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Seminar (11h30): Giulio Biroli
Renormalisation group and machine
learning: the wavelet-conditional RG

Renormalisation group and machine learning: the Wavelet-Conditional RG

Giulio Biroli
ENS, Paris

Reconstructing, or generating, high dimensional distributions starting from data is a central problem in
machine learning and data sciences.| will present a method —The Wavelet Conditional Renormalization
Group —that combines ideas from physics (renormalization group theory) and computer science
(wavelets, stable representations of operators). The Wavelet Conditional Renormalization Group allows to
reconstruct in a very efficient way classes of high dimensional probability distributions hierarchically from
large to small spatial scales, and to perform RG directly from data. It allows to bridge the gap between
approaches based on physical intuition and modern machine learning algorithms. | will present the
method and then show its applications to data from statistical physics and cosmology. | shall also discuss
the interesting insights that our method offers on the interplay between structures of data and
architectures of deep neural networks.
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In the previous lecture:

* The many fermion problem: introduction, notations

e Slater Determinants

e Hartree-Fock

e Some classic variational wave functions: Slater
determinant, BCS/pairs, Gutzwiller, Jastrow-Slater,
Backflow, ...

e Optimizing wave functions with Monte Carlo



Today’s menu:

* Variational wave functions (cont’d): Jastrow,
Backflow

* Fermionic Neural Wave Functions (determinantal or
not)

* Some examples — with a particular focus on Hidden
Fermion Determinantal States (HFDS)

* Some applications



Jastrow-Slater Wave Function

Continuous space: Slate determinant with (possibly long-range)
symmetric weight:

1 N R
e M) hep (1)

General form also applicable to lattice:

U g) = 03 2pq IpaTpig Wgp)

(1<p,qg<M)
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Variational Description of Mott Insulators

Manuela Capello,l‘2 Federico Becca,? Michele Fabrizio,">* Sandro Sorella,'? and Erio Tosatti'*>>

Unternational School for Advanced Studies (SISSA), Via Beirut 2-4, 1-34014 Trieste, Italy
2INFM-Democritos National Simulation Centre, Trieste, Ttaly
3International Centre for Theoretical Physics (ICTP), P.O. Box 586, 1-34014 Trieste, Italy
(Received 17 March 2004; published 20 January 2005)

The Gutzwiller wave function for a strongly correlated model can, if supplemented with a long-range
Jastrow factor, provide a proper variational description of Mott insulators, so far unavailable. We
demonstrate this concept in the prototypical one-dimensional ¢ — ¢ Hubbard model, where at half-filling
we reproduce all known phases, namely, the ordinary Mott undimerized insulator with power-law spin
correlations at small # /7, the spin-gapped metal above a critical #' /7 and small U, and the dimerized Mott
insulator at large repulsion.
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‘Backflow’

* General idea: allow the 1-particle orbitals entering the Slater determinant
 todepend on the coordinates on all other particles.
e First proposed in the continuum (Helium 4) by Feynman and Cohen

Phys Rev 102, 1189 (1956)
* Applied to the lattice only in 2008 and onwards:
Tocchio et al. PRB 78, 041101 (2008); PRB 83, 185138 (2011);

PRB 94, 195126 (2016)
ry = b(rl;r27' e ,I'N) , etc.
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Fig. 2: Energies per site (in units of J = 4t*/U) for the two-dimensional Hubbard model at

half filling, for both the unfrustrated (t' = 0) and frustrated (t'/t = 0.7) case. The cases with
and without backflow correlations are reported (for the BCS state). The results for the wave
function with antiferromagnetic order and no BCS pairing are also shown. Arrows indicate the

energies per site for the corresponding fully-projected states in the Heisenberg model.

F.Becca, Julich lectures, 2019



PHYSICAL REVIEW B 94, 195126 (2016)

Hidden Mott transition and large-U superconductivity in the two-dimensional Hubbard model

Luca E Tocchio, Federico Becca, and Sandro Sorella

CNR-IOM-Democritos National Simulation Centre and International School for Advanced Studies (SISSA),

Via Bonomea 265, 1-34136, Trieste, Italy

(Received 29 July 2016; revised manuscript received 26 September 2016; published 14 November 2016)

We consider the one-band Hubbard model on the square lattice by using variational and Green’s function
Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an
uncorrelated wave function that includes BCS pairing and magnetic order. At half-filling, where the ground state
is antiferromagnetically ordered for any value of the on-site interaction U, we can identify a hidden critical
point Uy, above which a finite BCS pairing is stabilized in the wave function. The existence of this point
is reminiscent of the Mott transition in the paramagnetic sector and determines a separation between a Slater
insulator (at small values of U), where magnetism induces a potential energy gain, and a Mott insulator (at
large values of U), where magnetic correlations drive a kinetic energy gain. Most importantly, the existence
of Umou has crucial consequences when doping the system: We observe a tendency for phase separation into
hole-rich and hole-poor regions only when doping the Slater insulator, while the system is uniform by doping
the Mott insulator. Superconducting correlations are clearly observed above Uwmoy, leading to the characteristic
dome structure in doping. Furthermore, we show that the energy gain due to the presence of a finite BCS pairing
above Uy shifts from the potential to the kinetic sector by increasing the value of the Coulomb repulsion.
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FIG. 7. Schematic phase diagram as obtained by using a com-

bined VMC and GFMC (with FN approximation) approach. The 16
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Backflow with Neural Networks

PHYSICAL REVIEW LETTERS 120, 205302 (2018)

Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space

Michele Ruggeri,' Saverio Moroni,> and Markus Holzmann™*

'Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
“DEMOCRITOS National Simulation Center, Istituto Officina dei Materiali del CNR and SISSA,
Via Bonomea 265, 1-34136 Trieste, Italy
3Univ. Grenoble Alpes, CNRS, LPMMC, 3800 Grenoble, France
*“Institut Laue Langevin, BP 156, F-38042 Grenoble Cedex 9, France

® (Received 8 November 2017; published 17 May 2018)

We show that the recently introduced iterative backflow wave function can be interpreted as a general
neural network in continuum space with nonlinear functions in the hidden units. Using this wave function
in variational Monte Carlo simulations of liquid “He in two and three dimensions, we typically find a
tenfold increase in accuracy over currently used wave functions. Furthermore, subsequent stages of the
iteration procedure define a set of increasingly good wave functions, each with its own variational energy
and variance of the local energy: extrapolation to zero variance gives energies in close agreement with the
exact values. For two dimensional “He, we also show that the iterative backflow wave function can describe
both the liquid and the solid phase with the same functional form—a feature shared with the shadow wave
function, but now joined by much higher accuracy. We also achieve significant progress for liquid *He in
three dimensions, improving previous variational and fixed-node energies.

DOI: 10.1103/PhysRevLett.120.205302

PHYSICAL REVIEW LETTERS 122, 226401 (2019)

Backflow Transformations via Neural Networks
for Quantum Many-Body Wave Functions

Di Luo and Bryan K. Clark
Institute for Condensed Matter Theory and Department of Physics,
University of lllinois at Urbana-Champaign, Illinois 61801, USA

® (Received 25 August 2018; revised manuscript received 12 January 2019; published 4 June 2019)

Obtaining an accurate ground state wave function is one of the great challenges in the quantum many-body
problem. In this Letter, we propose a new class of wave functions, neural network backflow (NNB). The
backflow approach, pioneered originally by Feynman and Cohen [Phys. Rev. 102, 1189 (1956)], adds
correlation to a mean-field ground state by transforming the single-particle orbitals in a configuration-
dependent way. NNB uses a feed-forward neural network to learn the optimal transformation via variational
Monte Carlo calculations. NNB directly dresses a mean-field state, can be systematically improved, and
directly alters the sign structure of the wave function. It generalizes the standard backflow [L. F. Tocchio et al.,
Phys. Rev. B 78, 041101(R) (2008)], which we show how to explicitly represent as a NNB. We benchmark the
NNB on Hubbard models at intermediate doping, finding that it significantly decreases the relative error,
restores the symmetry of both observables and single-particle orbitals, and decreases the double-occupancy
density. Finally, we illustrate interesting patterns in the weights and bias of the optimized neural network.

DOI: 10.1103/PhysRevLett.122.226401



Di Luo and Clark, PRL 122, 226401 (2019)

NN parametrized form of the backflow term for each orbital:
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Di Luo and Clark, PRL 122, 226401 (2019)



Neural Quantum States and ML:
The Dawn of a New Era for Fermionic
Variational Wave Functions

Two broad classes of methods:

1. Antisymmetry guaranteed by structure of the wave-function — usually
Slater determinant or superpositions of SDs (*1%t quantization’’)

\Ij(xlv T 7$N) — 60\1}(370'(1)7 T 7xJ(N))

2. Wave-function represented on the basis of configurations in Fock space —
antisymmetry of amplitudes is insured by taking care of the sign between |x> and

|n(x)> (2" quantization”) 1
¥) =+ > w(@)|z) =) (n)n)

lb(x) — 50(x)¢[n(x)]

The second method can only be used by choosing a one-particle basis (always
the case for lattice models) while the first can be used directly in the continuum.
Beware of computational overhead re: interaction tensor Uy if a basis is used!



The non-determinantal (‘2" quantized’)
approaches are a quite direct extension
of what we saw earlier for spin models

Two early papers:

ARTICLE o
OPEN Nature Communications, 2018

Quantum machine learning for electronic
structure caIcuIatlons [Note: "Quantum’ ML in the title is not

Rongxin Xia' & Sabre Kais'?3 an essential aspect]

ARTICLE
OPEN

Fermionic neural-network states for ab-initio
electronic structure

Kenny Choo'™, Antonio Mezzacapo?™ & Giuseppe Carleo3™

Nature Communications, 2020 ®



Indeed, fermionic creation and annihilation
operators can be represented as spin operators:

1
- A+ ot At 2
Cp~ T, , Cy~O, cpcp~§(ap—|—1)

BUT, importantly, one must take care of the anticommutation:
{cps C;r} = Opq
|'CE> = |{p17 T 7pN}> — 50‘(:13)|(p17 T 7pN)can.o7“d.> A Ea(w)‘n(x)>

This can be formalized as a Jordan-Wigner “string’ (or other encoding such as

Bravyi-Kitaev): p—1 p—1
Cp —> H oil o7, ¢ — H ol of
p qg| “p > “p q| “p

gq=1 q=1

This is basically bookeeping for keeping track of the sign of the permutation bringing (x)
to its canonically ordered form — can indeed be coded as bookeeping when accepting
a move x =2 x” and calculating matrix elements by sampling

For more info on fermion to qubit mapping see e.g. Nys and Carleo arXiv:2205.00733



The wave function amplitude on configuration x can be encoded as a NN,
e.g. an RBM, as in previous lectures and VMC performed, etc.

Computational cost: the bottleneck is the computation of the ‘local energy’
which costs Ny, . Ng.g - Neons With:
- Np,r the number of parameters in the NN

N, the number of modes we encounter when reordering the configuration
- N, the number of distinct configurations encountered when calculating
the matrix elements of the hamiltonian for a given sample
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Fig. 1 Dissociation profiles. The accuracy of fermionic neural-network quantum states compared with other quantum chemistry approaches. Shown here
are dissociation curves for a C5 and b N, in the STO-3G basis with 20 spin-orbitals. The RBM used has 40 hidden units, and it is compared to both
coupled-cluster approaches (CCSD, CCSD(T)) and FCI energies.

Choo et al. Nat. Comm. 2020



Extension to the solid-state (periodic systems
N.Yoshioka, W.Mizokami and F.Nori Comm. Phys. 2021
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Fig. 2 Solving the ground state of the linear hydrogen chain using the minimal STO-3G basis set. a The potential energy curve calculated by the ,_5
restricted Boltzmann machine (RBM) agrees with the full configuration interaction (FCI) method within chemical accuracy (1.6 mHa) for any atom —0.54 1 MP2
separation dy. This indicates that the RBM states are capable of describing both the weakly and strongly interacting regimes, where gold-standard CCSD
techniques, such as coupled-cluster singles and doubles (CCSD) shown by the yellow line and CCSD with perturbative triple excitations (CCSD(T)) in o FCl
black line, break down. The results by restricted Hartree-Fock (RHF) and second-order Meller-Plesset perturbation theory are indicated by blue and gray —-0.551
lines, respectively. A unit cell consists of four hydrogen atoms placed at even intervals, and two k-points are sampled from a uniform grid. b Finite-size
scaling of the ground-state energy up to Ny, =18 and its deviation from the FCI (Nk < 8Nk < 8) or CCSD(T) (Nk > 8Nk > 8), AE, at near-equilibrium dy, = 2. | + |
The results show excellent agreement with conventional methods even in the thermodynamic limit Ny — e=. Here, the unit cell consists of a single hydrogen 0 0.05 0.10 0.15 0.20 0.25
atom, and hence the maximum number of spin orbitals considered here is 36. The error bars denote the standard deviation of the estimation by the Monte I/Nk

Carlo sampling.



The goal: cutting computational cost with NNs

Accuracy
i FCI
Neural
Networks? S,
CCSD
RPA MP2
DFT
HE Formal
complexity Hermann et al. arXiv:2208.12590
1 1 T Ll 1 > 0 .
N°N,  N°N} NSNY NN (NN)! (A recent review article)
Yoshioka et al. Comm Phys 2021 Iy, Acewacy
Deep Quantum 4
MR i) Configuration interaction,
quadruples (CISDTQ)
Den‘sity
sl © Coupled-cluster (CCSD(T))
(DFT)
O O Configuration interaction, doubles (CISD)
O Mgller-Plesset 2nd order (MP2)
O Hartree-Fock (HF)
Computational cost
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Determinant based/1t quantized
approaches: some examples

* FermiNet: D.Pfau et al. (Google DeepMind + Imperial College) Phys Rev
Research 2, 033429 (2020) and subsequent papers (e.g. arXiv:2011.07125)

e PauliNet: J.Hermann, Z.Schitzle and F.Noé (FU+TU, Berlin) Nature
Chemistry 12, 891 (2020) and subsequent papers

 HFDS (Hidden Fermions Determinantal State) J.Robledo-

Moreno, G.Carleo, A.G. and J.Stokes PNAS, 119 Vol 32 (2022) and
subsequent papers e.g. A.Lovato et al. PRR 4, 043178 (2022)

e Also:

e Early paper: Nomura et al. PRB 96, 205152 (2017) [RBM parametrized
Jastrow etc.]

e J.Stokes et al. PRB 102, 205122 (2020)
* NN backflows, see above: Ruggeri et al. PRL 120, Di Luo and Clark PRL 122

» Several relevant works not quoted here, for a recent short review see
J.Hermann et al. arXiv:2208.12590



FermiNet

D.Pfau et al. Phys Rev Research 2, 033429 (2020) and subsequent papers

Directly in continuum space HYy (X1, ..., X)) =E¥(Xy, ..., X)),
(no basis set)
2203
i>j lrt o l'_,l
Z;Z
oo
T —R1| — IR, — Ry]

yal, ..., l’,h) = Zwk(det [¢,{CT(1',T-; {l'/j}; {r'})] Sum of determinants

x det [¢;* (x}; {r7,)); {x1); ]).
Orbitals parametrized as deep NN
o (l'j-’; {l'7j}; {r*}) = (w -h’f“ + &%) with backflow etc.

XZ” exp( — | Zii (Ff — Ra)]),



Algorithm 1: FermiNet evaluation.

D.Pfau et al.

Require: walker configuration {r{, .-+ ,x/,, xy, -, T, ] Phys Rev Research 2, 033429 (2020)
Require: nuclear positions {R;}
for each electron i, @ do

h/* <« concatenate(r® — R,, r* —R;|VI)

hf}’ﬂ < concatenate(r; — r , |y rf | ¥ 8)
end for
for each layer £ € {0, L — 1} do

gt « &3 !

g « Ly

for each electron i a do

D 0LSY Oy St e

ZaT Z hlat
10: e‘” T2 he‘”
11 ff" — concatenate(h, W GUE G all Output of layer ¢ outiolaer (41

12: h{*!* « tanh (matmul(V', £/¢) + b’) + h«

13: h;'“* « tanh (matmul(W', h{?*) + ¢') + h;?*
14: end for

15: end for

16: for each determinant k do

17:  for each orbital i do

W&%MM

18: for each electron j, @ do
19: e < envelope(r‘}‘, {ri — R,B
. . . v —_ L
20: ¢i(xg; {rf;}; {r*}) = (dot(w;*, hj*) + g{*)e
21 end for
22:  end for
: ktept- g
23: DM «detgf(xl; (r]}; (r']D]
24: Dk ' <« det [¢,k v (IJ ) {r} . } 5 {l‘T } )] FIG. 1. The Fermionic neural network (FermiNet). Top: Global architecture. Features of one or two electron positions are inputs to different
2 5 . en d fOl‘ J J streams of the network. These features are transformed through several layers, a determinant is applied, and the wave function at that position

is given as output. Bottom: Detail of a single layer. The network averages features of electrons with the same spin together, then concatenates
. k k these features to construct an equivariant function of electron position at each layer.
26: ¢ <« Y, o D'DM d P Y




PauliNet o -
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Fig. 2 | Architecture of the newly developed PauliNet wavefunction Nx D,
ansatz. The information flows from the input electron and nuclear ! ! ! ! ! i ! 1
coordinates, r and R, to the output wavefunction value, ¥. Modelling the S
wavefunction via Jastrow and backflow functions is common in QMC, but cusps Hartree-Fock Backflow Jastrow
here these functions are learned with DNNs. N,., number of determinants. l l J J
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PFAU, SPENCER, MATTHEWS, AND FOULKES

PHYSICAL REVIEW RESEARCH 2, 033429 (2020)

TABLEII. Ground-state energy at equilibrium geometry for diatomics and small molecules. The percentage of correlation energy captured
by the FermiNet relative to the exact energy (where available) or CCSD(T)/CBS is given in the rightmost column. If no citation is provided,
then the number was from our own calculation. Geometries for larger molecules are given in Appendix G.

CCSD(T) (Ex) HF (E,)
Molecule Bond length (ay) FermiNet (E;) aug-cc-pCVQZ aug-cc-pCV5Z CBS CBS Exact (E;,) % corr
LiH 3.015 —8.07050(1) —8.0687 —8.0697 —8.070696  —7.98737 —8.070548 [46] 99.94(1)
Li, 5.051 —14.99475(1) —14.9921 —14.9936  —14.99507 —14.87155 —14.9954[47] 99.47(1)
NH; - —56.56295(8) —56.5535 —56.5591 —56.5644 —56.2247 - 99.57(2)
CH, - —40.51400(7) —40.5067 —40.5110 —40.5150 —40.2171 - 99.66(3)
Cco 2.173 —113.3218(1) —113.3047 —113.3154 —113.3255 —112.7871 - 99.32(3)
N, 2.068 —109.5388(1) —109.5224 —109.5327 —109.5425 —108.9940 —109.5423 [47] 99.36(2)
Ethene - —78.5844(1) —78.5733 —78.5812  —78.5888 —78.0705 - 99.16(2)
Methylamine - —95.8554(2) —95.8437 — —95.8653 —95.2628 - 98.36(3)
Ozone - —225.4145(3) —225.3907 —225.4119 —2254338 —224.3526 - 98.42(3)
Ethanol - —155.0308(3) —155.0205 — —155.0545 —154.1573 - 97.36(4)
Bicyclobutane - —155.9263(6) —155.9216 — —155.9575 —154.9372 - 96.94(5)
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FIG. 4. The H, rectangle, R = 3.2843a,. Coupled cluster meth-
ods incorrectly predict a cusp and energy minimum at ® = 90°,
while the FermiNet approach agrees with exact FCI results.

FIG. 5. The dissociation curve for the nitrogen triple-bond. The
difference from experimental data [53] is given in the main panel.
In the region of largest UCCSD(T) error, the FermiNet prediction is
comparable to highly accurate r2-MR-ACPF results [54].
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Fig. 6 | PauliNet captures strong correlation in H,, along the dissociation
curve. PauliNet results (blue) with single determinant or 16 determinants
(MD) and with or without backflow are shown. The backflow plays a
much larger role than multiple determinants. PauliNet outperforms

highly specialized VMC ansatzes (orange) of the single-determinant
(dotted) and multideterminant geminal (dashed) form by Motta et al.**.
The correlation energy is calculated with respect to multireference
configuration-interaction (MRCI) results, also by Motta et al. E,, Hartree
energy; ry,,» Bohr radius.
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Figure 2: Automerization of cyclobutadiene and comparison with the PauliNet. The geometries of
the ground state (left and right) and transition state (center) are shown in the top figure. Top: total
energy of the FermiNet and PauliNet. Energy is plotted on a log scale zeroed at -154.68 E;,. While
the FermiNet is initialized well above the PauliNet, the converged energy is ~70 mE}, lower — ~44
kcal/mol. Bottom: energy difference between the ground and transition state for the PauliNet and
FermiNet. Both the PauliNet and FermiNet are at the very upper end of the experimentally-measured
values. The FermiNet agrees well with the highest multireference coupled cluster (MR-CC) result.
All results other than the FermiNet are from [7].
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nspired by auxiliary slave’ particle
methods

Key idea: Enlarge Hilbert space and project back onto the physical Hilbert space
by imposing a constraint.

Example: Slave boson’ for U=eo
Local Hilbert space:

0) =+ 57(0) , |o) = c[0) — £F0)  CHolon/ snom
Impose constraint on each site: \vd} , b;l_bz —|—Z Z'_;fz'a = 1
o

This constraint prevents double occupancies, as well as (unphysical) states with more
than one boson per site. It must be imposed on all sites.

Configuration in enlarged Hilbert space is uniquely related to the physical
configuration in the physical (projected) Hilbert space:

ne=0) = |np=1,np =0) , |Nee =1) = |np =0,np, =1)



Fock space spanned by &Ia (M =0)

Augmented space
(M > 0)

@ Target correlated state

, SDs in augmented space

me SDs in physical space

J. Robledo-Moreno et al.
PNAS, 2022

HFDS: The Basic Concept

HFDS enlarges the Hilbert space
with fermionic "hidden” modes.

The wave function is a Slater
determinant in the enlarged space,
subject to a constraint for projecting
it back to the physical space.

This results in a correlated/entangled
wave-function

Fig. 1. Depiction of the geometrical interpretation of the hidden fermion

formalism. The Fock space spanned by the visible-fermionic modes &,Ta is
represented by the green horizontal line. The augmented Fock space is
represented by the light orange plane (plane of the paper). The orange
diagonal line represents the subspace in the augmented Fock space that is
isomorphic to the physical Hilbert space after applying the constraint function
(black arrows). The collection of SDs in the augmented space is represented by
the blue shape, and the intersection with the subspace of just visible DOFs is
marked in yellow. This intersection corresponds to the physical Hartree-Fock
states. The constraint function changes the collection of states that represent
the physical Hilbert space bringing the target correlated state close to a Slater
determinant in the enlarged space.



formalism
(done on the
board)

Example: 2-site Hubbard
e General formalism

* Special cases; Jastrow, Gutzwiller etc
NN parametrization
 See lecture notes on website
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VIll. HIDDEN FERMIONS DETERMINANTAL STATE

A. Simple example: 2-site Hubbard model

Recall that the ground state in the Ny = N = 1 sector is:

1
|Wy) = cosd \/_[cchu + c3,¢5,] +sin \/i[cnc% + 3.6t (8.1)
with:
1 1 U

This wave-function cannot be written as a product of two separate Slater determinants for spin-up
and spin-down electrons (however, it can if the one-particle orbital are allowed to mix the two spins
and one projects back onto the sector with Ny = N)).

we are going to show that W, can be written as a projected SD by introducing a single hidden
fermion which can occupy two modes, denoted (for this example) S and D (S and D stand for
‘single’ and ‘double’, respectively). We consider the matrix defining the new orbitals:

(I)pa ) p:<1T72T71\L72\L757D> ) O‘:<17273):(T7\L7h) (83)
1
?ﬁ 0 0
7 0 0
0 L 0
o — v (8.4)
0 7 0
0 O c
0 0 ce™¥

c is simply a normalization: ¢? = 1/[1 4 e %] i.e. ¢ = ¢9/2/\/2cosh g so that dTd = L.
This corresponds to the operators creating electrons in the three 1-particle wave-functions defined

by ®

@}F = \%[c}? + C;T] (8.5)
@j = %[Cﬁ + Cu]
ht = clhi 4+ e 9 hf) (8.7)

We form the Slater determinant with Ny = N = N, = 1:
[Wsp) = @i @ h"0) (88)

and project it subject to the constraint that the hidden fermion occupies state |S) if the physical
configuration has no double occupancy and state |D) if the physical configuration has one double
occupancy - note that with two electrons at most one double occupancy can occur. This can be
written:

hihs = Pp_o = [1 = fggigy] [1 — firiay] , hhhp = Pp_y = fagiyy + fiagiia (8.9)
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The hidden fermion acts as a ‘tag’: singly occupied configurations are given the tag ‘S’, and double
the tag ‘D’. Note that the expressions of the projector above are valid only in the N = 2 sector
considered here. The full projector imposing these two constraints reads (note that for a given
fermionic mode a, h}h, is a projector):

P = Byhlhs+ Prhbhp (8.10)
The HFDS state is the projected SD:
[Warns) = [Wsp) = Pl ol h7[0) (8.11)
Note that in contrast to most ‘slave particle’ theories, the constraint is not quadratic in the physical
electron operators - the theory is not geared at performing analytical mean-field approximations but
rather at optimizing the constraint. The HFDS state reads (dropping the subscript):

C _ C
W) = Zelefict, + e ]I0) ® D) + Flefied, +chef)io) ®S) (8.12)

2

The occupation numbers of the hidden fermions are determined in a unique way by that of the
physical electrons. Explicitly, in second quantized notations with (1 1,2 1,1 ,2 |; S, D) ordering:

(14,14) = (1,0,1,0) = (1,0,1,0;0,1) = ce9/2

(2120 =(0.1,0,1) = (0,1,0,1:0.1) = ce~9/2 “13
(11,2 1) = (1,0,0,1) — (1,0,0,1: 1,0) = ¢/2 (8.13)
(2T,1¢)E(O,1,1, ) (0,1,1,0;1,0)#6/2

Hence, the basis states in the enlarged HS can be labelled |n, f(n)) and the components of the HFDS
state read:

P(n) = (n, f(n)|T) = det [n* Dypys] ce 9P (8.14)
in which ®ppys is the matrix restricted to the physical sector:
1
7 0
4= 0
Pppys = \6§ 1 (8.15)
V2
0 L
V2
and * denote the component by component product:
[nx Plpa = 1y Ppa (8.16)
If alternatively we use configurations in first quantized form z = (i104,i209), the wave-function
amplitude reads:
() = o) P[n()] (8.17)

with o(z) the permutation bringing x to its canonically ordered form.
Note that for all of the 4 physical states above, det [n x @] = 1/2. We thus recognize that the
HFDS provides an exact description of the ground-state with:

ed =tand (8.18)

and the expected limits ¢ — 0,0 — m/4 (uncorrelated limit, 2 electrons in bonding state) and
g — 1,0 — 7/2 (Heitler-London limit, singlet state with no double occupancy).
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B. Gutzwiller wave-function

This is easily generalized to the GWF for an arbitrary number of sites. We still need only a
single hidden fermion, but it can now occupy N/2 + 1 corresponding to the possible values of the

double-occupancy D =0, -, N/2. The above expressions generalize to:
(I)phys @
= 0 c (8.19)
0 ce™9
0 ce N2

So that (a« =1,--- ,N):

DDA il (8.20)
Wt =c N2 emadpt (8.21)

and we impose the constraint, for each configuration, that the hidden fermion is in mode d iff the
double occupancy D(n) = d. This corresponds to the projector:

N/2
P =Y Pihthy (8.22)
d=0
or, using first-quantized numbering f(n) € {0,1,---, N/2} for the location of the hidden fermion:

f(n) = Znnnu (8.23)

The HFDS is now:
U) = Pof - o} hH0) (8.24)

and it is easy to check that the HDS amplitude coincides with the Gutzwiller ansatz:

P(n) = det [n*x ®ppys] ce 9P = 4hg(n) (8.25)
C. General HFDS
D, Doa by X . MxN MxN
o = Gt I dim = | ~ ~ ~ 2
(cbﬁa <1>m) (¢h Xh> O (M x N M x N) (8.26)
In this expression, o = 1,---, N runs over physical (or ‘visible’) electrons, & = 1,--- , N runs over
hidden fermions, p = 1,--- , M runs over physical modes and p = 1,--- , M runs over hidden modes.
We have N physical fermions and N hidden fermions:
M M
P =D 1 Cp Ppa + D5 h ®pa (8.27)

X =M e+ XM hi b, (8.28)

p=1"p
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The hidden fermion configuration is uniquely determined by that of the visible/physical ones:
n=Fn), &= f(x (8.29)

The first expression refers to the occupation number in second-quantized notation: n = {n,},n =
{nz} (recall: p =ic), while the second one refers to a configuration in first quantized form (without
imposing canonical ordering): = = (z1,--- ,2n),Z = (T1, -+ ,Ty) with eg. x; = (ij,0;). The
function f is thus a fully symmetric function of its arguments.

Denoting by Py the projector associated with this constraint the HFDS wave function reads:

W) = Proof ok xi -+ x5 0) (8.30)

and its amplitude over a given configuration reads:

Pu(T) Xo() )
r) = det = ey det [(n(z), F(n(x)) % ® 8.31
(o) = det (Pt VO ) = et [fn(a), Fin(o) <] (831
The last line expresses that the matrix ® is ‘sliced” according to the configuration z. It also makes
explicit that the wave-function amplitude is antisymmetric, thanks to the fact that the constraint
function f(x) is symmetric (hence exchanging e.g. z; and xs amounts to exchange the first to lines
in the determinant). The permutation o(z) is the one that brings x to its canonically ordered form.

D. Relation to other variational states

We have already seen that the Gutzwiller wave-function is a particular case of HFDS. This can
also be shown for:

e Jastrow. Simply choose x, = ¢, = 0, i.e. no off diagonal elements in & between the visible and
hidden sectors. Then:

(x) = det[xn(f(2)] det[g,(x)] (8.32)

The first term is a fully symmetric Jastrow factor.
e Configuration interaction - see JRM thesis

e Backflow - see JRM thesis

E. NN parametrization

The amplitudes ¢, (x), x,(z); onlf(2)], xn[f(x)] are all variational parameters. The hidden-sector
components of the determinant are parametrized using a NN. Because we only need the amplitudes
onlf(x)], xnlf(x)] we can directly parametrize those, rather than parametrize explicitly the constraint

which also allows us to not specify explicitly the numbers of modes M. The NN parametrization, in
a sense, deals with a continuous set of modes! We don’t have access to either these modes, or to the
constraint function f(x).

For each configuration of the physical/visible fermions x, the entry layer of the network is the
bit-string n(x), hence insuring explicit symmetry of the output under a permutation of z. Each row
i of the hidden submatrix [¢p,(x), xn(x)] is parametrized by a distinct NN, which can be chosen as a
multilayer perceptron with non-linear activation functions. Here is an example with two layers and
a tanh activation:

[qb'f[fz(x)}, e »X?v [fz(:v)]] = tanh <tanh (n . ng) + bg”) . WZ@) + b§2)> (8.33)

(the tanh is taken component by component).



Hilbert space

Figure 6.2: Venn diagram of the expressive power of classically tractable (amplitudes can be
evaluated in polynomial time) determinant-based trial states, in the Hilbert space spanned
by a finite number of basis elements (discrete degrees of freedom). HFDS stands for hidden
fermion determinant state, in this case with N = N. Backflow det. stands for a single
N x N backflow determinant. Slater x Corr. is the N x N Slater determinant multiplied by
a diagonal correlation factor.

Figure courtesy Javier Robledo-Moreno



Parametrization of a Hidden Fermion
determinantal State by neural networks

d1(z1) ... on(z1) xa(z1) ... xz(z1)
bi(zy) .. on(an) xi(@w) .. xm(@w)

(6:(fi(n)) -+ on(Hi(n)) xa(fi(n)) - -+ xz(fr(n)))

= ()

Each row of the hidden sector is parametrized by a different perceptron.
For example, with 2 layers:

(0 1fi(@)], - X5 [fi(2)]] = tanh (tanh (n w4 bgl)) w4 bz(2)>

J.Robledo-Moreno, G.Carleo, A.G. and J.Stokes, PNAS, 2022



HFDS with physically motivated constraints:
benchmark on 4*4 Hubbard model at %-filling
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Fig. 1. Benchmarks of physically motivated constraint functions with ED energies in the 4 x 4 Hubbard model at n = 1/2 average physical site occupation. Results from
standard wave function ansdtze are shown as dashed lines for comparison purposes. (a) Relative error in the ground-state energy as a function of the coupling constant U'.
The different constraint function ansdtze are a single Slater determinant in the augmented Fock space with no projections. (b) Same as panel (a) including a complex RBM
projection factor both in the control unrestricted HF ansatz and a E-RBM factor in the the hidden fermion ansdtze.

J.Robledo-Moreno, G.Carleo, A.G. and J.Stokes, PNAS, 2022



Numerical results with NN parametrization:
4*4 Hubbard model at %-filling

A 10-2 Slater-RBM B
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Fig. 3. Exact diagonalization benchmarks of the ground-state energy in the 4 x 4 lattice with periodic boundary conditions. (A) Relative error in the ground-
state energy as a function of the inverse of the width density « of the single-hidden-layer neural networks parameterizing the rows of the hidden submatrix.
Average physical site occupationisn = 1/2 and N = 8. Different values of U are considered, as indicated by each color. The error for a Slater-RBM ansatz (main
text) with hidden neuron density a = 32, at the same values of U, is included for comparison. Indicated is also the relative error from the variance-extrapolated
energy for each value of U (see S/ Appendlix for details). (B) Relative error in the ground-state energy as a function of the coupling constant U, at n = 5/8 average
site occupancy (first closed shell) and N = 10. The rows of the hidden submatrix are given by single-hidden-layer neural networks with a = 64. The errors from
Slater-Jastrow and Slater-RBM ansatze are included for comparison. The green diamond is the relative error found with the state-of-the-art, tensor-network-
based ansatz from ref. 46. Shown is also the relative error according to the projection of the converged hidden-fermion determinant state to the subspace of
invariant wave functions under the action of 7 /2 rotations (C;) and the group of all possible translations T with K = 0 momentum, separately and together.

J.Robledo-Moreno, G.Carleo, A.G. and J.Stokes, PNAS, 2022



Relative error as a function of hidden

‘ermion number and depth of NN
(4*4 Hubbard model at % filling)
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Fig. 2. Effect of the number of hidden fermions and depth of the fully connected neural network that parametrizes the hidden sub-matrix in the expressive power of the hidden
fermion determinant ansatz. The scale shows the relative error in the ground-state energy for different values of U given N, and the neural network depth. The results
correspond to the 4 x 4 Hubbard model at n = 1/2 filling.

J.Robledo-Moreno, G.Carleo, A.G. and J.Stokes, PNAS, 2022



NN-HFDS: Stripe order in the Hubbard model
at 1/8 doping on 4*L cylinders (up to L=16)
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Energy per site and competing charge and spin orders in the 4 x L rectangular lattice at 1/8 hole doping (n = 0.875) and U = 8. (A) Periodic boundary

conditions on the short side of the cylinder and open on the long side (PBC-OBC). Left panel compares the hidden-fermion determinant-state energies with
DMRG energies. The width of the DMRG symbols shows the range of converged variational energies for different bond dimensions used in ref. 48. For L =8,
blue points labeled as 1 and 2 correspond to filled and half-filled stripes. Right panel shows the hole and staggered spin distribution for both metastable
configurations. The diameter of the gray circles is proportional to the hole density. (B) Periodic boundary conditions along both sides of the rectangles (PBC-
PBC). Left panel compares the hidden-fermion determinant-state energies with the Slater-Jastrow and neural-network backflow ansatze (from ref. 9). The

dashed horizontal line marks the ED (4 x 4 with PBCs from ref. 51) energy. In the 4 x 4 lattice the relative error in the ground-state energy is displayed for each
ansatz. Right panel shows the hole and staggered spin distributions in the 4 x 16 lattice.

J.Robledo-Moreno, G.Carleo, A.G. and J.Stokes, PNAS, 2022



