Time-Dependent Neural Quantum States

Giuseppe Carleo

CQSL: Computational Quantum Science Lab
QSE: Center for Quantum Science and Engineering

$\therefore \because:$
Computational Quantum Science Lab.

Out-of-Equilibrium.

Out of Equilibrium Protocols and Questions

Quantum Quenches

$$
e^{-i \mathcal{H} t}|\Psi\rangle
$$

Unitary dynamics of a pure state

Driving Hamiltonian

$$
\mathcal{T} e^{-i \int_{0}^{t} d t^{\prime} \mathcal{H}\left(t^{\prime}\right)}|\Psi\rangle
$$

Unitary dynamics with a time-varying Hamiltonian

Fundamental Questions

How to reconcile Schrödinger with Boltzmann?

How fast equilibrium is reached?

Defect production across a phase Transition

Consequences for Adiabatic State Preparation?

A Challenge in Computational Physics

Exact Approaches

Exact Diagonalization/

 LanczosLimited to small systems

Path-Integral

Monte Carlo

Severe Phase Problem
Ill-conditioned inversion

Quantum Computing

Strongly Affected by Noise
Error-Corrected Hardware Likely Needed to Access Regimes Truly Hard/Interesting for Physics

Mean-Field Dynamics

No limitations on geometry/timescales
Poor qualitative and quantitative accuracy

Tensor Network Methods

DMRG / Matrix Product States / PEPS
Mostly limited to 1D/ short time scales
Mostly lattice systems

Spin

 Dynamics.
First Results with Time-Dependent RBM

Carleo and Troyer
Science 355, 602 (2017)

Explorations of 2D Quench Dynamics

$$
H=-J \sum_{\langle i, j\rangle} \sigma_{i}^{z} \sigma_{j}^{z}-h \sum_{j} \sigma_{j}^{x}
$$

Schmitt and Heyl, Phys. Rev. Lett. 125, 100503 (2020)

Time-Dependent Hamiltonians

$$
H(t)=-J(t) \sum_{\langle m, n\rangle} \sigma_{m}^{z} \sigma_{n}^{z}-g(t) \sum_{m=1}^{L^{2}} \sigma_{m}^{x}
$$

Kibble-Zurek mechanism

Defect formation near quantum phase transitions

Violation to the mechanism found in 2D

Schmitt, Rams, Dziarmaga, Heyl, and Zurek
Science Advances 8, abl6850 (2022)

Simulating
 Quantum
 Circuits.

Quantum Circuits and Universal Gates

Elementary Gates

Any Quantum Circuit Can be Decomposed Into the Action of Few Elementary Gates

Gate

$$
-\quad R_{z}(\theta)-\quad\left(\begin{array}{cc}
e^{-i \frac{\theta}{2}} & 0 \\
0 & e^{i \frac{\theta}{2}}
\end{array}\right)
$$

$$
-H \quad \frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$

Applying Gates to a RBM

Can Be Performed Exactly

Give Rise To Local Modifications of Weights

Many Other Gates Can Be Done Exactly

All Diagonal Gates, All Pauli Gates,... arXiv:1808.05232 (2018)

The Hadamard Gate is Hard

 arXiv:1808.05232 (2018)

Approximating the Hadamard Gate

$$
\begin{gathered}
|\phi\rangle=H\left|\psi_{\theta}\right\rangle \cdots\left|\psi_{\theta^{\prime}}\right\rangle \simeq|\phi\rangle \\
\mathcal{D}\left(\phi, \psi_{\theta^{\prime}}\right)=1-F\left(\phi, \psi_{\theta^{\prime}}\right) \quad \begin{array}{c}
\text { Minimize infidelity }
\end{array} \\
\begin{array}{l}
\text { Jonsson, Bauer, and Carleo } \\
\text { arXiv:1808.05232 (2018) }
\end{array}
\end{gathered}
$$

Infidelity as a Stochastic Average

$$
F(\psi, \phi)=\frac{|\langle\phi \mid \psi\rangle|^{2}}{\langle\phi \mid \phi\rangle\langle\psi \mid \psi\rangle}=\left\langle\frac{\phi}{\psi}\right\rangle_{\psi}\left\langle\frac{\psi}{\phi}\right\rangle_{\phi}
$$

$$
\frac{\partial \mathcal{D}}{\partial \theta_{l}^{*}}=\left\langle\frac{\phi}{\psi_{\theta}}\right\rangle_{\psi_{\theta}}\left\langle\frac{\psi_{\theta}}{\phi}\right\rangle_{\phi}\left[\left\langle\mathcal{O}_{k}^{*}\right\rangle_{\psi_{\theta}}-\frac{\left\langle\frac{\phi}{\psi_{\theta}} \mathcal{O}_{k}^{*}\right\rangle_{\psi_{\theta}}}{\left\langle\frac{\phi}{\psi_{\theta}}\right\rangle_{\psi_{\theta}}}\right]
$$

Variational Error Versus Hardware Error

> Comparing Variational Error with Depolarization Noise

Jonsson, Bauer, and Carleo
arXiv:1808.05232 (2018)
see also
Zhou et al PRX 10, 041038 (2020)

Simulating QAOA

$$
\begin{aligned}
& U_{C}(\gamma)=e^{-i \gamma \mathcal{C}}=\prod_{i, j \in E(G)} e^{-i \gamma w_{i j} Z_{i} Z_{j}} \\
& U_{B}(\beta)=\prod_{i \in G} e^{-i \beta X_{i}}
\end{aligned}
$$

Medvidovic, and Carleo
Npj Quantum Info 7, 101 (2021)

Computational Quantum Science Lab.

Benchmarks

Medvidovic, and Carleo
Npj Quantum Info 7, 101 (2021)

Scaling to 54 Qubits

4 Layers
324 RZZ Gates
216 RX Gates

Medvidovic, and Carleo
Npj Quantum Info 7, 101 (2021)

Comparison With Matrix Product States

Remark: competitive tensor contraction schemes on similar problems typically yield only cost function not samples/ wave functions like for MPS/NQS

Medvidovic, and Carleo Npj Quantum Info 7, 101 (2021)

General Representation Diagram

Sharir, Shashua, and Carleo
Phys. Rev. B 106, 205136 (2022)

Unitary Dynamics with Measurements.

A Problem with Stochastic Estimators?

$$
\begin{array}{ll}
F_{k}=\frac{\left\langle\partial_{\theta_{k}} \Psi_{\theta}\right| \mathcal{H}\left|\Psi_{\theta}\right\rangle}{\left\langle\Psi_{\theta} \mid \Psi_{\theta}\right\rangle}-\frac{\left\langle\partial_{\theta_{k}} \Psi_{\theta} \mid \Psi_{\theta}\right\rangle}{\left\langle\Psi_{\theta} \mid \Psi_{\theta}\right\rangle} \frac{\left\langle\Psi_{\theta}\right| \mathcal{H}\left|\Psi_{\theta}\right\rangle}{\left\langle\Psi_{\theta} \mid \Psi_{\theta}\right\rangle} & F_{k}^{\mathrm{MC}}=\mathbb{E}_{\Pi}\left[O_{k}^{*}(\sigma) E_{\mathrm{loc}}(\sigma)\right]-\mathbb{E}_{\Pi}\left[O_{k}^{*}(\sigma)\right] \mathbb{E}_{\Pi}\left[E_{\mathrm{loc}}(\sigma)\right] \\
S_{k k^{\prime}}=\frac{\left\langle\partial_{\theta_{k}} \Psi_{\theta} \mid \partial_{\theta^{k^{\prime}}} \Psi_{\theta}\right\rangle}{\left\langle\Psi_{\theta} \mid \Psi_{\theta}\right\rangle}-\frac{\left\langle\partial_{\theta_{\theta}} \Psi_{\theta} \mid \Psi_{\theta}\right\rangle}{\left\langle\Psi_{\theta} \mid \Psi_{\theta}\right\rangle} \frac{\left\langle\Psi_{\theta} \mid \partial_{\theta^{\prime}} \Psi_{\theta}\right\rangle}{\left\langle\Psi_{\theta} \mid \Psi_{\theta}\right\rangle} & S_{k k^{\prime}}^{\mathrm{MC}}=\mathbb{E}_{\Pi}\left[O_{k}^{*}(\sigma)\left(O_{k^{\prime}}(\sigma)\right]-\mathbb{E}_{\Pi}\left[O_{k}^{*}(\sigma)\right] \mathbb{E}_{\Pi}\left[O_{k^{\prime}}(\sigma)\right]\right.
\end{array}
$$

Assumption behind Estimators

Gradients of state vanish if state vanishes

Sinibaldi, Giuliani, Carleo, and Vicentini In Preparation (2023)

Bias Term is Non-Negligible In Some Applications

$$
\begin{aligned}
F_{k} & =\underbrace{\sum_{\sigma \mid \Psi_{\theta}(\sigma)=0} \frac{\left\langle\partial_{\theta_{k}} \Psi_{\theta} \mid \sigma\right\rangle\langle\sigma| \mathcal{H}\left|\Psi_{\theta}\right\rangle}{\left\langle\Psi_{\theta} \mid \Psi_{\theta}\right\rangle}}_{\text {bias } b_{F}}+F_{k}^{\mathrm{MC}} \\
S_{k k^{\prime}} & =\underbrace{\sum_{\sigma \mid \Psi_{\theta}(\sigma)=0} \frac{\left\langle\partial_{\theta_{k}} \Psi_{\theta} \mid \sigma\right\rangle\left\langle\sigma \mid \partial_{\theta_{k^{\prime}}} \Psi_{\theta}\right\rangle}{\left\langle\Psi_{\theta} \mid \Psi_{\theta}\right\rangle}}_{\text {bias } b_{S}}+S_{k k^{\prime}}^{\mathrm{MC}}
\end{aligned}
$$

Directly Minimise Infidelity Instead

$$
\min _{\tilde{\theta}} \mathcal{I}\left(\left|\Psi_{\tilde{\theta}}\right\rangle, \mathcal{U}\left|\Psi_{\theta}\right\rangle\right)
$$

Sinibaldi, Giuliani, Carleo, and Vicentini
In Preparation (2023)

Application: Interleaving Dynamics with Measurements

Preliminary Exploration of Entanglement Entropy

The initial state is $\prod_{i}^{N}|+\rangle_{i}$ and the parameters of $\mathcal{H}_{\text {TFI }}$ are $J=1 / 2$ and $\dot{h}=h_{c} / 4$.

Low Measurement Regime

Measurement rate of $\mathrm{p}=0.01, \mathrm{dt}=0.1$

Violation of Area Law

Preliminary date indicates Area Law is Violated

05.

Final Thoughts.

Ground States with Neural Quantum States

State of the art many-body wave functions in spin models, quantum chemistry, nuclear matter

Robledo Moreno, Carleo, Georges, and Stokes PNAS 119, e2122059119 (2022)

Pescia, Nys, Kim, Lovato, and Carleo

Choo, Mezzacapo, and Carleo Nature Comm. 11, 2368 (2020)

Adams, Carleo, Lovato, and Rocco Phys. Rev. Lett. 127, 022502 (2021)

Dynamics : Challenges and Opportunities

In its present formulation, variational dynamics is a much heavier counterpart to ground state search

Great progress has been made, with suitable improvements NQS are on track to become state of the
art general-purpose quantum simulators

By combining the full power of classical simulation and QPU accelerators, progress can happen faster

What you Cannot Expect in The Near Future

Can you please compute, as a function of time, the average value of the interaction energy after a quench in the two-dimensional transverse-field Ising model on the square lattice? The initial state is the ground-state for $\mathrm{h}=0$ and the final transverse field for the time evolution is $\mathrm{h}=2$, assume the coupling is $\mathrm{J}=1$.

To compute the average value of the interaction energy as a function of time after a quench in the two-dimensional transverse-field Ising model on a square lattice, we need to perform time evolution of the initial ground state under the final transverse field. The time evolution of the quantum state is given by the Schrödinger equation:
$i \partial \psi / \partial t=H \psi$
where ψ is the state vector and H is the Hamiltonian. In this case, the Hamiltonian is timeindependent as it only depends on the final transverse field.

The Hamiltonian for the two-dimensional transverse-field Ising model on a square lattice is given by:
$H=-J \sum<i, j>\sigma z i \sigma z j-h \sum i \sigma x i$
where oxi and σ zi are the Pauli matrices acting on site i, J is the coupling constant, and h is the transverse field strength. The sum $\sum<i, j>$ is taken over neighboring lattice sites.

We can numerically simulate the time evolution by discretizing time and using a time evolution algorithm such as the Trotter-Suzuki decomposition or the time-dependent variational principle (TDVP). Here, let's use the Trotter-Suzuki decomposition, which approximates the time evolution operator by a product of exponential operators.

The time evolution operator for a time step Δt is given by:
$U(\Delta t)=e^{\wedge}(-i H \Delta t)$

To compute the average value of the interaction energy as a function of time, we can follow these steps:

1. Initialize the system in the ground state for $h=0$, which corresponds to all spins aligned along the z-direction, $\sigma z i=+1$ for all sites i .
2. Set the final transverse field strength $\mathrm{h}=2$.
3. Choose a time step $\Delta \mathrm{t}$,
4. Apply the time evolution operator $U(\Delta t)$ to the initial state iteratively, for a desired number of time steps.
5. At each time step, calculate the interaction energy by evaluating the expectation value of the interaction term for each pair of neighboring spins.
6. Take the average of the interaction energy over the desired number of time steps.

By repeating steps 4-6 for different time steps and plotting the results, you can obtain the average value of the interaction energy as a function of time after the quench in the transverse-field lsing model on the square lattice.

Thank you!

$\therefore \div$
Computational Quantum Science Lab.

FLATIRON
INSTITUTE
INSTITUTE

Argonne

