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Mailing List

(Weekly announcement of lecture and seminar, etc.)

Send email to: listes-diffusion.cdf@college-de-france.fr
Subject line: subscribe chaire-pmc.ipcdf
...or: unsubscribe chaire-pmc.ipcdf

You can also just send me an email to be placed on the list

Website:

https://www.college-de-france.fr/site/antoine-georges/index.htm

Lectures are video recorded
and available on the website


mailto:listes-diffusion.cdf@college-de-france.fr
https://www.college-de-france.fr/chaire/antoine-georges-physique-de-la-matiere-condensee-chaire-statutaire

Aim Of These Lectures

* Merely a broad-band introduction to some aspects

of the field
e Aimed at:

e Stimulating interest

* Paving the way to understanding the seminars and
reading further literature

e | am currently
* NOT meant to
* NOT meant to

earning the field too! ©
e a technical introduction to ML

ne exhaustive



Mardi 9 mai
COURS (9h30) :

Introduction a l'apprentissage par réseaux de neurones

et survol des applications en physique quantique.

COURS (11n30) :

Représentation des états quantiques par réseaux
de neurones (Neural Quantum States).

SEMINAIRE (14h30 -16h) :

Filippo Vicentini (Ecole Polytechnique, Paris et EPFL, Lausanne)
Neural Quantum States for Finite Temperature and Open systems,

with a practical introduction to NetKet

Mardi 16 mai

COURS (9H30) :
Introduction a la tomographie quantique

SEMINAIRE (1130) :
Giuseppe Carleo (EPFL, Lausanne)
Time-Dependent Neural Quantum States

Mardi 23 mai

COURS (9h30) :
Représentations des états quantiques fermioniques
par réseaux de neurones

SEMINAIRE (11h30) :
Juan Carrasquilla (Vector Institute, Toronto)

Quantum States with Neural Networks :
Representations and Tomography

Mardi 30 mai

COURS (9H30) :
Réseaux de neurones, apprentissage et fonctionnelle
de densité: applications a la structure electronique (1)

SEMINAIRE (11h30) :
Giulio Biroli (ENS, Paris)
Renormalization Group Theory and Machine Learning

Mardi 6 juin

COURS (9n30) :
Réseaux de neurones, apprentissage et fonctionnelle
de densité: applications a la structure electronique (2)

SEMINAIRE (11h30) :
Ambroise van Roekeghem (CEA-LITEN, Grenoble)
Machine Learning Force Fields for Materials Science

Colloque

12,13 et 14 juin
Precision Many Body Physics 2023

Les 12 et 14 juin dans I'amphithéatre Maurice Halbwachs
Le 13 juin - matin : dans I'amphithéatre Guillaume Budé
Le 13 juin - aprés-midi : session posters en salles 7 et 8

Crédit image : Javier Robledo-Moreno (NYU et CCQ)
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Al is taking the world by storm...
and sciences too!

ITWILL CHANGE EVERYTHING'
Al MAKES GIGANTICLEAPIN
SOLVING PROTEIN STRUCTURES

DeepMind'’s program for determining the 3D shapes
of proteins stands to transform biology, say scientists.

Nature | Vol 588 | 10 December 2020 | 203

Article

Highly accurate protein structure prediction
with AlphaFold

https://doi.org/101038/s41586-021-03819-2  John Jumper***, Richard Evans', Alexander Pritzel'!, Tim Green'*, Michael Figurnov'*,

g Olaf Ronneberger"®, Kathryn Tunyasuvunakool', Russ Bates"*, Augustin Zidek',
SRShiaE 1Ny 2021 Anna Potapenko', Alex Bridgland'#, Clemens Meyer**, Simon A. A. Kohl™,
Accepted: 12 July 2021 Andrew J. Ballard"*, Andrew Cowie'*, Bernardino Romera-Paredes'“, Stanislav Nikolov *,

Rishub Jain'*, Jonas Adler’, Trevor Back’, Stig Petersen', David Reiman’, Ellen Clancy’
shed 21 » . . ' . .
l_»’ubu el Michal Zielinski', Martin Steinegger™*, Michalina Pacholska', Tamas Berghammer',
Open access Sebastian Bodenstein', David Silver', Oriol Vinyals', Andrew W. Senior’, Koray Kavukcuoglu',

Check for updates Pushmeet Kohli' & Demis Hassabis'*



Two DALL.E (OpenAl) pictures of
"Erwin Schrodinger, Matisse-style’



What is ML? (In a Nutshell)

* An ML algorithm is an algorithm able to ‘learn’ from data
(i.e. evolve/adapt as more data is provided) in order to
perform a specific task

Mitchell (Machine Learning, 1997): A computer program is
said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E’

We will briefly review:
T: Task
E: Experience/Training Methods

e P: Performance



Some Useful General Refs on ML

 General ML:

* Goodfellow, Bengio and Courville,
Deep Learning, MIT Press

* Lectures by Stéphane Mallat at the
College de France (online and notes)

e Hasti, Tibshirani and Friedman, The
elements of Statistical Learning,
Springer

* Michael Nielsen’s online book
http://neuralnetworksanddeeplearni
ng.com

* |n relation to Physics:

 Mehta et al. A high-bias, low variance
introduction to Machine Learning for
physicists Phys. Reports 810, 1 (2019)

e Carleo et al. Machine Learning and
the Physical Sciences Rev Mod Phys
91, 045002 (2019)

The website "Papers with Code’ is also very useful: https://paperswithcode.com



http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://paperswithcode.com/

FIDLE: Une
plateforme de
formation en

frangals

«@® Formation Introduction au Deep Learning

FIDLE by CNRS / MIAI/ UGA Sl TS

1 Journée
Deep

~rfcience

9h00 9h45 10h45

Accueil café BLOOM, un modéle linguistique autorégressif (LLM) Pause
capable de parler 46 langues et 13 langages de program-

9h30 e P ? grgescepon 11h15

. mation.
Introduction

10h15
AlphaFold, virus cachez-vous !

W Thibaut Véry (CNRS/IDRIS)

L'enfer des données : je n'ai pas assez de
donnée, mes données sont fausses ou mes
données sont exotiques, que faire 7

Laurent Risser (CNRS/IMT), Achile Mbogol Touye
(UGA/EFELIA)

14h00
Gérer un tsunami de données : building new

brains for giant astronomical instruments using Al.
Damien Gratadour (CNRS/OBSPM)

https://fidle.cnrs.fr/jdls2023
@ ‘GENCI s I

@ o r @ = uea aminl

Lucile Saulnier (Hugging Face), Frangois Yvon (CNRS)

11h45
L'lA dans le monde académique en
France (IDRIS, PNRIA, DevTalk, Fidle, etc.).
Pierre Cornette (INRIA)
/\TJ) (t > Myriam Peyrounette (CNRS/IDRIS) A2
Jean-Luc Parouty (CNRS/SIMaP) i

I‘W A

PlugAl : simplifier 'usage de I'|A pour l'image-
rie médicale.
Michaél Sdika (Creatis)

15h00

Détection de brouillard a Paris : developing
and using HazeNet to forecast particulate pollu-
tion related low visibility days in Paris.

Chien Wang (CNRS/OBS-MIP)

15h30
Pause

l.enmmvg

the date !

12 MAI 2023

& 12h15

Buffet

Flash projet : vos projets en 180s :-)

1A : qualité, méthode et reproductibilité
Mauricio Diaz (INRIA)

16h30

L'lA d'aujourd'hui et de demain : état de l'art
et perspectives pour la Science.

Bertrand Cabot (CNRS/IDRIS)

17h00
Mot de la fin

Jean-Luc Parouty (CNRS/SIMaP)
Sylvie Thérond (CNRS/IDRIS)

N
o
N
w

- ORSAY


https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home
https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home
https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home
https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home

Some Useful General Refs on ML
with a Focus on Quantum Systems

e J.Carrasquilla Machine learning for guantum matter
Advances in Physics 2020, Vol 5 1797528

* A.Dawid et al. Modern applications of machine
learning in quantum sciences (Lecture Notes)
arXiv:2204.04198

e J.Carrasquilla and G.Torlai How To Use Neural

Networks To Investigate Quantum Many-Body
Physics PRX Quantum 2, 040201 (2021) (Tutorial)

* J.Schmidt et al. Recent advances and applications of
machine learning in solid-state materials science
npj Computational Materials (2019)

Online Journal Club (every 2 weeks): http://ultracold.org/menu/



http://ultracold.org/menu/

Some Code Libraries

 NumPy https://numpy.org
» Scikit https://scikit-learn.org/stable/
* PyTorch: https://github.com/pytorch/pytorch

* Tensorflow (Google): https://github.com/tensorflow

» Jax (Google): https://github.com/google/jax

* NetKet: https://www.netket.org

* See e.g. https://www.coursera.org/articles/python-machine-

O learn
Net Ket PyTorch A

The Machine-Learning toolbox for Quantum Physics

1F TensorFlow

AVl
. A S

™



https://numpy.org/
https://scikit-learn.org/stable/
https://github.com/pytorch/pytorch
https://github.com/tensorflow
https://github.com/google/jax
https://www.netket.org/
https://www.coursera.org/articles/python-machine-learning-library
https://www.coursera.org/articles/python-machine-learning-library

What is ML? (In a Nutshell)

* An ML algorithm is an algorithm able to ‘learn’ from data
(i.e. evolve/adapt as more data is provided) in order to
perform a specific task

Mitchell (Machine Learning, 1997): A computer program is
said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E’

We will briefly review:
T: Task
E: Experience/Training Methods

e P: Performance



The Task T

* Data: a vector x=(x4,...,X,) in a space of (high)
dimension n (h=number of features’)

* Example: x is an image, n the number of pixels

* We want to 'learn’ a function: Y — f(X)

» Example: classification y € {0, 1};0ry € R
* Find a parametrization of this function:

y = f(x;0)

* Learning: optimize the parameters 6
e Architecture of neural network
+ Trained parameters = Model’
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Increase of the neural network size over time

Doubling every ~ 2.4 years

(Figure from Goodfellow, Bengio and Courville 'Deep Learning’” MIT Press)

Sizes of biological NNs from Wikipedia (2015)

1. Perceptron (Rosenblatt, 1958, 1962)

2. Adaptive linear element (Widrow and Hoff, 1960)

3. Neocognitron (Fulkushima, 1980)

4. Early back-propagation network (Rumelhart et al., 1986b)
5.
6
7
8
9

Recurrent neural network for speech recognition (Robinson and Fallside, 1991)

. Multilayer perceptron for speech recognition (Bengio et al., 1991)
. Mean field sigmoid belief network (Saul et al., 1996)

. LeNet-5 (LeCun et al., 1998b)

. Echo state network (Jacger and Haas, 2004)

. Deep belief network (Ilinton et al., 2006)

. GPU-accelerated convolutional network (Chellapilla et al., 2006)
. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

. GPU-accelerated deep belief network (Raina et al., 2009)

. Unsupervised convolutional network (Jarrett et al., 2009)

. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

. OMP-1 network (Coates and Ng, 2011)

. Distributed autoencoder (Le et al., 2012)

. Multi-GPU convolutional network (Krizhevsky et al., 2012)

. COTS HPC unsupervised convolutional network (Coates et al., 2013)
. GoogLeNet (Szegedy et al., 2014a)
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Increase of the number of connections per neuron
(Figure from Goodfellow, Bengio and Courville 'Deep Learning’” MIT Press)

1. Adaptive linear element (Widrow and Hoff, 1960)

2. Neocognitron (Fukushima, 1980)

3. GPU-accelerated convolutional network (Chellapilla et al., 2006)

4. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

5. Unsupervised convolutional network (Jarrett et al., 2009)

6. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

7. Distributed autoencoder (Le et al., 2012)

8. Multi-GPU convolutional network (Krizhevsky et al., 2012)

9. COTS HPC unsupervised convolutional network (Coates et al., 2013)
10. GoogLeNet (Szegedy et al., 2014a)



Examples of Tasks (Classic ML Examples)

e Classification. The task is to specify to which of k different categories a given input x belongs to. In this case:
f:R™ = {1,---  k}.

Examples: cat or dog? (k = 2), tagging pictures with faces (face recognition), handwritten letter recognition,

object recognition etc. Various variants of classification can be considered (e.g. classification with missing
inputs).

e Regression. The task is to predict a numerical value of the output y given some input x. The output can be

just a real number: f:R™ — R - More generally could also be a vector: f : R®™ — R™ (sometimes referred to
as ‘structured output’).

Example: speech recognition. The input is an audio recording (waveform) and the output is a sequence of
characters or word codes.

e Translation. Input is a sentence in one language, output is a sentence in another one.

e Probability Density Estimation (or density estimation, in short). The task is to learn a probability density
p(x), p: R® - R ... or a complex valued probability amplitude such as a wave function: ¥ : R®* — C or more

generally W : H® — C where H is a local Hilbert space (for example H = {0,1} for a qubit or spin-1/2), n
being the number of qubits/spins.

e In the context of density estimation, supervised learning means, roughly speaking, reconstructing p(y|x), while
unsupervised learning means learning p(y, x). The Bayesian relation: p(y,x) = p(y|x) p(x) relates unsupervised
and supervised learning and hence allows for mixed strategies, blurring the distinction between the two. The

decomposition of a probability measure into a chain of conditional probabilities is key to recurrent neural
networks (RNNs), for example.



Training (The experience E)

* Supervised Learning. A data set (y;,x) is provided to
train the model (training set)

* Unsupervised learning. No ‘labeled/tagged’ data
set is provided. The model must identify patterns
by itself.

e Reinforcement learning. No tagged data set, but a
performance indicator is provided along the
optimization process.

* Frontier between these different strategies
somewhat blurred.



Dataset size (number examples)
(-1
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1900 1950 1985 2000 2015

Increase of dataset sizes over time
(Figure from Goodfellow, Bengio and Courville ‘Deep Learning” MIT Press)



Why Use Machi

Context of Qua

ne Lear

Ning in the

ntum Pr

VSICS 7

ML is applied linear algebra in a large vector space

e Quantum physics is also formulated as linear
algebra in a large vector space of functions (Hilbert

space)

* Both ML and QM use probabilistic/statistical
concepts and methods

* Hence, at a general level, it is natural to use ML for
QM problems involving a large number of degrees

of freedom



asks in the Context of Quantum
P ’]ySiCS (appetizer! — more at the end of the lecture)

* Phase recognition [C]

* Quantum State Tomography [DE]*
 Hamiltonian Certification [DE]

e Control of Quantum Systems [RL]

e Neural Quantum States: Parametrization of Variational
Wave Function [R, self-generative unsupervised]*

* Density Functionals from ML [R, supervised]*

* Molecular Dynamics: Force Fields from ML [R,
supervised]*

* Applications of ML to Materials Informatics/Databases

C=Classification; DE=(Probability) Density Estimation;
RL=Reinforcement Learning; R=Regression.
(*): Topic of one of the lectures or seminars



Performance Metrics

 To be evaluated on the test set.
* Aim: Evaluate generalization performance

* Not to be confused with the loss function
optimized during training. If differentiable, a
performance metric can also be used as the loss
function.

* Below, y; is the predicted value, a; the ground
truth’ (exact) value.

* Examples of performance metrics:
* 0-1 Loss error rate (in classification):

AT Z yj ,aj Warning: non differentiable!



* Mean Square Error (MSE)
N

1
_ E : 2 __ 2
J=1
* Widely used and quite natural. The MSE has the reputation to be more
sensitive to outliers (because of the squaring)

* Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Mean Percentage Error
(MPE): | N

N
100% CLj — yj
MAPE = — Z | » |
g=1
N
100% a; — Y
MPE = J J
N ; CLj




Density Estimation: Kullback-Leibler Divergence
(or Relative Entropy’)

Set X of samples/events/messages/measurements x; drawn according to P(x)

Quantity of information associated with each event, according to Shannon:

—In P(ZIZ@)
Hence, average quantity of information contained in X —the Shannon entropy:

ZP )In P(z

reX
We do not have access to P (the data generator), only to some data generated with P.

If we have an approximate determination Q(x) of P, the average amount of
Information that we will estimate for X will be: Z P ln Q

reX

The difference between this estimated amount and the actual amount of information
is the Kullback-Leibler divergence:

Y P(2)[mQ(z) —-mP(z)] = Y P(x) x)EDKL(PHQ)

Q(x)
reX reX

Extra amount of info to send message drawn according to P using a transmission channel optimized for Q




Properties of the Kullback-Leibler Divergence:

DxL(P||Q) = ZP () , Dxn(PllQ) = /dxp(x)lﬂp—

reX )

D1, (P||Q) >0 , Dki(P||Q)=0& P=(Q

But the KL divergence it is not a distance
(not symmetric, triangle inequality not satisfied)

Note: in minimizing Dy, over a trial Q, only the second term -P InQ matters

—Dg1 = Zmn% < ZP[% —1]=) [Qx) -

For the last equivalence to hold: X = {all values that the random variable x can take}

Proof of Dy =0 = P=Q. If g(x) strictly convex (i.e. above its tangent for all values of x) then
we have the strict inequality: <g(x)> > g(<x>) [Jensen’s inequality]

Hence if P and Q are different (except on a zero measure set) D, is strictly positive:
Q @
Digr=(—In=)p>—-In(=)p=0
ke =(~In %) (S)r



Prove that the Kullback-Leibler divergence is zero if and only if the two probability
distributions are identical

This is correct, and the logic is fine

The Kullback-Leibler (KL) divergence is a measure of how different two probability
distributions are from each other. The KL divergence between two probability distributions P b ut...
and Q is defined as:

KL(P || Q) = ¥x P(x) log(P(x) / Q(x))

where x is the outcome of a random variable, P(x) is the probability of x under distribution P,
and Q(x) is the probability of x under distribution Q.

To prove that the KL divergence is zero if and only if the two probability distributions are

identical, we need to show two things:

1. Ifthe KL divergence is zero, then the two probability distributions are identical. C h atG PT d I d not p ass t h e exam...
2. Ifthe two probability distributions are identical, then the KL divergence is zero. @
Proof of (1):

Assume that the KL divergence between P and Q is zero, i.e., KL(P || Q) = 0. Then, we have:

2 x P(x) log(P(x) / Q(x)) =0

Since the logarithm function is non-negative, we must have P(x) = Q(x) for all x where P(x) >
0. Otherwise, if P(x) > 0 and Q(x) = O, the logarithm term is undefined. Therefore, if KL(P || Q)
=0, then P(x) = Q(x) for all x where P(x) > 0. Since the probability distributions must sum to 1,

this implies that P and Q are identical.



Errare humanum mechanicum est... perseverare diabelieum mechanicum ©

this proof is incorrect: the logarithm function can be negative

You are correct. Thank you for pointing that out. The logarithm function can be negative for
values less than 1, so the proof needs to be revised. Here is a corrected proof:

Proof of (1):
Assume that the KL divergence between P and Q is zero, i.e., KL(P || Q) = 0. Then, we have:
2x P(x) log(P(x) / Q(x)) =0

Since the logarithm function is negative for values of P(x) / Q(x) less than 1, we can conclude
that P(x) / Q(x) = 1for all x where P(x) > 0. Otherwise, if P(x) > O and Q(x) = O, the logarithm
term is undefined. This implies that P(x) = Q(x) for all x where P(x) > 0. Since the probability
distributions must sum to 1, this implies that P and Q are identical.



A Key Learning Algorithm: Minimizing
a Loss Function by
(Stochastic) Gradient Descent (SGD)

Simple Gradient Descent:

Define Loss Function (e.g. MSE, KL divergence etc.) - additive over data in the
training set:

L£(0) = %Zf (fo(x;),y;)

Tavlor expand around a point in parameter space:

L(0+50) = L(6) + 807 - VoL + 5007 H 60+ -+

1
= L(6) + (36| VoL) +  (56|H]|36) + - -
with:

oL 0L
) (Gradient) |, ] 6,00,

(Hessian)



Make a (small) move in parameter space:

502—7’]V9£ y 9—)9—77V9£

2
£(0 + 56) = £(6) %<v9£|H|v9£> TH
<0

Eta is the learning rate.
It should be chosen small enough,
so that the quadratic term is negligible
and one effectively lowers the loss function
- but not too small to avoid slow convergence
and wasting computing time...

Gradient Descent can (and does) of course get stuck in local minima etc.
Improvements on the simple GD method are available and commonly used,
such as the ADAM optimizer for example (Adaptative Moment Estimation)
- see Kingma and Ba arXiv:1412.6980 (2014) and textbooks/reviews

Computation of the Gradient in practice: Automatic Differentiation, Back Propagation
(based on the chain rule of differentiation) — not described here, see references



A Key Learning Algorithm: Minimizing
a Loss Function by
(Stochastic) Gradient Descent (SGD)

Gradient Descent:

4Pour trouver les valeurs de x, v, z, . . ., qui vérifieront I’équation u = 0, il suffira de faire
décroitre indéfiniment la fonction u, jusqu’a ce qu’elle s’évanouisse.

A. Cauchy. Méthode générale pour la résolution des systémes d’équations
% . simultanées. C. R. Acad. Sci. Paris, 25:536-538, 1847.

Augustin Louis Cauchy
1789 - 1857

“Cauchy and the gradient method’
https://www.math.uni-bielefeld.de/documenta/vol-ismp/40 lemarechal-claude.pdf



https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf

Choosing the Learning Rate

(a) TOO LOW (b) JUST RIGHT (© TOO HIGH
L®)
‘\
%
> > R
e 0 0

Figure 2.2: Choosing a learning rate has an impact on convergence to the minimum.
(a) If n is too small, the training needs many epochs. (b) The right 1) allows for a fast
convergence to a minimum and needs to be found. (c) If n is too large, optimization
can take you away from the minimum (you “overshoot”). This figure suggests that
loss function is convex which is rarely true.

Image Credit: A.Dawid et al. arXiv:2204.04198



Stochastic Gradient Descent (SGD)

L _ 1 «—
Recall that the loss function is a sum over the training data set: £(6) = — > L(fol(x5),95)
j=1

Hence, computing the gradient can be very costly when this set is large
Instead, we can compute this stochastically over a randomly chosen subset ("mini-batch’)
of the training set. This also helps not getting stuck in local minima.

Mini-batch contains my data points, ] &=
o denotes a permutation of 1...m: VoLl ~ Eb ZE (fe(xo(j))’ ya(j))

j=1
Algorithm 1 Minibatch stochastic gradient descent (SGD)
Require: Learning rate 7
Initialize € to random values
for epoch =1 to no_epochs do
Shuffle Dtrain
for i=1 to m (where m is a minibatch size) do
;Y ~ Dyain > Draw random data point from data set without replacement
LeL3M Ly, f(z:) > Compute loss function on the minibatch
(VL); « g_ocj > Compute gradients
0, —06;— niﬁ > Update parameters
i< Y™ Mag -
end for J Pseudc?code credit:
end for A.Dawid et al.

return 6 arXiv:2204.04198




ARTICLE Communicated by Steven Nowlan and Erkki Oja

Natural Gradie
Nn Parameter S

Nt and the Metric
nace

Neural Computation 10, 251-276 (1998)

Natural Gradient Works Efficiently in Learning

Shun-ichi Amari
RIKEN Frontier Research Program, Saitama 351-01, Japan

When a parameter space has a certain underlying structure, the ordinary
gradient of a function does not represent its steepest direction, but the
natural gradient does. Information geometry is used for calculating the
natural gradients in the parameter space of perceptrons, the space of ma-
trices (for blind source separation), and the space of linear dynamical
systems (for blind source deconvolution). The dynamical behavior of
natural gradient online learning is analyzed and is proved to be Fisher
efficient, implying that it has asymptotically the same performance as the
optimal batch estimation of parameters. This suggests that the plateau
phenomenon, which appears in the backpropagation learning algorithm
of multilayer perceptrons, might disappear or might not be so serious
when the natural gradient is used. An adaptive method of updating the
learning rate is proposed and analyzed.

Also related to
"Stochastic Reconfiguration’
in Variational MC

VOLUME 80, NUMBER 20 PHYSICAL REVIEW LETTERS 18 MAY 1998

Green Function Monte Carlo with Stochastic Reconfiguration

Sandro Sorella

Istituto Nazionale di Fisica della Materia and International School for Advanced Studies, Via Beirut 4,

34013 Trieste, Italy
(Received 17 November 1997)

A new method for the stabilization of the sign problem in the Green function Monte Carlo technique
is proposed. The method is devised for real lattice Hamiltonians and is based on an iterative “stochastic
reconfiguration” scheme which introduces some bias but allows a stable simulation with constant sign.
The systematic reduction of this bias is possible in principle. The method is applied to the frustrated
J, — J, Heisenberg model, and tested against exact diagonalization data. Evidence of a finite spin gap
for J,/J; > ~0.4 is found in the thermodynamic limit. [S0031-9007(98)06070-0]



Idea: The Euclidean distance in parameter space may not be the "natural’ one.
Derive a learning/descent rule for a general distance

Distance specified by a metric tensor g:

(6,0 + 60)? Zgzm )60,60,,

Minimize the loss function under the constraint that one travels a distance d=€ and hence
introduce a Lagrange multiplier p and (keeping a first-order estimator for the
loss function) minimize Lagrangian:

2 aalaelw Zglm 86,80, —

Leads to:

00 = —i e VoLl

2 Note: the inversion of g
may require a regularization

Remarks: Adapts learning procedure to local metric

- Euclidean distance g=1 = recover simple steepest descent

- Change of loss function can be shown to be invariant under change of coordinates
in parameter space (reparametrizations)



Additional remarks on NGD — Adaptative
Methods

The Lagrange muItipIier is obtained from the constraint d*=€?:

oL 1
= i Llg™ VoLl
Z@H; I 90, — 12 (VoLlg™"|VoL)

We can keep the distance constant by adapting the learning rate at each step:

—1V,oL
e —_L . 6L = —e+/(VoLlg 1 |VoL)
V{(VeLlg™ VL) | |
This can be extended to second-order schemes 5':: t?%?g?gﬂ

»
(]

— damped Newton-Raphson (then
involves the Hessian in the learning rate)

Test Error %

N w
N wn W wn H
Y 4 — =

State of the art adaptative methods:
e.g. ADADELTA , ADAM etc. " n - - i}
see M. Zeiler arXiv:1212.5701 Eooch

(involves gradients from previous steps)  Fig. 1. Comparison of learning rate methods on MNIST digit

classification for 50 epochs.

-
o

=y

o



NGD for (Probability) Density
Estimation

Choose the KL divergence as a measure of distance:

d2(9, 9,) = DKL(POHPO') = Z Pg [ln Pg - lnng]
zeX

A simple calculation leads to: d2(6,0 + 66) Zglm(ggl(;g

81 P Oln P,
Fisher information matrix/metric ¢, = Z Py(x - 9( ) O1n Py(z)

l a(9777,

reX

Fisher information: how much information about a given parameter 06
we can get from a sample X?

Variance of the derivative of the log-likelihood:

FI|f] = Varx [2 In Py (x ] N Py(a (81ﬂP@9( z)

00

xeX

;



Computation of Gradients in
Practice

e Automatic Differentiation

e Backpropagation (based on recursive application of
the chain rule for derivatives)

 Not covered in detail in these lectures — see
references and code docs.



Neural Networks:
Parametrizing f(x;0)

* Different NN architectures correspond to different
ways of constructing and parametrizing f(x,0).

* During the course of these lectures, we will
encounter several different architectures:

* Multilayer Perceptrons

 Restricted Boltzmann Machines (RBM)
e Convolutional Neural Networks (CNN)
» Autoregressive Recurrent NNs (RNN)

e And more...



Archetypal Feed-Forward NN:
The Multilayer Perceptron

e Basic unit: an artificial neuron’” which:
* Aggregates inputs by weighting the different components x;
e Adds a bias b

* And returns an output signal (or activation) by applying to
the result a non-linear function

Input
X, Output (activation)
X5 — .
Welghts W, ‘ _ e
Bias b a4 =35 szxz_l_b
Xn eo— 1
Input Output

. "‘Neuron’ .
from n "axons’ axon’



Typical choices for the function s:

Perceptron Sigmoid Tanh
' 1 __/_— 1
° o(:) ° 1 ’
z
-1 1 1+e = P tanh(z)
-5 0 5 -5 0 5 -5 0 5
RelLU Leaky RelLU ELU
6 6 6
41 max(0, 2) 41 01zif2<0 4l s _1if2<0
2 2 z]szO 2 ZifZZO
0 0: 0
-5 0 5 -5 0 5 -5 0 5

Fig. 36. Possible non-linear activation functions for neurons. In modern DNNSs, it has become common to use non-linear functions that do not
saturate for large inputs (bottom row) rather than saturating functions (top row).

Image Credit: Mehta et al. Physics Reports 810 1 (2019)



Layer 1

Multilayer Perceptron  miden)

Layer 2
Hidden layers ( Out pu t)
Example with: Layer O 2 ) |
. utput layer
1 input layer, 1 output layer (Input) Pty
- Input 1
1 hidden layer e R
_ (1) (1)
Yis = Z @iy Wi, 4, + biz
11€1
1 w® ) b
b©)
— E : E : (0) (0) (1)
o S xZO w’io’il —|_ b’Ll w’il’ig —|_ b’LQ Output layer
11€1 10€0 ]
Input layer Ve -
Can continue this recursively by composing successive units, f%f 9.5 -
e.g with 2 hidden units: W 40 o & — =
)

(3 (S 00 ) it ) iz, 2

1112 1213
11€1 10€0

Welcome to the world of Deep Learning !

Image Credit: Javier Robledo-Moreno



NNs as Universal Approximators

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit

hypercube; only mild conditions are imposed on the univariate function. Qur .
results settle an open question about representability in the class of single hidden See a |SO more recent:
layer neural networks. In particular, we show that arbitrary decision regions can LU et al

be arbitrarily well approximated by continuous feedforward neural networks with :

only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The arX iv:1l 709 . O 2 5 40

paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

N | Net ks 4,251 (1991
Math. Control Signals Systems 2, 303 (1989) eural Networks (1991)

Approximation Capabilities of Multilayer
Feedforward Networks

See Stéphane Mallat’s College de %
. ] URT HORNIK
F ra n Ce Le Ctu reS (VI d eos O n We bs |te) Technische Universitat Wien, Vienna, Austria

H (Received 30 January 1990; revised and accepted 25 October 1990)
especially the February 20, 2019
Abstract—We show that standard multilayer feedforward networks with as few as a single hidden layer and

Le Ct ure arbitrary bo.um{ed and nonconstant zfctivau’on. function are universal apgroximators with respect to L’_(u} per-
° formance criteria, for arbitrary finite input environment measures p, provided only that sufficiently many hidden
units are available. If the activation function is continuous, bounded and nonconstant, then continuous mappings
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and
its derivatives.

Keywords—Multilayer feedforward networks, Activation function, Universal approximation capabilities, Input
environment measure, L?(¢) approximation, Uniform approximation, Sobolev spaces, Smooth approximation.


https://www.college-de-france.fr/agenda/cours/apprentissage-par-reseaux-de-neurones-profonds/approximation-universelle-par-un-reseau-une-couche-cachee
https://www.college-de-france.fr/agenda/cours/apprentissage-par-reseaux-de-neurones-profonds/approximation-universelle-par-un-reseau-une-couche-cachee

Theorem: (Cybenko, 1989)

Arbitrary sigmoidal function s(x) — such as 1/(1+eX) but need not be monotonous
s(x - —00) >0, s(z— +o0) —1

f(X) . [O, ]_]DZ — RDO Arbitrary function to be approximated

< Output layer
Single hidden layer: Input layer j
. SO
. : N
]EOut;N(x)j:ZS inwik—l—bk hi N
et veln weights w ~ weights h
biases b

For all € > 0, there is a 1-hidden layer NN approximant N(x) such that:

IN(x) — f(x)| <e, Vxe0,1]"




Intuitive view of universal
approximation theorem

See M.Nielsen’s online book Chap 4
and Javier Robledo-Moreno (PhD thesis, in preparation) —
- gratefully acknowledged for discussions and pictures

s=—b/w=05 w = 400
is=01 is=03 is=05 s=07 is=0.9

1 N

w = 400

X i

One unit = step behavior: w controls width, s=-b/w controls location of step
Here the sigmoid 1/(1+e™) is used

Image Credit: Javier Robledo-Moreno



w = 400

2 Neurons with opposite output weights
— "Crenel’ function

o ~ hlsign(z + by /w) — sign(x + by /w)]

w =400
) A
Pairwise N
(hl-h)
Weights -
>
qn
h ___________________
0 1

X

Image Credit: Javier Robledo-Moreno



Better approximants for increasing

hidden layer width:

Width: 40

Image Credit: Javier Robledo-Moreno

Width: 200

/




The approximation theorem says nothing about how
many parameters we need to reach a given precision!

Approximation by Superpositions of a Sigmoidal Function Cyb en kO, 1989 313

While the approximating properties we have described are quite powerful, we
have focused only on existence. The important questions that remain to be answered
deal with feasibility, namely how many terms in the summation (or equivalently,
how many neural nodes) are required to yield an approximation of a given quality?
What properties of the function being approximated play a role in determining the
number of terms? At this point, we can only say that we suspect quite strongly that
the overwhelming majority of approximation problems will require astronomical
numbers of terms. This feeling is based on the curse of dimensionality that plagues
multidimensional approximation theory and statistics. Some recent progress con-
cerned with the relationship between a function being approximated and the number
of terms needed for a suitable approximation can be found in [MSJ] and [BH],
[BEHW], and [V] for related problems. Given the conciseness of the results of this
paper, we believe that these avenues of research deserve more attention.

cf. Ergodicity in Statistical Mechanics: good to know when it applies,

But its not the fundamental reason why the Boltzmann/Gibbs equilibrium
ensemble works!

For recent progress and conjectures on this, see Lu et al. arXiv:1709.02540



Underfitting and Overtfitting:
The Bias-Variance Trade-Off Outlier

(noise)

(a) UNDERFITTING (b) APPROPRIATE FITTING (c) OVERFITTING

x2 X
il
XX > 2
X X . ;(( g
High Bias i ; High Variance .

Figure 2.3: Scheme of under- and overfitting. (a) When the model capacity is too
low, the model cannot fit the training data properly. (b) With the model capacity
corresponding to the task complexity, the fitting is optimal. (¢) When the model ca-
pacity exceeds the task complexity, the model tends to overfit and the generalization
error increases.

Image Credit: A.Dawid et al. arXiv:2204.04198



Underfitting and Overfitting:
The Bias-Variance Trade-Off

Function to be approximated (ground-truth): f(x)
Approximant for a given set of parameters: fg(x)

Parameters optimized over noisy training sets

D = {(yi,xi)} , yi = f(xs) +¢

In the following averages <...> are taken over both the training sets and
the random noise.

Estimate the generalization error by averaging over many training sets

Prediction error for a given value of x:

Err(z) = ([f(x) + ¢ — f@(il?)]2>



Underfitting a
The Bias-Varia

An easy calculation yields:

Err(z) = Bias®

nd Over

itting:

nce Trac

e-Off

Var + (7)

Bias = (fy(x)) — f(2)
Var = ( (fo(z) = (fo(2))" )



Optimal Capacity

Underfitting o
and N
Overtitting: Generalization
The Bias-
Variance
Trade-Off Training

7

PREDICTION ERROR

MODEL COMPLEXITY

Figure 2.4: Illustration of the bias-variance trade-off and its relation to the prediction
error observed on training (green curve) and test sets (red curve). The ideal model
which results in the lowest test error has both intermediate model complexity (e.g.
capacity) and training error. Adapted from Ref. [56].

The bias-variance trade-off: conventional view

Image Credit: A.Dawid et al. arXiv:2204.04198
Adapted from Hasti et al. (Springer)



Over-Parametrization |Is Good!
‘Double Descent’

" under-fitting over-fitting

. Test risk

~ ‘Training risk
sweet spot_ .+ —

~a —
—_

Ca.pacity of H

(a)

Risk

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

Training risk:
T .(interpolation threshold

—
—

Capacity of H

(b)

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-off. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold

have zero training risk.

Belkin et al. arXiv:1812.111118, PNAS 116 (2019)
See comment by Loog et al. PNAS 117 (2020)

Our intuition is biased by polynomial fitting: in ML, higher capacity may lead to
smoother interpolation — hence better generalization



Optimisation Landscape: Topology of

the space of parameters?
Much yet to be understood...

* Many nearly-degenerate minima with zero or low

trainin

e Some
smoot

e Some

g error

nave poor generalization properties (non-
n interpolation in the space of data)

nave good generalization (smooth

interpolations)

* Minim

a disconnected = Glassy

* Minima actually connected by valleys ?

Discussions on these points with Javier Robledo-Moreno
gratefully acknowledged



PHYSICAL REVIEW E 100, 012115 (2019)

Jamming transition as a paradigm to understand the loss landscape of deep neural networks

Mario Geiger,""' Stefano Spigler,':" Stéphane d’ Ascoli,”* Levent Sagun,>! Marco Baity-Jesi,*
Giulio Biroli,”* and Matthieu Wyart'

N over-parametrized ., *

b under-parametrized

o

FIG. 1. N: degrees of freedom, P: training examples.




Applications of ML to Quantum

Physics (Selected Examples — with some of the
papers to be discussed during these lectures)

e Neural Quantum States:

e Parametrize the (ground-state) wave-function of a many-
body quantum system (xy,...,xy) by @ NN and optimize the

parameters to lower the energy > Lectures 2 and 4

e Loss function: variational energy Seminars by FVicentini,
G.Carleo, J.Carrasquilla

researcH - Science 355, 602 (2017) PHYSICAL REVIEW RESEARCH 2, 033429 (2020)

Ab initio solution of the many-electron Schridinger equation with deep neural networks

R E S E ARC H ART I C L E David Pfau,”" James S. Spencer,” and Alexander G. D. G. Matthews
DeepMind, 6 Pancras Square, London N1C 4AG, United Kingdom

MANY-BODY PHYSICS ' . W. M. C. Foulkes o
Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
Solving the. quant.un.l many-body https://doi.org/10.1073/pnas.2122059119
prob]em with artificial PNAS ... wnce | evvsis b open Access
neural netWOTkS Fermionic wave functions from neural-network constrained

hidden states

Javier Robledo Moreno®>'(®, Giuseppe Carleo“?, Antoine Gec:)rgesa-*"'~g , and James Stokes®"

Giuseppe Carleo™ and Matthias Troyer"?



Reconstructing The Wave-Function From a
Sequence of (Projective) Measurements:
‘Quantum Tomography’ [mme LETTERS

https://doi.org/10.1038/s41567-018-0048-5

- Lecture 3 Neural-network quantum state tomography
a n d S e m i n a r by J . Ca r ra S q u i I | a Giacomo Torlai'?, Guglielmo Mazzola®3, Juan Carrasquilla*5, Matthias Troyer*¢, Roger Melko'2

and Giuseppe Carleo®’*

PHYSICAL REVIEW LETTERS 123, 230504 (2019)

Editors' Suggestion

Integrating Neural Networks with a Quantum Simulator for State Reconstruction

Giacomo Torlai ,1’2’3 Brian Timar,4 Evert P. L. van Nieuwenburg,4 Harry I_.evine,5 Ahmed Omra.n,5 Alexander Keesling,5
Hannes Berr‘lien,6 Markus Greiner,5 Vladan Vulet.i(’:,7 Mikhail D. Lukin,5 Roger G. Melko,z‘3 and Manuel Endres*




_earning the Hamiltonian from
Measurements (not covered in these lectures)

Scalably learning quantum many-body Hamiltonians from dynamical data

F. Wilde,! A. Kshetrimayum,>! I. Roth,? D. Hangleiter,*> R. Sweke,!: * and J. Eisert!26

arXiv:2209.14328

FIG. 1. The core idea of the method. (a) Data are accumulated from repeated measurements at different times. Each data point corresponds
to a randomly chosen Pauli basis and a string of binary measurement outcomes. (b) The time evolution is simulated under a Hamiltonian
H(0) € C using the TEBD algorithm. After each contraction with a local time step e ~***"=.# the resulting rank-4 tensor is split and the bond
dimensions are truncated to their original size, as indicated by the dashed red lines. (c) The best suitable parameters §° € R”—according to the
negative log-likelihood cost function—matching the observed data are learned using automatic differentiation and gradient-based optimization.

=

/

\
e N

0)®"

Time evolution
in the lab under H*

|y (1))

(P 5) = (ZZXZ,0100),

|0)®"

Simulated time
evolution under H(6)

lwe(D)

[P(s,- |2, prs 0)

[|0>—{|?>}

[10)

~

Maximize Z log P(s;| ¢, p;. 6)
ik

(a)

(b)

In the case shown here v = 4 and the true parameter values (dashed lines) are recovered successfully.

For reference - most likely, we won't have time to discuss this in these lectures



Phase Classification Antiferromagnetic

Transition in the

(not covered in these lectures) Hubbard Model

PHYSICAL REVIEW X 7, 031038 (2017)

In those examples: Machine Learning Phases of Strongly Correlated Fermions

From Monte Ca rI o Data Kelvin Ch’ng,' Juan Carrasquilla,” Roger G. Melko,”* and Ehsan Khatami'
]Department of Physics and Astronomy, San José State University, San José, California 95192, USA
2perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
3Department of Physics and Astronomy, University of Waterloo, Ontario N2L 3G1, Canada
(Received 14 June 2017; published 30 August 2017)

Classical Ising Model

a 10 b 10 May P
. ‘.
08 08 -
rs b
- - w A
g 06 g o6l .
;
3 04 3 04r ‘A
il
0.2 02 s 5
lL‘A_‘&.‘
0.0

Feature extraction

Classification

PUBLISHED omm&m“mmmnDOIItELIESEBSS FIG. 1. Architecture of the 3D convolutional neural network
used to obtain 7'y for the 3D Hubbard model. For input, we use
the auxiliary field configurations in a four-dimensional grid, three

Machine learning phases of matter spatial dimensions of size 4 (total of N = 43 sites), and one
imaginary time dimension of size £ = 200. Numbers of volu-

Juan Carrasquilla™ and Roger G. Melko'?



Control of Quantum Systems

(not covered in these lectures)

PHYSICAL REVIEW X 12, 011059 (2022)

Model-Free Quantum Control with Reinforcement Learning

V. V. Sivak¢ ',]'* A. Eickbusch‘f‘%:,' H. Liu,] B. Royer-t*?f,2 L Tsioutsios,l and M. H. Devoret"'
1Deparx‘ment of Applied Physics, Yale University, New Haven, Connecticut 06520, USA

Update policy
2Department of Physics, Yale University, New Haven, Connecticut 06520, USA C_Collect episode xB
1

FIG. 1. Pipeline of classical reinforcement learning applied to a
quantum-observable environment. The agent (yellow box),
whose policy is represented with a neural network, is a program
implemented in a classical computer controlling the quantum
system. The quantum environment of the agent consists of a
harmonic oscillator and its ancilla qubit, implemented with
superconducting circuits and cryogenically cooled in the dilution
refrigerator. The goal of the agent is to prepare the target state
[ iarger) Of the oscillator after 7' time steps, starting from initial
state |y,). Importantly, the agent does not have access to the
quantum state of the environment; it can only observe the
environment through intermediate projective measurements of
the ancilla qubit yielding binary outcomes o,. The agent controls
the environment by producing, at each time step, the action vector
a, of parameters of the control circuit (pink box). The reward R
for the RL training is obtained by executing the reward circuit
(blue box) on the final state |s;) prepared in each episode. This
circuit is designed to probabilistically answer the following
question: “Is the prepared state |s7) equal to [Wiuge)|9)?” A
batch of B episodes is collected per training epoch and used in the
classical optimization loop to update the policy.

Oscillator [1y) =e=
Ancilla qubit [g) eee

Quantum

Classical

RL agent

R—N
WAL )
CLL A

N
KON
LN
\

AR
CRS X

@

t

t+1

? )
= |“f"~’targct ) |g>

i R=4+1

O Reward circuit

g4

|.S‘T>

O Control circuit

For reference only - we won't have time to discuss this in these lectures



Better Density Functionals from ML
(Lectures 5-6, time permitting...)

week ending

PRL 108, 253002 (2012) PHYSICAL REVIEW LETTERS 22 JUNE 2012

Finding Density Functionals with Machine Learning

John C. Snyder,' Matthias Rupp,>* Katja Hansen,? Klaus-Robert Miiller,>* and Kieron Burke'

Nature Reviews 4, 357 (2022)

Machine learning and density
functional theory

Ryan Pederson’', Bhupalee Kalita®? and Kieron Burke'?=

Over the past decade machine learning has made significant advances in approximating
ARTICLE M cree odeNSsity functionals, but whether this signals the end of human-designed functionals remains to

oe seen. Ryan Pederson, Bhupalee Kalita and Kieron Burke discuss the rise of machine learning for
hitps://dol.org/10.1038/541467-020-17265-7 OPEN

functional design.
Machine learning accurate exchange and
correlation functionals of the electronic density

Sebastian Dick® 2™ & Marivi Fernandez-Serra® 2%

Nature Communications (2020) RESEARCH

QUANTUM CHEMISTRY Science 374, 1385 (2021)

Pushing the frontiers of density functionals
by solving the fractional electron problem

James Kirkpatrick'*t, Brendan McMorrow't, David H. P. Turban't, Alexander L. Gaunt't,

James S. Spencer, Alexander G. D. G. Matthews', Annette Obika', Louis Thiry?, Meire Fortunato?,
David Pfau’, Lara Roman Castellanos!, Stig Petersen’, Alexander W. R. Nelson®, Pushmeet Kohli’,
Paula Mori-Sanchez®, Demis Hassabis’, Aron J. Cohen™**



Accelerating Molecular Dynamics by

Learning Force Fields from DFT
Seminar by Ambroise van Roekeghem, June 6

PHYSICAL REVIEW LETTERS week ending

PRL 98, 146401 (2007) 6 APRIL 2007

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces

Jorg Behler and Michele Parrinello

Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
(Received 27 September 2006; published 2 April 2007)

pubs.acs.org/CR

Machine Learning Force Fields

Oliver T. Unke,A Stefan Chmiela,A Huziel E. Sauceda, Michael Gastegger, Igor Poltavsky,
Kristof T. Schiitt, Alexandre Tkatchenko,* and Klaus-Robert Miiller*

Cite This: Chem. Rev. 2021, 121, 10142-10186 Read Online

Online lecture by Gabor Csanyi:
https://www.youtube.com/watch?v=Z7jBff6-5amo



https://www.youtube.com/watch?v=ZjBff6-5amo

Some Useful General Refs on ML
with a Focus on Quantum Systems

e J.Carrasquilla Machine learning for guantum matter
Advances in Physics 2020, Vol 5 1797528

* A.Dawid et al. Modern applications of machine
learning in quantum sciences (Lecture Notes)
arXiv:2204.04198

e J.Carrasquilla and G.Torlai How To Use Neural

Networks To Investigate Quantum Many-Body
Physics PRX Quantum 2, 040201 (2021) (Tutorial)

* J.Schmidt et al. Recent advances and applications of
machine learning in solid-state materials science
npj Computational Materials (2019)

Online Journal Club (every 2 weeks): http://ultracold.org/menu/



http://ultracold.org/menu/

