
Giuseppe Carleo 

CQSL: Computational Quantum Science Lab 

QSE: Center for Quantum Science and Engineering  

Institute of Physics, EPFL

Time-Dependent  
Neural Quantum 
States



College de France May 16th 2023 2

01.

Out-of-Equilibrium.
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How to reconcile Schrödinger with Boltzmann? 

How fast equilibrium is reached?

e�iHt| i
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Quantum Quenches Driving Hamiltonian

Defect production across a phase Transition 

Consequences for Adiabatic State Preparation?

Fundamental Questions
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Unitary dynamics of 
a pure state

Unitary dynamics with 
a time-varying Hamiltonian

Which Temperature?

Out of Equilibrium Protocols and Questions
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A Challenge in Computational Physics

Exact Diagonalization/
Lanczos  

Limited to small systems 

No limitations on geometry/timescales  

Poor qualitative and quantitative accuracy

DMRG / Matrix Product States / PEPS 

Mostly limited to 1D/ short time scales   

Mostly lattice systems

Severe Phase Problem 

Ill-conditioned inversion

Exact Approaches Path-Integral 
Monte Carlo

Tensor Network Methods Mean-Field Dynamics

Strongly Affected by Noise 

Error-Corrected Hardware Likely  Needed to Access 
Regimes Truly Hard/Interesting for Physics

Quantum Computing
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02.

Spin  
Dynamics.
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First Results with Time-Dependent RBM

0 1 2
t

0.2

0.4

0.6

0.8

1.0

hæ
x
i(

t) h = (4 ! 2)

h = (1/2 ! 1)

0 1 2 3
t

0.20

0.17

0.14

0.10

|hæ
z i
æ

z i+
1i

|(t
)

Jz = (1 ! 2)

Jz = (1 ! 1/2)

Carleo and Troyer 
Science 355, 602 (2017)

1D Transverse-
Field Ising 

1D Anisotropic 
Heisenberg Model
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Explorations of 2D Quench Dynamics

Schmitt and Heyl, Phys. Rev. Lett. 125, 100503 (2020)

Two-Dimensional 
Convolutional Neural 

Networks

4

h = 2hc h = hc h = hc/10

a) b) c)

h�
x i
i

↵ = (1; 10) (8; 10) (4, 3, 2; 4) (4, 3, 2; 6) (5, 4, 3; 6) iPEPS

0.94

0.96

0.98

1.00

0.8

0.9

1.0

0.0

0.5

1.0

d
1
2
3
4
5

h�
z i,
j
�
z i,
j
+
d
i

1
2
3
4
5

1
2
3
4
5

0.0

0.2

0.4

R
2
(t
)

ht

0.00

0.05

0.10

0 6 12 18 24 30 36
ht

0.00

0.05

0.10

0 1 2 3 4
Jt

0.00

0.05

0.10

0 1 2 3

FIG. 2. Time evolution after quenching a transverse-field Ising model of size N = 10⇥ 10 from the paramagnetically polarized
initial state | 0i = |!i a) into the paramagnetic phase at h = 2hc, b) to the critical point, and c) into the ferromagnetic
phase at h = hc/10. For direct comparison the top row includes data obtained with iPEPS from Ref. [26]. The agreement is
very good in all cases for the networks with the smallest error R2(t) (bottom row). The second row shows space-time plots of
correlation functions h�z

i,j�
z
i,j+di along the lattice axis from the simulations with minimal error.

namely uncorrelated product states | 0i. After prepara-
tion the dynamics generated by the HamiltonianH yields
the formal solution | (t)i = e�iHt

| 0i.
Collapse and revival oscillations. We start with a

quench from a ferromagnetically polarized state | 0i =
|"i =

Q
l
|"i

l
into the paramagnetic phase at h = 2.63hc.

The resulting dynamics is shown in Fig. 1 (b-d). The
order parameter h�z

l
i exhibits collapse and revival dy-

namics with decaying amplitude, which is a consequence
of relaxation due to interactions. This is accompanied
by the oscillatory buildup of a transverse magnetization.
Notably, significant entanglement is also generated, see
Fig. 1(d), where we show the quantum Fisher information
density fQ(t) = 1

N

P
i,j

h�z

i
�z

j
i
c
. After two oscillations

of the order parameter, fQ(t) > 8 implying that genuine
multipartite entanglement has been developed of at least
9 spins [55, 56]. We checked the accuracy upon increas-
ing the network size and found that a single layer fully
connected CNN with ↵ = 5 is su�cient for convergence
[41].
Quench from a paramagnetic initial condition. Next,

we consider quenches starting from a paramagnetic initial
state | 0i = |!i. In this case we can compare our results
to data obtained recently with an iPEPS algorithm [26].
In Fig. 2 we show results for quenches to weak and

strong fields as well as to the quantum critical point,
which has previously been identified to constitute a par-
ticularly challenging regime for the neural network ap-
proach [31, 32]. For large fields hx = 2hc, we can ob-
serve relaxation of the transverse magnetization h�x(t)i
to a steady state value with remaining temporal fluctua-
tions due to the finite system size. In this regime quan-
tum correlations only develop dominantly for nearest-
neighboring spins. For the critical transverse-field h = hc

the magnetization decays to a much smaller value and
significant quantum correlations spread in a light-cone
fashion also to larger distances indicating a strongly cor-
related state. At weak transverse-fields the dynamics ap-
pears more local than in the case of strong fields with
quantum correlations emerging almost exclusively be-
tween nearest neighbors on the shown timescales.
Importantly, we find excellent agreement with the dy-

namics computed using iPEPS for all cases up to the
maximally reached times in iPEPS, which are included
in Fig. 2 as dashed lines for comparison. While iPEPS di-
rectly operates in the thermodynamic limit, the utilized
machine learning approach enables us to reach signifi-
cantly larger times for system sizes up to N = 10 ⇥ 10.
The direct comparison shows that the system size we
reach is su�cient to exclude finite-size e↵ects in local ob-
servables up to the timescales reached with iPEPS.
To independently assess the accuracy, we perform our

simulations with varying network sizes and architectures.
While fully-connected single-layer CNNs are su�cient to
reach convergence on timescales similar to or exceeding
iPEPS for quenches into the paramagnetic phase or to the
critical point, going to a deep CNN with sparse connec-
tivity yields a substantial improvement over the single-
layer network for h = hc/10, indicated also by a signif-
icant reduction of the TDVP error R2(t). In that case,
the dynamics remains more local, which can be exploited
by using CNNs as we discuss in the supplemental mate-
rial [41]. We expect that this feature of deep CNNs can
become relevant more generally when addressing larger
system sizes, where correlations will remain constrained
to smaller fractions of the system extent for longer times.
Discussion. We have shown that variational time evo-

lution of artificial neural network states constitutes a con-
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Schmitt, Rams, Dziarmaga, Heyl, and Zurek 
Science Advances 8, abl6850 (2022)

Kibble-Zurek mechanism  

Defect formation near quantum phase 
transitions

Violation to the mechanism found in 2D

Time-Dependent Hamiltonians
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Simulating  
Quantum  
Circuits.
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Classical simulation of quantum computing with neural-network quantum states

Bjarni Jonsson
Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland

Giuseppe Carleo
Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA

We develop a ...

Introduction.- Quantum algorithms have the ability
to offer exponential speedup over existing classical al-
gorithms for many interesting problems. The fact that
quantum computers can efficiently store the wavefunc-
tion is essential in these quantum algorithms and vital
to their speedup success[citation?]. At the same time the
difficulty of simulating quantum algorithms efficiently on
a classical computer arises in the difficulty of storing the
exponential information complexity needed to fully de-
scribe the wavefunction, which contains all the informa-
tion of a quantum system as was originally pointed out
by Feynman [1] .To fully understand the computational
power of quantum computers it is of fundamental impor-
tance to understand if classes of quantum algorithms can
be efficiently simulated using classical computers.

This exponential complexity of describing a quantum
state suggests that it should be impossible to to efficiently
simlulate quantum algorithms. However often the many-
body wave function can be characterized by information
complexity which is smaller than the maximum capacity
of the corresponding Hilbert space[citation carleo-NN].
This has been used in a few limited cases to simulate
some quantum algorithms. For example circuits that are
constituted of Clifford group gates [2] where the input
state is |0i, where the entanglement is limited at each
stage of the quantum circuit [3] [4] and circuits with
restricted topological and depth properties [5–7]. Fur-
thermore the terminating Quantum Fourier transform for
slightly entangled MPS states has been shown to be clas-
sically simulable [8] (“NOTE to GC: what I am talking
about here is that � is polynomially bounded in number
of qubits n, furhtermore the citations are from Browne
although I did read their abstract and results - the word-
ing like - “restricted topological and depth properties” are
the same/similar as in Browne2007”). However to date
no such classical and general approximation algorithms
exist. Recently advancements have been made in com-
putational physics where machine learning techniques
have been utilized to efficiently encode the wavefunc-
tion and furthermore solve many-body problems without
prior knowledge of the system [9]. This fact opens up
possibilites for exploring new approaches for efficiently
simulating quantum computation algorithms using clas-
sical computers and we argue that there is a vast class
of algorithms that can be efficiently approximated using
variational approximations.
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Figure 1. Action of a set of universal gate on a re-

stricted Boltzman machine state. Here, | in
RBMi repre-

sents the input state to which the gates in leftmost column
are applied, | out

RBMi is instead the output state. Single-qubit
Z rotations (upper panels) acting on a given qubit (in blue)
result in local weight modifications, CZ gates (bottom panels)
acting on two qubits (in blue) require instead the introduc-
tion of an extra hidden neuron (in red). Those two fami-
lies of gates can be applied exactly, whereas the Hadamard
gate (middle panels) is approximated through the numerical
scheme described in the text.

In this Letter, we present a general method to effi-
ciently approximate unitary transformations which are
described by polynomial size quantum circuits using re-
stricted Boltzmann machines and Monte Carlo sampling.
This is achieved via a stochastic framework using super-
vised learning of the target quantum state at each point
in the circuit. In particular we demonstrate the effective-
ness of the method on the truncated Quantum Fourier
circuit by studying different input states, namely the
ground state of the transverse field Ising model (TFIM)
in one and two dimensions [9].

Neural-network state.- Consider a quantum system
consisting of N qubits. Here we use a representation of
the many-body state associated to this system in terms
of a Neural-Network quantum state. More specifically,
we consider a Restricted Boltzmann machine (RBM) ar-
chitecture. The RBM consist of a visible layer of N nodes

Quantum Circuits and Universal Gates

Elementary Gates 

Any Quantum Circuit Can be 
Decomposed Into the Action of 
Few Elementary Gates

Hadamard

Controlled Z

Rz Rotations
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Jonsson, Bauer, and Carleo  
arXiv:1808.05232 (2018)

Applying Gates to a RBM

Classical simulation of quantum computing with neural-network quantum states

Bjarni Jonsson
Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland

Giuseppe Carleo
Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA

We develop a ...

Introduction.- Quantum algorithms have the ability
to offer exponential speedup over existing classical al-
gorithms for many interesting problems. The fact that
quantum computers can efficiently store the wavefunc-
tion is essential in these quantum algorithms and vital
to their speedup success[citation?]. At the same time the
difficulty of simulating quantum algorithms efficiently on
a classical computer arises in the difficulty of storing the
exponential information complexity needed to fully de-
scribe the wavefunction, which contains all the informa-
tion of a quantum system as was originally pointed out
by Feynman [1] .To fully understand the computational
power of quantum computers it is of fundamental impor-
tance to understand if classes of quantum algorithms can
be efficiently simulated using classical computers.

This exponential complexity of describing a quantum
state suggests that it should be impossible to to efficiently
simlulate quantum algorithms. However often the many-
body wave function can be characterized by information
complexity which is smaller than the maximum capacity
of the corresponding Hilbert space[citation carleo-NN].
This has been used in a few limited cases to simulate
some quantum algorithms. For example circuits that are
constituted of Clifford group gates [2] where the input
state is |0i, where the entanglement is limited at each
stage of the quantum circuit [3] [4] and circuits with
restricted topological and depth properties [5–7]. Fur-
thermore the terminating Quantum Fourier transform for
slightly entangled MPS states has been shown to be clas-
sically simulable [8] (“NOTE to GC: what I am talking
about here is that � is polynomially bounded in number
of qubits n, furhtermore the citations are from Browne
although I did read their abstract and results - the word-
ing like - “restricted topological and depth properties” are
the same/similar as in Browne2007”). However to date
no such classical and general approximation algorithms
exist. Recently advancements have been made in com-
putational physics where machine learning techniques
have been utilized to efficiently encode the wavefunc-
tion and furthermore solve many-body problems without
prior knowledge of the system [9]. This fact opens up
possibilites for exploring new approaches for efficiently
simulating quantum computation algorithms using clas-
sical computers and we argue that there is a vast class
of algorithms that can be efficiently approximated using
variational approximations.
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Figure 1. Action of a set of universal gate on a re-

stricted Boltzman machine state. Here, | in
RBMi repre-

sents the input state to which the gates in leftmost column
are applied, | out

RBMi is instead the output state. Single-qubit
Z rotations (upper panels) acting on a given qubit (in blue)
result in local weight modifications, CZ gates (bottom panels)
acting on two qubits (in blue) require instead the introduc-
tion of an extra hidden neuron (in red). Those two fami-
lies of gates can be applied exactly, whereas the Hadamard
gate (middle panels) is approximated through the numerical
scheme described in the text.

In this Letter, we present a general method to effi-
ciently approximate unitary transformations which are
described by polynomial size quantum circuits using re-
stricted Boltzmann machines and Monte Carlo sampling.
This is achieved via a stochastic framework using super-
vised learning of the target quantum state at each point
in the circuit. In particular we demonstrate the effective-
ness of the method on the truncated Quantum Fourier
circuit by studying different input states, namely the
ground state of the transverse field Ising model (TFIM)
in one and two dimensions [9].

Neural-network state.- Consider a quantum system
consisting of N qubits. Here we use a representation of
the many-body state associated to this system in terms
of a Neural-Network quantum state. More specifically,
we consider a Restricted Boltzmann machine (RBM) ar-
chitecture. The RBM consist of a visible layer of N nodes

Many Other Gates 
Can Be Done Exactly 

All Diagonal Gates, All 
Pauli Gates,… 

Can Be Performed Exactly 

Give Rise To Local Modifications of Weights
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We develop a ...

Introduction.- Quantum algorithms have the ability
to offer exponential speedup over existing classical al-
gorithms for many interesting problems. The fact that
quantum computers can efficiently store the wavefunc-
tion is essential in these quantum algorithms and vital
to their speedup success[citation?]. At the same time the
difficulty of simulating quantum algorithms efficiently on
a classical computer arises in the difficulty of storing the
exponential information complexity needed to fully de-
scribe the wavefunction, which contains all the informa-
tion of a quantum system as was originally pointed out
by Feynman [1] .To fully understand the computational
power of quantum computers it is of fundamental impor-
tance to understand if classes of quantum algorithms can
be efficiently simulated using classical computers.

This exponential complexity of describing a quantum
state suggests that it should be impossible to to efficiently
simlulate quantum algorithms. However often the many-
body wave function can be characterized by information
complexity which is smaller than the maximum capacity
of the corresponding Hilbert space[citation carleo-NN].
This has been used in a few limited cases to simulate
some quantum algorithms. For example circuits that are
constituted of Clifford group gates [2] where the input
state is |0i, where the entanglement is limited at each
stage of the quantum circuit [3] [4] and circuits with
restricted topological and depth properties [5–7]. Fur-
thermore the terminating Quantum Fourier transform for
slightly entangled MPS states has been shown to be clas-
sically simulable [8] (“NOTE to GC: what I am talking
about here is that � is polynomially bounded in number
of qubits n, furhtermore the citations are from Browne
although I did read their abstract and results - the word-
ing like - “restricted topological and depth properties” are
the same/similar as in Browne2007”). However to date
no such classical and general approximation algorithms
exist. Recently advancements have been made in com-
putational physics where machine learning techniques
have been utilized to efficiently encode the wavefunc-
tion and furthermore solve many-body problems without
prior knowledge of the system [9]. This fact opens up
possibilites for exploring new approaches for efficiently
simulating quantum computation algorithms using clas-
sical computers and we argue that there is a vast class
of algorithms that can be efficiently approximated using
variational approximations.
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Figure 1. Action of a set of universal gate on a re-

stricted Boltzman machine state. Here, | in
RBMi repre-

sents the input state to which the gates in leftmost column
are applied, | out

RBMi is instead the output state. Single-qubit
Z rotations (upper panels) acting on a given qubit (in blue)
result in local weight modifications, CZ gates (bottom panels)
acting on two qubits (in blue) require instead the introduc-
tion of an extra hidden neuron (in red). Those two fami-
lies of gates can be applied exactly, whereas the Hadamard
gate (middle panels) is approximated through the numerical
scheme described in the text.

In this Letter, we present a general method to effi-
ciently approximate unitary transformations which are
described by polynomial size quantum circuits using re-
stricted Boltzmann machines and Monte Carlo sampling.
This is achieved via a stochastic framework using super-
vised learning of the target quantum state at each point
in the circuit. In particular we demonstrate the effective-
ness of the method on the truncated Quantum Fourier
circuit by studying different input states, namely the
ground state of the transverse field Ising model (TFIM)
in one and two dimensions [9].

Neural-network state.- Consider a quantum system
consisting of N qubits. Here we use a representation of
the many-body state associated to this system in terms
of a Neural-Network quantum state. More specifically,
we consider a Restricted Boltzmann machine (RBM) ar-
chitecture. The RBM consist of a visible layer of N nodes
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where stochastic estimations of gradients of the cost function D( ✓,�) can be obtained through samples from | ✓|
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Here, Ok is defined as a diagonal operator in the computational basis such that hB0
| Ok |Bi =
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and corresponds to the Quantum Geometric Tensor or Quantum Fisher Information (also see Ref. [55] for a detailed
description and connection with the natural gradient method in classical machine learning [56]).

Exact computations of averages over N qubit states  ✓ and � at each optimization step range from impractical
to intractable, even for moderate N . Therefore, we evaluate those averages by importance-sampling the probability
distributions associated with the variational ansatz | ✓|

2 and the target state |�|
2 at each optimization step t. All

of the above expectation values are evaluated using Markov Chain Monte Carlo (MCMC) [57, 58] sampling with
basic single-spin flip local updates. An overview of the sampling method can be found in [59]. In order to use those
techniques, we rewrite Eq. B4 as:
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In our experiments with less than 20 qubits, we take 8 000 MCMC samples from 4 independent chains (totaling
32 000 samples) for gradient evaluation. Between each two recorded samples, we take N MCMC steps (for N qubits).
For the 54-qubit experiment, we take 2 000 MCMC samples 4 independent chains because of increased computational
difficulty of sampling. The entire Eq. B6 is manifestly invariant to rescaling of  ✓ and �, removing the need to ever
compute normalization constants. We remark that the prefactor in Eq. B6 is identically equal to the fidelity given in
Eq. 8
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allowing us to keep track of cost function values during optimization with no additional computational cost.
The second step consists of multiplying the variational derivative with the inverse of the S-matrix (Eq. B5) cor-

responding to a stochastic estimation of a metric tensor on the hermitian parameter manifold. Thereby, the usual
gradient is transformed into the natural gradient on that manifold. However, the S-matrix is stochastically estimated
and it can happen that it is singular. To regularize it, we replace S with S + ✏ , ensuring that the resulting linear
system has a unique solution. We choose ✏ = 10�3 throughout.

The optimization procedure is summarized by the following algorithm:

2. Model compression

As outlined in the main text, in order to keep the number of hidden units reasonable, we employ a compression
step at each QAOA layer (after the first). Immediately after applying the UC(�k) gate in layer k to the RBM  ✓ (and
thereby introducing the unwanted parameters), we go through the following steps:

1. Construct a new RBM  ̃✓.

2. Initialize  ̃✓ to exactly represent the state UC

⇣
1
k

P
jk

�j

⌘
|+i. Doing this introduces half the number hidden

units that are already present in  ✓.

3. Stochastically optimize  ̃✓ to approximate  ✓ using Algorithm 1 with �!  ✓ and  !  ̃✓.
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and corresponds to the Quantum Geometric Tensor or Quantum Fisher Information (also see Ref. [55] for a detailed
description and connection with the natural gradient method in classical machine learning [56]).

Exact computations of averages over N qubit states  ✓ and � at each optimization step range from impractical
to intractable, even for moderate N . Therefore, we evaluate those averages by importance-sampling the probability
distributions associated with the variational ansatz | ✓|

2 and the target state |�|
2 at each optimization step t. All

of the above expectation values are evaluated using Markov Chain Monte Carlo (MCMC) [57, 58] sampling with
basic single-spin flip local updates. An overview of the sampling method can be found in [59]. In order to use those
techniques, we rewrite Eq. B4 as:
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In our experiments with less than 20 qubits, we take 8 000 MCMC samples from 4 independent chains (totaling
32 000 samples) for gradient evaluation. Between each two recorded samples, we take N MCMC steps (for N qubits).
For the 54-qubit experiment, we take 2 000 MCMC samples 4 independent chains because of increased computational
difficulty of sampling. The entire Eq. B6 is manifestly invariant to rescaling of  ✓ and �, removing the need to ever
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allowing us to keep track of cost function values during optimization with no additional computational cost.
The second step consists of multiplying the variational derivative with the inverse of the S-matrix (Eq. B5) cor-

responding to a stochastic estimation of a metric tensor on the hermitian parameter manifold. Thereby, the usual
gradient is transformed into the natural gradient on that manifold. However, the S-matrix is stochastically estimated
and it can happen that it is singular. To regularize it, we replace S with S + ✏ , ensuring that the resulting linear
system has a unique solution. We choose ✏ = 10�3 throughout.

The optimization procedure is summarized by the following algorithm:

2. Model compression

As outlined in the main text, in order to keep the number of hidden units reasonable, we employ a compression
step at each QAOA layer (after the first). Immediately after applying the UC(�k) gate in layer k to the RBM  ✓ (and
thereby introducing the unwanted parameters), we go through the following steps:

1. Construct a new RBM  ̃✓.

2. Initialize  ̃✓ to exactly represent the state UC
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units that are already present in  ✓.

3. Stochastically optimize  ̃✓ to approximate  ✓ using Algorithm 1 with �!  ✓ and  !  ̃✓.
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Figure 4. Comparing the effect of hardware noise to the variational error.
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FIG. 1. A schematic representation of the QAOA circuit and our approach to simulating it. The input state is trivially
initialized to |+i. Next, at each p, the exchange of exactly (UC , Sec. II B 1) and approximately (RX(�) = e�i�X , Sec. II B 2)
applicable gates is labeled. As noted in the main text, each (exact) application of the UC gate leads to an increase in the
number of hidden units by |E| (the number of edges in the graph). In order to keep that number constant, we compress the
number of hidden units (Sec. II C), indicated by red dashed lines after each UC gate. The compression is repeated at each layer
after the first, halving the number of hidden units each time.

an abstract gate G is found as the solution of the follow-
ing nonlinear equation:

hB| ✓0i = C hB| G | ✓i , (6)

for all bitstrings B and any constant C, if a solution
exists. For example, consider the Pauli Z gate acting on
qubit i. In that case, Eq. 6 reads e

a
0
iBi = C(�1)Bie

aiBi

after trivial simplification. The solution is a
0
i
= ai + i⇡

for C = 1, with all other parameters remaining un-
changed. Such replacement rules for all three Pauli gates
can be found in Table I.

C a0 b0 W 0

Xi ai a0
i = �ai b0k = bk +Wik W 0

ik = �Wik

Yi ai + i⇡/2 a0
i = �ai + i⇡ b0k = bk +Wik W 0

ik = �Wik

Zi 1 ai + i⇡ No change No change

TABLE I. Parameter replacement rules for applying Pauli
gates to RBMs.

In addition, one can exactly implement a subset of
two-qubit gates by introducing an additional hidden unit
coupled only to the two qubits in question. Labeling the
new unit by c, we can implement the RZZ gate relevant
for QAOA. The gate is given as RZZ(�) = e

�i�ZiZj /

diag(1, ei�, ei�, 1) up to a global phase. The replacement
rules read:

Wic = �2A(�) , Wjc = 2A(�)

ai ! ai +A(�) , aj ! aj �A(�) ,
(7)

where A(�) = Arccosh
�
e
i�
�

and C = 2. Derivations of
replacement rules for these and other gates can be found
in Appendix A.

2. Approximate gate application to RBMs by stochastic

optimization

Not all gates can be applied through solving Eq. 6.
Most notably, gates that form superpositions belong in
this category, including UB(�) =

Q
i
e
�i�Xi required for

running QAOA. This happens simply because a linear
combination of two or more RBMs cannot be exactly
represented by a single new RBM through a simple vari-
ational parameter change. To simulate those gates, we
employ a variational stochastic optimization scheme.

We take D(�, ) = 1�F (�, ) as a measure of distance
between two arbitrary quantum states |�i and | i, where
F (�, ) is the usual quantum fidelity:

F (�, ) =
| h�| i |

2

h�|�i h | i
, (8)

In order to find variational parameters ✓ which approx-
imate a target state |�i well (| ✓i ⇡ |�i, up to a normal-
ization constant), we minimize D( ✓,�) using a gradient-
based optimizer. In this work we use the Stochastic Re-
configuration (SR) [28] algorithm to achieve that goal.
To that end, we write D( ✓,�) as an expectation value

2

A. Quantum Approximate Optimization Algorithm
for the MaxCut problem

The Quantum Approximate Optimization Algorithm
(QAOA) [5, 8] is a variational quantum algorithm for
approximately solving discrete combinatiorial optimiza-
tion problems. In this work, we study a quadratic cost
function associated with a MaxCut problem on graphs.

If we consider a graph G and denote the set of its edges
by E(G), the MaxCut of the graph G is defined by the
following operator:

C =
X

i,j2E(G)

wijZiZj , (1)

where wij are the edge weights. The classical bitstring
B that minimizes hB| C |Bi is the graph partition with
the maximum cut. QAOA approximates such a quantum
state through a quantum circuit of predefined depth p:

|�,�i = UB(�p)UC(�p) · · ·UB(�1)UC(�1) |+i , (2)

where |+i is a symmetric superposition of all compu-
tational basis states: |+i = H

⌦N
|0i⌦N for N qubits.

The set of 2p real numbers �i and �i for i = 1 . . . p define
the variational parameters to be optimized over by an
external classical optimizer. Unitary gates UB and UC

are defined as follows:

• UC(�) = e
�i�C =

Q
i,j2E(G)

e
�i�wijZiZj

• UB(�) =
Q
i2G

e
�i�Xi

Optimal variational parameters � and � are then found
through an outer-loop classical optimizer of the following
quantum expectation value:

C(�,�) = h�,�| C |�,�i (3)

In this work we consider 3-regular graphs with all
weights wij set to unity at QAOA depths of p = 1, 2, 4.
At p = 1, we base our parameter choices on the exact po-
sition of global optimum that is easily accessible through
Theorem 1.

Theorem 1 For an arbitrary graph G, the QAOA cost
function for the MaxCut problem given in Eq. 3 takes the
form

C(�,�) =

1

2

X

hk,li


sin(4�) sin(2�) (cosqk(2�) + cosql(2�)) +

+ sin2(2�) cosqk+ql�2�kl(2�)(1� cos�kl(4�))

�
(4)

at p = 1. Here, qk + 1 and ql + 1 are degrees of ver-
tices k and l and �kl is the number of common neighbors
between those vertices.

An almost identical theorem can be found in [7] but
our expression differs in numerical prefactors and signs
that cannot be attributed to parameter rescaling. The
complete derivation can be found in Appendix C.

For p = 2 and p = 4, we resort to direct numerical
evaluation of the cost function as given in Eq. 1 from
either the complete state vector of the system (number
of qubits permitting) or from importance-sampling the
output state as represented by a Restricted Boltzmann
Machine. For all p, we find the optimal angles using
Adam [24] with either numerical or exact gradients.

B. Restricted Boltzmann Machines as Quantum
States

Consider a quantum system consisting of N qubits.
The Hilbert space is spanned by the computational ba-
sis {|Bi : B 2 {0, 1}N} of classical bit strings B =
(B1, . . . , BN ). A general state can be expanded in this
basis as | i =

P
B  (B) |Bi. The convention Zi |Bi =

(�1)Bi |Bi is adopted. We use a neural-network repre-
sentation of the many-body wavefunction  (B) associ-
ated with this system, and specifically adopt a shallow
network of the Restricted Boltzmann Machine (RBM)
type: [25–27]

 (B) ⇡  ✓(B) ⌘ exp

0

@
NX

j=1

ajBj

1

A ·

·

NhY

k=1

2

41 + exp

0

@bk +
NvX

j=1

WjkBj

1

A

3

5 .

(5)

The RBM provides a classical variational representa-
tion of the quantum state [22], and is parametrized by a
set of complex parameters ✓ = {a,b,W} – visible biases
a = (a1, . . . , aN ), hidden biases b = (b1, . . . , bNh) and
weights W = (Wj,k : j = 1 . . . N, k = 1 . . . Nh). The
complex-valued ansatz given in Eq. 5 is, in general, not
normalized.

We note that the N -qubit |+i state required for ini-
tializing QAOA can always be exactly implemented by
setting all variational parameters to 0. That choice en-
sures that the wavefunction ansatz given in Eq. 5 is con-
stant across all computational basis states, as required.
Subsequent unitary gate application is discussed in the
following sections.

1. Exact gate application to RBMs

In what follows, a generic quantum circuits composed
of local gates is considered. The advantage of using the
ansatz given in Eq. 5 as an N -qubit state is that a subset
of one- and two-qubit gates can be exactly implemented
as mappings between different sets of variational param-
eters ✓ 7! ✓

0. In general, such mapping corresponding to

Medvidovic, and Carleo  
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FIG. 2. Left: The exact variational QAOA landscape at p = 1 of a random 20-qubit instance of a 3-regular graph is presented,
calculated using Theorem 1. The optimum was found using a gradient-based optimizer [24] and marked. The restricted cut along
the constant-� line and at optimal � is more closely studied in the center panel. Center: RBM-based output wavefunctions
are contrasted with exact results. Right: A similar variational landscape cut is presented at p = 2. Optimal p = 2 QAOA
parameters are calculated using numerical derivatives and a gradient-based optimizer. Parameters �1, �1 and �2 are fixed at
their optimal values while the cost function �2-dependence is investigated. We note that our approach is able to accurately
reproduce the increased proximity to the combinatorial optimum associated with increasing QAOA depth p.

for each individual qubit indexed by i. The wave-
function associated with the state Xi | ✓i in Eq. 16 is
available for sampling through the parameter replace-
ment rules given in Table I. We repeat the optimization
of each qubit i separately, effectively applying the desired
gate UB(�).

3. Initialization

In order to successfully approximate a target quantum
state with an RBM, a good choice of intial parameters
✓ in Algorithm 1 is crucial. The initial RBM state must
have a nonzero overlap with the target state since gradi-
ents are proportional to the fidelity (overlap squared).

For applying e
�i�Xi gates, we find that the natural

choice works the best: if cos2 � > 1/2 then initialize the
state ✓ as the current RBM | ✓i with no changes, else
initialize as parameters corresponding to state Xi | ✓i

(see Table I and Appendix A). This choice simply ensures
that we start from the state that is closer to the target
state given in Eq. 16.

C. Parameter count reduction

In order to simulate QAOA at depth p using the RBM
framework, one needs to introduce additional hidden
units in order to implement UC(�) at each layer, as many
as the number of edges in the underlying graph. For
larger p, those extra hidden units can result in a large
number of associated parameters to optimize over that
are not strictly required for accurate output state ap-
proximations.

In order to keep the number of hidden units low, we
employ a compression step at each QAOA layer (after
the first). Immediately after applying the UC(�i) gate

in layer i to the RBM  ✓ (and thereby introducing the
unwanted parameters), we go through the following steps:

1. Construct a new RBM  ̃✓.

2. Initialize  ̃✓ to exactly represent the state
UC

⇣P
ji

�j

⌘
|+i. Doing this introduces half the

number hidden units that are already present in the
 ✓.

3. Stochastically optimize  ̃✓ to approximate  ✓ using
Algorithm 1 with �!  ✓ and  !  ̃✓.

The optimization results in a new RBM state with
fewer hidden units that closely approximates the old
RBM with fidelity > 0.98 in all our tests. We then pro-
ceed to simulate the rest of the QAOA circuit and apply
the same compression procedure again when the number
of parameters increases again. The exact schedule of ap-
plying this procedure in context of different QAOA layers
can be seen on Fig. 1.

The initialization state for the optimization was chosen
as an exactly reproducible RBM state that has non-zero
overlap with the target (larger) RBM. In principle, any
other such state would work, but we heuristically found
this one to be a reliable choice across all p values studied.

III. RESULTS

In this section we present our simulation results for 20-
and 54-qubit instances of QAOA. In addition we discuss
model limitations and its relation to current state-of-the-
art simulations.

20 Qubits 

3-Random Regular Graph 

Medvidovic, and Carleo  
Npj Quantum Info 7, 101 (2021)

Benchmarks
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6

FIG. 3. Randomly generated 3-regular graphs with 54 nodes are considered at p = 1, 2, 4. At each p, all angles were set to
optimal values for a different graph of 20 nodes, except for the final �p. Cost dependence along this 1D slice of the variational
landscape (a higher-dimensional analogue of the leftmost panel of Fig. 2 is investigated. Data points are calculated using MCMC
sampling and compared with the exact curve available through Eq. 4 at p = 1 (dashed curve). Error bars were calculated using
bootstrap resampling but were too small to be visible on the plot. At p = 2, this 54-qubit simulation approximately implements
162 RZZ gates and 108 RX gates while at p = 4 there are 324 RZZs and 216 RXs. Despite non-optimal angles, our model
was able to capture the overall better QAOA approximation of the actual combinatorial optimum. A tight upper bound on
that optimum was calculated to be Copt . �69 by directly optimizing an RBM to represent a ground state of the cost operator
in Eq. 3

.

A. Simulation results

We begin by studying the performance of our approach
on a 20-qubit system corresponding to the MaxCut prob-
lem on a 3-regular graph of order 20. In that case, access
to exact numerical wavefunctions is not yet severely re-
stricted by the number of qubits. That makes it a suit-
able test-case. The results can be found on Fig. 2.

In Fig. 2, we can see that our approach reproduces
variations in the cost landscape associated with differ-
ent choices of QAOA angles at both p = 1 and p = 2.
At p = 1, an exact formula (Eq. 1) is available for com-
parison of cost function values. We report that, at opti-
mal angles, the overall final fidelity (overlap squared) was
consistently above 0.94 for all random graph instances we
simulated. Single-qubit fidelities were found to be > 0.99
almost universally. However, we find that the stochastic
optimization performance seems to be sensitive to choices
of QAOA variational parameters � and � away from op-
timum (see Sec. III B).

In modern sum-over-Cliffords/Metropolis simulators,
computational complexity grows exponentially with the
number of non-Clifford gates. With the RZZ gate being
a non-Clifford operation, even our 20-qubit toy example,
exactly implementing 60 RZZ gates at p = 2, is ap-

proaching the limit of what those simulators can do [21].
In addition, that limit is greatly exceeded by the larger,
54-qubit system we study next, implementing 162 RZZ

gates.

For the 54 qubit case, results can be seen on Fig. 3.
We approximately reproduce the exact error curve given
by Eq. 4, implementing 81 RZZ (e�i�Z⌦Z) gates exactly
and 54 RX (e�i�X) gates using the described optimiza-
tion method. We perform QAOA at p = 2 and p = 4 for
the 54-qubit graph as well. Given that RZZ gates do not
belong to the Clifford group, this simulation is the first
classical implementation of QAOA on a system of this
size, to the best of our knowledge, for p = 1, p = 2 and
p = 4. Specifically at p = 4, we approximately imple-
ment 324 RZZ gates, greatly exceeding the capabilities
of modern exact simulators. Given the favorable scaling
of our approach with system size near the optimum, we
conjecture that it may be used for even larger systems or
larger QAOA depths p to investigate previously unknown
regions of the QAOA cost landscape.

4 Layers 

324 RZZ Gates 

216 RX Gates

Medvidovic, and Carleo  
Npj Quantum Info 7, 101 (2021)

Scaling to 54 Qubits
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Estimated Bond 
Dimension of 

~10^4 for 
similar accuracy

Remark: competitive tensor contraction schemes on 
similar problems typically yield only cost function not 

samples/ wave functions like for MPS/NQS

Medvidovic, and Carleo  
Npj Quantum Info 7, 101 (2021)

Comparison With Matrix Product States
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4

arise naturally:

log(x1 + x2) = log(exp(o1) + exp(o2))

= o1 + log (1 + exp(o2 � o1))

= o1 + softplus(o2 � o1).

For log-space summation of n inputs, we can decompose
it as a binary tree, which gives the log(m) correction
to the depth of the network. With both log-space NN
analogs in place, a non-negative AC can be exactly re-
produce with same asymptotic time complexity.

For the second step, we reduce the general complex
case to the non-negative case. A real number x 2 R
can be represented with a redundant representation of
two non-negative numbers x+, x� � 0 by x = x+ � x�.
Addition and multiplication can be applied directly on
this representation:

x+ y = (x+ + y+)� (x� + y�)

x · y = (x+ · y+ + x� · y�)� (x� · y+ + x+ · y�)

Thus, a real AC can be expressed as the di↵erence of
two non-negative AC, and a complex AC by represent-
ing the real and imaginary parts in this fashion. Fi-
nally, to compute the logarithm of this redundant com-
plex representation, i.e., the log-magnitude and phase,
we employ various univariate approximation schemes.
Since these two operations are smooth and used only at
the end of the network, it results in the additive term
c(✏,m,Wmax, fmin), which is merely logarithmic in the
number of edges of the AC, and double logarithmic with
respect to the magnitudes of the weights and the WF
amplitudes. Due to these weak dependencies of the tar-
get AC, it allows for an approximation with a practically
arbitrary precision.

The immediate implication of Theorem 1 is that NQS
can simulate TNS at least as e�ciently as their TN rep-
resentation, as given by the following corollary:

Corollary 1 For any tensor network quantum state with
a contraction scheme of run-time k, and at most b bits
of precision in computations and parameters, there ex-
ists a neural network that approximate it with a max-
imal error of ✏ and of run-time (number of edges)

O
⇣
k + ln2

�
kb
✏

�
+ ln

�
1
✏

�q
1
✏

⌘
.

For the specific case of MPS, corollary 1 translates to the
following

Corollary 2 For any MPS over N sites, each of local
dimension d, with bond dimension �, and fixed b bits of
precision, there exists a neural network of depth l con-
sisting of m edges that approximates its contraction al-
gorithm up to ✏, where l and m depend on the chosen
contraction scheme:

1. For the sequential scheme, l = Õ
⇣
N +

p
1/✏

⌘
and

m = Õ
⇣
Nd�2 +

p
1/✏

⌘
.

Quantum  
States

Neural

MPS

PEPS*

Gapped 
 1D

Quantum States

FIG. 3. Expressive power of classically-tractable variational
quantum states. Di↵erent classes of quantum states describ-
ing a qudit system with N degrees of freedom and comprising
poly(N) variational parameters are compared. Matrix Prod-
uct States (MPS) can e�ciently represent gapped ground-
states of one-dimensional systems. PEPS* denotes here Pro-
jected Entangled Pair States of bond dimension � that are
exactly or approximately contracted in poly(N,�) time on a
classical computer. Neural Quantum States (NQS) comprise
all polynomially tractable tensor networks, thus include MPS,
and PEPS⇤, while also representing additional states with
volume law entanglement that are not e�ciently described by
planar tensor networks such as MPS and PEPS.

2. For the parallel scheme, Õ(lnN +
p

1/✏) and

m = Õ
⇣
N(d+ �)�2 +

p
1/✏

⌘
.

where Õ denotes big-O while ignoring logarithmic factors.

In turn, this result also allows to use previously estab-
lished rigorous results on MPS to directly quantify the
expressive power of NQS on special classes of quantum
systems. For example, Hastings famously established an
area-law entanglement for the gapped ground state of
one-dimensional systems [39] that directly translates into
an e�cient approximability by MPS [39–42]. Our result
in 2, in connection with the bound established in [39]
implies the following

Corollary 3 Consider a 1D Hamiltonian H defined
on N qudits of finite local dimension d, and with
a non-vanishing spectral gap �. The ground state
of a H can be written as a deep neural network
of depth l = O(lnN +

p
1/✏) and number of edges

m = O (poly(N, 1/✏)).

While the connection we have established is strictly in-
clusive, we show that the inverse does not hold, i.e., that
there exists NQS that cannot be e�ciently reproduced
by widely adopted classes of variational TNS:

Corollary 4 There exist quantum states that can be rep-
resented by neural networks with parameters and runtime
polynomial in the number of sites, that MPS, MERA, and
PEPS tensor networks cannot represent e�ciently unless
they use exponential number of parameters.

Sharir, Shashua, and Carleo 
Phys. Rev. B 106, 205136 (2022) 
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Assumption behind Estimators 

Gradients of state vanish if state vanishes 

A Problem with Stochastic Estimators?

Figure 1: Sketch of the p-tVMC algorithm and failure of tVMC when the state features zeros. In p-tVMC, the optimization

problem of projecting the exactly evolved state U |�◊(t)Í onto the variational manifold M of the ansatz |�◊Í is solved at each

time-step. This is achieved by minimizing a distance in the Hilbert space which is taken to be the infidelity I (as shown in

the magnification). When, a state with zeros (or near zeros) in the wavefunction is encountered during the evolution, such as

|�◊(ti+1)Í, the tVMC dynamics starts to detach from the exact solution due to a bias (or an vanishing signal to noise ratio).

tion in the case of non-Cli↵ord 2D dynamics. As
a proof of concept, we investigate this regime which
is intractable to TNs due to the rapid entanglement
growth and the higher dimensionality, but also to
tVMC due to the projective measurements enforcing
a large number of zeros in the wave-function.

2 Numerical challenges in time-
dependent Variational Monte Carlo
The state of the system |�Í can be e�ciently ap-
proximated by a variational ansatz �◊(‡) © È‡|�◊Í,
which is completely specified by a set of P parameters
◊ = (◊1, . . . , ◊P ). The resulting state is therefore

|�Í ¥ |�◊Í =
ÿ

‡

�◊(‡) |‡Í . (1)

We consider computationally tractable ansätze,
meaning that P is polynomially large in the sys-
tem size and �◊(‡) can be sampled and queried e�-
ciently [40].

Within this approach, variational dynamics can be
encoded onto time-dependent parameters ◊(t) such
that |�◊(t)Í approximates the physical dynamics. In
what follows we will focus on the unitary evolution
of a time-independent Hamiltonian H, ◊ œ CP and
holomorphic �◊(‡). However, the discussion is gen-
eral and also applies to non-Hermitian PT-symmetric
hamiltonians [41], imaginary time evolution [18], or
open quantum systems obeying the Lindblad Mas-
ter Equation [42] and can be extended to the non-
holomorphic case.
The McLachlan’s variational principle [43] recasts

the Schrödinger’s equation d|�Í

dt = ≠iH |�Í at every
time-step onto the optimization problem:

min
◊̇

D(|�◊(t)+”t◊̇(t)Í, e
≠iH”t

|�◊(t)Í), (2)

where D is the Fubini-Study metric. By keeping only
the leading terms in ”t in Eq. (2), it is possible to
derive the following set of explicit equations of motion

for ◊(t):

◊̇k(t) = ≠i

ÿ

kÕ

(S≠1)kkÕFkÕ . (3)

Fk are the variational forces and SkkÕ is the Quan-
tum Geometric Tensor [44, 45, 46]. These two quan-
tities are defined as:

Fk = Èˆ◊k �◊| H |�◊Í

È�◊|�◊Í
≠

Èˆ◊k �◊|�◊Í

È�◊|�◊Í

È�◊| H |�◊Í

È�◊|�◊Í
,

(4a)

SkkÕ =
+
ˆ◊k �◊

--ˆ◊kÕ �◊

,

È�◊|�◊Í
≠

Èˆ◊k �◊|�◊Í

È�◊|�◊Í

+
�◊

--ˆ◊kÕ �◊

,

È�◊|�◊Í
,

(4b)

where from now we will use the compact notation
|�◊Í © |�◊(t)Í. The equations of motion determined
by Eq. (3) are integrated using numerical schemes like
Euler or higher-order Runge-Kutta.

Following the scheme known as time-dependent
Variational Monte Carlo (tVMC) [30, 47, 31], the
quantities defined in Eq. (4) are computed as sta-
tistical averages over the Born distribution �(‡) =
|�◊(‡)|2/ È�◊|�◊Í by means of a Monte Carlo sam-
pling of:

F
MC
k = E�[Oú

k(‡)Eloc(‡)] ≠ E�[Oú

k(‡)]E�[Eloc(‡)]
(5)

S
MC
kkÕ = E�[Oú

k(‡)(OkÕ(‡)] ≠ E�[Oú

k(‡)]E�[OkÕ(‡)].
(6)

In the previous relations, the quantity Eloc =q
‡Õ H‡,‡Õ�◊(‡Õ)/�◊(‡) is the local energy and

Ok(‡) = ˆ◊k log �◊(‡) are the log-derivatives of the
variational state.

We prove that the exact quantities (Eq. (4)) can
contain a bias term which is not included by F

MC
k

and S
MC
kkÕ , since:

2

Figure 1: Sketch of the p-tVMC algorithm and failure of tVMC when the state features zeros. In p-tVMC, the optimization

problem of projecting the exactly evolved state U |�◊(t)Í onto the variational manifold M of the ansatz |�◊Í is solved at each

time-step. This is achieved by minimizing a distance in the Hilbert space which is taken to be the infidelity I (as shown in

the magnification). When, a state with zeros (or near zeros) in the wavefunction is encountered during the evolution, such as

|�◊(ti+1)Í, the tVMC dynamics starts to detach from the exact solution due to a bias (or an vanishing signal to noise ratio).

tion in the case of non-Cli↵ord 2D dynamics. As
a proof of concept, we investigate this regime which
is intractable to TNs due to the rapid entanglement
growth and the higher dimensionality, but also to
tVMC due to the projective measurements enforcing
a large number of zeros in the wave-function.

2 Numerical challenges in time-
dependent Variational Monte Carlo
The state of the system |�Í can be e�ciently ap-
proximated by a variational ansatz �◊(‡) © È‡|�◊Í,
which is completely specified by a set of P parameters
◊ = (◊1, . . . , ◊P ). The resulting state is therefore

|�Í ¥ |�◊Í =
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�◊(‡) |‡Í . (1)

We consider computationally tractable ansätze,
meaning that P is polynomially large in the sys-
tem size and �◊(‡) can be sampled and queried e�-
ciently [40].

Within this approach, variational dynamics can be
encoded onto time-dependent parameters ◊(t) such
that |�◊(t)Í approximates the physical dynamics. In
what follows we will focus on the unitary evolution
of a time-independent Hamiltonian H, ◊ œ CP and
holomorphic �◊(‡). However, the discussion is gen-
eral and also applies to non-Hermitian PT-symmetric
hamiltonians [41], imaginary time evolution [18], or
open quantum systems obeying the Lindblad Mas-
ter Equation [42] and can be extended to the non-
holomorphic case.

The McLachlan’s variational principle [43] recasts

the Schrödinger’s equation d|�Í

dt = ≠iH |�Í at every
time-step onto the optimization problem:

min
◊̇

D(|�◊(t)+”t◊̇(t)Í, e
≠iH”t

|�◊(t)Í), (2)

where D is the Fubini-Study metric. By keeping only
the leading terms in ”t in Eq. (2), it is possible to
derive the following set of explicit equations of motion

for ◊(t):

◊̇k(t) = ≠i

ÿ

kÕ

(S≠1)kkÕFkÕ . (3)

Fk are the variational forces and SkkÕ is the Quan-
tum Geometric Tensor [44, 45, 46]. These two quan-
tities are defined as:

Fk = Èˆ◊k �◊| H |�◊Í
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where from now we will use the compact notation
|�◊Í © |�◊(t)Í. The equations of motion determined
by Eq. (3) are integrated using numerical schemes like
Euler or higher-order Runge-Kutta.

Following the scheme known as time-dependent
Variational Monte Carlo (tVMC) [30, 47, 31], the
quantities defined in Eq. (4) are computed as sta-
tistical averages over the Born distribution �(‡) =
|�◊(‡)|2/ È�◊|�◊Í by means of a Monte Carlo sam-
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‡Õ H‡,‡Õ�◊(‡Õ)/�◊(‡) is the local energy and

Ok(‡) = ˆ◊k log �◊(‡) are the log-derivatives of the
variational state.

We prove that the exact quantities (Eq. (4)) can
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Figure 1: Sketch of the p-tVMC algorithm and failure of tVMC when the state features zeros. In p-tVMC, the optimization

problem of projecting the exactly evolved state U |�◊(t)Í onto the variational manifold M of the ansatz |�◊Í is solved at each

time-step. This is achieved by minimizing a distance in the Hilbert space which is taken to be the infidelity I (as shown in

the magnification). When, a state with zeros (or near zeros) in the wavefunction is encountered during the evolution, such as

|�◊(ti+1)Í, the tVMC dynamics starts to detach from the exact solution due to a bias (or an vanishing signal to noise ratio).

tion in the case of non-Cli↵ord 2D dynamics. As
a proof of concept, we investigate this regime which
is intractable to TNs due to the rapid entanglement
growth and the higher dimensionality, but also to
tVMC due to the projective measurements enforcing
a large number of zeros in the wave-function.

2 Numerical challenges in time-
dependent Variational Monte Carlo
The state of the system |�Í can be e�ciently ap-
proximated by a variational ansatz �◊(‡) © È‡|�◊Í,
which is completely specified by a set of P parameters
◊ = (◊1, . . . , ◊P ). The resulting state is therefore

|�Í ¥ |�◊Í =
ÿ

‡

�◊(‡) |‡Í . (1)

We consider computationally tractable ansätze,
meaning that P is polynomially large in the sys-
tem size and �◊(‡) can be sampled and queried e�-
ciently [40].

Within this approach, variational dynamics can be
encoded onto time-dependent parameters ◊(t) such
that |�◊(t)Í approximates the physical dynamics. In
what follows we will focus on the unitary evolution
of a time-independent Hamiltonian H, ◊ œ CP and
holomorphic �◊(‡). However, the discussion is gen-
eral and also applies to non-Hermitian PT-symmetric
hamiltonians [41], imaginary time evolution [18], or
open quantum systems obeying the Lindblad Mas-
ter Equation [42] and can be extended to the non-
holomorphic case.

The McLachlan’s variational principle [43] recasts

the Schrödinger’s equation d|�Í

dt = ≠iH |�Í at every
time-step onto the optimization problem:

min
◊̇

D(|�◊(t)+”t◊̇(t)Í, e
≠iH”t

|�◊(t)Í), (2)

where D is the Fubini-Study metric. By keeping only
the leading terms in ”t in Eq. (2), it is possible to
derive the following set of explicit equations of motion

for ◊(t):

◊̇k(t) = ≠i

ÿ

kÕ

(S≠1)kkÕFkÕ . (3)

Fk are the variational forces and SkkÕ is the Quan-
tum Geometric Tensor [44, 45, 46]. These two quan-
tities are defined as:
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where from now we will use the compact notation
|�◊Í © |�◊(t)Í. The equations of motion determined
by Eq. (3) are integrated using numerical schemes like
Euler or higher-order Runge-Kutta.

Following the scheme known as time-dependent
Variational Monte Carlo (tVMC) [30, 47, 31], the
quantities defined in Eq. (4) are computed as sta-
tistical averages over the Born distribution �(‡) =
|�◊(‡)|2/ È�◊|�◊Í by means of a Monte Carlo sam-
pling of:

F
MC
k = E�[Oú

k(‡)Eloc(‡)] ≠ E�[Oú

k(‡)]E�[Eloc(‡)]
(5)

S
MC
kkÕ = E�[Oú
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In the previous relations, the quantity Eloc =q
‡Õ H‡,‡Õ�◊(‡Õ)/�◊(‡) is the local energy and

Ok(‡) = ˆ◊k log �◊(‡) are the log-derivatives of the
variational state.

We prove that the exact quantities (Eq. (4)) can
contain a bias term which is not included by F

MC
k

and S
MC
kkÕ , since:

2

Sinibaldi, Giuliani, Carleo, and Vicentini 
In Preparation (2023)
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Bias Term is Non-Negligible In Some Applications

Fk =
ÿ

‡|�◊(‡)=0

Èˆ◊k �◊|‡Í È‡|H |�◊Í

È�◊|�◊Í

¸ ˚˙ ˝
bias bF

+F
MC
k , (7a)

SkkÕ =
ÿ

‡|�◊(‡)=0

Èˆ◊k �◊|‡Í È‡|ˆ◊kÕ �◊Í

È�◊|�◊Í

¸ ˚˙ ˝
bias bS

+S
MC
kkÕ . (7b)

The previous relations show that F
MC
k and S

MC
kkÕ

are biased if the variational wave function È‡|�◊Í

vanishes on some configurations while its derivative
È‡|ˆ◊k �◊Í does not. This may happen for non-linear
variational ansätze representing physically relevant
states such as basis states |‡Í, anti-symmetric wave-
functions (e.g. Slater) or states generated by digi-
tal quantum circuits. Moreover, this issue may also
appear for states that underwent a projective mea-
surement such as those arising from trajectory un-
ravellings of the Lindblad master equation [48, 49]
or from quantum information measurement proto-
cols [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], meaning that
tVMC cannot be used to tackle such problems. We
remark that for a continuous system (such as a par-
ticle in free space) the bias can only emerge for zeros
in the bulk, since at infinity the wave function and its
derivative must vanish. A pictorial representation of
the breakdown of tVMC is shown in Fig. 1.

In realistic calculations it often happens that the
variational approximation of the wave-function is ar-
bitrarily close to zero without encoding nodes exactly.
In such cases the biases are zero (bS = bF = 0), but
the variance of the estimators F

MC and S
MC will grow

such that an exponential number of samples will be
required to resolve those quantities with a finite ac-
curacy. We remark that this phenomenon can be wit-
nessed by the signal to noise ratio (SNR) of F

MC and
S
MC. The SNR of a function f of random variable ‡

with distribution � is defined as:

SNR�(f) =
Û

NsE�[f(‡)]2
Var�[f(‡)] , (8)

where Ns is the number of samples to estimate the
mean value and the variance. In the following, we first
discuss a minimal example with a finite bias, and we
then consider a more realistic case where there is no
bias but for which we show that the SNR approaches
zero.

We first discuss a toy-model where the bias of
the estimators is non-zero and it will break the t-
VMC. Consider N = 1 spin 1/2 where the state is
parametrised by the variational ansatz

--�(–,—)
,

=
cos – |¿Í+e

i— sin – |øÍ. The state |�(0,—)Í = |¿Í is such
that Èø| �(0,—)Í = 0, and this is evolved with Hamil-
tonian H = ‡

y. In this case, bF and bS from Eq. (7)
are finite and the stochastic estimates di↵er from the

Figure 2: (a-b) Dynamics of the longitudinal magnetization

È‡z
i Í for: (a) the N = 1 spin 1/2 toy-model, where the initial

state |+Í is rotated with ‡y
, which is simulated by Exact

Diagonalization (ED), tVMC and p-tVMC; (b) a system of

N = 4 spins 1/2, initialized in |�ÁÍ with Á = 1.5 · 10≠5

and evolved via HTFI (J = h = 1), which is simulated by

ED and tVMC with increasing number of samples Ns (see

colorbar). For tVMC ”t = 10≠3
have been used, while for

the p-tVMC ”t = 10≠2
. (c) Infidelity I among the states

evolved with tVMC

--�◊f

,
and ED |�ED(tf )Í after a time

tf starting from |�ÁÍ with increasing Ns (see colorbar) and

di�erent Á. The inset shows how the minimal Ns required to

reach a final infidelity of 5 · 10≠3
(indicated by a dashed line

in the main plot) scales with Á (markers) and a corresponding

power-law fit (red line). For both (b) and (c) the variational

state is a Restricted Boltzmann Machine [47] with – = 1.

(d) Schematic illustration of the Born distribution for the

peaked states |�ÁÍ.

exact expressions as:

F =
3

ie
≠i—

0

4
, S =

3
1 0
0 0

4
,

F
MC =

3
0
0

4
, S

MC =
3

0 0
0 0

4
,

(see Appendix B.1 for the full calculation).
In Fig. 2(a) we show a simulation of an initial state

|+Í which is rotated by the Hamiltonian H = ‡
y. At

t = fi/4 the state becomes |�◊Í = |¿Í and the vari-
ational evolution is stuck, as F

MC and S
MC vanish.

Similar considerations hold for more than 1 particle,
and in Appendix B.2 we discuss an example for the
GHZ state of N = 2 spins.

We now analyze a more realistic case where the
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Directly Minimise Infidelity Instead 

variational state does not exactly encode zeros. In
particular, we consider a system of N spins in the
state |�ÁÍ, which is peaked on a single configuration
|‡0Í and with a constant small amplitude

Ô
Á for all

the other basis states (see Fig. 2(d)), namely:

�Á(‡) =
IÔ

Á, if ‡ ”= ‡0,
1 ≠ (2N ≠ 1)Á, if ‡ = ‡0,

(9)

where 0 < Á < 2N
≠ 1. We remark that for small

Á this state is close to the Hartree-Fock ground-state
of a quantum-chemical Hamiltonian. For Á ”= 0 the
biases bF/S are zero, but for Á ¥ 0 the leading term
of the SNR for F

MC and S
MC are respectively (see

Appendix C for the full calculation):

SNR(FMC) Ã Á, SNR(SMC) Ã Á. (10)

Intuitively, this means that the more the state is
peaked, the more samples will be needed to correctly
estimate those quantities. As normalization of the
state imposes Á Ã 2≠N , the number of samples nec-
essary to correctly estimate the quantum geometric
tensor and the variational forces will diverge as 2N ,
eliminating the computational advantage of stochas-
tic sampling.
We consolidate this argument with a numerical ex-

periment. We evolve with tVMC the state |�ÁÍ for
t œ [0, tf ] according to the Transverse Field Ising
(TFI) Hamiltonian,

HTFI = ≠J

ÿ

Èi,jÍ

‡
z
i ‡

z
j ≠ h

ÿ

i

‡
x
i , (11)

where Èi, jÍ denotes nearest neighbors in a lattice with
periodic boundary conditions. In Figure 2(b) we show
some evolutions obtained with an increasing number
of Monte Carlo samples Ns, demonstrating that the
dynamics is correctly reconstructed only at large val-
ues of Ns. The scaling of Ns with the system size is
studied in Fig. 2(c), where we report the final infi-
delity of the state obtained with tVMC with respect
to the exact solution as a function of Á. The infidelity
between two arbitrary states |ÂÍ and |„Í is defined as
I(Â, „) = 1 ≠ |ÈÂ|„Í|

2
/ ÈÂ|ÂÍ È„|„Í. We remark that

the accuracy of the variational simulation improves
when Á or Ns is increased, as the statistical fluctua-
tions in the estimated quantities are suppressed. The
inset highlights a power-law relation among Ns and Á,
proving that Ns ≥ 2N . Concluding this first section,
we have shown that the tVMC method can be either
biased or it requires an exponential number of sam-
ples when respectively the wavefunction is exactly or
approximately zero. This highlights the necessity of
an e�cient alternative to tVMC for variational time
evolution.
We stress that while our considerations on stochas-

tic estimators arose in the context of tVMC, they
are also applicable to ground-state calculations using

both plain gradient descent or stochastic reconfigu-
ration [50], because they normally rely on the same
estimators. However, we believe that in such calcula-
tions the additional errors contributed by the biasing
or increased variance are mitigated by the iterative
optimization scheme, which may avoid the accumula-
tion of errors that instead a↵ects dynamics. To con-
clude, we also remark that Monte Carlo Variational
methods for open quantum systems [51, 52, 53] are
also possibly a↵ected by the same issues.
In Appendix A we provide a modified estimator for

F such that its SNR remains finite for Á æ 0 (see
Appendix C), but we could not similarly modify the
estimator for S.

3 Projected time-dependent Varia-
tional Monte Carlo
We consider the general problem of finding the pa-
rameters of a variational state |�◊̃Í such that it ap-
proximates the state U |�◊Í, where ◊ are known and
U is an arbitrary transformation, in terms of a given
distance. Considering the distance to be the infidelity
I, this can be expressed as the following optimization
problem:

min
◊̃

I( |�◊̃Í , U |�◊Í). (12)

Other choices of distance, such as the L2 met-
ric, have also been discussed in the literature [36].
Eq. (12) is similar to Eq. (2), but can treat arbi-
trary unitaries and therefore has been used to sim-
ulate quantum circuits [32, 34] or to perform state
preparation.
The solution of Eq. (12) can be found with iterative

gradient-based optimizers such as Stochastic Gradient
Descent [54], ADAM [55], Natural Gradient [56, 57,
44] or similar methods. Since this approach consists
of projecting the exactly evolved state U |�◊Í onto
the manifold of the variational ansatz |�◊̃Í, we name
it projected time-dependent Variational Monte Carlo
(p-tVMC), and this is pictorially represented in Fig. 1.
The infidelity in Eq. (12) can be estimated through

Monte Carlo sampling as I(◊̃) = E‰[Iloc(‡, ÷)]. Many
choices for the sampling distribution ‰ and the local
estimator Iloc are possible, but assuming that U is
unitary we can sample

Iloc(‡, ÷) = 1 ≠
È‡| U |�◊Í

È‡|�◊̃Í

È÷| U
†

|�◊̃Í

È÷|�◊Í
, (13)

from the joint Born distribution of the two states
‰(‡, ÷) = |�◊̃(‡)|2|�◊(÷)|2 È�◊̃|�◊̃Í È�◊|�◊Í. For non-
unitary U it will be necessary to sample from U |�◊Í

instead of |�◊Í [32, 34].
We remark that estimating the infidelity via

Eq. (13) is e�cient if U is K-local. When this is not
the case, it can be factored in several sub-terms U =
U1 . . . UN where each term is K-local, and Eq. (12)

4
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biases bF/S are zero, but for Á ¥ 0 the leading term
of the SNR for F

MC and S
MC are respectively (see

Appendix C for the full calculation):

SNR(FMC) Ã Á, SNR(SMC) Ã Á. (11)

Intuitively, this means that the more the state is
peaked, the more samples will be needed to correctly
estimate those quantities. As normalization of the
state imposes Á Ã 2≠N , the number of samples nec-
essary to correctly estimate the quantum geometric
tensor and the variational forces will diverge as 2N ,
eliminating the computational advantage of stochas-
tic sampling.

We consolidate this argument with a numerical ex-
periment. We evolve with tVMC the state |�ÁÍ for
t œ [0, tf ] according to the Transverse Field Ising
(TFI) Hamiltonian,

HTFI = ≠J

ÿ

Èi,jÍ

‡
z
i ‡

z
j ≠ h

ÿ

i

‡
x
i , (12)

where Èi, jÍ denotes nearest neighbors in a lattice with
periodic boundary conditions. In Figure 2(b) we show
some evolutions obtained with an increasing number
of Monte Carlo samples Ns, demonstrating that the
dynamics is correctly reconstructed only at large val-
ues of Ns. The scaling of Ns with the system size is
studied in Fig. 2(c), where we report the final infi-
delity of the state obtained with tVMC with respect
to the exact solution as a function of Á. The infidelity
between two arbitrary states |ÂÍ and |„Í is defined as
I(Â, „) = 1 ≠ |ÈÂ|„Í|

2
/ ÈÂ|ÂÍ È„|„Í. We remark that

the accuracy of the variational simulation improves
when Á or Ns is increased, as the statistical fluctua-
tions in the estimated quantities are suppressed. The
inset highlights a power-law relation among Ns and Á,
proving that Ns ≥ 2N . Concluding this first section,
we have shown that the tVMC method can be either
biased or it requires an exponential number of sam-
ples when respectively the wavefunction is exactly or
approximately zero. This highlights the necessity of
an e�cient alternative to tVMC for variational time
evolution.

We stress that while our considerations on stochas-
tic estimators arose in the context of tVMC, they
are also applicable to ground-state calculations using
both plain gradient descent or stochastic reconfigu-
ration [50], because they normally rely on the same
estimators. However, we believe that in such calcula-
tions the additional errors contributed by the biasing
or increased variance are mitigated by the iterative
optimization scheme, which may avoid the accumula-
tion of errors that instead a↵ects dynamics. To con-
clude, we also remark that Monte Carlo Variational
methods for open quantum systems [51, 52, 53] are
also possibly a↵ected by the same issues.

In Appendix A we provide a modified estimator for
F such that its SNR remains finite for Á æ 0 (see

Appendix C), but we could not similarly modify the
estimator for S.

3 Projected time-dependent Varia-
tional Monte Carlo
We consider the general problem of finding the pa-
rameters of a variational state |�◊̃Í such that it ap-
proximates the state U |�◊Í, where ◊ are known and
U is an arbitrary transformation, in terms of a given
distance. Considering the distance to be the infidelity
I, this can be expressed as the following optimization
problem:

min
◊̃

I( |�◊̃Í , U |�◊Í). (13)

Other choices of distance, such as the L2 met-
ric, have also been discussed in the literature [36].
Eq. (13) is similar to Eq. (2), but can treat arbi-
trary unitaries and therefore has been used to sim-
ulate quantum circuits [32, 34] or to perform state
preparation.

The solution of Eq. (13) can be found with iterative
gradient-based optimizers such as Stochastic Gradient
Descent [54], ADAM [55], Natural Gradient [56, 57,
44] or similar methods. Since this approach consists
of projecting the exactly evolved state U |�◊Í onto
the manifold of the variational ansatz |�◊̃Í, we name
it projected time-dependent Variational Monte Carlo
(p-tVMC), and this is pictorially represented in Fig. 1.

The infidelity in Eq. (13) can be estimated through
Monte Carlo sampling as I(◊̃) = E‰[Iloc(‡, ÷)]. Many
choices for the sampling distribution ‰ and the local
estimator Iloc are possible, but assuming that U is
unitary we can sample

Iloc(‡, ÷) = 1 ≠
È‡| U |�◊Í

È‡|�◊̃Í

È÷| U
†

|�◊̃Í

È÷|�◊Í
, (14)

from the joint Born distribution of the two states
‰(‡, ÷) = |�◊̃(‡)|2|�◊(÷)|2 È�◊̃|�◊̃Í È�◊|�◊Í. For non-
unitary U it will be necessary to sample from U |�◊Í

instead of |�◊Í [32, 34].
We remark that estimating the infidelity via

Eq. (14) is e�cient if U is K-local. When this is not
the case, it can be factored in several sub-terms U =
U1 . . . UN where each term is K-local, and Eq. (13)
must be solved for every sub-unitary Ui. In particu-
lar the unitary evolution operator can be decomposed
with the Trotter decomposition or with other expan-
sions that are unitary up to leading order, such as the
Taylor series [33].

We now analyze the estimator Iloc according to the
same approach used in the previous section. We found
that, in the limit of I æ 0, the SNR of the estimator
scales as

SNR Ã

Ô

I. (15)
This means that, as the optimization approaches

the optimum of I = 0, the number of samples to

4
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Preliminary Exploration of Entanglement Entropy

Figure 3: (a-b-c) Time evolution of the Rényi entropy S2 simulated with p-tVMC for HTFI interspersed with random projective

measurements in the L ◊ L lattices with L = 4 (with ED benchmark), L = 5 and L = 6. Subsystems of increasing size |A|

up to the maximum partition have been considered. The insets show the scaling of S2 as a function of |A| in the steady state

(last 5 points of dynamics) for the three lattices. S2 for subsystems with equal boundary is indicated using the same marker.

The initial state is
rN

i
|+Íi and the parameters of HTFI are J = 1/2 and h = hc/4. The measurement rate is p = 0.01 and

the time interval is ”t = 0.1. The results have been averaged over 5 trajectories for all the lattices. The ansatz is an RBM with

– = 4, endowed with the variational terms to exactly implement the diagonal part of the propagator and the measurements.

To simulate the dynamics, Ns = 104
samples have been used for L = 4, and Ns = 2 · 104

for L = 5, 6.

the Réniy-2 entropy is a lower bound for the Von Neu-
mann entanglement entropy and it can be estimated
via Monte Carlo sampling as:

S2 = ≠ log2

A
E�(‡,÷)�(‡Õ,÷Õ)

5�◊(‡Õ
, ÷)�◊(‡, ÷

Õ)
�◊(‡, ÷)�◊(‡Õ, ÷Õ)

6B
,

(19)
where ‡, ‡

Õ
œ A and ÷, ÷

Õ
œ B (complementary of A).

See Appendix H for a derivation of Eq. (19).

Fig. 3(a-b-c) shows the evolution of S2(flA) for
subsystems of size |A| œ [1, N/2] in lattices with
L = {4, 5, 6} and with measurement rate p = 0.05.
To assess the quality of the variational simulation, we
computed the same quantities with ED for L = 4 and
we selected a feature density for the RBM ansatz em-
ployed (which determines its expressivity) that gave a
satisfying level of precision for this system size. Given
the chosen hyper-parameters, there is an excellent
agreement for small subsystems (|A| . N/4) and a
good agreement for the largest partitions. The Rényi
entanglement entropy is 0 at t = 0, as expected for the
initial product state, and it then grows linearly over
time, plateauing to a value that is proportional to |A|.
The Page-like curves [60] in Fig. 3(d-e-f) suggest that
with p = 0.01 the steady states belong to the volume-
law entangled phase. If we had area-law, S2 would
not change value for subsystems with same boundary
(indicated with equal markers in Fig. 3(d-e-f)), while
it is observed that S2 increases linearly with |A| in-
dependently of the boundary, at least far from ÂN/2Ê

where finite size e↵ects play a role. Instead, we have
verified that the entanglement growth rate in the ini-
tial times is proportional to the boundaries, according
to the Lieb-Robinson bound [61] for local Hamiltoni-
ans. We remark that, to represent volume-law states,
tensor networks would require a bond dimension ex-
ponentially large with N .

5 Conclusions
In this manuscript, we proved that the standard ap-
proach to variational dynamics on a classical com-
puter, the tVMC, is limited by a finite bias or by
an exponentially small signal to noise ratio when
the wave-function is approximately zero or contains
nodes. This implies that the tVMC cannot be used
to simulate the dynamics of physically-relevant cases
such as completely polarized wave-functions, states
arising from digital quantum circuits or from mea-
surement processes, including the open dynamics with
quantum jumps. Subsequently, we have formalized
an alternative scheme, which consists in solving an
optimization problem at each time-step using the in-
fidelity distance, introducing a novel stochastic esti-
mator which makes this approach viable and scalable.
Finally, we showed that our method can be used to
solve the lack of e�cient algorithms to investigate the
volume-law phase in a protocol of non-Cli↵ord unitary
dynamics with local random measurements in 2D.
This will enable future investigation into the physics
of several classes of systems, including measurement-
induced phase transitions in non-trivial models above
1D and the physics of dissipative systems, all of which
are currently limited by the available computational
methods. In particular, a direct application of the
projected method would be the variational simulation
of quantum trajectories arising from the unravelling
of the Lindblad equation. All the simulations have
been performed using Netket 3 [62, 63] with MPI and
MPI4jax [64].
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Dynamics : Challenges and Opportunities

In its present formulation, variational dynamics is a much heavier counterpart to 
ground state search

Great progress has been made, with suitable 
improvements NQS are on track to become state of the 

art general-purpose quantum simulators 

By combining the full power of classical simulation and 
QPU accelerators, progress can happen faster
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What you Cannot Expect in The Near Future 
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