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Seminar (11h30): Giuseppe Carleo
Time-Dependent Neural Quantum States

Time-Dependent Neural Quantum States

) Giuseppe Carleo
(Ecole Polytechnique Fédérale de Lausanne)

In this presentation | will discuss how neural-network based representations of the many-body wave
function can be used to study unitary dynamics of many-body quantum systems. | will first derive the
general framework, introducing the time-dependent variational principle in the formulation of
McLachlan and Dirac-Frenkel. | will then introduce and discuss stochastic approaches to solve the
resulting equations of motion, in the framework of the time-dependent Variational Monte Carlo
method. Applications to the exploration of out-of-equilibrium properties of two-dimensional spin
systems will be discussed. The generalization of these methods to other types of dynamics,
including general quantum circuits, and dissipative dynamics, will be also presented. | will show
applications to the classical simulation of quantum algorithms and of measurement-induced
dynamical phase transitions.
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Remi]

nder: Measurement in

Quar

tum Mechanics

 Consider an observable to which we associate an Hermitian operator
O (e.g spin along some axis: one of the Pauli operators)

e Spectrum of eigenstates of O: O|wz> — wz’|wi>

* Postulate: If the system is in a (hormalized) pure state, the result of a

measure of O yields one of its eigenvalues w; with probability:

p(wi) = [(wil)]”

* Postulate (collapse of the state - “"réduction du paquet d’onde’’):

After the measurement the system is in the new projected state:
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If the system is in an ensemble of states described by a density matrix:

= Z Da |¢a> <¢a’ (in the basis where it is diagonal)
(87

The result of a measurement has probability (‘Born rule’):
plw;) = tr (Eﬁ)
=D _Pa|{wilta)

Average value of O obtained in repeated measurements:

(0) =3 pa Y _willwilta)? = tr (0)



VOLUME 70, NUMBER 9 PHYSICAL REVIEW LETTERS | MARCH 1993

Measurement of the Wigner Distribution and the Density Matrix of a Light Mode Using
Optical Homodyne Tomography: Application to Squeezed States and the Vacuum

D. T. Smithey, M. Beck, and M. G. Raymer
Department of Physics and Chemical Physics Institute, University of Oregon, Eugene, Oregon 97403

A. Faridani
Department of Mathematics, Oregon State University, Corvallis, Oregon 97331
(Received 16 November 1992)

We have measured probability distributions of quadrature-field amplitude for both vacuum and
quadrature-squeezed states of a mode of the electromagnetic field. From these measurements we
demonstrate the technique of optical homodyne tomography to determine the Wigner distribution and
the density matrix of the mode. This provides a complete quantum mechanical characterization of the
measured mode.

PACS numbers: 42.50.Dv, 42.65.Ky

First appearance of Tomography’ in the context of quantum systems
(according to Wikipedia...)



What is Quantum State Tomography?

 We want to reconstruct the quantum state of a system — the
wavefunction if we know that the system is in a pure state or
more generally the density matrix — using the result of
measurements

e Repeated projective measurements will allow to estimate the
probabilities (assuming that the density matrix stays constant
during the measurement process...):

pi = tr (ﬂzﬁ)
* For some numbers of operators

e Positive Operator-Valued Measure (POVM): it is convenient to
chose the set of operators we measure to form a POVM — an
ensemble of positive semi-definite operators M, such that:

> M; =1



QST by direct inversion

e Reconstruction by direct inversion:
p; = tr (Mz ,5)

e Can be viewed as a system of linear equations. The density
matrix invoves (Dy)? complex numbers hence we need a priori
to measure (Dy)? probabilities (-1 overall normalization)

* For N qubits: need to make 2?N sets of repeated
measurements

* Exponential cost!

* |In practice, this method does not guarantee that the
determined density matrix is positive (see below for an
example)



Example: tomography of a single qubit

* Density matrix: positive semi-definite, Hermitian,
unit trace:

p=p", trp=1, Yu ,(ulplu) >0, A >0
* General parametrization for a single qubit’:

. .o L T4p3  p1+ips
= —|I4+p-0] = = . :
P 2[ 2 (Pl—ZPQ 1 —ps3

2
1
R, P, =3 (1£V7P)
* Pure state:

p=10)| & =p & F =1

0 0 .
) = cos |+) + sin iew |—) , p'= (sinf cos p, sin @ sin p, cos H)



The Bloch Sphere

Pure States have:

[P]]=1
and hence live
on the surface of the sphere.

Otherwise interior
of the sphere:

[P <1 10) + |1)
vz

6 .0
ly) = cosEIO) - e“psm-z—ll)



Single qubit: measurements

 Measure a specific polarization (think of photons)
specified by a unit vector n

* Prepare N, qubits identically and measure n.o

N} N N — Ny

pa(1) 0 (it 3) =

CNI NPT T NI N N+ Nk

* Allows one to determine the component of the vector p
along n: (i-0)=tr(R-0p)=n-p

* We need to measure along 3 non-collinear directions

* Note: this in fact corresponds to 6 projective
measurements (hence overcomplete) —a POVM with 4
independent operators is actually enough



Issues with direct inversion

* For a finite set of measurements {N., N7, NJ, Nj, NI, N¥}
* The reconstructed density matrix:

is not necessarily positive semi-definite:

NT — N} N} N}
TN T MITNNE T TN
* Probability of a measurement:

N, NT Nt [N, N} N}y (N NI Nt
T vt vt TN — T z Ve Yy Y z z 'z

Pi

* For 30 measurements along each direction, the probability
of an unphysical density matrix is 3.10” for a system with
p=1d/2, but it is 98% for the pure state |z> !

e cf. R.Schmied Quantum state tomography of a single
qubit:comparison of methods, J. Mod Optics, 2016

arXiv:1407.4759



QST with other methods than NNs (cont’d)

e Several methods have been proposed such as:

 'Maximum Likelihood’ (Hradil, PRA55, R1561
(1997)) maximizes cost function subject to
positivity constraint

* ‘Compressed sensing’ Gross et al. PRL 105, 150401
(2010) Reconstruction of density matrix of
dimension D and rank r using O(rD log?D)
measurements

* Etc.



QST with NNs: Three articles discussed in
some details in this lecture

nature RAWLLSN  [Torlai et al. 2018]

phy SICS https://doi.org/10.1038/541567-018-0048-5

Neural-network quantum state tomography

Giacomo Torlai'?, Guglielmo Mazzola ©3, Juan Carrasquilla*®, Matthias Troyer®¢, Roger Melko'?
and Giuseppe Carleo®’*

[Torlai et al. 2019]
PHYSICAL REVIEW LETTERS 123, 230504 (2019)

Integrating Neural Networks with a Quantum Simulator for State Reconstruction

Giacomo Torlai ,1’2’3 Brian Timar,‘1 Evert P.L. van N icuwenburg,‘1 Harry Levine,5 Ahmed Ornran,5 Alexander Keesling,5
Hannes Berr‘lien,6 Markus Greiner,5 Vladan Vulet.ié,7 Mikhail D. Lukin,5 Roger G. Melko,z’3 and Manuel Endres*

PRX QUANTUM 2, 040201 (2021)

[Carrasquilla-Torlai 2021]
How To Use Neural Networks To Investigate Quantum Many-Body Physics

Juan Carrasquilla' and Giacomo Torlai®?*"



QST with a RBM for a ‘stoquastic’

amiltonian

e Stoquastic Hamiltonian: sum of operators such that in some
basis all off—dlagonal matrix elements are negative or zero

H ZHa 3 z;éjgo

. Slmulatlng H is sign-problem free

A S.Bravyi, 2015

* The Boltzmann weight IS @ non-negative matrix:

e PH =1 BH + = (6H)

lim e PH = | W) (T

B—00

Example:
Transverse Field Ising Model

JY S7S; Z (h > 0)

(i7)

* Hence up to a global phase, the ground-state has non-

negative amplitudes




QST/RBM — stoquastic system in a pure state

Assume that the system is in a pure state
(generalization to density matrix with RBMs: Torlai and Melko, PRL 2018)

RBM parametrization: |\Ife Z \ pe ! ; 81, 73N)

So here, we need to determine “only’ 2N positive real numbers and hence
we can limit ourselves to measurements in the computational basis |s>

1 . Hidden units
Peo (37 h) — Z— 621 aisitd; bihitais; Wijsihg Visible units AP
9 1=-4,
S,=-1,1>
0 = {ai, bj, Wi} b;
p@(s) — E :p9(87 h) SN=-1’19
h & hy=-1,1
H
]. ZN oy
= Z—€ i=1 "o H 2 cosh bj —+ E Wz’jSz
0 j=1 i




Measurements dataset D is generated according to the (unknown)
probability distribution g(o) associated with the true state
of the system. Kullback-Leibler divergence:

Dxuw(qlpe) = Z q(s

Dx1,(qlps) ~ Z In

JED
Z Ing(o) — — Z In pg(o
JED JED

Hence we have to minimize the cost function (second term only):

= —— Z Inpy(o

JED




Because the normalization matters, the computation of gradients require
some care. |
Notations:  py(s) = —eP()

Zg
N H
Ey = Zaisi + Zln 2 cosh©;(s)]
i=1 j=1

0;(s) = b + > _ Wijs;

Gradient:
1 1
VQ lnpg(O') = VQEQ(O') — Z—e ;V@EQ(S) Z—QGEG(S)
Vo 1I1p9((7) — VQEQ((T) — <V9E9>p9
1
VoC(0) = Y VoEy(s) — D] Y VoEg(0)
s/po(s) ceD

The second term is just a sum over the dataset, but the first one requires Monte Carlo
sampling over configurations (s) generated by the RBM



Reminder — RBM: Explicit
expression of the gradients

Ey = ZCL@S@ + Zln |:2 cosh (b] + Z SzWZ]>:|

- Ea({s}) = s

s,
8_bjE9 = tanh ©,({s})
0

8Wij

Eyp = s; tanh ©;({s})



Natural Gradient Descent — Metric
Tensor (Reminder from Lecture 1)

Using the KL divergence as a (pseudo-) distance in parameter space:

Olnpy(o) dlnpy(o)
Jim = yD| Z 90, 90,

_1VQC
€
V(VoClg=1VeC)




Illustration on a model pure state
(from Torlai et al 2018)

1
) = = {[10:+-0)+]01---0) + - +]0---01)}

"Measurement’ dataset generated by generating N, random samples from this state

a — S—
10f= == =

© RBM, - N=20
@ RBM, - N=40
@ RBM, - N=80

102 10° 104
NS

Reconstructed distribution over configurations
and overlap as a function of number of samples in dataset



Application to an array of Rydberg
atoms (TFIM)

For a recent review of Rydberg atoms arrays, see:

REVIEW ARTICLE nature
https://doi.org/10.1038/541567-019-0733-z thSICS

Many-body physics with individually controlled
Rydberg atoms

Antoine Browaeys ©* and Thierry Lahaye

Recent decades have witnessed great developments in the field of quantum simulation—where synthetic systems are built and
studied to gain insight into complicated, many-body real-world problems. Systems of individually controlled neutral atoms,
interacting with each other when excited to Rydberg states, have emerged as a promising platform for this task, particularly for
the simulation of spin systems. Here, we review the techniques necessary for the manipulation of neutral atoms for the purpose
of quantum simulation—such as quantum gas microscopes and arrays of optical tweezers—and explain how the different types
of interactions between Rydberg atoms allow a natural mapping onto various quantum spin models. We discuss recent achieve-
ments in the study of quantum many-body physics in this platform, and some current research directions beyond that.

Also: Wu et al. arXiv:2012.10614 (Chinese Phys. B, 2021)



Rydberg atom: Highly excited state with very high principal quantum number

Large radius of electronic orbital (remember: radius scales as n?)

a b c
E
A/Ecs/ﬁ6

,,,,, 5 2
" o000
X ® 0 0, h @
3 ; ” 0.0.00 @00
——In ) v, R;/ //O
Q V2 : © 0 0o0
9 ; Y e ¢ 0 @
g 199 e 0eeeee

Hb

The Rydberg blockade. a, The ground and Rydberg states |g) and |r)
are coupled by a resonant laser with Rabi frequency . b, For two
atoms separated by a distance R < R,, the collective ground state |gg)
is coupled only to [y ) = (|gr) + |rg))/v/2, but not to |rr), which is
shifted out of resonance by the van der Waals interaction U, . €, In a
large ensemble of atoms, for example a regular array with spacing a,
an atom excited in |r) (red dot) prevents the excitation of all the atoms
contained in a sphere of radius R,.

Two Rydberg atoms - Browaeys and Lahaye, Nat Phys(2020)

Electronic orbital n=12
(from Wikipedia)

Quantum information
with Rydberg atoms
Lukin and coworkers

PRL 85, 2208 (2000);
PRL 87, 037901 (2001)
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Fig. 1| Experimental platforms for realizing arrays of individually controlled neutral atoms. a, In a quantum gas microscope, a high-numerical-aperture
(NA) objective is used to observe the fluorescence of ultracold atoms trapped in an optical lattice obtained by interfering several laser beams. To achieve
a filling of exactly one atom per site, one drives the superfluid-to-Mott-insulator transition®“. b, In the tweezer array platform, an SLM imprints an
appropriate phase on a trapping beam before focusing with a high-NA lens, resulting in arrays of traps with almost arbitrary geometries™. Single, laser-
cooled atoms are loaded in the optical tweezers from a magneto-optical trap, resulting in a random loading array at half filling, which can be actively
reordered into a target array using a moving optical tweezers®'. Bottom: single shot fluorescence image of an array of traps before and after assembly.

¢, Alternatively, in one dimension, the tweezers can be generated using an acousto-optic deflector fed with multiple radio-frequency tones, which

allows rearrangment of the atoms in a single step*. Panels adapted from: a, ref. **, Springer Nature Ltd; b, top, ref. ** under a Creative Commons licence
(https://creativecommons.org/licenses/by/3.0/); b, bottom, ref. %%, AAAS; ¢, ref. %, AAAS.



Hamiltonian for atoms placed in the

same Rydberg state:
Transverse field Ising model (TFIM)

Effective spin-1/2 degree of freedom on eachsite: |g) = | |) , |r) = | 1)

~ 1 Nz A A 06
;= -(1+S57), nlg) =0 ,0|r) =1|r) Vi; = —¢
2 Rij

H = @st — R0y A+ Y Vijhiy

2

Tttt 1

Detuning r-r
(energy difference Interaction

Betweengandr) (Rydberg
blockade)

If two different Rydberg states: XY model + fields

Rabi drive



Article

Quantum simulation of 2D antiferromagnets

withhundreds of Rydbergatoms

https://doi.org/10.1038/s41586-021-03585-1

Received: 21 December 2020

Accepted: 27 April 2021
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Fig.1|Emergence of AF ordering fromthe Rydbergblockadeinsquare and
triangular arrays. a, lllustration of the Rydbergblockade with two atoms,
whereby the strong interactions prevent the simultaneous excitation of two
atoms fromthe groundstate (red circles) to the Rydberg state (blue circles)
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Pascal Scholl'*®, Michael Schuler®®, Hannah J. Williams'¢, Alexander A. Eberharter®S,
Daniel Barredo'®, Kai-Niklas Schymik’, Vincent Lienhard', Louis-Paul Henry®,
Thomas C. Lang®, Thierry Lahaye', Andreas M. Liuchli® & Antoine Browaeys'
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withintheRydbergblockade radius R, at which U=h0Q. b, ¢, Single-shot
fluorescence images of groundstate (|V)) atomsinal4 x 14 square array (top)
and al47-atomtriangular array (bottom) with an atomic separation of
a=10pum.b, Initial PM states. ¢, Nearly perfect AF ordering.
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are obtained with 2.5% probability. ¢, Growth of the staggered magnetization
duringthe sweep for the 6 x 6 array (left) and the 10 x10 array (right). The blue
circlesare experimental results with standard errors on the mean smaller than
the markersssize. The error bar on the final pointisindicative of the long-term
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Scholl et al. Nature 2021



Tomography for an array of Rydberg

atoms (TFIM) with simulated data

After Carrasquilla and Torlai PRXQ 2021 (code walk-through
using NetKet); see Torlai et al 2018 for first study of TFIM

Define Hamiltonian: square L*L array L=8 (64 sites), (V,Q,6)=(3,1,2)MHz
from mpid4py import MPI
import netket as nk

# Rydberg Hamiltonian parameters
L =28 # linear size

V= 3.0 # Van der Waals interaction
Omega = 1.0 # Rabi frequency
delta = 2.0 # detuning



# Neural -network wavefunction
rbm = nk.machine.RbmSpinReal (hilbert=hilbert,
alpha=1)
Density a = H/L?
# Monte Carlo sampler
sa = nk.sampler.MetropolisLocal (machine=rbm)

# Optimizer
op = nk.optimizer.AdaDelta(rho=0.95, epscut =
1.0e-7)

# Initialize tomography object
gst = nk.(Qsr(

sampler = sa,

optimizer = op,

n_samples_data = 1000, Number of training samples (data)
n_samples = 2000, Number of Metropolis generated samples
rotations = rotations, tocomputethe gradientsateach step
samples = samples,

bases = bases, No basis rotations

sr = None) (TFIM is stoquastic)

[Carrasquilla-Torlai PRXQ 2021]



# define observable for measurements

H = generatehamiltonian(hilbert, L, L, V, Omega,
delta)

qst.add_observable (H, "H")

# run quantum state tomography
for ep in qst.iter (epochs):
obs = gst.get_observable_stats ()

FIG. 4. Quantum state tomography of an 8 x 8 array of Ryd-
berg atoms with unsupervised learning of single-shot atomic
occupation data. We compare various observables measured
using the MPSs obtained from DMRG (black line) and the
neural-network wave functions learned from data generated at
different values of the detuning §. We plot the average energy
per spin (a) and the average magnetization along the z axis (b)
and x axis (c). The inset in (a) shows the relative error in the
energy €. = |Ergm — Epmrgl/|Epmrg- Error bars estimated via
standard deviations are too small to be visible.

[Carrasquilla-Torlai 2021]
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General case (not stoguastic):
Reconstructing the amplitude and
phase

Parametrize both amplitudes and phase with two separate RBMs with
real parameters (Torlai et al., 2018):

Po(s) = /pe(s) e &2 1 g (s) = Inpy (s)

Or use complex biases and weights in the RBM (Carrasquilla and Torlai 2021)

We now need measurements in several bases (see above) and define
the cost function (for each RBM) as

-3 X o)
D] b‘ ) eDy,

To compute the gradients and metric, the NN wavefunction must be rotated

to each basis according to: we (b) ZUb S, S< ) we( )



Torlai et al., Nat Phys 2018
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Rydberg arrays: tomography from

experimental data Torlai et al. PRL 123,
230504 (2019) w/ M.Lukin’s group

Zs ordered

3

FIG. 1. Experiment and reconstruction. (a) Model of the
reconstruction process. Individual 8’Rb atoms (gray circles) are
trapped in an array of optical tweezers and coupled to a Rydberg
state with Rabi frequency €. Site-resolved fluorescence imaging
provides imperfect measurement in the 6° basis. Our neural-
network model describes the true quantum state as a RBM (blue
and green neurons), while the binary data 7 accessible to the
experimentalist are included as an auxiliary “noise” layer (red
neurons). By training on this data, the network learns parameters
A describing the experimental quantum state, which are sub-

~

sequently used to compute observables (O). (b) Representation
of the ordered state at the end of the adiabatic sweep; see Eq. (2).



Measurement errors are taken into
account by adding an intermediate layer

Figure 1. Three layer model. Schematic for how noise-
corrupted data is modeled using a three-layer graph. The
upper two layers h, o constitute an RBM with trainable pa-
rameters A, which defines a distribution p, (o) over the uncor-
rupted variables o upon tracing out the hidden units h. The
corrupted distribution is obtained through the noise process
p(T|o) as pa(7T). The noise process is indicated here by ar-
rows which link uncorrupted and corrupted variables at each
site.

Torlai et al. PRL 2019

p(r|o) = Z

let.r,-a'-i-l;.r'r%-ﬁ/o'-r

W — 10g PAILP(OI0)  conditional
p(110)p(0[1) probabilities

- p(0[1) :
boi = log ———= taken as given
=% p(0)0)
- p(10)
b, = log ———
=% 5 (0)0)

The cost gradient takes a form nearly identical to that of
the standard training method (8),

1
VAL = (Vaei(0))pr(o) — D] D (Vaber(0)) px(o17)

T€D

(13)

The second term in the gradient update step is now com-
puted not directly from the training set samples 7 € D,
but rather from the Bayesian posterior distribution

p(t|o)pa(o)
Pa(T) (14)

which the RBM assigns to visible states o, given an ob-
servation 7 in the noisy training set.

palolr) =
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FIG. 3. Few-body observables. Comparison of the RBM
reconstruction (squares) with the experiment results (crosses)
and the predictions from the Lindbladian master equation
(circles) [25]. In order to facilitate comparison with experiment,
the values reported in (a) and (b) for the RBM and Lindbladian
observables are computed including the known measurement
error rates p(0|1) = 0.04, p(1|0) = 0.01. (a) Nearest-neighbor
correlations g%*(1) in the z basis, spatially averaged (see text for
definition). (b) Average correlation g*(s) as a function of
distance s for A = 10 MHz. (c) Spatial average X of the trans-
verse field (67). (d) Nearest-neighbor correlation (6767, ;). as a
function of position i for A = 10 MHz. The two peaks corre-

spond to the bonds highlighted in Fig. 1(b).
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Figure 1. Replica trick for the evaluation of the second Renyi entropy.

Fig. 3 | Reconstruction of the entanglement entropy for 1D lattice spin
models. The second Renyi entropy as a function of the subsystem size

€ for N=20 spins. We compare results obtained using the the RBM
wavefunctions (markers) with exact diagonalization (dashed lines) for
the 1D TFIM at different values of the transverse magnetic field h and the
1D XXZ model with critical anisotropy A =1.

Torlai et al., Nat Phys 2018
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Density Matrix QST with NNs

PHYSICAL REVIEW LETTERS 120, 240503 (2018)

Latent Space Purification via Neural Density Operators

Giacomo Torlai and Roger G. Melko
Department of Physics and Astronomy, University of Waterloo, Ontario N2L 3G1, Canada,
and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

® (Received 6 February 2018; published 15 June 2018)

Machine learning is actively being explored for its potential to design, validate, and even hybridize with
near-term quantum devices. A central question is whether neural networks can provide a tractable
representation of a given quantum state of interest. When true, stochastic neural networks can be employed
for many unsupervised tasks, including generative modeling and state tomography. However, to be
applicable for real experiments, such methods must be able to encode quantum mixed states. Here, we
parametrize a density matrix based on a restricted Boltzmann machine that is capable of purifying a mixed
state through auxiliary degrees of freedom embedded in the latent space of its hidden units. We implement
the algorithm numerically and use it to perform tomography on some typical states of entangled photons,
achieving fidelities competitive with standard techniques.
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Precise measurement of quantum observables with neural-network estimators .

Giacomo Torlai @, Guglielmo Mazzola,> Giuseppe Carleo,' and Antonio Mezzacapo®
Center for Comp ional Q Physics, Flatiron Institute, New York, New York 10010, USA
2IBM Research Zurich, Saumerstrasse 4, 8803 Ruschlikon, Switzerland
3IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA
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FIG. 1. Measurements on quantum hardware with neural-
network estimators. (a) A quantum circuit prepares a quantum state
V. (b) Single-qubit measurements, consisting of a local rotation I
and a projective measurement I1. (c) A neural network is trained on
the output of the measuring apparatus to discover a representation ¥
of the state WV that retrieves the expectation value of a target quantum
observable O. (d) The intrinsic measurement uncertainty is traded for
a systematic reconstruction bias, leading to a measurement outcome
distribution with lower variance.



Other NN architectures, e.g. CNN

ARTICLE OPEN ‘M) Check for updates
Efficient quantum state tomography with convolutional neural

networks

Tobias Schmale'*, Moritz Reh'™ and Martin Garttner' 3™

Modern day quantum simulators can prepare a wide variety of quantum states but the accurate estimation of observables from
tomographic measurement data often poses a challenge. We tackle this problem by developing a quantum state tomography
scheme which relies on approximating the probability distribution over the outcomes of an informationally complete measurement
in a variational manifold represented by a convolutional neural network. We show an excellent representability of prototypical
ground- and steady states with this ansatz using a number of variational parameters that scales polynomially in system size. This
compressed representation allows us to reconstruct states with high classical fidelities outperforming standard methods such as
maximum likelihood estimation. Furthermore, it achieves a reduction of the estimation error of observables by up to an order of
magnitude compared to their direct estimation from experimental data.

npj Quantum Information (2022)8:115; https://doi.org/10.1038/541534-022-00621-4



