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Seminar (11h30): Juan Carrasquilla
Quantum States with Neural Networks:

Representations and Tomography

Quantum States with Neural Networks: Representations and Tomography

Juan Felipe Carrasquilla Alvarez
Vector Institute, Toronto

In this presentation | will discuss representations of quantum states which take inspiration from
architectures developed by computer vision and natural language processing communities. | will
discuss in particular convolutional neural networks and recurrent neural networks and show
applications of these architectures in the context of ground state estimation and quantum state

tomography.
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Part of today’s lecture will be
done on the board.

Slides will be used occasionally to
show data, references, etc.

For full lecture, see video.



Menu of the day:

* The many fermion problem: introduction, notations

e Some classic variational wave functions: Slater
determinant, BCS/pairs, Gutzwiller, Jastrow-Slater,
Backflow, ...

e Optimizing wave functions with Monte Carlo

 How ML/neural networks are transforming the
field: overview

e Hidden Fermion Determinantal States and some
other NQS for fermions = Lecture 5



Some useful general references
on variational wave-functions:

* Federico Becca Variational wavefunction for
strongly correlated fermionic systems’ in Julich

lectures Vol 9 (2019) http://www.cond-
mat.de/events/correl19

e Federico Becca and Sandro Sorella ‘Quantum

Monte Carlo Approaches for Correlated Systems’
Cambridge University Press, 2017

* Also some older refs:

* Dieter Vollhardt Variational wavefunctions for correlated
lattice fermions (Bookchapter, NATO series, 1988)

e Claudius Gros Physics of projected wavefunctions” Annals of
Physics 189, 53 (1989)



http://www.cond-mat.de/events/correl19
http://www.cond-mat.de/events/correl19

nteracting Fermions: Models and
Materials

e Lattice Models:

* Spinless fermions with n.n interactions
* Hubbard model
* Continuum space:

e Helium 3
e Electron Gas

 Molecules and Materials can be described either
directly in the continuum or using a basis set



The 2-site Hubbard Model
cf. 2021 Lectures

H = —t Z C{ac% + h.c.| + U [R14n1y + Norfiay]

Symmetries: Separate conservation of number of up- and down-spin particles, spin conservation and parity (exchange
of lattice sites 1 and 2) - note that S* = (Ny — N|)/2 so we can just consider N and S* equivalently to Ny, N|.

[H,NT]=[H,N¢]=[H,52]=[H,Sz]=[H,P12]=O (B2)

Hence, we can use quantum numbers (N, S, S?, P).

The total Hilbert space has dimension 2* = 16. We discuss the sectors N = 0,1,2 (the sector with N = 3 and
N =4 are related by symmetry to that with N =1 an dN = 0, respectively).

e N =0 (1 state): |0), E=0

e N =1 (4 states): % [|0,0) £ |o,0)] have S* = o, P = + and hence are eigenstates with E' = —t, +t respectively.
A comment is in order here: since these are one-particle states with momenta k£ = 0 and k = 7 (bonding and
antibonding combinations), one would think of obtaining their energies from £, = —2tcosk, leading to +2t.
However, this is valid with periodic boundary conditions. In order to retrieve the open boundary condition
result, one has to take half of the hopping in the periodic system, hence +t.




The N=2 sector (6 states)

S|S*| P2 1%* quantized 2" quantized Py
11-1] -1 75 xa(a)x2(b) — xa(b)x2(a)] ® | 1) oepeglo) |-
110 | -1 |75 ba@x2(0) = x1(b)x2(a)] ® 75 [ 14) + | I)]| 75 |e1pe, +eiye | [0)] -1
1]-1]-1 2 [x1(a)x2(b) — x1(b)x2(a)] ® | 1) c},¢5,0) -1
0| 0 | -1 | 5 xa(@)xa(b) — xa(a)x2(0)] @ 5 [| 1) — [ ID)]| J5 |clyel, — ehped, [ 10) ] -1
0] 0 |+1] L Ba(@)xa(b) + xa(@)x2(®)] ® L [| 1) — | 41| %5 [elrel, +chyed, | 10)] -1
0/ 0 [+1| % a(@x2(b) + xa(b)x2(@)] ® 25 [ 1) — | 10| 2 [elyel, — el by ] [0)| -1

The 6 basis states of the N=2 sector organized according
to symmetries: S, S%,P4,

Note:
- ‘1st quantized’ vs ‘2" quantized’ notations

- Canonical ordering chosen here to be: 1,up; 1,down;2,up;2,down




e N = 2 (6 states): This subspace splits into an S = 1 (3 states forming a spin triplet) , and an S = 0 sector (3
states). It is useful to organize the basis states according to spin and parity symmetries, as in Table I. It is also
instructive to compare the first- and second-quantized notations for these basis states.

The hamiltonian is diagonal in the triplet sector with eigenvalue E = 0. Physically, this reflects the fact that
the Pauli principle prevents electrons with parallel spin to hop. It is a useful exercise to check that indeed the
kinetic energy (hopping) operator acts as T'|i;) = 0 on all triplet states, which is also guaranteed by the fact
that these states have odd parity.

The singlet sector has only one state with odd parity, which is therefore an eigenstate, with energy £ = U
(doubly occupied state). Hence, we only have to diagonalize the 2 x 2 block corresponding to the even-parity
singlet sector. We have:

T% [CITC;¢ - CLC;T] 0) = —2t % [CXTCL + C;chiu] 10) (B3)
Hence the matrix reads, in the basis of the 2 last states in Table I:
(%70 @
with eigenvalues:
Eizé[Ui\/m]:% 1+ 1+1§—t22

and corresponding eigenvectors:

1 : 1
|W.) =cosfy — [cchh + c;,rcgi] |0) +sinf. — [CITCT% - chc;T] |0)

V2 V2

with:




In the limit U/t — 0, |¥_) corresponds to the state in which two electrons occupy the bonding (k = 0) state,
corresponding to #_ — w/4 and E_ = —2t (see comment above about periodic b.c.). Correspondingly, |¥.)
corresponds to the state in which two electrons occupy the antibonding (k = ) state, hence E, = +2t and
0+ —> —ﬂ/ 4.

In the opposite limit U/t — +oc, we have E, ~ U and E_ ~ —4t*/U and 8. — 0, 8_ — w/2. The ground-state
is thus |¥_), which in the large U/t limit is given by, to order 1/u®:

1.1 1 1
Py} =(1- m) % [c{Tch - C{LC;T] 10) + 2 ﬁ [circh + c‘;TC‘.!.’J,] |0} (B8)

The ground-state is dominantly the singlet configuration of two electrons on distinct sites, with a small ~ 1/u
admixture of the doubly occupied state on either site. As compared to the triplet state with £ = 0, the
ground-state is lower in energy by the antiferromagnetic superexchange:

42

AE=U

J (B9)

The low-energy sector for U 3 ¢ comprises four states: this singlet state and the triplet. Hence, it can be
described as a spin-only effective hamiltonian:

Hyg = J (s, -8, — %) (B10)



2-sites:
< All energy levels
vs. U/t

Note: continuity between the U=0 and the large-U ground-state

cf. H, molecule

From 2 electrons in bonding state
(Hartree-Fock-Slater)

to Heitler-London

(= chemical bond!)

Doubly occupied (S=0)

Heisenberg
low-energy sector

Trlplet (3) - /\

/%Iet ground state



Slater Determinants and the
artree-Fock Approximation

(L, , N) = det [g, ()]
= 20 G0, (1) -+ Ba sy (V)

T) = |p1,-- ,PN) = 5a(w)|n(x)>

Usp) = » thsp(n)|n) = % > Usp(@)lz)

cI>p1’1 q;ple
VYsp(T) = eom¥[n(x)] =det | -

(I)pN,l T (I)pN,N

J

]



Determinantal form can be extended
to BCS wave-function of pairs with
fixed particle number

Short Communication
Tome 49 N° 4 AVRIL 1988

LE JOURNAL DE PHYSIQUE Pair wave functions for strongly correlated fermions and their

determinantal representation

J. Phys. France 49 (1988) 553-559 AVRIL 1988, PAGE 553
J.P. Bouchaud (1), A. Georges (2) and C. Lhuillier (1'3)

Abstract.— We show that a (Jastrow projected or not) BCS wave function with any fixed number
of fermions can be represented as a determinant. This is important for their numerical investigation,
with applications to liquid He® and Hubbard’s model. We also propose a new type of wave function,
describing a mized state composed of paired and unpaired fermions. The physical properties of such

a state are tentatively discussed.

N/2

Ty) = Py|Upcs) = Zgbkcmc e 10) = A[p(12)¢(34) - -]

({rlr U y) = det [¢(r] — 7))

J




Hartree-Fock for the
2D Hubbard model



VOLUME 64, NUMBER 12 PHYSICAL REVIEW LETTERS 19 MARCH 1990

Incommensurate Antiferromagnetism in the Two-Dimensional Hubbard Model

H. J. Schulz

Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay CEDEX, France
(Received 27 February 1989)

Weak coupling g T
U/t=2 0-20¢
0.15}
T/t |
0.10f

0.05 |

O IC g o

0.0 a0 08 0.9 09  1.00

n

FIG. 2. Phase diagram (Ref. 14) in the temperature-density
(n) plane for U =2t, with commensurate (C) and incommensu-
rate (IC) antiferromagnetic phases, and the paramagnetic
state. Most of the C-IC line is only schematic (see text). For
n <n.=0.857 the IC phase is metallic; for n > n. it is insulat-

ing.



However, homogeneous SDWSs are unstable
against domain-wall formation (eventually
leading to ‘stripes’)

Early Theoretical Predictions of Stripes:

Mean-Field/Hartree-Fock

HJ Schulz PRL64, 1445 (1990) and J.Physique 50, 2833 (1989)
J.Zaanen and O.Gunnarsson, Phys Rev B 40, 7391 (1989)
K.Machida, Physica C 158, 192 (1989)

Su PRB 88, 9904 (1988); Yang and Su, PRB 44, 6838 (1991)
Kato et al. JPSJ 59, 1047 (1990)

M.Inui and P.Littlewood Phys Rev B 44, 4415 (1991)

Xu et al. J.Phys Cond Mat 23, 505601 (1991)

Variational Monte-Carlo: T.Giamarchi and C.Lhuillier, PRB 42, 10641
(1990)

More advanced numerical methods (e.g. DMRG): see later slides



This is beautifully explained in:

J. Phys. France 50 (1989) 2833-2849 15 SEPTEMBRE 1989, PAGE 2833

Classification
Physics Abstracts
75.10L — 75.25 — 75.30F

Domain walls in a doped antiferromagnet

H. J. Schulz



"Hole in the Wall’
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Fig. 2. — The local order parameter A(x) = Um(x)/2 (circles) and the electron density n(x) (squares)
for a situation with two type I vertical walls, centered at x = 13 and x = 37, as determined from the
selfconsistent solution of the Hartree-Fock equations for U = 3 ¢. Full and empty symbols are results
with and without the charge interaction terms, respectively. Note that inclusion of the charge
interactions increases the width of the walls. Even though this seems to be a small effect here, it leads to
appreciable changes in energy (compare Figs. 4 and 5).



The “classic stripe’ (t'=0): incommensurate SDW AND CDW
charge wavelength = spin wavelength /2 = 1/doping (= 8 here)

Electron density
= .
0.5 ) X dooo is largest

0 4 8 12 16 20 24 at maxima of SDW
site

03 Hole density
0.1 largest at nodes

—0.3
—0.5

FIG. 4. Converged CPMC results after a self-consistent proce-
dure for a large system of 16 x 32. In the upper panel, the staggered
spin and hole densities are plotted. The red and blue horizontal lines
represent zero spin density and the average hole density, respectively.
In the lower pane, the spin density for the cell is shown with a color
map. As in the earlier systems, U = 8¢, h = 1/8, and a pinning field
is applied to both edges along L,.

Qin, Shi and Zhang PRB 94, 235119 (2016)
Auxiliary Field Constrained Path Monte Carlo



IOP PUBLISHING

JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 23 (2011) 505601 (14pp)

Spin- and charge-density waves in the
Hartree—Fock ground state of the
two-dimensional Hubbard model

Jie Xu, Chia-Chen Chang!, Eric J Walter and Shiwei Zhang

Department of Physics, College of William and Mary, Williamsburg, VA 23187, USA

doi: 10.1088/0953-8984/23/50/505601
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Figure 10. Maximum and minimum of the CD and SDW amplitud

for an 8 x 64 supercell with doping of 1/16.
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Figure 9. CD (top) and SD (bottom) along the y-direction versus
U. The system being studied is an 8 x 64 supercell with doping of
1/32at U = 1.0, 1.3, 1.5, 2.0, 4.0. Each curve is a 1D cut in which
the linear wave propagates. Beyond U, the I-CDW and 1-SDW
amplitudes increase with U and the ground state ends up in an
I-stripes state. The CDW amplitude is much weaker than that of the
SDW.

J. Phys.: Condens. Matter 23 (2011) 505601 I Xuetal
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Figure 11. Contour plots of CD (top) and SD (bottom) versus interacting strengths. The system being studied is a 36 x 36 supercell with
doping of h = 1/6 at U = 4.0, 5.0 and 9.0 (from left to right), representing 1-SDW, d-SDW and d-stripes state respectively.



Consistent with Inhomogeneous
(Unrestricted) DMFT

PHYSICAL REVIEW B 89, 155134 (2014)

Spin density waves in the Hubbard model: A DMFT approach

Robert Peters'->* and Norio Kawakami'
I Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2Computational Condensed Matter Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
(Received 17 March 2014; revised manuscript received 13 April 2014; published 24 April 2014)
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FIG. 1. (Color online) Typical pattern for a vertical SDW state
in the Hubbard model for U = 8¢ and an average electron density
(n) = 0.9. The upper (lower) panel shows the electron polarization

(density).

polarization

occupation

y- ' T : 7

10 vertical

Paramagnetism Spin-Density-

» v Waves
= Z
g 5T
kst
E
o 6
=

4 -

homogeneous AF
") 1 A
0.7 0.8 () 9 1

occupation n

FIG. 2. (Color online) Phase diagram of the Hubbard on a square
lattice as calculated by IDMFT. The shaded region represents
parameters where we find vertical as well as diagonal SDWs to
be stable. The homogeneous Néel state exists exactly at half filling
for all interaction strengths and for a slightly doped region at weak
interaction.

Peters and Kawakami
PRB 89, 155134 (2014)
Inhomogeneous DMFT
(t'=0)



Comprehensive mean-field analysis of magnetic and charge orders in the
two-dimensional Hubbard model

Robin Scholle,! Pietro M. Bonetti,! Demetrio Vilardi,! and Walter Metzner!

' Maz Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
(Dated: March 29, 2023)

Neel
Spiral
Beat
Stripe
CIBS
CpBS
Collinear

Very recent
extensive
Hartree-Fock 7
study LA
(03/2023)... .

arXiv:2303.15358 Figure 2. Phase diagram f9r U = 3t and t’' = —0.15t. 'I.'he
colors label the states resulting from the real space calculation
on a 20 x 20 lattice. The black lines were obtained from
calculations in momentum space in the thermodynamic limit.
The solid black line indicates the transition temperature 7™
separating the paramagnetic from the magnetically ordered
regime, the dashed black line the transition between Néel and
non-Néel spiral order, and the dotted black line the divergence
of the charge susceptibility in the spiral state.
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Figure 1. Overview of the different orders found in our calculations, schematically shown on a 10 x 10 lattice. In each panel,
the square on the left shows the relative spin orientations and amplitudes (length of the arrows) of each phase, where we chose
a frame such that the spins lie the z-y plane and the bottom left spin points along the y-direction. The right plot in each panel
shows the corresponding charge modulation, using a color code defined on the right edge of the figure. The various panels
exemplify the following magnetic orders: (a) paramagnetism, (b) Néel antiferromagnetism, (c) spiral order, (d) stripe order,
(e) collinear bidirectional stripe order, (f) coplanar bidirectional stripe order, (g) beat order, (h) other collinear orders, (i)
“strange” order. Only one example of strange order has been shown, while we also find different ones, often with less regular

patterns.



But in the thermodynamic limit...

0.5 0.5
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Figure 12. (n,T) phase diagram for t' = 0 and U = 3t in Figure 13. (n,T) phase diagram for ¢' = —0.15¢ and U = 3t in
the thermodynamic limit with Néel, spiral, and unidirectional the thermodynamic limit with Néel, spiral, and unidirectional
stripe order. Because of the Hamiltonian’s particle-hole sym- stripe order. There is a narrow spiral regime at small hole
metry, this phase diagram is symmetric. doping even at 7" = 0.



Strengths and Limitations of
artree-Fock

* Good indicator of some of the phases (spin,charge
ordering) that can emerge

e Of course, HF must be interpreted with a
generous/open mind: yes, it breaks Mermin-
Wagner

. But good indicator of which correlations grow
flrst cf. Simkovic, Rossi and Ferrero phys. Rev. Research 4,
043201 (2022) dlagrammatlc MC/CDET

* Because non-local correlations are not properly
treated, NO POSSIBILITY OF non-local (e.g. d-wave)

Superconductivity




The Gutzwiller Wave Function

[Ug) =e 9 > i it gy Wsp)

1

Evaluation by
- -9  Monte Carlo
%D ' Qy (beyond the Gutzwiller
approximation):
| = Yokoyama and Shiba
JPSJ 56, 1490 1986
w JPSJ 56, 3570 1987
e—g
Becca, 2019

o
A

/=

A
”

PRL 10, 159 (1962)

EFFECT OF CORRELATION ON THE FERROMAGNETISM OF TRANSITION METALS

Martin C. Gutzwiller
Research Laboratory Zurich, International Business Machines Corporation, Ruschlikon ZH, Switzerland
(Received 27 September 1962)

H [1 —+ (G_g — 1)ﬁzTﬁzd |\IJSD>

Martin Gutzwiller
(1925-2014,
Switzerland/USA)

The purpose of this Letter is to present a new
approach to the problem of ferromagnetism in a
metal. A correlated wave function for the elec-
trons in the 3d band is proposed as approxima-
tion to the ground state. The expectation value
of the energy is evaluated by diagram techniques.
The simplest example of a face-centered cubic
structure (whose density-of-states curve is
parabolic at the bottom and has a peak at the
top) is discussed. Under these assumptions
the arguments show that the ferromagnetic state
is lower if the band is nearly full, whereas the
nonmagnetic state has the lower energy if the
band is nearly empty.



Limitations of the Gutzwiller
wavefunctionr

* GWEF vs. Gutzwiller approximation
 The GWF is always metallic for any (finite) value of g

* Finite g unable to describe a Mott insulator without
magnetic order such as Hubbard model in d=1 or on a
fully connected lattice with random hopping

* N(k) always discontinuous at Fermi level, see e.g:
W.Metzner and D.Vollhardt PRL 59, 121 (1987) and PRB 37,
7382 (1988)

* Fully projected GWF (g=<<) at half-filling prevents double
occupancies and holes. Many applications to RVB like states
(see review by C.Gros)

* Away from Y-filling, fully projected GWF gives the same
weight to configurations with holes and with single occupancy.



GWF applied to Hubbard d=1

W.Metzner, D.Vollhardt PRL 59, 121 (1987)
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FIG. 1. The momentum distribution {ny) for several values -08f il
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FIG. 2. The ground-state energy E for the one-dimensional
Hubbard model with ny=n; =% as a function of U. The re-
sults for E, as calculated with the Gutzwiller wave function
(GWF), are compared with the result of the Gutzwiller ap-
proximation (GWF+GA) (Ref. 23) and the exact result (Ref.
9).



Extension of the Gutwiller wave-function to phases

with broken symmetries: the come-back of stripes!
T.Giamarchi and C.Lhuillier PRB 42, 10641 (1990)
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FIG. 2. Profiles of density (p) and staggered magnetization
(o) for two vertical domain walls (solid and dash-dotted lines),
for a 420 system at U=10. In dashed and dotted lines is the
pure Hartree-Fock solution (obtained with the same method by
fixing g=1). The effect of the Gutzwiller prefactor is to consid-
erably enlarge the walls. Since it weakens the Hubbard repul-
sion, the gain is kinetic energy associated with a larger wall su-

persedes the loss in magnetic energy. Also suggested coexistence of
d-wave SC and incommensurate SDW



Variational Monte Carlo: optimization of
variational wave-functions by Metropolis
sampling

Reminder from lecture 1:

Move between configurations x> x’
Need to evaluate: P(x') ()|
Ratio of probabilities "p(z) = oy (x)2

* For determinantal wave-functions, various tricks to make this more efficient (but

does not extend to NQS)
Local energy: \ (')
r|H|x
> (elHle) 5

* The points here is that H is a sparse matrix in

configuration space because His short-range

Also need to calculate the metric tensor if we use
NGD/stochastic reconfiguration



Jastrow-Slater Wave Function

Continuous space: Slate determinant with (possibly long-range)
symmetric weight:

1 N R
e M) hep (1)

General form also applicable to lattice:

U g) = 03 2pq IpaTpig Wgp)

(1<p,qg<M)



k endi
PRL 94, 026406 (2005) PHYSICAL REVIEW LETTERS 21 JANUARY 3005

Variational Description of Mott Insulators

Manuela Capello,l‘2 Federico Becca,? Michele Fabrizio,">* Sandro Sorella,'? and Erio Tosatti'*>>

Unternational School for Advanced Studies (SISSA), Via Beirut 2-4, 1-34014 Trieste, Italy
2INFM-Democritos National Simulation Centre, Trieste, Ttaly
3International Centre for Theoretical Physics (ICTP), P.O. Box 586, 1-34014 Trieste, Italy
(Received 17 March 2004; published 20 January 2005)

The Gutzwiller wave function for a strongly correlated model can, if supplemented with a long-range
Jastrow factor, provide a proper variational description of Mott insulators, so far unavailable. We
demonstrate this concept in the prototypical one-dimensional ¢ — ¢ Hubbard model, where at half-filling
we reproduce all known phases, namely, the ordinary Mott undimerized insulator with power-law spin
correlations at small # /7, the spin-gapped metal above a critical #' /7 and small U, and the dimerized Mott
insulator at large repulsion.
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‘Backflow’

* General idea: allow the 1-particle orbitals entering the Slater determinant
 todepend on the coordinates on all other particles.
e First proposed in the continuum (Helium 4) by Feynman and Cohen

Phys Rev 102, 1189 (1956)
* Applied to the lattice only in 2008 and onwards:
Tocchio et al. PRB 78, 041101 (2008); PRB 83, 185138 (2011);

PRB 94, 195126 (2016)
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Fig. 2: Energies per site (in units of J = 4t*/U) for the two-dimensional Hubbard model at

half filling, for both the unfrustrated (t' = 0) and frustrated (t'/t = 0.7) case. The cases with
and without backflow correlations are reported (for the BCS state). The results for the wave
function with antiferromagnetic order and no BCS pairing are also shown. Arrows indicate the

energies per site for the corresponding fully-projected states in the Heisenberg model.
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Hidden Mott transition and large-U superconductivity in the two-dimensional Hubbard model

Luca E Tocchio, Federico Becca, and Sandro Sorella
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(Received 29 July 2016; revised manuscript received 26 September 2016; published 14 November 2016)

We consider the one-band Hubbard model on the square lattice by using variational and Green’s function
Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an
uncorrelated wave function that includes BCS pairing and magnetic order. At half-filling, where the ground state
is antiferromagnetically ordered for any value of the on-site interaction U, we can identify a hidden critical
point Uy, above which a finite BCS pairing is stabilized in the wave function. The existence of this point
is reminiscent of the Mott transition in the paramagnetic sector and determines a separation between a Slater
insulator (at small values of U), where magnetism induces a potential energy gain, and a Mott insulator (at
large values of U), where magnetic correlations drive a kinetic energy gain. Most importantly, the existence
of Umou has crucial consequences when doping the system: We observe a tendency for phase separation into
hole-rich and hole-poor regions only when doping the Slater insulator, while the system is uniform by doping
the Mott insulator. Superconducting correlations are clearly observed above Uwmoy, leading to the characteristic
dome structure in doping. Furthermore, we show that the energy gain due to the presence of a finite BCS pairing
above Uy shifts from the potential to the kinetic sector by increasing the value of the Coulomb repulsion.

Ut
FIG. 7. Schematic phase diagram as obtained by using a com-

bined VMC and GFMC (with FN approximation) approach. The 16
red star labels the location of the hidden Mott transition Upgou/t at
half-filling. The black line with black dots denotes the boundary of the

phase-separation region, that shrinks for U/t 2 Uy./t. The curve is e
leftopenfor U/t > 10, since we cannot exclude the presence of phase

separation very close to half-filling. The dashed blue line with blue 8
dots marks the disappearance of A ,r in the optimal variational state. x
The dashed red line indicates the boundary of the region where sizable i

pairing correlations are detected. Finally, in the shaded gray region
finite-size effects are strong and precise results cannot be obtained in
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Overview:

Despite obvious successes, variational MC is limited by the flexibility of

the parametrized form of the wave-function

- This is where NNs as ‘universal approximators’ less biased than humans ©
can make a difference

Dawn of a New Era

for Fermionic Variational Wave
-unctions:

Neural Quantum States and ML

- Lecture 5, May 30



ARTICLE  Nature Communications, 2018 SorT:e exampleS: .
[rprE—— (we’ll focus especially on
Quantum machine learning for electronic Hidden Fermions on May 30)
structure calculations

Rongxin Xia' & Sabre Kais'23

M) cr
Moyl OPEN Nature Communications, 2020

Fermionic neural-network states for ab-initio
electronic structure

Kenny Choo'™, Antonio Mezzacapo?™ & Giuseppe Carleo3™

"FermiNet’

PHYSICAL REVIEW RESEARCH 2, 033429 (2020)

Ab initio solution of the many-electron Schrodinger equation with deep neural networks

David Pfau,”" James S. Spencer,” and Alexander G. D. G. Matthews
DeepMind, 6 Pancras Square, London N1C 4AG, United Kingdom

W. M. C. Foulkes
Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
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Check for

updates
PNAS 2022 Vol. 119 No.32 2122059119

Fermionic wave functions from neural-network constrained
hidden states

Javier Robledo Moreno®™' (3, Giuseppe Carleo™, Antoine Georges**"#(, and James Stokes®"




