Vinberg pairs and Higgs bundles

Oscar García-Prada ICMAT-CSIC, Madrid

Collège de France, Paris, 2 June 2023

Oscar García-Prada ICMAT-CSIC, Madrid Vinberg pairs and Higgs bundles

- G semisimple complex Lie group with Lie algebra \mathfrak{g}
- $\theta: G \to G$ order m > 0 holomorphic automorphism

- G semisimple complex Lie group with Lie algebra \mathfrak{g}
- $\theta: G \to G$ order m > 0 holomorphic automorphism
- θ defines an automorphism of g (denoted also by θ), determining a Z/m-grading of g (we write Z/m instead of Z/mZ):

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \mathfrak{g}_i$$
 with $\mathfrak{g}_i = \{x \in \mathfrak{g} \text{ such that } \theta(x) = \zeta^i x\},$

where ζ is a primitive *m*-th root of unity. One has

$$[\mathfrak{g}_i,\mathfrak{g}_j]\subset\mathfrak{g}_{i+j}.$$

• Let $\mu_m = \{z \in \mathbb{C}^* \text{ such that } z^m = 1\}$. Having \mathbb{Z}/m -grading on \mathfrak{g} is equivalent to having a homomorphism

$$\tilde{\theta}: \mu_m \to \operatorname{Aut}(\mathfrak{g}).$$

• Let $\mu_m = \{z \in \mathbb{C}^* \text{ such that } z^m = 1\}$. Having \mathbb{Z}/m -grading on \mathfrak{g} is equivalent to having a homomorphism

$$\tilde{\theta}: \mu_m \to \operatorname{Aut}(\mathfrak{g}).$$

Then $\mathfrak{g}_i = \{x \in \mathfrak{g} \text{ such that } \tilde{\theta}(z)x = z^i x\}$ for every $z \in \mu_m$.

Let G^θ < G be the fixed point subgroup.
 G^θ is a reductive group with Lie algebra g₀.

• Let $\mu_m = \{z \in \mathbb{C}^* \text{ such that } z^m = 1\}$. Having \mathbb{Z}/m -grading on \mathfrak{g} is equivalent to having a homomorphism

$$\tilde{\theta}: \mu_m \to \operatorname{Aut}(\mathfrak{g}).$$

- Let G^θ < G be the fixed point subgroup.
 G^θ is a reductive group with Lie algebra g₀.
- Since $[\mathfrak{g}_0, \mathfrak{g}_i] \subset \mathfrak{g}_i$, all the subspaces \mathfrak{g}_i are stable under the adjoint action of G^{θ} .

• Let $\mu_m = \{z \in \mathbb{C}^* \text{ such that } z^m = 1\}$. Having \mathbb{Z}/m -grading on \mathfrak{g} is equivalent to having a homomorphism

$$\tilde{\theta}: \mu_m \to \operatorname{Aut}(\mathfrak{g}).$$

- Let G^θ < G be the fixed point subgroup.
 G^θ is a reductive group with Lie algebra g₀.
- Since $[\mathfrak{g}_0, \mathfrak{g}_i] \subset \mathfrak{g}_i$, all the subspaces \mathfrak{g}_i are stable under the adjoint action of G^{θ} .
- The pairs $(G^{\theta}, \mathfrak{g}_i)$ are called **Vinberg** θ -pairs (also θ -groups or **Vinberg** θ -representations).

• Let $\mu_m = \{z \in \mathbb{C}^* \text{ such that } z^m = 1\}$. Having \mathbb{Z}/m -grading on \mathfrak{g} is equivalent to having a homomorphism

$$\tilde{\theta}: \mu_m \to \operatorname{Aut}(\mathfrak{g}).$$

- Let G^θ < G be the fixed point subgroup.
 G^θ is a reductive group with Lie algebra g₀.
- Since $[\mathfrak{g}_0, \mathfrak{g}_i] \subset \mathfrak{g}_i$, all the subspaces \mathfrak{g}_i are stable under the adjoint action of G^{θ} .
- The pairs $(G^{\theta}, \mathfrak{g}_i)$ are called **Vinberg** θ -pairs (also θ -groups or **Vinberg** θ -representations).
- Sometimes it is convenient in the Vinberg pair to replace G^{θ} by any subroup between the connected component of the identity of G^{θ} and its normalizer in G.

• Example 1: Adjoint representation. If m = 1, then θ is the identity automorphism and (G, \mathfrak{g}) is the only Vinberg θ -pair.

- Example 1: Adjoint representation. If m = 1, then θ is the identity automorphism and (G, \mathfrak{g}) is the only Vinberg θ -pair.
- Example 2: Symmetric pairs. Let m = 2: $\mathbb{Z}/2$ -grading

 $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$

theory of symmetric spaces and real forms of \mathfrak{g} and G.

- Example 1: Adjoint representation. If m = 1, then θ is the identity automorphism and (G, \mathfrak{g}) is the only Vinberg θ -pair.
- Example 2: Symmetric pairs. Let m = 2: $\mathbb{Z}/2$ -grading

 $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$

theory of symmetric spaces and real forms of \mathfrak{g} and G.

A real form of $G^{\sigma} < G$ is the fixed point subgroup of a conjugation (antiholomorphic involution) σ of G.

- Example 1: Adjoint representation. If m = 1, then θ is the identity automorphism and (G, \mathfrak{g}) is the only Vinberg θ -pair.
- Example 2: Symmetric pairs. Let m = 2: $\mathbb{Z}/2$ -grading

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$$

theory of symmetric spaces and real forms of \mathfrak{g} and G.

A real form of $G^{\sigma} < G$ is the fixed point subgroup of a conjugation (antiholomorphic involution) σ of G. Cartan: Given a holomorphic involution θ of G there is a compact conjugation τ of G, so that $\sigma := \tau \theta = \theta \tau$ is a conjugation of G. This gives a bijection

$$\operatorname{Aut}_2(G)/\sim \longleftrightarrow \operatorname{Conj}(G)/\sim,$$

where equivalence is conjugation by an inner automorphism of G.

• Example 3: Cyclic quivers. Let *m* ≥ 2. Let *V* be a complex vector space equipped with a ℤ/*m*-grading

$$V = \bigoplus_{i \in \mathbb{Z}/m} V_i.$$

• Example 3: Cyclic quivers. Let $m \ge 2$. Let V be a complex vector space equipped with a \mathbb{Z}/m -grading

$$V = \bigoplus_{i \in \mathbb{Z}/m} V_i.$$

Let $G = \operatorname{SL}(V)$. Define on $\mathfrak{g} = \mathfrak{sl}(V)$ the \mathbb{Z}/m -grading given by

 $\mathfrak{g}_i = \{A \in \mathfrak{sl}(V) \text{ such that } A(V_j) \subset V_{j+i} \text{ for every } j \in \mathbb{Z}/m\}$ In this situation

$$G^{\theta} = \mathcal{S}(\prod_{i \in \mathbb{Z}/m} \operatorname{GL}(V_i)),$$

and

$$\mathfrak{g}_1 = \bigoplus_{i \in \mathbb{Z}/m} \operatorname{Hom}(V_i, V_{i+1}).$$

• Define the **quiver** Q with m vertices indexed by \mathbb{Z}/m and arrows $i \mapsto i+1$ for each $i \in \mathbb{Z}/m$.

Define the quiver Q with m vertices indexed by Z/m and arrows i → i + 1 for each i ∈ Z/m.
Then g₁ is the space of representations of Q where we put V_i at the vertex i:
This can be represented by the diagramme

Define the quiver Q with m vertices indexed by Z/m and arrows i → i + 1 for each i ∈ Z/m.
Then g₁ is the space of representations of Q where we put V_i at the vertex i: This can be represented by the diagramme

• For other classical groups the action of G^{θ} on \mathfrak{g}_1 can be interpreted in terms of a cyclic quiver with some extra structure.

 Vinberg theory is concerned with the study of the geometric invariant theory associated to Vinberg θ-pairs.

- Vinberg theory is concerned with the study of the geometric invariant theory associated to Vinberg θ-pairs.
- Recall first that if $\mathfrak{t} \subset \mathfrak{g}$ is a Cartan subalgebra, and $W(\mathfrak{t})$ is the Weyl group, the **Chevalley restriction theorem** establishes an isomorphism

$$\mathfrak{g} \not \parallel G \cong \mathfrak{t} / W(\mathfrak{t}).$$

- Vinberg theory is concerned with the study of the geometric invariant theory associated to Vinberg θ-pairs.
- Recall first that if $\mathfrak{t} \subset \mathfrak{g}$ is a Cartan subalgebra, and $W(\mathfrak{t})$ is the Weyl group, the **Chevalley restriction theorem** establishes an isomorphism

$$\mathfrak{g} /\!\!/ G \cong \mathfrak{t} / W(\mathfrak{t}).$$

Similarly, if θ is an involution of G and g = g₀ ⊕ g₁ is the Cartan decomposition defined by θ, and W(a) is the little Weyl group defined by a maximal abelian subalgebra a ⊂ g₁, there is also a Chevalley restriction theorem studied by Kostant-Rallis (1971):

$$\mathfrak{g}_1 /\!\!/ G^{\theta} \cong \mathfrak{a}/W(\mathfrak{a}).$$

伺 ト イ ヨ ト イ ヨ ト

 A main result of Vinberg's theory (1976) is a version of the Chevalley restriction theorem for Vinberg θ-pairs.

- A main result of Vinberg's theory (1976) is a version of the Chevalley restriction theorem for Vinberg θ-pairs.
- Key concept is that of Cartan subspace: linear subspace
 a ⊂ g₁ which is abelian as a Lie algebra, consisting of semisimple elements, and maximal with these two properties.

- A main result of Vinberg's theory (1976) is a version of the Chevalley restriction theorem for Vinberg θ-pairs.
- Key concept is that of Cartan subspace: linear subspace
 a ⊂ g₁ which is abelian as a Lie algebra, consisting of semisimple elements, and maximal with these two properties.
- The little Weyl group

$$W(\mathfrak{a}) = N_{G_{\theta}}(\mathfrak{a})/C_{G_{\theta}}(\mathfrak{a})$$

is a finite linear group generated by semisimple transformations of \mathfrak{a} fixing a hyperplane. Hence $\mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})}$ is a **polynomial ring**, and the restriction of polynomial functions $\mathbb{C}[\mathfrak{g}_1] \to \mathbb{C}[\mathfrak{a}]$ induces an **isomorphism of invariant polynomial rings** $\mathbb{C}[\mathfrak{g}_1]^{G^{\theta}} \to \mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})}$, or equivalently,

$$\mathfrak{g}_1 /\!\!/ G^{\theta} \cong \mathfrak{a}/W(\mathfrak{a}).$$

• The fact that $W(\mathfrak{a})$ is a finite linear group generated by complex reflections implies that $\mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})} = \mathbb{C}[f_1, \cdots, f_r]$ is a polynomial algebra generated by r algebraically independent polynomials f_1, \cdots, f_r whose degrees d_1, \cdots, d_r are determined by the grading. Here r is the dimension of \mathfrak{a} , an invariant called the rank of $(G^{\theta}, \mathfrak{g}_1)$.

- The fact that $W(\mathfrak{a})$ is a finite linear group generated by complex reflections implies that $\mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})} = \mathbb{C}[f_1, \cdots, f_r]$ is a polynomial algebra generated by r algebraically independent polynomials f_1, \cdots, f_r whose degrees d_1, \cdots, d_r are determined by the grading. Here r is the dimension of \mathfrak{a} , an invariant called the rank of $(G^{\theta}, \mathfrak{g}_1)$.
- Kostant (1963) showed that the quotient map $\mathfrak{g} \to \mathfrak{g} /\!\!/ G$ has a section, known as the **Kostant section**.

- The fact that $W(\mathfrak{a})$ is a finite linear group generated by complex reflections implies that $\mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})} = \mathbb{C}[f_1, \cdots, f_r]$ is a polynomial algebra generated by r algebraically independent polynomials f_1, \cdots, f_r whose degrees d_1, \cdots, d_r are determined by the grading. Here r is the dimension of \mathfrak{a} , an invariant called the rank of $(G^{\theta}, \mathfrak{g}_1)$.
- Kostant (1963) showed that the quotient map $\mathfrak{g} \to \mathfrak{g} /\!\!/ G$ has a section, known as the **Kostant section**.
- This was extended by Kostant-Rallis (1971) to obtain the **Kostant-Rallis section** in the symmetric pair case for the quotient map $\mathfrak{g}_1 \to \mathfrak{g}_1 /\!\!/ G^{\theta}$.

- The fact that $W(\mathfrak{a})$ is a finite linear group generated by complex reflections implies that $\mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})} = \mathbb{C}[f_1, \cdots, f_r]$ is a polynomial algebra generated by r algebraically independent polynomials f_1, \cdots, f_r whose degrees d_1, \cdots, d_r are determined by the grading. Here r is the dimension of \mathfrak{a} , an invariant called the rank of $(G^{\theta}, \mathfrak{g}_1)$.
- Kostant (1963) showed that the quotient map $\mathfrak{g} \to \mathfrak{g} /\!\!/ G$ has a section, known as the **Kostant section**.
- This was extended by Kostant-Rallis (1971) to obtain the **Kostant-Rallis section** in the symmetric pair case for the quotient map $\mathfrak{g}_1 \to \mathfrak{g}_1 /\!\!/ G^{\theta}$.
- The existence of a similar section for Vinberg's θ-pairs for θ of higher order was conjectured by Popov (1976), but only proved more recently in full generality by Reeder-Levy-Yu-Gross (2012). In this context, such a section is referred as a Kostant-Weierstrass section.

• There are many interesting applications of Vinberg theory: GIT and representation theory, Classification of trivectors of 9-dimensional space \mathbb{C}^9 (Elashvili–Vinberg), arithmetic theory of elliptic curves and Jacobians (Bhargava–Shankar, Bhargava–Gross,...), moduli space of genus 2 curves (Rains–Sam), description of the moduli space of vector bundles on curves of small genus, del Pezzo surfaces and mysterious duality (Iqbal–Neitzke–Vafa), etc.

- There are many interesting applications of Vinberg theory: GIT and representation theory, Classification of trivectors of 9-dimensional space \mathbb{C}^9 (Elashvili–Vinberg), arithmetic theory of elliptic curves and Jacobians (Bhargava–Shankar, Bhargava–Gross,...), moduli space of genus 2 curves (Rains–Sam), description of the moduli space of vector bundles on curves of small genus, del Pezzo surfaces and mysterious duality (Iqbal–Neitzke–Vafa), etc.
- The goal of this talk is to discuss the role of Vinberg θ -pairs in Higgs bundle theory.

- There are many interesting applications of Vinberg theory: GIT and representation theory, Classification of trivectors of 9-dimensional space \mathbb{C}^9 (Elashvili–Vinberg), arithmetic theory of elliptic curves and Jacobians (Bhargava–Shankar, Bhargava–Gross,...), moduli space of genus 2 curves (Rains–Sam), description of the moduli space of vector bundles on curves of small genus, del Pezzo surfaces and mysterious duality (Iqbal–Neitzke–Vafa), etc.
- The goal of this talk is to discuss the role of Vinberg θ -pairs in Higgs bundle theory.
- First, I will review some old results put in the larger context of Vinberg's theory.

- There are many **interesting applications** of Vinberg theory: GIT and representation theory, Classification of trivectors of 9-dimensional space \mathbb{C}^9 (Elashvili–Vinberg), arithmetic theory of elliptic curves and Jacobians (Bhargava–Shankar, Bhargava–Gross,...), moduli space of genus 2 curves (Rains–Sam), description of the moduli space of vector bundles on curves of small genus, del Pezzo surfaces and mysterious duality (Iqbal–Neitzke–Vafa), etc.
- The goal of this talk is to discuss the role of Vinberg θ -pairs in Higgs bundle theory.
- First, I will review some old results put in the larger context of Vinberg's theory.
- Then I will introduce some new problems and work in progress in the study of the geometry of moduli spaces of **cyclic Higgs bundles**.

伺下 イヨト イヨ

Higgs pairs

- X compact Riemann surface of genus $g \ge 2$ with canonical line bundle K
- $\bullet~G~$ reductive complex Lie group with Lie algebra ${\mathfrak g}$
- $\rho:G\to \operatorname{GL}(V)~$ a representation of G in a complex vector space V

• • = • • = •

Higgs pairs

- X compact Riemann surface of genus $g \ge 2$ with canonical line bundle K
- G reductive complex Lie group with Lie algebra \mathfrak{g}
- $\rho:G\to \operatorname{GL}(V)~$ a representation of G in a complex vector space V
- A (G, V)-Higgs pair on X is a pair (E, φ) consisting of a holomorphic principal G-bundle $E \to X$ and $\varphi \in H^0(X, E(V) \otimes K)$, where $E(V) = E \times_G V$ is the vector bundle associated to the representation ρ .

伺 ト イ ヨ ト イ ヨ ト

Higgs pairs

- X compact Riemann surface of genus $g \ge 2$ with canonical line bundle K
- G reductive complex Lie group with Lie algebra \mathfrak{g}
- $\rho:G\to \operatorname{GL}(V)~$ a representation of G in a complex vector space V
- A (G, V)-Higgs pair on X is a pair (E, φ) consisting of a holomorphic principal G-bundle $E \to X$ and $\varphi \in H^0(X, E(V) \otimes K)$, where $E(V) = E \times_G V$ is the vector bundle associated to the representation ρ .
- There are suitable notions of (semi,poly) stability. Consider the moduli space of polystable (G, V)-Higgs pairs:

$$\mathcal{M}(G,V)$$

伺い イヨト イヨト

Higgs bundles

- When ρ is the adjoint representation G → GL(g) (G, g)-Higgs pairs are the G-Higgs bundles introduced by Hitchin (1987).
 - $\mathcal{M}(G)$: moduli space of polystable G-Higgs bundles

¬ • • **=** • • **=** • •

Higgs bundles

- When ρ is the adjoint representation G → GL(g) (G, g)-Higgs pairs are the G-Higgs bundles introduced by Hitchin (1987).
 - $\mathcal{M}(G)$: moduli space of polystable *G*-Higgs bundles
 - $\mathcal{M}(G)$ is a quasi-projective variety and has a **hyperkähler** structure on the smooth locus.

伺 と く ヨ と く ヨ と …
- When ρ is the adjoint representation G → GL(g) (G, g)-Higgs pairs are the G-Higgs bundles introduced by Hitchin (1987).
 - $\mathcal{M}(G)$: moduli space of polystable G-Higgs bundles

 $\mathcal{M}(G)$ is a quasi-projective variety and has a **hyperkähler** structure on the smooth locus.

• An important feature of *G*-Higgs bundles is their relation to representations of the fundamental group of *X*: The *G*-character variety of the fundamental group of *X* is defined as

$$\mathcal{R}(G) = \operatorname{Hom}(\pi_1(X), G) /\!\!/ G.$$

The non-abelian Hodge correspondence (Hitchin 1987, Donaldson 1987, Simpson 1988, Corlette 1988) for G semisimple establishes a homeomorphism

 $\mathcal{M}(G)\cong \mathcal{R}(G).$

• From now on we assume that G is semisimple

- From now on we assume that G is semisimple
- Let θ ∈ Aut(G) be of order m. Consider the Z/m-grading defined by θ:

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \mathfrak{g}_i,$$

and the Vinberg θ -pairs $(G^{\theta}, \mathfrak{g}_i)$.

- From now on we assume that G is semisimple
- Let θ ∈ Aut(G) be of order m. Consider the Z/m-grading defined by θ:

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \mathfrak{g}_i$$

and the Vinberg θ -pairs $(G^{\theta}, \mathfrak{g}_i)$.

Let M(G^θ, g_i) be the moduli space of (G^θ, g_i)-Higgs pairs over X.

- From now on we assume that G is semisimple
- Let θ ∈ Aut(G) be of order m. Consider the Z/m-grading defined by θ:

$$\mathfrak{g} = igoplus_{i \in \mathbb{Z}/m} \mathfrak{g}_i$$

and the Vinberg θ -pairs $(G^{\theta}, \mathfrak{g}_i)$.

- Let *M*(*G^θ*, g_i) be the moduli space of (*G^θ*, g_i)-Higgs pairs over *X*.
- The moduli spaces associated to Vinberg pairs do appear naturally inside the moduli space $\mathcal{M}(G)$ of *G*-Higgs bundles as fixed point subvarieties for a certain action of a cyclic group.

This is studied in joint paper with **S. Ramanan** (2019).

• Aut(G) acts on $\mathcal{M}(G)$: For $\alpha \in Aut(G)$ and a G-Higgs bundle (E, φ) we defined

 $\alpha \cdot (E,\varphi) := (\alpha(E), \alpha(\varphi)) \ \text{ where } \ \alpha(E) = E \times_{\alpha} G.$

This descends to an action of $\operatorname{Out}(G) = \operatorname{Aut}(G) / \operatorname{Int}(G)$

b 4 3 b 4 3 b

• Aut(G) acts on $\mathcal{M}(G)$: For $\alpha \in Aut(G)$ and a G-Higgs bundle (E, φ) we defined

 $\alpha \cdot (E,\varphi) := (\alpha(E), \alpha(\varphi)) \text{ where } \alpha(E) = E \times_{\alpha} G.$

This descends to an action of $\operatorname{Out}(G) = \operatorname{Aut}(G) / \operatorname{Int}(G)$ • \mathbb{C}^* acts on $\mathcal{M}(G)$ by rescaling the Higgs field.

伺 ト イ ヨ ト イ ヨ ト

• Aut(G) acts on $\mathcal{M}(G)$: For $\alpha \in \text{Aut}(G)$ and a G-Higgs bundle (E, φ) we defined

 $\alpha \cdot (E,\varphi) := (\alpha(E), \alpha(\varphi)) \text{ where } \alpha(E) = E \times_{\alpha} G.$

This descends to an action of $\operatorname{Out}(G) = \operatorname{Aut}(G) / \operatorname{Int}(G)$

- \mathbb{C}^* acts on $\mathcal{M}(G)$ by rescaling the Higgs field.
- Let μ_m = {z ∈ C* such that z^m = 1} and let ζ ∈ μ_m be a primitive m-th root of unity. Consider the homomorphism μ_m → Aut(G) × C* defined by ζ ↦ (θ, ζ). Let Γ be the image.

「マト・コート・コート

• Aut(G) acts on $\mathcal{M}(G)$: For $\alpha \in Aut(G)$ and a G-Higgs bundle (E, φ) we defined

 $\alpha \cdot (E,\varphi) := (\alpha(E), \alpha(\varphi)) \text{ where } \alpha(E) = E \times_{\alpha} G.$

This descends to an action of $\operatorname{Out}(G) = \operatorname{Aut}(G) / \operatorname{Int}(G)$

- \mathbb{C}^* acts on $\mathcal{M}(G)$ by rescaling the Higgs field.
- Let μ_m = {z ∈ C* such that z^m = 1} and let ζ ∈ μ_m be a primitive m-th root of unity. Consider the homomorphism μ_m → Aut(G) × C* defined by ζ ↦ (θ, ζ). Let Γ be the image.
- Γ is isomorphic to μ_m and acts on $\mathcal{M}(G)$ by the rule

$$(E,\varphi)\mapsto (\theta(E),\zeta\theta(\varphi)).$$

伺 と く き と く き と

• Extension of structure group defines a finite map

 $\mathcal{M}(G^{\theta},\mathfrak{g}_1) \to \mathcal{M}(G).$

Denote the image by $\widetilde{\mathcal{M}}(G^{\theta}, \mathfrak{g}_1)$, then

 $\widetilde{\mathcal{M}}(G^{\theta},\mathfrak{g}_1)\subset \mathcal{M}(G)^{\Gamma}.$

• Extension of structure group defines a finite map

 $\mathcal{M}(G^{\theta},\mathfrak{g}_1) \to \mathcal{M}(G).$

Denote the image by $\widetilde{\mathcal{M}}(G^{\theta}, \mathfrak{g}_1)$, then

$$\widetilde{\mathcal{M}}(G^{\theta},\mathfrak{g}_1)\subset \mathcal{M}(G)^{\Gamma}.$$

• Since the action of θ depends only on the class of θ in $\operatorname{Out}(G)$, there are other subvarieties in $\mathcal{M}(G)^{\Gamma}$.

• Extension of structure group defines a finite map

 $\mathcal{M}(G^{\theta},\mathfrak{g}_1)\to\mathcal{M}(G).$

Denote the image by $\widetilde{\mathcal{M}}(G^{\theta},\mathfrak{g}_1)$, then

$$\widetilde{\mathcal{M}}(G^{\theta},\mathfrak{g}_1)\subset \mathcal{M}(G)^{\Gamma}.$$

- Since the action of θ depends only on the class of θ in Out(G), there are other subvarieties in $\mathcal{M}(G)^{\Gamma}$.
- Let Aut_m(G) ⊂ Aut(G) the be set of elements of order m. There is a map

$$cl: \operatorname{Aut}_m(G)/ \sim \to \operatorname{Out}_m(G)$$

called the clique map. For an element $a \in \text{Out}_m(G)$ we refer to the set $\mathcal{A}_m^{-1}(a)$ as the **clique** defined by a.

One has that \$\colored{f}_m^{-1}(a) = H^1(\mathbb{Z}/m, Ad(G))\$, the first Galois cohomology set.

- One has that \$\colored{f}_m^{-1}(a) = H^1(\mathbb{Z}/m, Ad(G))\$, the first Galois cohomology set.
- Let *M*_{*}(*G*) ⊂ *M*(*G*) be the smooth locus (stable and simple *G*-Higgs bundles), then one has

$$\mathcal{M}_*(G)^{\Gamma} \subset \bigcup_{[\theta'] \in H^1(\mathbb{Z}/m, \operatorname{Ad}(G))} \widetilde{\mathcal{M}}(G^{\theta'}, \mathfrak{g}_1').$$

- One has that \$\colored{f}_m^{-1}(a) = H^1(\mathbb{Z}/m, Ad(G))\$, the first Galois cohomology set.
- Let *M*_{*}(*G*) ⊂ *M*(*G*) be the smooth locus (stable and simple *G*-Higgs bundles), then one has

$$\mathcal{M}_*(G)^{\Gamma} \subset \bigcup_{[\theta'] \in H^1(\mathbb{Z}/m, \operatorname{Ad}(G))} \widetilde{\mathcal{M}}(G^{\theta'}, \mathfrak{g}_1').$$

The elements in *M*(G^θ, g₁) are called cyclic G-Higgs bundles and have been studied in relation to various geometric aspects of moduli spaces of Higgs bundles.

- One has that \$\colored{f}_m^{-1}(a) = H^1(\mathbb{Z}/m, Ad(G))\$, the first Galois cohomology set.
- Let *M*_{*}(*G*) ⊂ *M*(*G*) be the smooth locus (stable and simple *G*-Higgs bundles), then one has

$$\mathcal{M}_*(G)^{\Gamma} \subset \bigcup_{[\theta'] \in H^1(\mathbb{Z}/m, \operatorname{Ad}(G))} \widetilde{\mathcal{M}}(G^{\theta'}, \mathfrak{g}_1').$$

- The elements in *M*(G^θ, g₁) are called cyclic G-Higgs bundles and have been studied in relation to various geometric aspects of moduli spaces of Higgs bundles.
- The moduli spaces *M*(*G*^θ, g_i) for general g_i in the Z/m-grading of g do also show up as fixed point in *M*(*G*). But now the homomorphism μ_m → Aut(*G*) × C^{*} is defined by ζ ↦ (θ, ζⁱ) and consider the action of the image Γ.

$\mathbb{Z}/2$ -gradings and non-abelian Hodge correspondence

• If $m = 2, \theta$ defines the $\mathbb{Z}/2$ -grading $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$

Oscar García-Prada ICMAT-CSIC, Madrid Vinberg pairs and Higgs bundles

$\mathbb{Z}/2$ -gradings and non-abelian Hodge correspondence

- If $m = 2, \theta$ defines the $\mathbb{Z}/2$ -grading $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$
- Let G^{σ} be the real form of G defined by the conjugation $\sigma = \theta \tau$, with τ a compact conjugation commuting with θ . Consider the G^{σ} -character variety of the fundamental group of X defined by

$$\mathcal{R}(G^{\sigma}) = \operatorname{Hom}(\pi_1(X), G^{\sigma}) /\!\!/ G^{\sigma},$$

In this case one also has a **non-abelian Hodge correspondence** establishing a homeomorphism

$$\mathcal{M}(G^{\theta},\mathfrak{g}_1)\cong \mathcal{R}(G^{\sigma}),$$

$\mathbb{Z}/2$ -gradings and non-abelian Hodge correspondence

- If $m = 2, \theta$ defines the $\mathbb{Z}/2$ -grading $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$
- Let G^{σ} be the real form of G defined by the conjugation $\sigma = \theta \tau$, with τ a compact conjugation commuting with θ . Consider the G^{σ} -character variety of the fundamental group of X defined by

$$\mathcal{R}(G^{\sigma}) = \operatorname{Hom}(\pi_1(X), G^{\sigma}) /\!\!/ G^{\sigma},$$

In this case one also has a **non-abelian Hodge correspondence** establishing a homeomorphism

$$\mathcal{M}(G^{\theta},\mathfrak{g}_1)\cong \mathcal{R}(G^{\sigma}),$$

• The subvarieties $\widetilde{\mathcal{M}}(G^{\theta}, \mathfrak{g}_1)$ are in the fixed point locus for the action of $\mathbb{Z}/2$ on $\mathcal{M}(G)$ sending $(E, \varphi) \mapsto (\theta(E), -\theta(\varphi))$ and define **Lagrangian subvarieties** of $\mathcal{M}(G)$.

$\mathbbm{Z}\text{-}\mathrm{gradings}$ and prehomogeneous vector spaces

• G semisimple complex Lie group with Lie algebra $\mathfrak g$ and Killing form B.

$\mathbbm{Z}\text{-}\mathrm{gradings}$ and prehomogeneous vector spaces

- G semisimple complex Lie group with Lie algebra $\mathfrak g$ and Killing form B.
- \bullet A $\mathbb{Z}\text{-}\mathbf{grading}$ of $\mathfrak g$ is a decomposition

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$$
 such that $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}.$

There is an element $\zeta \in \mathfrak{g}_0$ (grading element) such that $\mathfrak{g}_i = \{X \in \mathfrak{g} \mid [\zeta, x] = ix\}$

$\mathbbmss{Z}\text{-}\mathrm{gradings}$ and prehomogeneous vector spaces

- G semisimple complex Lie group with Lie algebra $\mathfrak g$ and Killing form B.
- \bullet A $\mathbb{Z}\text{-}\mathbf{grading}$ of $\mathfrak g$ is a decomposition

$$\mathfrak{g} = igoplus_{i \in \mathbb{Z}} \mathfrak{g}_i \quad ext{ such that } \quad [\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}.$$

There is an element $\zeta \in \mathfrak{g}_0$ (grading element) such that $\mathfrak{g}_i = \{X \in \mathfrak{g} \mid [\zeta, x] = ix\}$

• Having a \mathbb{Z} -grading on \mathfrak{g} is equivalent to having a homomorphism $\psi : \mathbb{C}^* \to \operatorname{Aut}(\mathfrak{g})$, defined by

$$\psi(z)|_{\mathfrak{g}_i} = z^i I.$$

$\mathbbmss{Z}\text{-}\mathrm{gradings}$ and prehomogeneous vector spaces

- G semisimple complex Lie group with Lie algebra $\mathfrak g$ and Killing form B.
- \bullet A $\mathbb{Z}\text{-}\mathbf{grading}$ of $\mathfrak g$ is a decomposition

$$\mathfrak{g} = igoplus_{i \in \mathbb{Z}} \mathfrak{g}_i \quad ext{ such that } \quad [\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}.$$

There is an element $\zeta \in \mathfrak{g}_0$ (grading element) such that $\mathfrak{g}_i = \{X \in \mathfrak{g} \mid [\zeta, x] = ix\}$

• Having a \mathbb{Z} -grading on \mathfrak{g} is equivalent to having a homomorphism $\psi : \mathbb{C}^* \to \operatorname{Aut}(\mathfrak{g})$, defined by

$$\psi(z)|_{\mathfrak{g}_i} = z^i I.$$

• Let $G_0 < G$ be the centralizer of ζ ; G_0 acts on each \mathfrak{g}_i . **Important result** due to **Vinberg** (1975): For $i \neq 0$, \mathfrak{g}_i is a **prehomogeneous vector space** for G_0 . This means that \mathfrak{g}_i (for $i \neq 0$) has a unique open dense G_0 -orbit.

$\mathbbm{Z}\text{-}\mathrm{gradings}$ and Hodge bundles

• The pairs (G_0, \mathfrak{g}_i) with $i \neq 0$ are called **Vinberg** \mathbb{C}^* -pairs.

Z-gradings and Hodge bundles

- The pairs (G_0, \mathfrak{g}_i) with $i \neq 0$ are called **Vinberg** \mathbb{C}^* -pairs.
- For a Z-grading we consider (G_0, \mathfrak{g}_i) -Higgs pairs over X. Let (E, φ) be a (G_0, \mathfrak{g}_i) -Higgs pair. Extending the structure group defines a G-Higgs bundle (E_G, φ) , where $E_G = E \times_{G_0} G$, and we use $E(\mathfrak{g}_i) \subset E_G(\mathfrak{g})$.

伺 と く き と く き と

Z-gradings and Hodge bundles

- The pairs (G_0, \mathfrak{g}_i) with $i \neq 0$ are called **Vinberg** \mathbb{C}^* -pairs.
- For a Z-grading we consider (G_0, \mathfrak{g}_i) -Higgs pairs over X. Let (E, φ) be a (G_0, \mathfrak{g}_i) -Higgs pair. Extending the structure group defines a G-Higgs bundle (E_G, φ) , where $E_G = E \times_{G_0} G$, and we use $E(\mathfrak{g}_i) \subset E_G(\mathfrak{g})$.
- A G-Higgs bundle (E, φ) is called a Hodge bundle of type (G₀, g_i) if it reduces to a (G₀, g_i)-Higgs pair.

伺い イヨン イヨン

Z-gradings and Hodge bundles

- The pairs (G_0, \mathfrak{g}_i) with $i \neq 0$ are called **Vinberg** \mathbb{C}^* -pairs.
- For a Z-grading we consider (G_0, \mathfrak{g}_i) -Higgs pairs over X. Let (E, φ) be a (G_0, \mathfrak{g}_i) -Higgs pair. Extending the structure group defines a G-Higgs bundle (E_G, φ) , where $E_G = E \times_{G_0} G$, and we use $E(\mathfrak{g}_i) \subset E_G(\mathfrak{g})$.
- A G-Higgs bundle (E, φ) is called a Hodge bundle of type (G₀, g_i) if it reduces to a (G₀, g_i)-Higgs pair.
- A result of **Simpson** (1992) states that the C*-fixed **points** in the moduli space of *G*-Higgs bundles (under the action of rescaling the Higgs field) are Hodge bundles for some Z-grading.

くぼと くほと くほと

$\mathbbmss{Z}\mbox{-}{\operatorname{gradings}}$ and Hodge bundles

- The pairs (G_0, \mathfrak{g}_i) with $i \neq 0$ are called **Vinberg** \mathbb{C}^* -pairs.
- For a Z-grading we consider (G_0, \mathfrak{g}_i) -Higgs pairs over X. Let (E, φ) be a (G_0, \mathfrak{g}_i) -Higgs pair. Extending the structure group defines a G-Higgs bundle (E_G, φ) , where $E_G = E \times_{G_0} G$, and we use $E(\mathfrak{g}_i) \subset E_G(\mathfrak{g})$.
- A G-Higgs bundle (E, φ) is called a Hodge bundle of type (G₀, g_i) if it reduces to a (G₀, g_i)-Higgs pair.
- A result of **Simpson** (1992) states that the C*-fixed **points** in the moduli space of *G*-Higgs bundles (under the action of rescaling the Higgs field) are Hodge bundles for some Z-grading.
- Via de non-abelian Hodge correspondence, Hodge bundles correspond to holonomies of **complex variations of Hodge structure**.

・ロト ・得ト ・ヨト ・ヨト

Vinberg \mathbb{C}^* -pairs and the Toledo character

• Without loss of generality, we can consider the Vinberg \mathbb{C}^* -pair (G_0, \mathfrak{g}_1) . Let $\Omega \subset \mathfrak{g}_1$ be the open G_0 -orbit.

Vinberg \mathbb{C}^* -pairs and the Toledo character

٠

- Without loss of generality, we can consider the Vinberg \mathbb{C}^* -pair (G_0, \mathfrak{g}_1) . Let $\Omega \subset \mathfrak{g}_1$ be the open G_0 -orbit.
- Since g₀ is the centralizer of ζ one has the Toledo character χ_T : g₀ → C defined by

$$\chi_T(x) = B(\zeta, x)$$

Vinberg \mathbb{C}^* -pairs and the Toledo character

- Without loss of generality, we can consider the Vinberg \mathbb{C}^* -pair (G_0, \mathfrak{g}_1) . Let $\Omega \subset \mathfrak{g}_1$ be the open G_0 -orbit.
- Since g₀ is the centralizer of ζ one has the Toledo character χ_T : g₀ → C defined by

$$\chi_T(x) = B(\zeta, x)$$

• Let $e \in \mathfrak{g}_1$ and (h, e, f) be an \mathfrak{sl}_2 -triple with $h \in \mathfrak{g}_0$. We define the **Toledo rank** of e by

$$\operatorname{rk}_T(e) = \frac{1}{2}\chi_T(h),$$

and the **Toledo rank** of (G_0, \mathfrak{g}_1) by

٠

$$\operatorname{rk}_T(G_0, \mathfrak{g}_1) = \operatorname{rk}_T(e) \text{ for } e \in \Omega.$$

Hodge bundles and the Toledo invariant

• Let (E, φ) be a (G_0, \mathfrak{g}_1) -Higgs pair and $\chi_T : \mathfrak{g}_0 \to \mathbb{C}$ be the **Toledo character** associated to (G_0, \mathfrak{g}_1) . For a **rational number** q sufficiently large $q\chi_T$ lifts to a character $\tilde{\chi}_T : G_0 \to \mathbb{C}^*$.

Hodge bundles and the Toledo invariant

- Let (E, φ) be a (G_0, \mathfrak{g}_1) -Higgs pair and $\chi_T : \mathfrak{g}_0 \to \mathbb{C}$ be the **Toledo character** associated to (G_0, \mathfrak{g}_1) . For a **rational number** q sufficiently large $q\chi_T$ lifts to a character $\tilde{\chi}_T : G_0 \to \mathbb{C}^*$.
- The **Toledo invariant** $\tau(E,\varphi)$ is defined by

$$\tau(E,\varphi) = \frac{1}{q} \deg_{\widetilde{\chi_T}}(E).$$

Hodge bundles and the Toledo invariant

- Let (E, φ) be a (G_0, \mathfrak{g}_1) -Higgs pair and $\chi_T : \mathfrak{g}_0 \to \mathbb{C}$ be the **Toledo character** associated to (G_0, \mathfrak{g}_1) . For a **rational number** q sufficiently large $q\chi_T$ lifts to a character $\tilde{\chi}_T : G_0 \to \mathbb{C}^*$.
- The **Toledo invariant** $\tau(E, \varphi)$ is defined by

$$\tau(E,\varphi) = \frac{1}{q} \deg_{\widetilde{\chi}T}(E).$$

• Theorem: Arakelov–Milnor inequality (Biquard–Collier–G–Toledo 2021). If (E, φ) is semistable, then

$$\tau(E,\varphi) \ge -\operatorname{rk}_T(\varphi)(2g-2),$$

where $\operatorname{rk}_T(\varphi) = \operatorname{rk}_T(\varphi(x))$ for a generic $x \in X$. In particular,

$$\tau(E,\varphi) \ge -\operatorname{rk}_T(G_0,\mathfrak{g}_1)(2g-2).$$

Hodge bundles and cyclic Higgs bundles

• Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be a \mathbb{Z} -grading with grading element $\zeta \in \mathfrak{g}_0$, and let $G_0 < G$ be the centralizer of ζ .

Hodge bundles and cyclic Higgs bundles

- Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be a \mathbb{Z} -grading with grading element $\zeta \in \mathfrak{g}_0$, and let $G_0 < G$ be the centralizer of ζ .
- Let $m \ge 2$ be the smallest integer for which $\mathfrak{g}_j = 0$ for every $|j| \ge m$. Then one has a \mathbb{Z}/m -grading defined by

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \overline{\mathfrak{g}}_i$$

with

$$\overline{\mathfrak{g}}_i = \mathfrak{g}_i \oplus \mathfrak{g}_{i-m} \text{ for } i \in \{0, \cdots, m-1\}.$$
- Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be a \mathbb{Z} -grading with grading element $\zeta \in \mathfrak{g}_0$, and let $G_0 < G$ be the centralizer of ζ .
- Let $m \ge 2$ be the smallest integer for which $\mathfrak{g}_j = 0$ for every $|j| \ge m$. Then one has a \mathbb{Z}/m -grading defined by

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \overline{\mathfrak{g}}_i$$

with

$$\overline{\mathfrak{g}}_i = \mathfrak{g}_i \oplus \mathfrak{g}_{i-m} \text{ for } i \in \{0, \cdots, m-1\}.$$

• Assume that the automorphism of \mathfrak{g} of order m defining this \mathbb{Z}/m -grading lifts to an automorphism θ of G, and that $G^{\theta} = G_0$.

- Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be a \mathbb{Z} -grading with grading element $\zeta \in \mathfrak{g}_0$, and let $G_0 < G$ be the centralizer of ζ .
- Let $m \ge 2$ be the smallest integer for which $\mathfrak{g}_j = 0$ for every $|j| \ge m$. Then one has a \mathbb{Z}/m -grading defined by

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \overline{\mathfrak{g}}_i$$

with

$$\overline{\mathfrak{g}}_i = \mathfrak{g}_i \oplus \mathfrak{g}_{i-m} \text{ for } i \in \{0, \cdots, m-1\}.$$

- Assume that the automorphism of \mathfrak{g} of order m defining this \mathbb{Z}/m -grading lifts to an automorphism θ of G, and that $G^{\theta} = G_0$.
- Let X be a compact Riemann surface. We want to study $(G_0, \overline{\mathfrak{g}}_1)$ -Higgs pairs over X. These correspond, as explained above, to θ -cyclic G-Higgs bundles.

• Let (E, φ) be a $(G_0, \overline{\mathfrak{g}}_1)$ -Higgs pair over X. Notice that

$$E(\overline{\mathfrak{g}}_1) = E(\mathfrak{g}_1) \oplus E(\mathfrak{g}_{1-m}),$$

Hence we can decompose $\varphi = \varphi^+ + \varphi^-$ with

 $\varphi^+ \in H^0(X, E(\mathfrak{g}_1) \otimes K) \text{ and } \varphi^- \in H^0(X, E(\mathfrak{g}_{1-m}) \otimes K).$

• Let (E, φ) be a $(G_0, \overline{\mathfrak{g}}_1)$ -Higgs pair over X. Notice that

$$E(\overline{\mathfrak{g}}_1) = E(\mathfrak{g}_1) \oplus E(\mathfrak{g}_{1-m}),$$

Hence we can decompose $\varphi = \varphi^+ + \varphi^-$ with

 $\varphi^+ \in H^0(X, E(\mathfrak{g}_1) \otimes K) \text{ and } \varphi^- \in H^0(X, E(\mathfrak{g}_{1-m}) \otimes K).$

• Consider the Toledo invariant $\tau^+ = \tau(E, \varphi^+)$ using the Toledo character χ_T^+ of (G_0, \mathfrak{g}_1) determined by the grading element ζ . If $\varphi^- = 0$ one has that the semistability of (E, φ) implies the Arakelov–Milnor inequality, but actually one has the following stronger result: **Theorem (G-González 2023)**. If $(E, \varphi^+ + \varphi^-)$ is

semistable, then

$$\tau^+ \ge -\operatorname{rk}_T(\varphi^+)(2g-2).$$

• We can also consider the Toledo invariant $\tau^- = \tau(E, \varphi^-)$ using the Toledo character χ_T^- of $(G_0, \mathfrak{g}_{1-m})$. The grading element defining the Toledo character χ_T^- is $\zeta^- = \frac{\zeta}{1-m}$. Now, if $\varphi^+ = 0$ one has

$$\tau^- \ge -\operatorname{rk}_T(\varphi^-)(2g-2).$$

In general we can not guarantee this inequality if $\varphi^+ \neq 0 \neq \varphi^-$.

• We can also consider the Toledo invariant $\tau^- = \tau(E, \varphi^-)$ using the Toledo character χ_T^- of $(G_0, \mathfrak{g}_{1-m})$. The grading element defining the Toledo character χ_T^- is $\zeta^- = \frac{\zeta}{1-m}$. Now, if $\varphi^+ = 0$ one has

$$\tau^- \ge -\operatorname{rk}_T(\varphi^-)(2g-2).$$

In general we can not guarantee this inequality if $\varphi^+ \neq 0 \neq \varphi^-$.

• This happens, in particular, when m = 2. In this case the \mathbb{Z} -grading is of the form $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$, and the associated $\mathbb{Z}/2$ -grading $\mathfrak{g} = \overline{\mathfrak{g}}_0 \oplus \overline{\mathfrak{g}}_1$, with $\overline{\mathfrak{g}}_0 = \mathfrak{g}_0$ and $\overline{\mathfrak{g}}_1 = \mathfrak{g}_1 \oplus \mathfrak{g}_{-1}$, defines a **real form of Hermitian type**.

• We can also consider the Toledo invariant $\tau^- = \tau(E, \varphi^-)$ using the Toledo character χ_T^- of $(G_0, \mathfrak{g}_{1-m})$. The grading element defining the Toledo character χ_T^- is $\zeta^- = \frac{\zeta}{1-m}$. Now, if $\varphi^+ = 0$ one has

$$\tau^- \ge -\operatorname{rk}_T(\varphi^-)(2g-2).$$

In general we can not guarantee this inequality if $\varphi^+ \neq 0 \neq \varphi^-$.

- This happens, in particular, when m = 2. In this case the \mathbb{Z} -grading is of the form $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$, and the associated $\mathbb{Z}/2$ -grading $\mathfrak{g} = \overline{\mathfrak{g}}_0 \oplus \overline{\mathfrak{g}}_1$, with $\overline{\mathfrak{g}}_0 = \mathfrak{g}_0$ and $\overline{\mathfrak{g}}_1 = \mathfrak{g}_1 \oplus \mathfrak{g}_{-1}$, defines a **real form of Hermitian type**.
- In this case, τ := τ⁺ = −τ⁻ and we recover the following. Theorem: Milnor–Wood inequality (Biquard–G–Rubio 2017). If (E, φ⁺ + φ⁻) is semistable

$$-\operatorname{rk}_T(\varphi^+)(2g-2) \le \tau \le \operatorname{rk}_T(\varphi^-)(2g-2).$$

If g is simple, then a real form of Hermitian type is one of the classical real Lie algebras su(p,q), sp(2n, ℝ), so*(2n), so(2, n) or c₆(-14), c₇(-25) in the exceptional case.

- If g is simple, then a real form of Hermitian type is one of the classical real Lie algebras su(p,q), sp(2n, ℝ), so*(2n), so(2, n) or e₆(-14), e₇(-25) in the exceptional case.
- Recall that $\mathcal{M}(G^{\theta}, \overline{\mathfrak{g}}_1)$ is homeomorphic to the character variety $\mathcal{R}(G^{\sigma})$, where σ is an antiholomorphic involution of G corresponding to θ . In this case, the symmetric space defined by the quotient G^{σ} by its maximal compact subgroup is a **Hermitian symmetric space of the non-compact type**.

- If g is simple, then a real form of Hermitian type is one of the classical real Lie algebras su(p,q), sp(2n, ℝ), so*(2n), so(2, n) or e₆(-14), e₇(-25) in the exceptional case.
- Recall that $\mathcal{M}(G^{\theta}, \overline{\mathfrak{g}}_1)$ is homeomorphic to the character variety $\mathcal{R}(G^{\sigma})$, where σ is an antiholomorphic involution of G corresponding to θ . In this case, the symmetric space defined by the quotient G^{σ} by its maximal compact subgroup is a **Hermitian symmetric space of the non-compact type**.
- In this situation, the Milnor–Wood inequality given above leads to the **classical Milnor–Wood inequality**

$$|\tau| \le 2r(g-1),$$

where r is the **rank of the symmetric space**. Here τ coincides with the original invariant defined by **Toledo** for a representation of $\pi_1(X)$ in G^{σ} for which the above bound is proved in general by **Burger–Iozzi–Wienhard**.

• In this Hermitian situation the moduli space $\mathcal{M}(G^{\theta}, \overline{\mathfrak{g}}_1)$ for maximal Toledo invariant $(|\tau| = 2r(g-1))$ has very special rigidity properties (Biquard–G–Rubio).

- In this Hermitian situation the moduli space $\mathcal{M}(G^{\theta}, \overline{\mathfrak{g}}_1)$ for maximal Toledo invariant $(|\tau| = 2r(g-1))$ has very special rigidity properties (Biquard–G–Rubio).
- In particular, if the symmetric space is of **tube type**, the maximal moduli space admits a special parametrization in terms of K^2 -twisted Higgs bundles for another smaller rank real group (**Cayley correspondence**).

- In this Hermitian situation the moduli space $\mathcal{M}(G^{\theta}, \overline{\mathfrak{g}}_1)$ for maximal Toledo invariant $(|\tau| = 2r(g-1))$ has very special rigidity properties (Biquard–G–Rubio).
- In particular, if the symmetric space is of **tube type**, the maximal moduli space admits a special parametrization in terms of K^2 -twisted Higgs bundles for another smaller rank real group (**Cayley correspondence**).
- In the maximal Toledo and tube situation, the corresponding character variety consists entirely of discrete and faithful representations (Burger–Iozzi–Labourie–Wienhard 2006): higher Teichmüller spaces.

- In this Hermitian situation the moduli space $\mathcal{M}(G^{\theta}, \overline{\mathfrak{g}}_1)$ for maximal Toledo invariant $(|\tau| = 2r(g-1))$ has very special rigidity properties (Biquard–G–Rubio).
- In particular, if the symmetric space is of **tube type**, the maximal moduli space admits a special parametrization in terms of K^2 -twisted Higgs bundles for another smaller rank real group (**Cayley correspondence**).
- In the maximal Toledo and tube situation, the corresponding character variety consists entirely of discrete and faithful representations (Burger–Iozzi–Labourie–Wienhard 2006): higher Teichmüller spaces.
- These rigidity properties generalize when the Toledo invariant is maximal to Hodge bundles (Biquard–Collier–G–Toledo) and to cyclic Higgs bundles obtained from Hodge bundles (G–González).

• Let $\theta \in \operatorname{Aut}(G)$ be of order m. Consider the \mathbb{Z}/m -grading defined by θ :

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \mathfrak{g}_i,$$

and the Vinberg θ -pair $(G^{\theta}, \mathfrak{g}_1)$.

• Consider the moduli space $\mathcal{M}(G^{\theta}, \mathfrak{g}_1)$ of $(G^{\theta}, \mathfrak{g}_1)$ -Higgs pairs over X.

• Let $\theta \in \operatorname{Aut}(G)$ be of order m. Consider the \mathbb{Z}/m -grading defined by θ :

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \mathfrak{g}_i,$$

and the Vinberg θ -pair $(G^{\theta}, \mathfrak{g}_1)$.

- Consider the moduli space $\mathcal{M}(G^{\theta}, \mathfrak{g}_1)$ of $(G^{\theta}, \mathfrak{g}_1)$ -Higgs pairs over X.
- Recall

$$\mathbb{C}[\mathfrak{g}_1]^{G^{\theta}} \to \mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})} = \mathbb{C}[f_1, \cdots, f_r],$$

where $r = \dim \mathfrak{a} = \operatorname{rk}(G^{\theta}, \mathfrak{g}_1)$. Let $d_i = \deg f_i$

• Let $\theta \in \operatorname{Aut}(G)$ be of order m. Consider the \mathbb{Z}/m -grading defined by θ :

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \mathfrak{g}_i,$$

and the Vinberg θ -pair $(G^{\theta}, \mathfrak{g}_1)$.

- Consider the moduli space $\mathcal{M}(G^{\theta}, \mathfrak{g}_1)$ of $(G^{\theta}, \mathfrak{g}_1)$ -Higgs pairs over X.
- Recall

$$\mathbb{C}[\mathfrak{g}_1]^{G^{\theta}} \to \mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})} = \mathbb{C}[f_1, \cdots, f_r],$$

where $r = \dim \mathfrak{a} = \operatorname{rk}(G^{\theta}, \mathfrak{g}_1)$. Let $d_i = \deg f_i$

• Evaluating the polynomials f_i on the Higgs field we have the **Hitchin map**:

$$h: \mathcal{M}(G^{\theta}, \mathfrak{g}_i) \to B(G^{\theta}, \mathfrak{g}_1) \cong \bigoplus_{i=1}^r H^0(X, K^{d_i}),$$

m = 1 (Adjoint representation).

• h is the usual Hitchin map (Hitchin, 1987):

$$\mathcal{M}(G) \to B(G) \cong \bigoplus_{i=1}^{r} H^0(X, K^{d_i})$$

Here $r = \operatorname{rk} G$ and $\{d_1, \dots, d_r\}$ are the **exponents** of G.

m = 1 (Adjoint representation).

• h is the usual Hitchin map (Hitchin, 1987):

$$\mathcal{M}(G) \to B(G) \cong \bigoplus_{i=1}^{r} H^{0}(X, K^{d_{i}})$$

Here $r = \operatorname{rk} G$ and $\{d_1, \dots, d_r\}$ are the **exponents** of G.

• Hitchin (1987): Spectral curve description of the generic fibres for the classical groups. Also Beauville–Narasimhan–Ramanan (1989).

m = 1 (Adjoint representation).

• h is the usual Hitchin map (Hitchin, 1987):

$$\mathcal{M}(G) \to B(G) \cong \bigoplus_{i=1}^{r} H^{0}(X, K^{d_{i}})$$

Here $r = \operatorname{rk} G$ and $\{d_1, \dots, d_r\}$ are the **exponents** of G.

- Hitchin (1987): Spectral curve description of the generic fibres for the classical groups. Also Beauville–Narasimhan–Ramanan (1989).
- Donagi–Gaitsgory (2001): Cameral curve description for general G as a gerbe with generic abelian fibres.

m = 1 (Adjoint representation).

• h is the usual Hitchin map (Hitchin, 1987):

$$\mathcal{M}(G) \to B(G) \cong \bigoplus_{i=1}^{r} H^{0}(X, K^{d_{i}})$$

Here $r = \operatorname{rk} G$ and $\{d_1, \dots, d_r\}$ are the **exponents** of G.

- Hitchin (1987): Spectral curve description of the generic fibres for the classical groups. Also Beauville–Narasimhan–Ramanan (1989).
- Donagi–Gaitsgory (2001): Cameral curve description for general G as a gerbe with generic abelian fibres.
- The Donagi–Gaistgory approach was reformulated by Ngô (2010) in his proof of the Fundamental Lemma.

m = 1 (Adjoint representation).

• h is the usual Hitchin map (Hitchin, 1987):

$$\mathcal{M}(G) \to B(G) \cong \bigoplus_{i=1}^{r} H^{0}(X, K^{d_{i}})$$

Here $r = \operatorname{rk} G$ and $\{d_1, \dots, d_r\}$ are the **exponents** of G.

- Hitchin (1987): Spectral curve description of the generic fibres for the classical groups. Also Beauville–Narasimhan–Ramanan (1989).
- Donagi–Gaitsgory (2001): Cameral curve description for general G as a gerbe with generic abelian fibres.
- The Donagi–Gaistgory approach was reformulated by Ngô (2010) in his proof of the Fundamental Lemma.
- Hitchin (1992) constructed a section of the Hitchin map which can be identified with a connected component of the character variety for a split real form of G: Hitchin

component (instance of higher Teichmüller space). 🗉 🗠

m = 2 (symmetric pairs).

• We get the Hitchin map for the moduli space of Higgs bundles for the real form G^{σ} ($\sigma = \tau \theta$)

m = 2 (symmetric pairs).

- We get the Hitchin map for the moduli space of Higgs bundles for the real form G^{σ} $(\sigma = \tau \theta)$
- Schaposnik (2013): Spectral curve approach for classical real forms.
- **Peón-Nieto** (2013): **Cameral curve approach** for arbitrary real forms.

m = 2 (symmetric pairs).

- We get the Hitchin map for the moduli space of Higgs bundles for the real form G^{σ} $(\sigma = \tau \theta)$
- Schaposnik (2013): Spectral curve approach for classical real forms.
- **Peón-Nieto** (2013): **Cameral curve approach** for arbitrary real forms.
- From both points of view one can see that the generic fibres are **abelian if and only if the real form is quasi-split**.

m = 2 (symmetric pairs).

- We get the Hitchin map for the moduli space of Higgs bundles for the real form G^{σ} $(\sigma = \tau \theta)$
- Schaposnik (2013): Spectral curve approach for classical real forms.
- **Peón-Nieto** (2013): **Cameral curve approach** for arbitrary real forms.
- From both points of view one can see that the generic fibres are **abelian if and only if the real form is quasi-split**.
- A construction of the gerbe in the quasi-split case following the Donagi–Gaitsgory/Ngô approach given by G–Peón-Nieto (2021). Further study of the gerbe structure is being carried out by Hameister–Morrissey.

Image: A Image: A

m = 2 (symmetric pairs).

- We get the Hitchin map for the moduli space of Higgs bundles for the real form G^{σ} $(\sigma = \tau \theta)$
- Schaposnik (2013): Spectral curve approach for classical real forms.
- **Peón-Nieto** (2013): **Cameral curve approach** for arbitrary real forms.
- From both points of view one can see that the generic fibres are **abelian if and only if the real form is quasi-split**.
- A construction of the **gerbe in the quasi-split** case following the Donagi–Gaitsgory/Ngô approach given by **G–Peón-Nieto** (2021). Further study of the gerbe structure is being carried out by **Hameister–Morrissey**.
- A symmetric pair version of the Fundamental Lemma in relation to this has been given by **Leslie** (2021).
- A section of the Hitchin map in this case was constructed by G–Peón-Nieto–Ramanan (2018):□→ <∂→ <≥→ <≥→

m > 2 (general Vinberg θ -pairs $(G^{\theta}, \mathfrak{g}_1)$).

• At the moment there are mostly **questions**:

- At the moment there are mostly **questions**:
- When do we have **abelianization**? The generalization of the notion of **quasi-split** seems to be that $C_{\mathfrak{g}_0}(\mathfrak{a})$ be abelian, where $\mathfrak{a} \subset \mathfrak{g}_1$ is a Cartan subspace.

- At the moment there are mostly **questions**:
- When do we have **abelianization**? The generalization of the notion of **quasi-split** seems to be that $C_{\mathfrak{g}_0}(\mathfrak{a})$ be abelian, where $\mathfrak{a} \subset \mathfrak{g}_1$ is a Cartan subspace.

- At the moment there are mostly **questions**:
- When do we have abelianization? The generalization of the notion of quasi-split seems to be that C_{g0}(a) be abelian, where a ⊂ g₁ is a Cartan subspace.
- Study of the gerbe structure and the regular quotient of *g*₁ by *G^θ* in the sense of Morrissey–Ngô
- Another question is about the existence of a section of the Hitchin map building upon the existence of the Kostant–Weierstrass section.

- At the moment there are mostly **questions**:
- When do we have abelianization? The generalization of the notion of quasi-split seems to be that C_{g0}(a) be abelian, where a ⊂ g₁ is a Cartan subspace.
- Study of the gerbe structure and the regular quotient of *g*₁ by *G*^θ in the sense of Morrissey–Ngô
- Another question is about the existence of a section of the Hitchin map building upon the existence of the Kostant–Weierstrass section.
- There should be also a relative θ -version of the Fundamental Lemma.