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NQS in a Nutshell:

* Quantum Many-Body Problem

* Variational ansatz for the ground-state
wavefunction:

\Ij('rb'” 733]\779)
* Represent this wavefunction by a neural network
(many possible architectures)

* Variational principle: optimize the parameters using
the energy as loss function



Science 355, 602 (2017)

RESEARCH
Fig. 1. Artificial neural network encoding a many-body quantum state of N spins. A restricted
Boltzmann machine architecture that features a set of N visible artificial neurons (yellow dots) and a
M A N Y' B o DY P HYS I C S et of M hidden neurons (gray dots) is shown. For each value of the many-body spin configuration
o). the artificial neural network computes the value of the wave function ‘¥(S).

Solving the quantum many-body
problem with artificial
neural networks

Giuseppe Carleo’* and Matthias Troyer™?

Some early papers (for the 1-particle Schrodinger equation):

Lagaris et al. Comp Phys Comm 104, 1 (1997); IEEE Trans Neural Net 9, 987 (1998)
Sugawara et al. Comp Phys Comm 140, 366 (2001)




Quantum Many Body Problem

Hilbert Space: Exponentially Large!
For example - N spin-1/2 or Spinless Fermions on N sites: Dimension = 2N

Frequently Encountered ‘Simple’ Hamiltonians:

Transverse Field Ising Model Z Ji; 8787+ hy Z S¥ = Z Jij ZiZ; + h ZX

(i3)

Hei Model Lig+re- 1 68
eisenberg Mode ZJZJS ., _ZJZJ [SZSZ (S;FSJ._+S{ ;r)]

Spinless Fermions - tZ ciej+cfe) +V Y iy

(ij)

Hubbard Model - Z tij(CiyCio + €)yCic) + Uzﬁnﬁﬂ
(ig);o="4 (i5)



Constructing an N-particle basis
from 1-particle states

The simple case of N spin-1/2:
Basisof H;: | ) = |S* = +h/2)

Basis of Hy: |n> — |n1,--- ,nN>, n; — —,—I—(OIO, 1)

N-spin quantum state: 2N complex coefficients

) = > w0, nn)ngonn) =) ¢(n)n)




Variational Principle

Ground State Energy:

. (V[H|V)
Ey = Minyg
(V|w)
(WHY) 5, lealEn
(W) 2 a lcal?
_ > o lcal*(Ea — E)
B VTN

We have used a complete set of N-body eigenstates



Neural Quantum State

Introduce a neural network parametrization
of the amplitudes: 3 : {0,1}"Y — C

Wyar) = ) to(n) n)

Optimize over the parameters 0 using the energy as a loss function
and gradient descent - or another optimizer

Many possible NN architectures can be used:

= Restricted Botzmann Machine (RBM)

= Convolutional Neural Networks (CNN)

= Recurrent (autoregressive) Neural Network (see seminar on May 23)

A recent discussion comparing the performance of different architectures
and especially of different implementations of symmetries:
Reh, Schmittt and Gartnner: https://arxiv.org/abs/2301.06788



https://arxiv.org/abs/2301.06788

Restricted Boltzmann Machines

Hidden units
Visible units
é hl = '1,1
Sl = '1,1 9 ;’.IZ
b- Note: only connections
— I
>< between layers
T (‘restricted’)
S =-11-> K
N §
< hy=-1,1
we(sla”' 75N) — E EZ@ aisit) 5 bjhj+22;; Wijsih;

hj=+1

a,b: biases; W: weights
(Complex numbers in general)



Performing the sum over hidden variables:

. i ]
vo({s}) = e2oi=1 isi H 2 cosh |b; + Z Wiisi
g=1 . 0 _

\ J
|

Density of network:
H Affine composition
\ J
|

o = Non-Linear Transformation

N cf. Perceptron

Controls the quality of the representation (Note: the cosh could be replaced by

(compression level, another function)
cf. bond dimension for MPS)

Note: For a wave-function (in contrast to learning a probability density),
we will have to allow the biases and weights to be complex. Other options:

separate networks for amplitude and phase, etc.




RBMSs as Universal Approximators

> Neural Comput. 2008 Jun;20(6):1631-49. doi: 10.1162/neco.2008.04-07-510.

Representational power of restricted boltzmann
machines and deep belief networks

Nicolas Le Roux 1, Yoshua Bengio

(Probability) Density Estimate with KL divergence as loss function

1. Better models with increasing number of hidden units’

Theorem 2.3. Let py be an arbitrary distribution over {0,1}" and let R, be an RBM
with marginal distribution p over the visible units such that K L(pg||p) > 0. Then there
exists an RBM R, . composed of R, and an additional hidden unit with parameters
(w, c) whose marginal distribution p,, . over the visible units achieves K L(po||pw.c) <

K L(po||p)-
2. 'Huge models can represent any distribution’

Theorem 2.4. Any distribution over {0,1}" can be approzimated arbitrarily well (in
the sense of the KL divergence) with an RBM with k + 1 hidden units where k is the
number of input vectors whose probability is not 0.

See also: G.Hinton "A practical guide to training restricted Boltzmann machines’



Overview of different uses of RBMs in quantum physics:

nature PERSPECTIVE
thSlCS https://doi.org/10.1038/s41567-019-0545-1

Restricted Boltzmann machines in quantum
physics

Roger G. Melko ©'?*, Giuseppe Carleo3, Juan Carrasquilla®™“ and J. Ignacio Cirac®

A type of stochastic neural network called a restricted Boltzmann machine has been widely used in artificial intelligence appli-
cations for decades. They are now finding new life in the simulation of complex wavefunctions in quantum many-body physics.



Expressive power of NQS
Connections to other wave function

compression methods
See e.g. Sharir, Shashu and Carleo PRB 106, 205136 (2022)

Quantum
States

Contains statements about NQS ability to represent MPS states at polynomial cost



Training an RBM in the context of

NQS (for training in other contexts, see Hinton)

* The varlatlonal energy can be written as a sum over
samples n (see below

* Generate Samples {n} - Here a sample is {S,...,S\}

* [A Metropolis procedure is often used for generating
samples: Variational Monte Carlo — see below]

* Compute the gradients of the variational energy and
the metric g;,, as a sum over samples

* Update parameters according to:

0B,
;gmz(e)wl = 56

* Repeat process until convergence



Expression of the energy, gradient

and metric tensor (not specific to NQS,
general for any variational wave-function method)

1. The Energy:
(o H|Wo) D py Yo(n)"thg(n') {n|H|n')

E, —
T (W |W) >, [a(n)|?
Eg = Py(n)eg(n)
W@ (n) |2 Probability distribution: relative weight

Of each basis state/configuration

B) = S )2
<n\H]\I!9> "Local

eg(n) = Z ZZ((Z/)) (n|H|n') = Ve (n) Energy’




2. The Gradients
5W) Zaelzazgeel) n) + 0(662)

n

Dl _ Z 81n§gf( ) |n><n‘

n

— D, U 2 — | D, |¥
0Wg) EZ:M 1| Wg) +O(607) aHll ) = D;|¥y)

O (Wo|Wg) = (01 Tg|Wg) + (W90, Wg) = (Ug|D;" + D;|Ty)
O(Vo|H|Vy) = (Vy|D;"H + HD;|Vy)
| | 2 (W|O|Tg)
With the notation: (())y =
910 = "1y, w,)
O Eg = (D;"H + HD))g — (D' + D);)o(H)g
= 2Re [(HD;)o — (H)o(D1)o]




This can be rewritten as an average over configurations (samples):

(Wo| HDy|Wy) =Y (Ug|H|n)(n|Dy|¥g) =

n

— Z<\D9’H‘n>Dl 0 Z |6 (1 n)Dye(n)
Defining: <F>P = ZP@(H) F(n) ) PQ(n) — Zw‘iie()g)P




3. The quantum geometric metric tensor

Fubini-Study metric over wave-functions:
[(P]®))
VA{(P[W)(P]P)

= 0 for identical states, = m/2 for orthogonal states

(U, ®)pg = arccos

Define distance in parameter space as:

(@97 \IIQ—I—(SQ)%’S — Zglm(9> 59l59m + ...
Im

After some calculation...:

m = Re((D}" = (D]")o) (D — (Dim)o))s

—Re{ZPg (O Intbg(n))* Dy, In1hg(n)—

—ZPg(n ) (O Ing(n ZPG ) O In g ( )}

Note similarity to Fisher information matrix from Lecture 1!




If instead we define averages over configurations with the uniform metric:
1
(Fhu = 5D F) . N =3 o)
n mn

We can get rid of the log’s and obtain:

gim = Re {((0109(n))" Omibo(n))u — ((O199(1)) " )u (Omtbe(n))u }

Quantum geometric metric
Imaginary part related to Berry curvature

See: J.Stokes arXiv:1909.02108




RBM: Explicit expression of the
gradients

In 1y = Zais,,; + Zln 2 cosh (bj + Z SiWij)
j i i _

()

0

90, Meis)) = i

% In1y = tanh ©;({s})
83/@- Inty = s; tanh O, ({s})

O;({s}) =b; + Z siWij




Generating Samples

We want to generate samples according to the probability distribution:

 e(n)?
Pon) = S )2

For small systems we can do that by "exact sampling’:

netket.sampler.ExactSampler

class netket.sampler.ExactSampler

Bases: Sampler
This sampler generates i.i.d. samples from | ¥ ()|

In order to perform exact sampling, | ¥(o)|? is precomputed an all the possible values of
the quantum numbers o. This sampler has thus an exponential cost with the number of
degrees of freedom, and cannot be used for large systems, where Metropolis-based
sampling are instead a viable option.

Need to calculate the amplitudes for all samples to ensure normalisation



Metropolis Sampling (Monte Carlo)

Stochastic process: random walk in the space of configuration, discrete
‘time’ steps. Transition probability from n to n’ (note order) w,,

Pt+1 annpt )

Vn, an/n =1 = Vit, ZPt(n
Can be rewritten: n' n

Pyy1(n') — Pi(n') = Z (Wnip Pr(n) — Wiy Pr(n)]

n

Master equation:

Detailed balance insures stationarity of equilibrium distribution:

Wnin Peg(n) = Wnp Peg(n')

Note: Convergence to equilibrium and uniqueness require additional care/proof



Metropolis:
(Metropolis-Hastings if trial rate not symmetric)

Propose a move n=> n’ according to some trial probability t,,, and accept or reject it
according to acceptance rate:

a(n’,n) = Min {1, Peq (') }

In practice this means:

* Proposeamoven—>n’

* If P(n’) > P(n), accept the move

* If P(n’) < P(n): accept with probability P(n’)/P(n), reject with 1-P(n’)/P(n)

* j.e. pick a random number from uniform distribution on [0,1] - accept if r < P(x")/P(x)

It is easily checked that this rule obeys detailed balance.

Important remark : this procedures does not require a calculation of the
normalisation of P.,(n) —which is computationally demanding.



THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicuorAs METrRoPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AucustA H. TELLER,
Los Alamos Scienlific Laboratory, Los Alamos, New Mexico

AND

EpwarD TELLER,* Department of Physics, Universily of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting

individual molecules. Classical statistics 1s assumed,



netket.sampler.MetropolisSampler

class netket.sampler.MetropolisSampler

Bases: Sampler
Metropolis-Hastings sampler for a Hilbert space according to a specific transition rule.

The transition rule is used to generate a proposed state s, starting from the current state s. The
move is accepted with probability

A(s = §') = min (1, %elf(s,s'))’

where the probability being sampled from is P(s) = | M(s)|P. Here M(s) is a user-provided
function (the machine), p is also user-provided with default value p = 2, and L(s, s') is a suitable
correcting factor computed by the transition kernel.

The dtype of the sampled states can be chosen.



NQS for QuantL

m Spin Models:

llustrative ResL

Transverse Field Ising Model in One Dimension

S

Carleo, Troyer Science 355, 602 (2017)

This is an exactly solvable model:
Mapping on free fermions
by Jordan-Wigner transformation

Ground-state energy:
Relative error

ERBM — Eeazact

€rel —
Eemact

vs density’ of network « =

H
L

h<1: Ising ordered (twofold);

h>1 Polarized along x, no Ising order;

h=1 Gapless

H = JZSZS+1 +hZS$
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AF Heisenberg Model, d=1 and d=2

Carleo, Troyer Science 355, 602 (2017)
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d=1: Exact ground-state energy

known from Bethe Ansatz.

Comparison to Jastrow variational

wave-function
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Convergence of the optimization procedure

M 1) T — —0.00002 f4'436|><10 : | -
T a=1 —0.00003 } -
—0.3} a=2 1  —0.00004} P
= a=4 | _0.00005| |
= _oul - - Exact | _0.00006F _ _ Rk .
______________ —0.00007 } i
ol i —0.00008 } | . -
10t 102 103 250 500 750 1000
# iteration # iteration
Figure S1.

Convergence properties of the stochastic optimization. Variational energy for the 1D Heisenberg
model as a function of the Stochastic Reconfiguration iterates, and for different values of the hidden
units density a. The system has PBC over a chain of N = 40 spins. The energy converges smoothly
to the exact energy (dashed horizontal line) upon increasing a. In the Left panel, we show a
complete view of the optimization procedure and on the Right panel a zoom in the neighborhood of
the exact energy.

From Carlo and Troyer, Supp. Mat.

This is a case where optimization works very nicely. There are more tricky cases...



Examples of recent work

(Not discussed in details...)



J;-J;, Heisenberg 2D Model

Choo, Neupert and Carleo PRB 100, 125124 (2019)

H=J>» Si-Si+J> 8-S

(27) ((23))
The J1-J2 models is known to have an intermediate phase(s) — nature yet to be
clarified

0.15 - ' ' ’ 0.3

" m(m, ) 5

Staggered 2 o mn0)e

N 1 AF o 0 Mg =L
£ 0.1t < 0.2 _g
2 3
L".“:‘ oq
by E
= 0.05 ¢ 101

VMC study: Morita, Kaneko and Imada JPSJ 84, 024720 (2015)



PHYSICAL REVIEW B 100, 125124 (2019)

Two-dimensional frustrated J;-/> model studied with neural network quantum states

(b)

0.20 1

0.151

(5%(q))

0.051

0.00

Kenny Choo ©,! Titus Neupert,' and Giuseppe Carleo?

(@)
—— CNN, G =(n,0) ’
—— CNN, g=(m,m I ' Il ]
e Exact,g=(m0)
= — Channels: 12 10 8 6 4 2
e Exact,g=(mn)
* ® ) FIG. 1. Network architecture. (a) Shape of the filter which we apply across the square lattice. (b) Full architecture of the convolutional
T neural network used in this work. There are six convolutional layers followed by an output layer which simply sums the values of the
prenultimate layer. In the first layer, we use the logarithm of the hyperbolic cosine as the activation function g,.os(2) = log[cosh(z)], while
in all other layers the activation function is given by the complex generalization of the ReLU [51,52]. The total number of complex-valued
parameters in the network is 3838.
. 4 —
00 02 04 06 0.8 1.0 1.2 i L 2.0

J2

TABLE 1. Comparison between Gutzwiller-projected mean-field fermionic wave functions VMC [40] (on the 10 x 10 case the energies
were provided by F. Ferrari and F. Becca), DMRG with 8192 SU(2) states, or equivalently 32 000 U(1) states [41] and the CNN used in this
paper. The exact energies on the 6 x 6 case were take from Ref. [47].

6x6 J,=0.0 J, =02 J,=04 J, =045 J, =05 J, =0.55 J,=0.6 J,=0.8 J,=1.0

Exact —0.678872 —0.599046 —0.529745 - —0.503810 —0.495178 —0.493239 —0.586487 —0.714360
VMC - - —0.52715(1) —0.51364(1) —0.50117(1) —0.48992(1) - - -
DMRG - - —0.529744 —0.515655 —0.503805 —0.495167 - - -

CNN  —0.67882(1) —0.59895(1) —0.52936(1) —0.51452(1) —0.50185(1) —0.49067(2) —0.49023(1) —0.58590(1) —0.71351(1)
10x10  J, =0.0 J, =02 h=04 =045 =05 =055 =06 J, =08 5 =10

VMC  —0.66935(1) —0.59082(1) —0.52229(1) —0.50764(1) —0.49439(1) —0.48227(1) —0.47259(1) —0.56899(1) —0.69123(1)
DMRG - - —0.522391 —0.507976 —0.495530 —0.485434 - - -
CNN  —0.67135(1) —0.59275(1) —0.52371(1) —0.50905(1) —0.49516(1) —0.48277(1) —0.47604(1) —0.57383(1) —0.69636(1)




M.Reh, M.Schmitt and M.Garttner
arXiv:2301.067788
Optimizing Design Choices for Neural Quantum States

Comparison of different architectures: RBM, Convolutional (CNN),
Recurrent networks (RNN) of different types

(Long short-term memory LSTM, Gated Recurrent Unit GRU)

and especially different ways of implementing symmetries

A QMC X% RBM X CorrRBM ¥ RNN X GRU
A MPS X CNN ¥ CorrCNN X LSTM

(a) 1075 A AX A
X A
1076 ¥ X FIG. 1. Performance of the tested network architectures for
Z 107 - X finding the ground state of the 2D 12 x 12 TFIM at differ-
4 ent magnetic field strengths. Here all networks use the bare-
014 ’I( symmetrization as no phase is modelled. In (a) the deviation
—-10-7 - from the lowest observed energy density is shown for the mag-
| | | | | | | netic fields h € [2,3,4]. The data points are artificially shifted
horizontally such that differences are more easily visible. In
(b) 104 4 s & ﬁ X ¢ (b) the energy variance per spin is plotted, which serves as an
] % g % X XXx x additional performance indicator. The QMC and MPS data
% 105 - 2 g $ % § B % was taken from [20] and [21].
- ; X
r>‘E 10—6 _ % %: § g X s X
] AR
§ % % -
1077 4 X
3



Different implementations of

symmetries Reh et al. arXiv:2301.067788

e Bare-Symmetry:

ng(s) = €Xp (E ; Z Xo(S')) Invariant

e Exp-Symmetry:

v3(s) = o

e Sep-Symmetry:

4

eS(s)

1
V5 (s) =\‘ iSi S,G;(S) exp (2R6[Xe(s')])

X eXp (z arg(

Y exp (z Im[xg(s')])

s’eS(s)

Parametrized by NN

S| S,G;(S) xp (X" (S,)) Equivariant

)

Implementing
symmetries is
an active research

topic in the field



(a)

10—3 .

AE/N

LSTM/ GRU / RNN o® |

_+_CorrRBM
_+EorrCNN

CNN

RBM

1074

102
(s2)

AE/IN

(b)

[pREM

LSTM /GRU / RNNe®

_%CorrRBM
| CorrCNN
| CNN
RBM

1071 10°
[{X) = Xexactl

1072

AE/IN

(c) (d) 907
101 - —— Bare
— Exp
— Sep
1072 4
1073 4
].()--4 L} L] T T
0 50 100 150
Steps

FIG. 2. Results on the 2D 6 x 6 J;-J2 model. In (a) and (b) the performance of the different architectures is depicted as a
function of observables of interest. The errorbars which are smaller than the filled in circles are omitted. In (c), the effect
of the different symmetrization procedures is shown for the case of the RBM architecture, leaving all other specifications of
the network unchanged. In (d), sampled wave function coefficients of the network are depicted in the complex plane for the
symmetrizations shown in (c), with a logarithmic scale for the absolute value. Only in the exponential case were we able to
observe a non-trivial sign structure with deviations from the Marshall sign rule, in which there were samples on the opposite
site of the bulk.

Reh et al. arXiv:2301.067788



Fu et al. arXiv:2206.07370 Lattice Convolutional Networks for Learning Ground States

of Quantum Many-Body Systems

Deep learning methods have been shown to be effective in representing ground-state
wave functions of quantum many-body systems. Existing methods use convolu-
tional neural networks (CNNs) for square lattices due to their image-like structures.
For non-square lattices, existing method uses graph neural network (GNN) in
which structure information is not precisely captured, thereby requiring additional
hand-crafted sublattice encoding. In this work, we propose lattice convolutions
in which a set of proposed operations are used to convert non-square lattices into
grid-like augmented lattices on which regular convolution can be applied. Based on
the proposed lattice convolutions, we design lattice convolutional networks (LCN)
that use self-gating and attention mechanisms. Experimental results show that
our method achieves performance on par or better than existing methods on spin
1/2 J;-J2 Heisenberg model over the square, honeycomb, triangular, and kagome
lattices while without using hand-crafted encoding.

Lattice Size Ja GNN GNN-2  LCN (ours) Reference Energy
36 0 -0.6788* - -0.6788(1) -0.6788721
Square 0.5 -0.5022(4) -0.5023(5) -0.5022(2) -0.503810f
100 0 -0.6708(0) - -0.6708(1) 0.671549(4)8
0.5 -0.4955(4) -0.4960(5) -0.49574) -0.497629(1)*
3 0 -0.551* - -0.5516(1) -0.55171*
Honeycomb 0.2  -0.4563(6) -0.4564(7) -0.4563(1) -0.45671*
08 0 - - -0.5421(4) -0.5448>°*
0.2  -0.4528(2) -0.4536(5) -0.4538(4) -0.4527°°*
0 - -0.55889  -0.5601(4) -0.56037341
36 0.08 -0.5221* - -0.5273(4) -0.52861
Triangular 0.125 -0.512(2) -0.5131(8) -0.5126(6) -0.515564f
108 0 -0.5508(8) -0.5519(4) -0.5475(4) -0.551°
0.125 -0.500(9) -0.5069(8) -0.5110(4) -0.5126%
36 0 -0.434(1) -0.4338(6) -0.4367(4) -0.43837653"
Kagome -0.02  -0.4339* - -0.4384(5) -0.43991*
108 0 -0.4302(1) -0.4314(7) -0.4276(3) -0.43861

Table 1: Estimated energy per site of the learned wave function (with error bars in parenthesis).
Lower is better. Four kinds of lattice with various sizes are used for comparison. The J; value
controls next nearest neighboring interaction on the lattice, resulting in differences in the ground
states. The GNN-2 model doubles the parameters and computation by using separate branches for
predicting the amplitude and argument parts of the wave function. Therefore, we directly compare
our model against the single branch GNN model, and LCN results better than GNN are denoted in
bold. We use * to denote the results measured from plots in their reference papers. For the reference
ground state energies we also annotate the employed methods:  for exact diagonalization, co for
infinite-size estimates, { for RMB+PP, § for QMC methods, and § for DMRG methods.



Topics for further discussion
(among many)

 Comparison between architectures
* Implementation of symmetries

e Difficulties in representing ground-states with

topological order (e.g. spin-1 Heisenberg/Haldane)
and how to overcome them

* Connection between NN representation and Matrix
Product States [Compression of wave functions in a

broader perspective]— Several recent papers such
as:

From Tensor Network Quantum States to Tensorial Recurrent Neural Networks

Dian Wua Riccardo ROSSI. Filippo Vlcentlnl and Giuseppe Carlec@
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (E'PFL ), CH-1015 Lausanne, Switzerland



