

Commit DAG

e Commit nodes form a DAG

+ Captures causal history = Happens-before

relation

e MRDTs provide causal consistency

+ Strongest consistency level without
coordination

e | CA discovered by traversing the
commit DAG

Forgetting History

¢ Git remembers the entire history
+ Useful if provenance is necessary
¢ [f not, keeping entire history is wasteful
+ Nodes will run out of storage quicker
e But, history needed for LCA in a 3-way merge

® How much history should we keep?

® Any commits older than the latest commit “K” known by all replicas
can be GCed

Dubey et al,“Banyan: Coordination-free Distributed
Transactions over Mergeable Types”, APLAS 2020

Dubey, “Banyan: Coordination-free Distributed
Transactions over Mergeable Types”, MS Thesis, IIT Madras

MRDTs = Sequential data types + 3-way merge

Does this make proving MRDTs correct easier?

Is our set an add-wins set!

e add-wins when there is a concurrent add and remove of the
same element

e Also known as Observed-Removed set (OR-set)

merge ~Lca ~vl ~v2

lca n vl n v2) (*x common elements x)
u (vl - lca (x added in v1 x)
u (v2 - lca (x added in v2 x)

add(1) rem(1)

Il (x common elements x)
u{} (x added in v1 x)

u{} (x added inv2 %) | T

-

={rutoly T
= {} (expected {1}) v T

e (Qur set is not add-wins set!

e Convergence is not sufficient; Intent is not preserved

28

Concretising Intent

e A formal specification language to capture the intent of the
MRDT

+ Must be rich enough to capture distributed execution

e Even simple data types attract enormous complexity when made
distributed

_ Lindsey Kuper
‘ @lindsey

"Oh, you wanted to *increment a counter*?! Good luck
with that!" -- the distributed systems literature

12:25 AM - Mar 10, 2015 - Twitter Web Client

375 Retweets 18 Quote Tweets 614 Likes

e Mechanization to bridge the gap between spec and impl

Peepul — Certified MRDTs

&
F* library implementing and proving MRDTs £ é’a Q%
o @ P N w

* F* — proof-oriented, solver-aided PL B 5w @ ety
L4 ,@d
Specification language is event-based
* Burckhardt et al.“Replicated Data Types: Specification,Verification and Optimality”,
POPL 2014
Replication-aware simulation to connect specification with implementation

Space- and time-efficient implementations

* |st certified implementation of a O(l) replicated queue with O(n) merge.

Composition of MRDTs and their proofs!

Extracted OCaml RDTs are compatible with Irmin

30

Fixing Add-wins Set

e Discriminate duplicate additions by associating a unique id

{ } U (* common)

{ (a,2) } u (% added left)

{} (* added right x)

= { (a,2) } add(a) rem(a)

. .
. .
. .
. .

. .

. .

. .

. .

. .

. .

3 .

3 .

. .

3 .

- *

LR o*

.
RN

3

L)

Y
* L4
. .
. L4
. .
. 3
A4 .
. «
. -
. .
A .
A4 .
. ‘e
. -

31

L oEh o R N R~

MRDT Implementation

D, = (X, 09,do, merge)

: Z‘-‘-p(NXN)

Unique Lamport Timestamp
oo = {}
do(rd, o, t) =\(o,{a | (a,t) € a})

do(add(a),c t) = (o U {(a,t)}, L)
do(remove(a),o,t) = ({e€ o | fst(e) #a}, L) | 7 "™

v . A v
merge(o'lca, Oay Ob) =
(alca N Oq a ab) U (aa o Ulca) U (ob v alca)

32

Specifying Add-wins Set

Abstract state [= (E, oper, rval, time, vis)

rem(a)

Forset (rd, (E, oper, rval, time, vis)) = {a | e € E. oper(e)

vis

= add(a) A =(3f € E. oper(f) = remove(a) Ae — f)}

33

Simulation Relation

e Connects the abstract state with the concrete state

e For the add-wins set,

Riim(I,0) & (V(a,t) €0
(de € LE AL oper(e) = add(a) A L.time(e) =t A

vis

~(3f € LEA L oper(f) = remove(a) Ae — f)))

e The main verification effort is to show that the relation above is
indeed a simulation relation

* Shown separately for operations and merge function

* Proof by induction on the execution trace

34

Verifying operations

Verifying Merge function

1[,-,, (7},

T‘ I
\ ' ' ',"‘ '
R s I \ ’ R Sim ,""/ | R S
[;

\“ “‘\ ' { "/ “T " . : T . "-' "“",l
\ ‘ /
\ ‘ ’R, q ." m /

Y

merge i | 1, . 1/.)

Verifying Merge function

Verifying Merge function

Verification effort

MRDTs verified #Lines code #Lines proof #Lemmas Verif. time (s)
Increment-only counter 6 43 2 3.494
PN counter 8 43 2 23.211
Enable-wins flag 20 58 3 1074
81 6 171
89 7 104
LWW register 5 44 1 4.21
G-set 10 23 0 471
28 1 2.462
33 2 1.993
G-map 48 26 0 26.089
Mergeable log 39 95 2 36.562
OR-set (§2.1.1) 0
1
2
OR-set-space (§2.1.2) 7
OR-set-spacetime 7

~3
-

Queue 32 1123 4753

39

Composing RDTs is HARD!

Martin Kleppmann
@martinkl

Today in “distributed systems are hard”: | wrote down
a simple CRDT algorithm that | thought was “obviously
correct” for a course I’m teaching. Only 10 lines or so
long. Found a fatal bug only after spending hours trying
to prove the algorithm correct. <&

4:18 AM - Nov 13, 2020 - Tweetbot for iOS

41 Retweets 4 Quote Tweets 541 Likes

Martin Kleppmann @martink! - Nov 13, 2020

The interesting thing about this bug is that it comes about only from the
interaction of two features. A LWW map by itself is fine. A set in which you
can insert and delete elements (but not update them) is fine. The problem
arises only when delete and update interact.

O (R Q 16 J,

40

Composing IRC-style chat

e Build IRC-style group chat

* Send and read messages in channels

e Represent application state as a map MRDT

* String (channel name) keys = mergeable log MRDT values

* Mergeable log — message + timestamp; merge ordered by timestamp
® Goal:
*x map and log proved correct separately

*x Use the proof of underlying RDTs to prove chat application
correctness

41

Generic Map MRDT

Implementation
Dy—map = (2, 0y, do, merge,_map) Where
o Zg-map = P(string X Z,) > The values in the MRDT map are MRDTs
2: Jy = {}
¢ Mok = {o(k), if k € df)m(o)
oo,, otherwise

4: do(set(k,0,),0,1) =
let (v,r) = doy(04,0(0,k), t) In (o|k — v],r)
5: do(get(k,o0.),0,t) =
let (,r) =dog(0q 6(0, k), t) in (o, 1)
6: mMergeu—map|Gica, Ca, Ob) =
{(k,v) | (k € dom(o.5) U dom(a,) U dom(op)) A Merge uses the merge of the
0 = mergeq(8(01eq k), 8(0a, k), 8(cp,k)) — underlying value type!
Simulation Relation
RSHN—((—"]GP(L o) < Vk.
1: (k € dom(c) <= e € LE. oper(e) = set(k,_)) A
2. Rsim-a (project(k. I), 6(oc,k))

\ Simulation relation appeals to the
value type’s simulation relation!

42

Composing IRC-style chat

e |[RC app state is constructed by instantiating generic map with
mergeable log

e The proof of correctness of the chat application directly follows

from the composition.

x S tor details! Soundarapandian et al,“Certified Mergeable
ee paper for details! popjicared Data Types™, PLDI 2022

Verification is still too hard!

MRDTs verified #Lines code #Lines proof glemmas Verif. time (s)
Increment-only counter 6 43 2 3.494
PN counter 8 43 2 23.211
Enable-wins flag 20 58 3 1074
81 6 171
89 7 104
LWW register 5 44 1 4.21
G-set 10 23 0 4.71
28 1 2.462
33 2 1.993
G-map 48 26 0 26.089
Mergeable log 39 95 2 36.562
OR-set (§2.1.1) 30 36 0 43.85
41 1 21.656
46 2 8.829
OR-set-space (§2.1.2) 59 108 7 1716
OR-set-spacetime 97 266 7 1854
Queue 32 1123 75 4753

44

Queue MRDT — Implementation

® Two-list queue + merge function

e “At least once” semantics for dequeue

® Fach element e enqueued is (e, t) where t is the unique Lamport
timestamp

LCA

dequeue
dequeue
enqueue(6)

enqueue(7) Timestamps not
shown for simplicity

dequeue
enqueue(8)
enqueue(9)

[3,4,5,6,7,8,9]

Queue MRDT — Specification

match;(e;,e;) © I.oper(e;) = enqueue(a)

A L.oper(e;) = dequeue A a = IL.rval(e;)

e AddRem(I) :Ve € I.E. I.oper(e) = dequeue A
I.rval(e) # EMPTY = 3e’ € I.E. matchj(e’, e)

o Empty(I) : Ve, ey es € I.E. I.oper(e,) = dequeue A
I.rval(e;) = EMPTY A ILoper(e;) = enqueue(a) A

l.vis l.vis
€) —m €1 == 363 € I.E. match,(ez,eg)/\e3 — €1

e FIFO:(I):Vey, ez e3 € I.E.Loper(e;) = enqueue(a) A

I.vi
matchy(ey, e3) A e; Coaaden” e, = ey € I.E. matchj(ey, e4)

e FIFO,(I): Vey, ey, e3,e4 € I.LE. ~(match;(ej, eq) A

I.vis [.vis
match(es, e3) A eg — e; A e3 — ey)

e Extremely hard to write specs over event-based structures

e Simulation relations are harder

Better Specification

e Sequential data type + constraints as the specification for MRDT

+ Constraints — ordering, commutativity, duplication, ...

+ MRDT behaviour = constrained linearisation + Sequential DT

Add-wins set

ordering
constraint

Op1

add(a)
rem(a)
add()
rem(_)
add(a)

rem(a)

Op2
rem(a)
add(a)
add()
rem(_)
rem(b)

add(b)

Order

Op2, Opf1

Op1, Op2

Any
Any
Any

Any

WORK

IN PROGRESS
\ | o | e J/

Summary

e MRDT simplify the construction of RDTs
+ Sequential data types + 3-way merge functions

e Persistent data structures to efficiently record causal history

e 3-way merge function is a pathway to verifying MRDTs

