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Seminar (11h30):

Ambroise van Roekeghem
Université Grenoble-Alpes, CEA-LITEN

Machine learning force fields for materials science

Ambroise van Roekeghem
Université Grenoble Alpes, CEA, LITEN

The use of machine learning techniques to build force fields matching ab initio data at a fraction of the
computational cost has exploded in the last decade. In this seminar, | will first introduce the atomic descriptors
typically used by such force fields. | will illustrate their advantages by discussing some recent applications, but also
some of their limitations or technical difficulties that may arise. Finally, | will discuss some of the current
developments in the field.
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Today’s menu:

e Cont’d from lecture 5: Hidden Fermion Determinantal
States: some results and conclusion

 Fundamentals of Density Functional Theory in a
nutshell

* Teaching a neural network to implement the
Hohenberg-Kohn correspondence

e Constructing Density Functionals using Machine
Learning

* Some Applications

* Disclaimer: this is only an incomplete overview of an
emerging and burgeoning field... basically to make you
want to read/learn more about it.



Hidden Fermion Determinantal
States (HFDS)

PNAS RESEARCH ARTICLE | PHYSICS

mi' OPEN ACCESS | |’

Check for
updates

Fermionic wave functions from neural-network constrained
hidden states

Javier Robledo Moreno®”'(@, Giuseppe Carleo™, Antoine Georges®*'8(3, and James Stokes™"

PNAS 2022 Vol. 119 No. 32 2122059119

For a recent extension to continuum space and application to nuclear
matter, see: A.Lovato et al. Phys Rev Research 4, 043178 (2022)



Fock space spanned by &Ia (M =0)

Augmented space
(M > 0)

@ Target correlated state

, SDs in augmented space

me SDs in physical space

J. Robledo-Moreno et al.
PNAS, 2022

HFDS: The Basic Concept

HFDS enlarges the Hilbert space
with fermionic "hidden” modes.

The wave function is a Slater
determinant in the enlarged space,
subject to a constraint for projecting
it back to the physical space.

This results in a correlated/entangled
wave-function

Fig. 1. Depiction of the geometrical interpretation of the hidden fermion

formalism. The Fock space spanned by the visible-fermionic modes &,Ta is
represented by the green horizontal line. The augmented Fock space is
represented by the light orange plane (plane of the paper). The orange
diagonal line represents the subspace in the augmented Fock space that is
isomorphic to the physical Hilbert space after applying the constraint function
(black arrows). The collection of SDs in the augmented space is represented by
the blue shape, and the intersection with the subspace of just visible DOFs is
marked in yellow. This intersection corresponds to the physical Hartree-Fock
states. The constraint function changes the collection of states that represent
the physical Hilbert space bringing the target correlated state close to a Slater
determinant in the enlarged space.



HFDS: The General Concept
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Hilbert space

Figure 6.2: Venn diagram of the expressive power of classically tractable (amplitudes can be
evaluated in polynomial time) determinant-based trial states, in the Hilbert space spanned
by a finite number of basis elements (discrete degrees of freedom). HFDS stands for hidden
fermion determinant state, in this case with N = N. Backflow det. stands for a single
N x N backflow determinant. Slater x Corr. is the N x N Slater determinant multiplied by
a diagonal correlation factor.
Figure courtesy Javier Robledo-Moreno

See J R-M’s PhD thesis for more details



Parametrization of a Hidden Fermion
Determinantal State by neural networks

d1(z1) ... on(z1) xa(z1) ... xz(z1)
bi(zy) .. on(an) xi(@w) .. xm(@w)

(6:(fi(n)) -+ on(Hi(n)) xa(fi(n)) - -+ xz(fr(n)))

= ()

Each row of the hidden sector is parametrized by a different perceptron.
For example, with 2 layers:

(0 1fi(@)], - X5 [fi(2)]] = tanh (tanh (n w4 bgl)) w4 bz(2)>

J.Robledo-Moreno, G.Carleo, A.G. and J.Stokes, PNAS, 2022



HFDS with physically motivated constraints:
benchmark on 4*4 Hubbard model at %-filling
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Fig. 1. Benchmarks of physically motivated constraint functions with ED energies in the 4 x 4 Hubbard model at n = 1/2 average physical site occupation. Results from
standard wave function ansdtze are shown as dashed lines for comparison purposes. (a) Relative error in the ground-state energy as a function of the coupling constant U'.
The different constraint function ansdtze are a single Slater determinant in the augmented Fock space with no projections. (b) Same as panel (a) including a complex RBM
projection factor both in the control unrestricted HF ansatz and a E-RBM factor in the the hidden fermion ansdtze.

J.Robledo-Moreno, G.Carleo, A.G. and J.Stokes, PNAS, 2022



Numerical results with NN parametrization:
4*4 Hubbard model at %-filling
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Fig. 3. Exact diagonalization benchmarks of the ground-state energy in the 4 x 4 lattice with periodic boundary conditions. (A) Relative error in the ground-
state energy as a function of the inverse of the width density « of the single-hidden-layer neural networks parameterizing the rows of the hidden submatrix.
Average physical site occupationisn = 1/2 and N = 8. Different values of U are considered, as indicated by each color. The error for a Slater-RBM ansatz (main
text) with hidden neuron density a = 32, at the same values of U, is included for comparison. Indicated is also the relative error from the variance-extrapolated
energy for each value of U (see S/ Appendlix for details). (B) Relative error in the ground-state energy as a function of the coupling constant U, at n = 5/8 average
site occupancy (first closed shell) and N = 10. The rows of the hidden submatrix are given by single-hidden-layer neural networks with a = 64. The errors from
Slater-Jastrow and Slater-RBM ansatze are included for comparison. The green diamond is the relative error found with the state-of-the-art, tensor-network-
based ansatz from ref. 46. Shown is also the relative error according to the projection of the converged hidden-fermion determinant state to the subspace of
invariant wave functions under the action of 7 /2 rotations (C;) and the group of all possible translations T with K = 0 momentum, separately and together.

J.Robledo-Moreno, G.Carleo, A.G. and J.Stokes, PNAS, 2022



Relative error as a function of hidden

‘ermion number and depth of NN
(4*4 Hubbard model at % filling)
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Fig. 2. Effect of the number of hidden fermions and depth of the fully connected neural network that parametrizes the hidden sub-matrix in the expressive power of the hidden
fermion determinant ansatz. The scale shows the relative error in the ground-state energy for different values of U given N, and the neural network depth. The results
correspond to the 4 x 4 Hubbard model at n = 1/2 filling.

J.Robledo-Moreno, G.Carleo, A.G. and J.Stokes, PNAS, 2022



NN-HFDS: Stripe order in the Hubbard model
at 1/8 doping on 4*L cylinders (up to L=16)
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Energy per site and competing charge and spin orders in the 4 x L rectangular lattice at 1/8 hole doping (n = 0.875) and U = 8. (A) Periodic boundary

conditions on the short side of the cylinder and open on the long side (PBC-OBC). Left panel compares the hidden-fermion determinant-state energies with
DMRG energies. The width of the DMRG symbols shows the range of converged variational energies for different bond dimensions used in ref. 48. For L =8,
blue points labeled as 1 and 2 correspond to filled and half-filled stripes. Right panel shows the hole and staggered spin distribution for both metastable
configurations. The diameter of the gray circles is proportional to the hole density. (B) Periodic boundary conditions along both sides of the rectangles (PBC-
PBC). Left panel compares the hidden-fermion determinant-state energies with the Slater-Jastrow and neural-network backflow ansatze (from ref. 9). The

dashed horizontal line marks the ED (4 x 4 with PBCs from ref. 51) energy. In the 4 x 4 lattice the relative error in the ground-state energy is displayed for each
ansatz. Right panel shows the hole and staggered spin distributions in the 4 x 16 lattice.

J.Robledo-Moreno, G.Carleo, A.G. and J.Stokes, PNAS, 2022



Today’s menu (cont’d):

* Fundamentals of Density Functional Theory, in a

nuts
* Teac

nell

ning a neural network to implement the

Hohenberg-Kohn correspondence

e Constructing Density Functionals using Machine
Learning

* Some Applications

e Discl

aimer: this is only an incomplete overview of

an emerging and burgeoning field... basically to
make you want to read/learn more about it.



Density Functional Theory in a
Nutshell

[A{ — [A( + ‘A/ + [:[int

ab initio Hamiltonian for materials or molecules:
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Or lattice model, e.g.:

L
K = —tZ(chcm—i—h.c.) LV = Z’Ulc;“cl C Hyy = Uzﬁlﬁlﬂ
(Im) =1



Walter Kohn

Nobel Lecture, 1999

I begin with a provocative statement. In genem_l the many-electron wavefunction
W (7y,....7\) for a system of N electrons is not a legitimate scientific concept, when N 2
N, where N, =~ 10°.

Walter Kohn, Pierre Hohenberg and Lu Sham



Introduction to DFT: Useful References

e Julien Toulouse, Introduction to DFT lecture notes

e Kieron Burke and John Kozlowski Lies my teacher told me
about DFT arXiv:2108.11534 and D.J.Carrascal et al.
J.Phys:Cond Mat 29, 019501 (2017)

* N.Argaman and G.Makov DFT: An Introduction Am J.Phys 68,
69 (2000)

* R.0.Jones and O.Gunnarsson The DFT formalism, its
application and prospects Rev Mod Phys 61, 689 (1989)

* Richard Martin Electronic Structure Cambridge University
Press


mailto:http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf

Centerstage in DFT: The Local Density

n(r) = <‘I’0\Z5(T—Tz‘)\‘1’0> = Z<‘I’0Wi(7“)¢a(7“)f‘1’0>

(o)

— N/dTQ/dTN’\Ifo(T,sz..- 7fr'N)‘Q , /drn(r) =N

Lattice models:

n; = (N cl ) an



Density Functional Theory —1n a
Nutshell (1)

* Hohenberg-Kohn theorem | (1964):

* The local charge density n(r) is in bijective correspondence
with the one-body potential

* n(r) thus fully determines the Hamiltonian itself, and hence
the full spectrum, etc.! .... in principle.

n(r) = (Yo|n(r)|Wo)

HK theoren/

V(r) H Schrédinger‘\IjO>’ EO

!

Full spectrum, physical observables, correlation functions etc.




Proof of HK-I
lon the board]

See notes on DFT at the |
end of this document
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Teaching a neural network to
learn the HK map

PHYSICAL REVIEW LETTERS 125, 076402 (2020)

Deep Learning the Hohenberg-Kohn Maps of Density Functional Theory

Javier Robledo Moreno®,"*" Giuseppe Carleo®,"" and Antoine Georges®'**>*

'Center Jor Computational Quantum Physics, Flatiron Insmute New York, New York 10010, USA
*Center for Quantum Phenomena Department of Physics, New York University, 726 Broadway, New York, New York 10003, USA
Collége de France, 11 place Marcelin Berthelot, 75005 Paris, France
*CPHT, CNRS, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France
SDOMP, Université de Genéve, 24 quai Ernest Ansermet, CH-1211 Genéve, Suisse

™ (Received 7 November 2019; accepted 14 July 2020; published 12 August 2020)

A striking consequence of the Hohenberg-Kohn theorem of density functional theory is the existence of
a bijection between the local density and the ground-state many-body wave function. Here we study the
problem of constructing approximations to the Hohenberg-Kohn map using a statistical learning approach.
Using supervised deep learning with synthetic data, we show that this map can be accurately constructed
for a chain of one-dimensional interacting spinless fermions in different phases of this model including the
charge ordered Mott insulator and metallic phases and the critical point separating them. However, we also
find that the learning is less effective across quantum phase transitions, suggesting an intrinsic difficulty in
efficiently learning nonsmooth functional relations. We further study the problem of directly reconstructing
complex observables from simple local density measurements, proposing a scheme amenable to statistical
leaming from experimental data.

DOI: 10.1103/PhysRevLett.125.076402



Implemented for a Toy Model:

Spinless fermions in d=1 with n.n. repulsion,
half-filling (N=L/2)

L L L
H=—t) (¢fepi+he)+ ) vega+ U (g —1/2)(fugr —1/2)
=1 =1 =1

* This model has a well-known phase diagram:
e U/t < 2: Metallic phase (‘Luttinger liquid’)
* U/t>2: Mott insulating phase with charge-density wave order, wavelength 2a

* The quantum critical point is in the Kosterlitz-Thouless universality class

e cf. e.g T. Giamarchi’s book "‘Quantum Physics in One Dimension’



Network architecture (deep
feedforward)

( a) Output layer
Hidden layers

Input layer
P1
L : :

9L—3
Units

* Input layer: local density on each site
* Green neurons: Relu activation
e Qutput layer: 2-components of wave-function, also insuring normalization

J. Robledo-Moreno, G. Carleo and A.G. PRL 125, 076402 (2020)



Training on random potentials with
exact diagonalization

Cost function: Infidelity Lirain({0}) = 1 — |('¢/)tar|'¢,bpred({9}))|,

Training set in both phases: U/t=1 (LL), U/t=4 (MI/CDW) and U/t=2 (QCP)
Test on validation set (also generated by ED on unseen random potentials)

Histogram

of errors
(infidelity)
on validation
set

(b) 4

Normalized count
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Testing the
reconstruction
of the
wave-function
for two
random
potentials
(insets)

J. Robledo-Moreno, G. Carleo and A.G. PRL 125, 076402 (2020)



Mott Phase and Quantum Critical Point

Reconstruction also works well at the QCP U/t=2

() L A—
) 1075 10~% 102 10-210-%10~"10°
|¥Tar(0)]
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_ . N 3 .
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J. Robledo-Moreno, G. Carleo and A.G. PRL 125, 076402 (2020)



Test on structured (non-random)
potentials at the QCP U/t=2
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FIG. 2. Performance of the network in structured potentials. (a) Sketch of the tested potentials in a lattice with N = 14 sites. Potentials
are quadratic (blue), no potential™“ (red), periodic with period N /4 (green), and staggered (orange). Black dots represent the position of
the lattice sites. Panels (b) and (c) follow the same color code. (b) Error as defined in Eq. (4), as a function of the system size, when
predicting the ground-state wave function given the potentials in panel (a). (c) Two-point density correlation functions computed from
exact (dots connect by dashed lines) and ML-predicted (black crosses) wave functions. Only results for an even number of lattice sites
are shown in this case as the ground state with an odd number of sites is degenerate.

The NN performs well, EXCEPT for a staggered potential (with periodicity 2a)
This may be rationalized: the system is unstable to a CDW with this periodicity
at the QCP and responds with an order parameter which depends on the
potential in a singular manner: the density functional is not smooth!

J. Robledo-Moreno, G. Carleo and A.G. PRL 125, 076402 (2020)



Direct reconstruction of correlation

functions from the local density
(Note: the wave-function reconstruction is not directly scalable)

Grounded in the injective Hohenberg-Kohn map:

n(r) — Observables e.g. C(r,r") =

((r)A(r"))

Correlation
function

Training using DMRG with L=50

Reconstruction using a CNN is precise enough to allow
for the determination of the Luttinger liquid parameter!

J. Robledo-Moreno, G. Carleo and A.G. PRL 125, 076402 (2020)
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DFT in a nutshell (Il): Universal Density
Functional and Total Energy Functional

Universal functional:

Fln(r)] = (Yo[n(r)]|K + Hine|¥o[n(r)])

Eprr|n(r)] = Fn(r)] + /dr v(r)n(r)

EO — Minn(r)epv E[n(’r)] Hohenberg-Kohn Il
Note (Levy, Lieb):
Fln] = Ming.g_pn () (UK + Hin | )
In essence, the whole construction is a Legendre transform!

Density Functional Theory in a Nutshell (Il)



DFT in a nutshell (I11): The Kohn-Sham Method

Derived here following a coupling-constant integration method

A

Hoz — [/\( —+ Va —+ Ck[:]int
Voo, (Ug[n(r)|¥g) = n(r) = u(r) = valr;n(r)

a=0: Kohn-Sham representative system

[l% + @KS} (D) = €a|da) n(r) = Z 6 (r)]?

Eoln(r)] = Koln(r)] + / dr vics (r)n(r)

Koln()] = Y- (@ilkion) = e~ [ dros(rin(r)

Density Functional Theory in a Nutshell (Il)



DFT in a nutshell (II1): The Kohn-Sham Method

Derived here following a coupling-constant integration method

1
o ,
Bln(r)] = Bacalnl)] = Eofn(r)] + [ da (V51| )
3, . 0H. |, OV P
o AUGHal UF) = (W5 [T5) = (U§]—5 % U5) + (UF] Hint | UF)

Eln(r)] = Koln(r)] + / dro(r)n(r) + / dov (W2 | iy [ U5)

Eln(r)] = Koln(r)] +/d7“’v(7“)n(”'°) + Eu[n(r)] + Exc[n(r)]

1
Enln(r)] == 2 /drdr’ n(r) Vine(r — ") n(r’)  Hartree
1 .
Excln(r)] == L /drdr’ Ving (r — 1) / do Cy[r,v';m] Exchange-Correlation:
2 0 the tough part!



Machine Learning the gaps of

semiconductors from the electron density
J. Robledo-Moreno, J. Flick and A.G. Phys Rev Materials 5, 083802 (2021)

Again grounded in HK-I: the full spectrum (and hence the gap) is in principle entirely
determined by the charge density!

Remember: the KS gap is NOT the physical gap! We use DFT here only to compute n(r)
Train (and validate) on experimental gaps from a curated database of the experimental

gaps for 472 materials (note: quite small number!)
P. Borlido et al. J. Chem. Theor. Comput. 15, 5069 (2019)
Used in that paper for benchmarking exchange-correlation functionals.
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main text.

Figure 1. Frequency of elements in our data set. Gray boxes indicate elements not present in the data set.



Procedure:

* Input: charge density — represented by appropriate

descriptors (see below)

* Charge density is calculated with an approximate density
functional such as PBE (+van der Waals D2 correction)

* Qutput: bandgap

* Network is trained on a subset of the database (training
set), validation on the rest of the dataset.

* Then, generalization/prediction

Charge density descriptors:  p*#(# — R*#) ~

[

2
d:,? = Z [Cgﬁ,m] )

m=—I

Sum over m insures rotational invariance

Y P ()Ym 6, ),

0<n < npax
Uil b
—I1<m <1

J. Robledo-Moreno, J. Flick and A.G.
Phys Rev Materials 5, 083802 (2021)



J. Robledo-Moreno, J. Flick and A.G.

N etWO rk arc h |te Ct ure Phys Rev Materials 5, 083802 (2021)
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TABLE I. Detailed description of the modified Behler-Parrinello architecture and the intermediate data structures generated.
See Fig. 1(b) for a schematic representation of the architecture and data structures. Bold symbols label trainable neural net-
works. In the data structures field, upper indices label the objects on a given set whereas lower indices label elements

of an array.

Name Description

Operations:

PP(x) Preprocessing fully connected NN for feature extraction.

BP?(x) BP fully connected NN of atomic species B.

DS*(x) Deep Sets NN of atomic species 8.

DSsc(x) Deep Sets NN combining the output of each species block.

(14 Concatenation across index y .

Data structures:

{d:’f } Rotationally invariant density descriptors; see Eq. (3).

(f%y = {PP(d,‘i‘f )} Preprocessed density features. i =1, ..., 5.

{gfl} = {®*BP?( fi‘"‘ﬂ )} Output of the BP block concatenated for atoms in the same species.
hs = ®’DSP(gf) Concatenation of the output of the species-specific Deep Sets across the different species.

Eprea = DSsc(hg) Output of the Deep Sets species combiner. Predicted band gap.




Test set statistics

J. Robledo-Moreno, J. Flick and A.G.
Phys Rev Materials 5, 083802 (2021)

(b) 1-al

MAPE ' 18l(eV)

IMPE|

IME| (eV)
-~®- ML: atomic positions —G— ML: PBE densities
- ML: LDA densities - Computed from LDA

TABLE II. Generalization error in the monolayer materials.
Mean absolute percentage error of the ML band gaps is shown
averaged across the 10 training partitions. Error bars correspond to
the standard deviation of the MAPE across the 10 training partitions.

ML from ML from ML from
atomic LDA PBE
positions densities densities
MoS; [48] 52 £ 1% (15 £+ 5)% 7+ 2)%
MoSe; [49] 44 + 15)% 40 + 12)% (15 £ 5%
| | hBN [50] (65 + 6)% 62 + 6)% 51 £ 16)%
l-a
(8] (eV)
IQR
(eV)

o (eV)

IME| (eV)

- Computed from PBE
~@—- Computed from HSE06

Left radar plot: ML from PBE densities (unsurprisingly) performs better than
from LDA densities and, remarkably, also better than learning directly from the atomic

positions in the crystal structure!

Right radar plot: ML from PBE densities achieves comparable success than
computation of gaps from computationally much more costly hybrid functional (HSE06)



Improving density functionals with ML

* Early work (not aimed at engineering a new DF but at accelerating DFT):
J.Behler and M.Parrinello PRL 98, 146401 (2007)

e Early work: J.Snyder et al. PRL 108, 253002 (2012) Kernel regression on a
model problem in d=1 — and several subsequent papers by Kieron Burke
and collaborators such as Li et al. PRL 126, 036401 (2021) 'KS equations
as regularizer: building prior knowledge into ML physics’

e S.Dick and M.Fernandes-Serra Nature Comm. 11-3509 (2020) and PRB
104, L161109 (2021)

e M.Ma et al (Google Mountain View) Sci. Adv. 8, eabg0279 (2022)
"Evolving symbolic density functionals’

* J.Kirkpatrick et al. (Google DeepMind) Science 374, 1385 (2021) [DM21
functional]

* R.Nagai, R.Akashi and O.Sugino npj Comp Mat (2020)

* H.Kurban et al. Sci Rep (2020) 12:14403

* Many thanks to Matija Medvidovic¢ (Columbia/CCQ) and Javier Robledo-Moreno
(NYU/CCQ) for discussions and guidance about this topic.



The DeepMind21 Functional

J.Kirkpatrick et al. Science 374, 1385 (2021)

network architecture
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| training data

Strategy:

* "Features’ from
training dataset
concatenated into
vectors x(r)

 The x’s are input to
multilayer
perceptrons

 Qutputis three
weights f associated
with the LDA
exchange denergy
density and two local
versions of Hartree-
Fock energy density



EPM2 — EMLP o EDRET o {ocal Hybrid

B n(r)] = /df'“ [fo P2 ()eg P2 (r) + f5' ()] (r) + f5 1 [w(r)]e ™ (r)]

Additionally the 3 exchange energies that are enhanced by our network are computed as e“P4(r) =

—2m((3/4m)(p" + p*)]*/%, ¥ (r) = i (r) + €] (r), and €17 (r) = e (r) + €™ (r).

The 11 features, x(r), supplied at each grid point are computed from a (spin indexed o € {1,1})

density matrix I'7, and basis set 1), as follows (using Einstein summation throughout):
e The density p?(r) = I'%1),(r)1s(r) in each spin channel.

e The square norm of the gradient of the density in each channel and of the total density

(VA2 VR 2, [V (pT + p4) ).
e The kinetic energy density 7 (r) = 3I'7,[V1h4(r) - Vb, (r)] in each channel.
e The local HF features

EHF () — _ rere /1/)a V(e M Dot ha(r') 450 (S3)

v —r'|
for both range-separated w = 0.4 and non-range-separated w — oo in each spin channel.
The single range-separated feature at w = 0.4 in atomic units was chosen empirically

based on validation set performance.

J.Kirkpatrick et al. Science 374, 1385 (2021)
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) ‘% ' 1/2‘:]' 1/2‘:“; exact
C -
. occupied virtual ‘- g
g cos(d)” +sm(6)” ( ) 0 )X

(B) The network is tralned by using a dataset of KS input densities and high-accuracy
energy labels for molecules and exact mathematical constraints.

(C) The gradient ofthe learned functional at fixed electron number (N)

is supervised by requesting that the supplied orbitals are a stationary point

of the total energy with respect to unitary rotation of occupied and virtual orbitals

(illustrated by angle 8). _ _ _
J.Kirkpatrick et al. Science 374, 1385 (2021)
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J.Kirkpatrick et al. Science 374, 1385 (2021)

Fig. 4. State-of-the-art performance by DM21 on benchmarks. All errors

are in kcal/mol. (A) The MoM error metric in each class of reactions from
GMTKN55. More details are available in the supplementary materials, section
8.2. DM21 is compared with functionals at rungs two to five, with strong
GMTKNS5 metrics from (43): revPBE:D3g; (44), SCAN:D3g,, and PW6B95:D3,
(45). The dashed black line indicates the performance of the double-hybrid
functional DSD-PBEP86:D3g, (46). (B) Performance of DM21 compared with the
SCAN functional and the three best performing hybrid functionals on three

MoM [kcal/mol]

Fig. 3. Exact constraints improve perform-
ance on challenging chemistry. (A) Charge
density for a singly ionized adenine-thymine base
pair. B3LYP unphysically delocalizes charge

on both base pairs despite adenine having a deeper
ionization potential. Conversely, DM21 displays
localization of charge on the adenine only.

(B) Spin density for a compressed chain of

24 hydrogen atoms at 0.48 A separation. The line
density n for each spin channel is overlaid
(supplementary materials, section 3.3). The PBE
functional (41) breaks spin symmetry and leads
to an apparent magnetization along the chain.
This effect is also predicted by other functionals
but is absent in DM21. (C) The conrotatory
pathways of bicyclobutane isomerization. The
HOMO of a single spin channel in an unrestricted
calculation is shown for the transition states.
Spin is delocalized across two atoms in the
conrotatory path, requiring satisfaction of

FS for accurate modeling. The oracle is diffusion
Monte Carlo from (42).

A

6 GGA
. meta-GGA
s hybrid
W hybrid (ours)
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3
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IX. INTRODUCTION TO DFT

Decompose the hamiltonian into kinetic energy, one-body (external) potential and inter-particle
interactions:

In the context of electronic structure (fixed nuclei BO approximation, e = h = 1), first quantized
notation, r; = (r;, 0;):

K=-1y% v (9.2)

5 N
V= Zi:l Uﬂ(r’i> - ZZ 1 En 1 |r;— Rn 9.3
Hint - %Zi#j:l FITH (94)

Or, for a lattice model of spinless electrons for example (with [, m lattice sites):
L L
K = —tZ(c;“cm +he), V= Zvlcfcl , Hiyw = Uzﬁlﬁl—&-l (9.5)
Im =1 =1
Local density:

= (P 25(7" —1;)|Wo) = Z<‘I/0|¢:(T)@/)a(7")|‘1’0> (9.6)

[

or, in terms of the many-body wave-function:

=N /drg/drN |Wo(r, 72, - - ,T‘N)|2 : /drn(r) =N (9.7)
For the lattice models:

n = () = (¢ a) an (9.8)

A. The first Hohenberg-Kohn theorem (HK1)
Theorem: There is a bijective relation between the one-body potential v(r) and the local charge
density v(r).

Proof. Ad absurdum. Assume that there are two different potentials v; # vy+const., corresponding
to the ground-state wave-functions |¥;) and |Wy with the same charge density:

(WA (r)[01) = (Pl (r)|Wa) = n(r) (9.9)
First we show that |¥;) # |Wy). Assume that they are the same. Then:
(K + Vi 4 Hy]|9) = B |U) | [K 4 Vo + Hy]|¥) = Eo|0) (9.10)
subtracting:

Vi = Va]|¥) = (Eq — E3)|V) (9.11)
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which implies:

S CAV(r)U(ry, - ) = AEU(ry, - y) (9.12)

1=1

which can only be satisfied if AV (r) = const.. Hence Wy # W,. We can then apply the variational
principle with a strict inequality:

Ey = (U1 |H,|U,) < (Uo| Hy|Uy) = By + /dr [y (r) — va(r)]n(r) (9.13)
Similarly we also obtain:

By = (Wo| 1| Ws) < (0 |FL| ) = By + /dr s () — oy ()] () (9.14)
Adding these two equations, one obtains the contradiction:

E,+FE, < By + F, (9.15)

Hence we must have that v; = vy + const.. QED
The proof is easily generalized to the lattice. The first part now reads:

> Aviy |¥) = AE|D) (9.16)

Decomposing the wavefunction over the occupation number basis, this yields:

> w(n) > Avbyaln) = AEY 1p(n)|n) (9.17)
n l n

which implies that for all n such that i(n) # 0, we must have:

> Avb,.=AE (9.18)
l

which implies that Av; = const. in which case (noting that ), d,,1 = N for any n in the canonical
ensemble) one obtains: AE = NAw. The second part of the proof is unchanged.

Hence, remarkably, there is a unique potential and hence a unique Hamiltonian (given the form of
K and H;y) corresponding to a given local density n(r):

n(r) = uK v(r) —des H —s.mq. Vo) = n(r) = (Vo|n(r)| Vo) (9.19)

This also implies that the local density uniquely defines (in principle...) the average value of any
operator, or any correlation function:

n(r) = (O) , C(ry, - ,raity, - ty) (9.20)

but this mapping is injective, not bijective.

B. Universal density functional and total energy functional

Denoting by |¥y[n(r)]) the unique ground-state with local density n(r), Hohenberg and Kohn
define:

Fln(r)] = (Woln(r)]|K + Hiw|Voln(r)]) (9.21)
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This is a universal functional of the density, which only depends on the form of the interaction term
and kinetic energy, not on the potential (i.e on the specific material at hand).
The total energy functional, for a given potential (i.e. a given material) is now:

Eppr[n(r)] = Fn(r)] + /dr v(r)n(r) (9.22)

The second HK theorem states that the ground-state energy is obtained by minimizing E[n] over
v-representable densities:

Ey = Min,ep, En(r)] (9.23)
F[n] can also be viewed (Levy, Lieb) as:

in which the minimization is over all many-particle wave-functions that yield the local density n(r).

The whole construction can be viewed as a Legendre transform: we can view the energy as a
functional of the external potential v(r). The bijective map between v(r) and n(r) guarantees that
we can Legendre transform this functional into the universal functional F' (aka ‘Gibbs’ functional):

n(r) = %(7(“7)0)] — Fn(r)] = Ev[n(r)]] — /dr v[n(r)|n(r) (9.25)

As usual with Legendre transforms, we have:

SF[n(r)]

v(r) = 5 (r) (9.26)
which means that the equilibrium density of the system is the one that minimizes the functional
Epgr[n(r)] defined above.

All the statements above are exact (with proper conditions on the density and potential), but
rather formal: the expression of the density functional is unknown! Even the kinetic energy part of
the functional is not straightforward to express in terms of n(r) only - this is where the Kohn-Sham
construction is crucial.

C. DFT: the Kohn-Sham method

I now introduce a cornerstone of DFT which is crucial to its practical implementation: the Kohn-
Sham representation of the charge density by a non-interacting reference system - a Slater determi-
nant of one-particle orbitals. It is important to note that this is only a representative system: these
orbitals are not meant to describe the excitations of the physical system, nor is this Slater deter-
minant supposed to be a good description of the many-body wave-function. For example, a Mott
insulator may well have an exact Kohn-Sham system which is gapless! The gap of the Kohn-Sham
spectrum should not be interpreted as the gap in the physical spectrum, even for weakly interacting
systems.

I follow here a derivation based on coupling constant integration (not quite the mainstream deriva-
tion, but my favorite one). Consider the modified hamiltonian:

A~

Hy, = K + V, + a Hyy (9.27)
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In this expression, V, is the unique a-dependent potential corresponding to a given charge density
n(r) (by virtue of the HK map, which applies to any «):

Vo , (Uga(r)|vg) = n(r) = v(r) = va[r;n(r)] (9.28)

with W¢ is the ground-state of H,.

Note that H, interpolates between the physical hamiltonian for o = 1 with vy(r) = v(r) the
potential of the material of interest, and a non-interacting hamiltonian in which the physical potential
has been replaced by a different one, vy(r) which is such that it reproduces the physical density of
the material in the (hypothetical) absence of interactions. This is the Kohn-Sham idea. The effective
Kohn-Sham potential vo(r) = vks(r) is the position-dependent Lagrange multiplier that we need to
apply in the absence of interactions to reproduce the charge density of the physical system - it should
not be confused with the physical potential v(r).

The ground-state wave-function of H, is a Slater determinant of single-particle orbitals, the Kohn-
Sham orbitals:

[+ tics | 60) = calda) (9.29)
(k is the one-body kinetic energy operator). The density n(r) is obtained as:
N
n(r) =Y lé;(r)P (9.30)
j=1

in which the sum is over the N lowest-energy occupied KS orbitals, the ground-state of H, being
the SD:

We=0ry, - ry) = det [¢;(ry)] (9.31)

To find the KS representation for a given n(r), we can e.g. proceed iteratively: we solve the one-
particle Schrodinger equation for an initial guess of the potential vy, compute n(r) and then update
the potential until the target charge density is reached.

We now formally construct the density functional by coupling constant integration:

1S
=
=
I
S
ﬂ‘
3
=
I

Eoln(r)] + /0 da(%@mﬁawg) (9.32)
in which:
Eo[n(r)] = Koln(r)] + /drvKS(T)n(r) (9.33)

in which Kj is the kinetic energy of electrons in the reference non-interacting (KS) system:

Kon(r)] = Z oilk|o) = Zéz /dr vis(r)n(r) (9.34)

It is a key advantage of the KS construction to provide an explicit construction of the kinetic term
in the functional. Note however that K is not the kinetic energy of electrons in the physical system.
Using the Hellmann-Feynman theorem:

3 o a[:[a e ava « al 7] o
SR W) = (U1 ) = (W5 ) + (U ) (9.35)
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The first term is readily integrated and we obtain:

En(r)] = Kon(r)] —i—/drv(r)n(r) + /0 do <\118‘|I:Iint\\113> (9.36)

We have thus obtained a formal construction of the exact density functional! We can proceed a bit
further and note that the average of the interaction term can be related to the connected density-
density correlation function:

Ca(r,r) = (Y5 (A(r) = n(r)) (A(r") —n(r')) |¥G) (9.37)

This is the density-density correlator of a system with interactions modified by a € [0, 1] and
constrained (through v,) to have the specified density n(r). This allows to pull out the Hartree term
in the above expression and we finally obtain:

En(r)] = Kon(r)] —i—/drv(r)n(r) + Egn(r)] + Exc[n(r)] (9.38)

with:
Ey[n(r)] == %/drdr’n(r) Vit (r = ") n(r") (9.39)
Ei[n(r)] == %/drdr’ Vit (7 —r’)/o da Cylr,r';n] (9.40)

the Hartree and exchange-correlation functional, respectively.
Finding a satisfactory approximation to the exchange-correlation part of the functional is the
central question for practical applications of DFT.

D. DFT-KS self-consistent loop

We now have all the elements in hand to outline the procedure for minimizing the density func-
tional. We have to solve:

OF
0= on(r)

in which we have used Ky = Ey — [ drugs(r)n(r), 0Ey/dn(r) = 0 and the Hartree and exchange-
correlation potential are given by:

v (r) :/dr\/im('r’)n(r) , Uxe(T) 5

= v(r) — vks(r) + vE(r) + vk (9.41)

(9.42)

To find the solution , one proceeds iteratively:
e Initialize density to n(r)
e Compute the Kohn-Sham potential for that density: vks(r) = v(r) + vglr;n] + vy|r; n
e Solve the one-particle Schrodinger equation in the KS potential

e Compute again n(r) from the new KS orbitals



e Repeat loop until convergence.

At the end of the self-consistency cycle, the total energy can be computed as:

E = Zai + /dr [v(r) — vks(r)|n(r) + Eg + Ea.

=3 e Bt Beoe / dr vy (r)n(r)
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(9.43)

(9.44)



