
Notes and Comments on S. Mallat’s Lectures at
Collège de France (2018)

The challenge of learning in the face of the curse of high dimensionality"

J.E Campagne ∗

Apr. 2018; rév. 3 octobre 2023

∗If you have any comments or suggestions, please send them to jeaneric DOT campagne AT gmail
DOT com

2

Table des matières

1 Foreword 5

2 Introduction to the Lecture Series 5

2.1 Signal Processing . 6

2.2 Modeling/Unsupervised Learning . 6

2.3 Prediction/Supervised Learning . 7

2.4 Commonalities . 8

3 The Problem of Overfitting 10

3.1 General Methodology . 10

3.2 Linear and Kernel Algorithms: Regression/Classification 12

3.3 Bias-Variance . 13

4 Curse of High Dimensions (Part 1) 16

4.1 Recap . 16

4.2 Case: k-Nearest Neighbors Algorithm . 17

4.3 Rate of Fluctuation Decay . 18

4.4 Regularity (Simple) in the Sense of Lipschitz 19

5 Curse of High Dimensions (Part 2) 22

5.1 Orthogonal Bases: Linear/Non-linear (Introduction) 22

5.2 Denoising . 24

3

6 Fourier Analysis 28

6.1 Recap . 28

6.2 Harmonic Analysis (Fourier) . 29

6.2.1 Convolution: Translation Covariant Operator 30

6.2.2 The Fourier Basis . 31

6.2.3 Filtering/Convolution and the Approximation-Regularity Tandem . 33

6.2.4 Interpolation and Sampling Theorem 37

6.2.5 Conventions for the Fourier Transform (NDJE) 39

7 Wavelet Analysis 39

7.1 Wavelet Transform . 41

7.2 Wavelets and Function Regularity/Singularity 44

7.3 Orthonormal Wavelet Basis . 45

7.4 Wavelet vs. Filter . 49

7.5 Sparsity . 52

7.6 Some Comments (NDJE) . 53

8 High-Dimensional Classification/Regression (Part I) 68

8.1 A Brief Recap . 68

8.2 Deterministic vs. Stochastic Models: It’s Not the Problem! 68

8.2.1 Bayesian and Deterministic Perspectives 68

8.3 Dimensionality Reduction: Similarity Kernel and Hyperplane 71

8.3.1 Finding the hyperplane (w, b): Necessary Regularization 73

8.3.2 How Does Regularization Help Stabilize the Response? 76

8.3.3 Convexity . 77

8.3.4 Risk in terms of the dual variables of w 78

4

9 High-Dimensional Classification/Regression (Part II) 79

9.1 Regression (Kernel Model): Bias-Variance Trade-off 79

9.2 The Counterpart for Classification . 80

9.3 Kuhn & Tucker’s Saddle Point Condition (1950) 82

10 Support Vector Machine Classification 85

10.1 The Margin Criterion . 85

10.2 Finding the Best Possible Hyperplane: Penalization 88

10.3 Regularization . 88

10.4 Saddle Point Method . 89

10.5 Generalization to the Non-Linear Case . 91

10.5.1 Polynomial Kernels . 91

10.5.2 Gaussian Kernel . 93

10.6 NDJE. Comments . 96

11 Gradient Descent Method and an Introduction to Neural Networks 99

11.1 Gradient Descent Optimization . 99

11.1.1 Quadratic Risk . 100

11.1.2 Batch vs. Stochastic Gradient . 101

11.2 Data Representation ϕ(x) and Introduction to Neural Networks 103

11.2.1 Introduction: What Does One Neuron and One Neural Network Do? 103

11.2.2 Single Hidden Layer Network . 105

5

1. Foreword

Disclaimer: What follows are my informal notes in French, translated into rough
English, taken on the fly and reformatted with few personal comments ("NDJE" or dedica-
ted sections). It is clear that errors may have crept in, and I apologize in advance for them.
You can use the email address provided on the cover page to send me any corrections. I
wish you a pleasant read.

Please note that the Collège de France website has been redesigned. You can find
all the course videos, seminars, as well as course notes not only for this year 1.

I would like to thank the entire Collège de France team for producing and editing
the videos, without which the preparation of these notes would have been less convenient.

Also, note that S. Mallat 2 provides open access to chapters of his book "A Wavelet
Tour of Signal Processing", 3rd edition, as well as other materials on his ENS website.

This year, 2018, is the first in the cycle of S. Mallat’s Data Science Chair. It concerns
on the Curse of high dimensionality.

2. Introduction to the Lecture Series

The objective of this discipline is the extraction of knowledge from data. To see if
there are patterns emerging that can be formulated as algorithms.

So, a priori, the Data contains Information (Model) that needs to be extracted
using Algorithms. A guiding principle: "first understand the data!"

It is an emerging discipline; there used to be statisticians, but now it includes com-
puter scientists and mathematicians. Mathematics encompasses not only statistics, pro-
babilities, representations (analysis, Fourier, wavelets, etc.) and geometries (symmetry
groups, etc.). On the computer science side, there is AI, databases, distributed/parallel
computing.

1. https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/
events

2. https://www.di.ens.fr/~mallat/CoursCollege.html

https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.di.ens.fr/~mallat/CoursCollege.html

6

Data comes in various forms: images, sounds, linguistics (text), but also physics,
chemistry, and more.

2.1 Signal Processing

It’s the estimation/approximation with the aim of recovering the cleanest possible
signal x(u) as follows:

x(u) u ∈ Zℓ (discrete case), u ∈ Rℓ(analog case)

The discrete case is not the simplest; in fact, in the continuous case, notions of regularity
are more natural. But in practice, we end up computing in the discrete case. We encounter
problems like:

z = Ax+ b

Inverse problem (Is A invertible?)/comprehensive sensing (how much data do I need?)/data
compression.

What is the dimension? It’s the dimension of the variable u: d (e.g., time + typical
volume in physics: 4). So here, we are in low dimension, whereas we will see that when
dealing with an image, for example, it’s the number of pixels that determines the problem’s
dimension (high dimension).

2.2 Modeling/Unsupervised Learning

Estimating a model for x(u) is finding its representation in a space Ω, either proba-
bilistic or deterministic. This has nothing to do with whether the underlying problem is
stochastic or not. The probabilistic representation can be richer because we can associate
a probability density p(x)dx with the signal being in a small volume element of Ω. In the
deterministic case, we can at best say that the probability density is uniform, so we seek
models of maximum entropy.

So, a probabilistic model is a random vector X associated with a probability density
p(x), and we want to construct an estimator p̃(x). For this, we use data (examples),
{xi}1≤i≤n.

7

In 1D, we create a simple histogram. But the dimension is that of the signal d,
typically the number of samples. And here it is of the order of 106−9 if you think about
image pixels, but it can be much larger, even 1023 in statistical mechanics.

So, simple, intuitive methods don’t work at all in very high dimensions because
there are almost never points x(u) close to each other, or only at the cost of having boxes
with volumes comparable to the entire space. Local calculations are impossible in high
dimensions, and strong assumptions are needed to estimate p(x).

The probabilistic representation, as we will see later, does not solve the curse of
dimensionality problems.

If we have a model, we can do Signal Processing because we know "where the signal
is", and coding is more meaningful (prediction). We can synthesize new signals/images.
We can also address the explanation of the underlying phenomenon. Typically, statistical
physics.

2.3 Prediction/Supervised Learning

Here we address the problem of estimating the response to a question (y) from the
data x. If it’s a classification problem, y belongs to an alphabet (class index), and there
is no a priori topology on y. The challenge is to define distances between classes. If it’s a
regression problem, y ∈ R or Rc, which can be seen as c real numbers. While regression
might seem more challenging because it’s like having an infinite number of classes, it’s not
the case, and the difficulty is equivalent. In classification, we calculate boundaries whose
dimension is just d − 1, so when d is large, finding a boundary or a representation of y
makes no difference.

If there’s a unique response, then y = f(x) (this is the case in very high dimensions;
there are no two identical samples), and the challenge is to estimate f as follows:

y = f(x) → ỹ = f̃(x)

where f̃ is an approximation of f with a large number of variables d.

But in supervised learning (classification or regression), we have examples {xi, yi}1≤i≤n.
We know a priori that yi = f(xi), so we estimate ỹi = f̃(xi), and we would like ỹi ∼ yi. In

8

the case of "unsupervised" learning, we don’t have p(xi). Still, supervised learning has its
own difficulty because the diversity of functions f is much greater than that of probability
densities p(x).

Problems tackled: speech recognition, vision, medical, physics, sociology, neurophy-
siology. Is there an equivalence class among all these problems? If so, algorithms developed
in one domain can be recycled, and generic algorithms can also be developed.

2.4 Commonalities

A priori, there are models. The issue of the regularity of x is fundamental to unders-
tanding the representation. But regularity is not easy: there are singularities, and they’re
not everywhere (think of an image). So, in compression, signal processing, we need to
understand regularity to sample cleverly (regular: linear case; singular: nonlinear case).
What is the model’s complexity?

In the case of p(x), we are in high dimension. We approach the problem with notions
of invariance (translation/rotation of images), so stationary processes with probabilities
that don’t change. Entropy measures complexity, and there are two notions of entropy that
will interest us: Kolmogorov/deterministic entropy and Shannon/probabilistic entropy.

In prediction, the answer to the question f(xi) is the interpolation f(x). The choice
of the approximation function comes from the regularity that defines the model class/set
H. However, mathematics in signal processing (low dimension) is well understood (Sobolev
space, etc.), but in high dimension, we lack tools currently. Regularity and sparsity are
dual notions to each other.

Tool Signal Processing Modeling
Prediction (Supervised
Learning)

Model Regularity of x(u) Regularity of p(x) Regularity of f(x), f ∈ H

Complexity Entropy
(Kolmogorov/Shannon)

Invariance/Entropy

Deterministic/Probabilistic

9

Tool Signal Processing Modeling
Prediction (Supervised
Learning)

Representation
Φ(x)

Redundant
Basis/Dictionary,
Sparsity

x = ∑
m αmgm with

Φ(x) = {αm} e.g.,
D = {gm}
(Fourier/Wavelets)

Φ(x) generalized
moments
(probabilistic): a
family of
expectations e.g.,
{E(ϕk(x)}k with
ϕk(x) = x2 and
polynomials or not
in general

Φ(x); discriminant
pattern on y. Change
of representation to
reveal a linear
problem. Invariant
notion.

Computer
Science

here, one tool Notion of
"associative"
memory, virtual
reality, information
graphics (synthesis)

AI, GPUs, and Python but,
in fact, it’s not very easy to
master what we’re doing

While Signal Processing has developed since the 1930s, with a strong industrial
presence and beautiful inverse problems, the mathematical framework is well understood:
Harmonic Analysis (Fourier), Statistics, and Optimization.

Modeling: Signal Processing + Probability and concentration/deviation related to
Entropy due to high dimension (law of large numbers), group theory, but not much.
Mathematics has understood entropy since the 1970s.

Prediction: Signal Processing + Modeling; group theory is more present, and geo-
metry is used to find distances (classification).

Computer science (AI + Python) is not very difficult to access, but the low dimension
of Signal Processing is not well known to newcomers in Machine Learning. Deep Neural

10

Networks are not well understood, so one must start with low dimension. Another aspect
to master is the bias/variance trade-off and the curse of high dimension.

3. The Problem of Overfitting

3.1 General Methodology

The first part of the course recalls the ingredients for tackling the proposed chal-
lenges. First and foremost, it is necessary to familiarize oneself with the data: understand
their statistics, see if they need to be denoised before processing, etc. Split the samples
into (3/4, 1/4) for training and internal testing.

Next, avoid the idea of using Neural Networks (abbreviated as NN or MLP) and,
worse, Deep Neural Networks (DNN) right away. If the number of training samples is
not very large, start with: linear classifiers/regressors, kernels, Decision Trees, Boosting
(XGBoost on trees, Gradient Decision Tree). For high-dimensional cases (e.g., images,
etc.), NNs and DNNs will be more suitable.

In supervised learning, y is the response to a question posed on data f(x):

x → ỹ = f̃(x)

with f̃ selected from a class of functions H. Q: How will it be selected? A: Through
learning on data for which we know the answer:

{xi, yi}i≤n

and we want the estimation of the response f̃ to be close to the true response:

ỹi = f̃(xi) ≃ f(xi) = yi.

We provide a loss function that measures the error r(y, ỹ), which differs depending on
whether it is a "regression" or "classification" problem. Typically:

11

Regression Classification

y ∈ R y ∈ A

(y − ỹ)2 1 if y ̸= ỹ, 0 otherwise

but there are other functions depending on the specific scenario.

So, on the training samples, we estimate an empirical risk calculated from the algo-
rithm after learning:

R̃e(f̃) = 1
n

n∑
i=1

r(yi, f̃(xi))

and we want to minimize it to select f̃ . But what really interests us is the generalization
error that we want to minimize:

R(h) = EX,Y (r(Y, h(X))))

In a challenge, we provide {xi, yi}i≤n, the empirical risk function R̃e, and test
examples {xt

i}i≤nt for which the submission site calculates the score:

R̃t
e(f̃) = 1

nt

∑
i

r(yt
i , f̃(xt

i))

with yt
i hidden. You can make only 2 submissions per day.

The difference between R̃e(f̃) and R̃t
e(f̃) is that the first risk is "contaminated" by

the training samples, while the second one is not; it provides a better estimate of the
generalization risk R(h). That being said, if you make many submissions on the site to
improve your algorithm, eventually, the score R̃t

e(f̃) will also be contaminated because
the algorithm will adapt to the test samples.

Therefore, the protocol includes a first review of all submitted algorithms on a
series of new samples that no one has seen before in June (1st), and a second and final
benchmarking will be done in December to conclude the challenges.

12

3.2 Linear and Kernel Algorithms: Regression/Classification

x = (x1, . . . , xd)

with d very large, so there’s a very low chance that two samples are close to each other.
Instead of finding a complex boundary to separate two classes, we’ll try to adapt a repre-
sentation x → ϕ(x) to obtain:

ϕ(x) = (ϕ1, . . . , ϕm) ∈ Rm

with a new dimension m, and we hope that the separation between the two classes is a
hyperplane. We’ve flattened the boundary.

Suppose we know the parameterization of ϕ(x). The linear classifier is given by the
sign of the distance from a sample to the hyperplane with normal w in m-dimension:

ỹ = sgn(⟨ϕ(x), w⟩ − b) = sgn
[

m∑
k=1

ϕkwk − b

]

We’ve selected an algorithm A with parameters (m+1): w, b.

We need to find (w, b) that minimizes the empirical risk of binary classification since
we’re testing ±1. In the case of regression, y is continuous:

y = ⟨ϕ(x), w⟩ − b

and the empirical risk is the squared difference:

(y − (⟨ϕ(x), w⟩ − b))2

So, the challenge is in choosing the representation ϕ(x). The Boosting and Decision Trees
algorithms can be seen in this linear framework.

The projection axis is the discriminant criterion between the two classes by a linear
combination. The attributes ϕk are weak discriminants, but the aggregation of all these
attributes can effectively separate the samples if their number is sufficiently large (i.e.,
the dimension m is large). In the case of Decision Trees and Gradient Decision Trees, we

13

also perform an aggregation (voting) of weak discriminants.

In fact, neural networks will learn both (w, b) and the ϕk, so the representation is also
acquired. But even there, prior information is required (in NN/MLP, it’s the architecture
that provides the prior). So, with learning, we minimize the empirical risk:

f̃ = argmin
h∈H

R̃e(h)

But we want to minimize the generalization risk:

fa = argmin
h∈H

R(h)

The difference between R̃e(h) and R(h) is the main subject of overfitting, which occurs
rapidly when conforming too closely to the data.

3.3 Bias-Variance

So, what is R(f̃), i.e., the true risk evaluated with my trained estimator? We can
demonstrate that if we call fI the "ideal" algorithm:

R(fI) ≤ R(f̃) ≤ R(fI) + 2Max
h∈H

|R(h) −R(h̃)|

(the proof is in the associated lecture notes).

What this says (especially the second inequality) is that the generalization error
R(f̃) is bounded by a bias term because the class H is not perfect, even if we could ideally
obtain the minimum risk:

R(fI) = argmin
h∈H

R(h) = argmin
h∈H

EX,Y (r(Y, h(X)))

and a variance term linked to the variability of h within H. Schematically, we have:

Error ≤ Bias+ V ariance

but we can’t reduce both terms simultaneously. If the class H is large, bias decreases, but

14

Figure 1 – Bias-Variance Error as a function of the size of the set H.

fluctuations increase (see an illustration in Figure 1).

The key is to find model classes with small sizes (i.e., small card(H)) to control
fluctuations (entropy) and to be good at approximating the problem to keep the bias as
low as possible.

The "Probably Approximately Correct" (PAC) theorem states that we want uniform
results regardless of the distribution of (X, Y), which is unknown a priori, and that for n
tending towards ∞, the term of fluctuations tends to 0.

— PAC Theorem:
If

R(h) ∈ [0, 1](bounded), |H| ≡ card(H) < ∞

then
P
(
Max
h∈H

|R(h) −R(h̃)| ≤ ε
)

≥ 1 − δ

and for that, we will need a number of samples such that

n ≥ log(|H|) + log(2/δ)
2ε2

This means that if we want a small error ε with a reasonably high probability
(i.e., a small δ), we also need to use a class H with small dimensions to avoid requiring
an excessive number of examples. But can we have it all? Another way to look at this

15

inequality, if n is fixed:

ε2 ≥ log(|H|) + log(2/δ)
2n = log(|H|)

2n + condition term

So, what I can roughly control is the size of H, which is essentially the dimension of the
parameter space.

What do these two terms correspond to? In linear regression:

h(x) =
m∑

k=1
ϕkwk − b

So, the parameters ({wk}k≤m, b) are in Rm+1 and can, in principle, take an infinite number
of values. However, if we assume ϕk < C, and if we make small changes, the quantity
|R(h) −R(h̃)| doesn’t change much. We can therefore quantize the parameters like:

wk = pk∆

(similarly for b) with pk having N possible values. Thus, Nm+1 = |H| and

log(|H|)
2n = (m+ 1) logN

2n ∼
(
m

n

)
So, to be able to constrain m parameters, you need at least as many samples, and if you
don’t want too much fluctuation, you really need n ≫ m. Paradoxically (a priori), for
NN/MLP, the number of parameters is much larger than the number of training samples.
So, be aware that in NN, there are contractive non-linearities.

Another interpretation is that log |H| is related to entropy: it’s the number of bits
to describe H. More generally, it’s the notion of complexity.

The proof of this theorem is in the lecture notes. There’s a lemma (Hoeffding’s
inequality) that controls large deviations.

Suppose {Zi}, n variables i.i.d / ∀i ≤ n, Zi ∈ [a, b] and E(Zi) = µ. If µ̄ = 1/n∑Zi,
then ∀ε > 0:

P (|µ− µ̄| ≥ ε) ≤ 2e− 2nε2
(b−a)2

(Note: the estimator is unbiased E(µ̄) = µ). The assumption of being « iid » (independent

16

and identically distributed) is strong, and errors in learning/generalization come from the
bias (= lack of independence) between samples. This is a very important aspect for those
who provide challenges.

In the proof of the PAC theorem, it appears that the upper bound is obtained by
bounding the probability of the union of two sets through a sum of probabilities. This
can be refined further.

4. Curse of High Dimensions (Part 1)

4.1 Recap

The algorithms f̃ that we select are those that minimize an empirical risk:

f̃ = argmin
h∈H

R̃e(h) = argmin
h∈H

{
1
n

∑
i

r(h(xi), yi)
}

and we would like this risk to be a good estimator of the average (generalization) risk:

fI = argmin
h∈H

EX,Y [r(h(x), Y)]

We have established that the empirical risk of the trained model is bounded:

R(fI) ≤ R̃(f̃) ≤ R(fI) + 2Max
h∈H

|R(h) −R(h̃)|

with an upper bound given by two terms: the bias ("Is the model adequate to answer the
problem’s question?") and the variance or fluctuations ("Is my model class too large?").

Furthermore, we have seen that if the risk is bounded, say [0,1], then the term for
fluctuations is not too large, meaning:

P
(
Max
h∈H

|R(h) −R(h̃)| ≤ ε
)

≥ 1 − δ

if we have:
n ≥ log(|H|) + log(2/δ)

2ε2

17

Figure 2 – Cells generated by the k-Nearest Neighbors algorithm.

or at fixed n, we deduce the fluctuations error:

ε2 ≥ log(|H|) + log(2/δ)
2n

Implicitly, the training sample base is a good reflection of the underlying probabilities
(X, Y).

4.2 Case: k-Nearest Neighbors Algorithm

Let’s assume that a reasonable a priori algorithm is to say that my approximation
ỹ of the response y from x satisfies:

f̃(x) = ỹ = yi if ||x− xi|| ≤ ||x− xj|| for (j ̸= i)

This draws cells within which x is associated with xi (Figure 2), for which we know the
response yi.

But why doesn’t it work? In fact, if I have m parameters, we have seen that the

18

error is dominated by the ratio m/n with n being the number of samples. However, here
the number of parameters m is essentially the number of points m ∼ n, and therefore ε
will never be small. We do not control the generalization error. It would be necessary to
regularize it to reduce this number of free parameters 3.

4.3 Rate of Fluctuation Decay

The way to control generalization error is by controlling the rate at which fluctuation
errors (variance) decrease: finding the right class H and the number of samples that should
not explode.

Let’s imagine, for example, that the risk of the ideal algorithm fI decreases with the
size of the class as:

R(fI) ≤ C(log |H|)−α

then:
P(R(f̃) < 3ε) ≥ 1 − 2e−(C/ε)1/α if n ≥ C1/α

ε2+1/α

So, if we are able to bound the risk, then with almost equal probability to 1, the error
will be very small if n is large (∼ (1/ε)2+1/α). However, α will govern the kinetics, and in
high dimensions, natural decay is very slow, so n should be absolutely enormous.

We will look for theorems of this kind in the rest of the course to guide us on how
to obtain minimal error. The proof starts from the PAC theorem by setting log |H| =
log(2/δ) = nε2. So, the problem is to find classes of estimators whose decay is as fast as
possible, where α is the largest. In this case, the statistical part is under control. But it’s
not simple! We will assume that y is unique, so y = f(x) with f unknown, and therefore
the risk given by the fact that we are in class H is:

RI = min
h∈H

EX [r(h(X), f(X))]

This is therefore an approximation problem of the function f (unknown) by a function
h ∈ H; but we do not know the probability distribution of X. One way to protect ourselves

3. Note: The k-means algorithm is a case where the number of seeds chosen a priori is small compared
to n

19

from this lack of knowledge of the data statistics is to say that the average is smaller than
the maximum value. So, with a quadratic risk (regression type):

RI ≤ min
h∈H

sup
x∈Ω

|h(X) − f(X)|2 = min
h∈H

||h− f ||∞

where Ω is the support of the data (we do not know the probability density). We want
to control ||h− f ||∞ with f unknown. So, not only do we need data samples, but we also
need data models. We are looking to control the quantity:

max
f∈C

R(f) = max
f∈C

min
h∈H

||h− f ||∞

The previous theorem tells us that if:

max
f∈C

R(f) ≤ C(log |H|)−α

then we have succeeded.

But what kind of prior information can we have? It’s the regularity of functions.
Let’s think about a 1-dimensional approximation problem; if the underlying function
varies slowly, we don’t need many samples, but if the function is very irregular, the
number of samples can be large or they will be localized at singularity points.

4.4 Regularity (Simple) in the Sense of Lipschitz

The problem x ∈ Rd with d very large.
— Definition: f is locally Lipschitz at x if:

∃ Cx/ ∀x′ ∈ Rd |f(x) − f(x′)| ≤ Cx||x− x′||

(Note: ||x||2 = ∑ |xi|2)
We say that f is uniformly Lipschitz if it is everywhere and all Cx are smaller than C. If
f has a bounded derivative, then it is Lipschitz.

If f is Lipschitz on R, then it is almost everywhere differentiable. So, there are
points where the derivative is not determined. In dimension d, this generalizes with partial

20

derivatives. One can consider the notion of a Lipschitz function as « equivalent » to a
function with a bounded derivative.

— Definition: f is locally Lipschitz-α if:

∃ Cx, px(x′) of degree q < α/ ∀x′ ∈ Rd |f(x) − px(x′)| ≤ Cx||x− x′||α

Typically, we look at the residue of the Taylor polynomial at x of f(x). If Cx < C, then
we say that the function is Lipschitz-α uniform.

So, let’s assume that we have a class of Lipschitz functions:

C =
{
f : Rd → R / uniformly Lipschitz

}
How many samples do we need? We have seen that we need to control the rate of decrease
of:

max
f∈C

R(f) ≤ C(log |H|)−α

Let’s go back to the k-Nearest Neighbors algorithm. We know that the function is Lip-
schitz around the sample points {xi}, then:

|f(x) − f(xi)| ≤ Cx||x− xi||

In other words, we have a good approximation of f(x) by saying that it is equal to f(xi).
This leads to a piecewise approximation (see Figure 3). We generalize to 2D and beyond.
Using this classifier is not a good idea for fluctuations, but for modeling/approximation,
let’s see what happens from a decay perspective.

If f is uniformly Lipschitz-α, then C > 0:

||f − f̃ ||∞ ≤ Cε with ε = max
x

min
i

|x− xi|

The error between the function and its piecewise approximation is governed by the maxi-
mum distance between any point x and its nearest neighbor in the sample. The worst
case is when x is in a hole! So, we need to ensure that for every x, the maximum distance
to a sample is not too large. How many samples n do we need to achieve this?

Let’s imagine that x ∈ Ω with Ω ∈ [0, 1]d, the balls of radius ε centered on the

21

Figure 3 – Approximation of f(x) by a piecewise constant function.

samples cover all of Ω, i.e.,
Ω ⊂

n⋃
i=1

Bε(xi)

This is a coding problem: the logarithm of the number of balls gives the number of bits
of information.

— Property: the optimal distribution of balls in [0, 1]d satisfies:
√
dn−1/d

2 ≥ ε ≥
√
dn−1/d

2

√
2
πe

[
1 +O

(
d

log d

)]

so, by taking the second inequality, we have something like:

n ≳ ε−d

[
d

2πe

]d/2

But we have a "double penalty": the term ε−d explodes as soon as we want to
constrain the error ε, and the constant term varies according to dd/2. So, very quickly,
even in low dimensions, the number of samples becomes enormous if we assume that
the function is Lipschitz-α. In terms of approximation error decay, we can put the result
in the form:

||f − f̃ ||∞ ≤ Cε ≤ C

√
dn−1/d

2

22

so the decay is extremely slow in n−1/d, and we have something like:

R(fI) ≤ C

√
d

2 (log |H|)−1/d

This is the curse of high dimension because the space is essentially "empty" in Euclidean
distance!

How to escape it? Find the right regularity of functions from a wide range of varia-
bility. You need to look at the nature of the data and go back to signal processing before
doing machine learning.

We have x, y, and f in y = f(x). The regularity of f for x ∈ Ω is supervised learning.
For Ω, we said that its volume is 1, but if my data is in a volume/hypersurface of much
lower dimension (it’s feature selection)! What is the regularity of x(u)? For example,
within an image, there are (ir)regularities that need to be captured. We will start with
low dimension:

— Distinguish between linear and non-linear cases; non-linear does not mean compli-
cated, but we only do non-linear if needed!

— Introduce sparsity (sparse vector), which is a dual concept to regularity.

5. Curse of High Dimensions (Part 2)

Using Signal Processing (representation study) for dimensionality reduction (linear)
and sparsity (non-linear).

5.1 Orthogonal Bases: Linear/Non-linear (Introduction)

In an orthonormal basis B = {gm}1≤m≤d, to represent a d-dimensional signal x(u),
we have:

x =
∑
m

⟨x, gm⟩gm

We change the representation xi that are the initial components of x by introducing the
inner products of x in the new basis. The question is whether, in this new basis, we can

23

retain only a few coefficients while maintaining a good approximation of the signal. In
the linear case, we can order them. So,

xM =
M∑

m=1
⟨x, gm⟩gm

The error made is:
εM = ||x− xM ||2 =

d∑
k=M+1

|⟨x, gm⟩|2

How does the decay of coefficients change with M?

If
|⟨x, gk⟩| ≤ Ck−α (α > 1/2)

then
εM <

C2

1 − 2αM
1−2α

So if the coefficients have a rapid decay (α large), then the error is correspondingly
better. We have just followed a similar reasoning as with the learning algorithm, but
instead of working on the function f , we are working on the data representation. The
question becomes: What is the best basis that guarantees the greatest decay?

When we have no a priori knowledge of the signal representation in the linear case,
it can be shown (will be shown) that the best basis is the Karhunen-Loève or principal
components (diagonalized covariance operator) (see Figure 4).

However, as soon as we have information about the data, we can go further. For
example, if there is translation invariance (image, sound) (no absolute zero), then the best
basis is the Fourier basis. But by Shannon’s theorem, there is a correspondence between
Fourier and uniform sampling, which is suitable only if the data has no singularities.
At that point, the Fourier basis is not optimal because it is clear that finer sampling
is needed near singularities (it must be adaptive). This is a non-linear process because
adaptive samplings on f and g do not fit well with that of f + g.

So, can we do better in non-linear? Let’s reconsider the decomposition of x in the
new orthonormal basis:

x =
∑

k

⟨x, gk⟩gk

24

Figure 4 – Principal components of a sample cloud.

and now, we define the approximation by taking M coefficients, but not necessarily the
first M (because it depends on the signal x):

xM =
∑

k∈IM

⟨x, gk⟩gk

and
εM = ||x− xM ||2 =

∑
k /∈IM

|⟨x, gk⟩|2

We select the indices for which the coefficients are the largest M :

IM = {k/|⟨x, gk⟩| ≥ TM}

and the threshold TM (easy to implement) will define an approximation that adapts to
the signal or, in other words, to the smoothness of the function. This is how it works in
Wavelet bases. Note that a neuron implements this nonlinear coefficient thresholding.

5.2 Denoising

If we denote x as the base signal and B as the noise, what we actually get is a noisy
signal Z such that (capital letters = random):

Z(u) = x(u) +B(u)

25

We will construct a deterministic model of x and a random model of B. Indeed, it is
quite simple to have random representations of noise (with some assumptions), but, by
nature, the signal is more complicated, and contrary to popular belief, a « deterministic »
model is simpler than a stochastic model. For a deterministic model, we say that x ∈ Ω
(e.g., grayscale level of an image), while the stochastic (probabilistic) model adds that
there are regions of Ω that are more or less populated (e.g., for noise, one often imagines
Gaussians, so a simple representation).

So, eliminating noise means finding an operator L such that our estimator of X is:

X̃(u) = LZ(u)

and we want to minimize the mean square error (MSE):

R = E
B

||x− LZ||2

Two approaches:

1. To model the signal: A linear model means that x is concentrated on a hyperplane
(H).

2. For noise: A Gaussian model (white noise) that populates all of Ω. So, it is sufficient
to eliminate all noise components outside of H through projection (see Figure 5) 4.

So, let’s consider a Gaussian model of the noise (Gaussian White Noise or GWN):

— Zero mean: E[B(u)] = 0 for all u (or we may have removed the mean).

— Uncorrelated components: E[B(u)B(u′)∗] = 0 for all u ̸= u′, and u = u′, then
E[|B(u)|2] = σ2.

Therefore, the probability density of obtaining noise b is:

p(b) = c exp
(

−1
2b

T Σ−1b
)

= c e−|b|2/(2σ2)

with Σ = σ2I as the covariance matrix.

4. Note: conventionally in statistics, we model x as Gaussian, and it leads to the best linear estimator.
But here, we take a deterministic model of x, which is less constrained. We will see that non-linear
methods can be very effective in certain circumstances.

26

Figure 5 – The noisy signal Z(u) consists of a clear signal x(u) evolving in a hyperplane
and noise B(u). A projection of Z onto the hyperplane is needed to recover x(u).

White noise remains white in all bases (it is isotropic), consider a basis {gk}k of Ω:

⟨Z, gk⟩ = ⟨x, gk⟩ + ⟨B, gk⟩

If B is GWN:
E(⟨B, gk⟩, ⟨B, g′

k⟩∗) = σ2δk,k′

This is shown by expanding the dot product:

⟨B, gk⟩ =
∑

u

B(u)g∗
k(u)

where B(u) are random variables and g∗
k(u) are constants. Therefore,

E

∑
u,u′

B(u)B∗(u′)g∗
k(u)gk′(u′)

 =
∑
u,u′

E[B(u)B∗(u′)]g∗
k(u)gk′(u′)

= σ2g∗
k(u)gk′(u′) = σ2δk,k′

The only difficulty is knowing what is random and what is not.

So, let’s take the equivalent of the linear projection operator where we keep only M

27

coefficients, meaning our approximation is:

X̃ = ProjVM
Z

and we want to minimize:
R = E

B
||ProjVM

Z − x||2

Simply,

||x− PVM
Z||2 = ||(x− PVM

x) − PVM
B||2

= ||(x− PVM
x)||2 + ||PVM

B||2

because x− PVM
x is orthogonal to VM , while PVM

B is a vector in VM by definition. If we
now take the expectation with respect to the noise, the first term is a constant, and we
need to calculate the second:

E
B

[||PVM
B||2] =

M∑
k=1

E
B

[|⟨B, gk⟩|2] = Mσ2

The result shows that the risk consists of two terms: an approximation error and a
fluctuation term:

R = ||x− ProjVM
x||2 +Mσ2

How can we achieve the optimum? If M = d, the first term is zero but the second is
maximal, and vice versa. So we choose the M that strikes a balance between the two
terms, and it’s the bias decay that determines whether M will be smaller or larger between
two linear models.

But if the signal has discontinuities, we must adapt to the signal with non-linear
algorithms. So, as in the case of function approximation, we will choose the VM space by
thresholding the coefficients.

LZ =
∑

k∈IM

⟨Z, gk⟩gk =
∑

k∈IM

ρT (⟨Z, gk⟩)gk

with the threshold T defined as

T = max
1≤k≤d

|⟨B, gk⟩| ≈ σ
√

2 log d

28

Figure 6 – Thresholding function ρα(x), here with α = 1.

and the thresholding function defined as (see Figure 6):

ρα(x) =

0 if |x| < α

x if |x| ≥ α

Under what condition is this thresholding effective? It will work if the representation
(basis) is as sparse as possible (of course, if we knew x, we would have only one non-zero
coefficient, but we don’t know x!). We want the energy of the signal to be concentrated
on a small number of coefficients; it’s a signal approximation problem. For a compression
problem, it’s the same thing: M is the number of bits, and we want the smallest error.

6. Fourier Analysis

6.1 Recap

We started with supervised learning, where the answer to the question is unique,
i.e., y = f(x), and we train an algorithm h with n labeled samples {xi, yi}. In fact, we
are trying to approximate f , which belongs to a family of functions with given regularity
(f ∈ C), using an algorithm/function in the class H. If we don’t know anything about
the probability distribution (X, Y), we have seen that if we want to control the error

29

(pessimistic):
sup
f∈C

min
h∈H

||f − h||∞ = sup
x∈Rd

|f(x− h(x))|

leads to the curse of dimensionality because n ∼ ε−d potentially with a very large d. So,
we need to inject knowledge into the data: signal processing and unsupervised learning.
The data belongs to a subset of Ω with a much smaller dimension. We have two main
ways to represent data: the linear case and the non-linear case. If we decompose x using
an orthonormal basis of Ω, then:

x(u) =
d∑

k=1
⟨x, gk⟩gk(u)

and: - In the linear case: we truncate the sum to the first M coefficients (e.g., the low
frequencies in Fourier). Thus, an approximation x̃M is a projection of x onto a set of
dimension M , and the induced error is:

εM =
d∑

k=M+1
|⟨x, gk⟩|2

The rate of decay of coefficients will determine the value of M . The sampling of f (the
positions of xi that yield f(xi)) is regularly spaced independently of the function f . So,
if the underlying function is regular, everything is fine, but if it has singularities, then
sampling introduces bias errors. - In the non-linear case: by setting a threshold TM that
reduces the number of coefficients to M as in the linear case, it adapts to the signal. In
this case, the sampling focuses on the singularities of f and reduces the bias term.

6.2 Harmonic Analysis (Fourier)

We will revisit the Fourier transform because it appears everywhere, not only in
signal processing associated with dimensionality reduction but also when we want to
represent data by oscillating functions on a manifold. Here, we will consider it in one
dimension and explore several themes, including the regularity associated with sparsity.

30

6.2.1 Convolution: Translation Covariant Operator

The Fourier transform is deeply linked to translation invariance: when we want
to decompose an operator (e.g., the Laplacian) that respects translation invariance, we
diagonalize it in the Fourier basis. Which operators commute with translation (translation
covariant)?

L(xτ (u)) = L[x(u− τ)] = (Lx)(u− τ)

In the discrete case, we have:

Lx(u) = L[
∑

v

x(v)δ(u− v)] =
∑

v

x(v)L[δ(u− v)]

=
∑

v

x(v)h(u− v) =
∑

v

x(u− v)h(v) = (x ∗ h)(u) = (h ∗ x)(u)

where h is the impulse response of L, i.e., Lδ = h, with δ as the Dirac operator. The
first equality is the decomposition of x(u) with δ, the second is due to the linearity
of the operator L, the third represents the covariance of L with respect to translation,
and the last equation is obtained by changing the variable. The notation "∗" represents
convolution.

In the continuous case, we proceed in a similar manner with the Dirac mass/distribution:
∫ +∞

−∞
x(u)δ(u)du = u(0)

for functions x(u) with regularity properties. Here’s a summary:

Analog Discrete

x(u), u ∈ R u ∈ Z

x(u) =
∫+∞

−∞ x(v)δ(u− v)dv x(u) = ∑+∞
v=−∞ x(v)δ(u− v)

Lx(u) =
∫
x(v)h(u− v)dv = (x ∗ h)(u) Lx(u) = ∑

v x(v)h(u− v) = (x ∗ h)(u)

The linear operator that commutes with translation (either continuous or with
integer jumps) is convolution. And this generalizes to any translation. Can we diagonalize

31

Figure 7 – Periodic extension of a function defined on the interval [0, 1].

these convolution operators, and in which basis?

6.2.2 The Fourier Basis

Consider the function eω(u) = eiωu; this is an eigenvector of the convolution:

(eω ∗ h)(u) =
∑

v

eiω(u−v)h(v) = eiωu
∑

v

e−iωvh(v) = eω(u)ĥ(ω)

where
ĥ(ω) =

∑
v

e−iωvh(v)

is the Fourier Transform (FT) of h. In the continuous case, it is defined similarly 5:

ĥ(ω) =
∫
dv e−iωvh(v)

We define the Fourier Basis according to the « analog » or « discrete » case, but
keep in mind that we are thinking in « continuous » terms (e.g., notions of regularity) and
computing in « discrete » terms (considering the sampling and as d increases, it converges
to the continuous case), hence the importance of looking at both formulations.

— Analog:

We consider functions L2[0, 1]: a set of square-integrable functions, with finite energy over
the support [0, 1] (this is not restrictive, and the notion of a compact support is practical).
We impose periodicity as shown in Figure 7:

5. Note: there is a normalization constant that depends on the convention.

32

The orthonormal Fourier basis is then defined as:

gk(u) = ei2π ku; k ∈ Z, u ∈ [0, 1]

— Discrete:
In this case, we take d samples and also impose periodicity over Z except for 0, . . . , d− 1.
The Fourier basis is defined as:

gk(u) = ei2πk u/d; 0 ≤ k < d; 0 ≤ u < d

Now, in both cases, x is projected into the gk basis with the associated inner product. For
example, in the continuous (analog) case:

x(u) =
∑

k

⟨x, gk⟩
||gk||2

gk(u); ||x||2 =
∑

k

|⟨x, gk⟩|2

The Fourier coefficient is equal to:

⟨x, gk⟩ =
∫ 1

0
x(u)e−i2π ku = x̂(ω = 2πk) ≡ x̂(k)

Therefore, in the continuous case (with compact support), the reconstruction/synthesis
of the signal is:

x(u) =
∑

ω=2πk∈Z
x̂(ω) eiωu

In the discrete case with the normalization ||gk(u)||2 = d, we have:

x(u) = 1
d

d∑
k=1

x̂

(
2πk
d

)
ei2π ku

d

Note that in the discrete case, we need to calculate d Fourier coefficients for d components
of x, so d2 operations are required. Fortunately, we have found algorithms (FFT) that
only require d log d operations. This is a fundamental point that is also relevant in data
science, where mathematics and algorithms are closely linked.

The decomposition of any function with a compact support (finite energy) into
sinusoids is not intuitive at all. For example, one must imagine decomposing the blue
function in Figure 8 by weighting sinusoids, the first six of which are drawn. The very rapid

33

Figure 8 – Decomposing a function into sinusoids.

local variability involves a high-frequency sinusoid, but elsewhere, the rapid oscillations
must be compensated exactly to leave room for a smoothly varying function represented
by low-frequency sinusoids. While this can be seen in the mathematics, it is not intuitively
obvious at first glance.

6.2.3 Filtering/Convolution and the Approximation-Regularity Tandem

The coefficients x̂(ω) represent the different "weights" of weighting to reconstruct
the signal, and thus the decay of the Fourier coefficients is linked to the regularity of
the function. We want to keep only M coefficients and have a small approximation error.
With

∫
|x(u)|du < ∞, which also holds for h, we have:

z(u) = (x ∗ h)(u) ⇔ ẑ(ω) = x̂(ω)ĥ(ω)

Recall that convolution (x ∗ h) is nothing but the application of the linear translation-
covariant operator L, i.e., z = Lx. The equivalence above is easily demonstrated by
decomposing x on the Fourier basis and applying L to the basis vectors.

Filtering and Convolution are identical concepts, and the terminology changes de-
pending on the field. For example, when we want to remove high frequencies to smooth a

34

signal, we use a low-pass filter:

ĥM(ω) =

1 − M
2 ≤ ω ≤ M

2

0 elsewhere

In the real space, this corresponds to a convolution with hM(u), which is a cardinal sine
(periodized on [0, 1]).

So, in the context of function approximation, we want to project the signal x onto
an orthonormal basis (here, the Fourier basis) and keep only the first M coefficients (i.e.,
filter out high frequencies). We define the projector onto the space VM (a subspace of Ω)
using convolution with the low-pass filter:

ProjVM
x = x ∗ hM

We know that if the decay of the Fourier coefficients of x is rapid enough, then
convolution with hM will be a good approximation. And this decay is linked to the re-
gularity of x. What exactly is the relationship? The derivative of x(u), denoted x′(u),
commutes with translation, so it’s easy to show (by integration by parts) that:

x̂′(ω) = iω x̂(ω)

and for the k-th derivative:
x̂(k)(ω) = (iω)k x̂(ω)

A notion of regularity can be introduced by the fact that the derivatives of the
function do not explode, i.e.,

||x(q)||2 =
∫ 1

0

∣∣∣∣∣dqx

duq

∣∣∣∣∣
2

du < ∞

This translates (via Plancherel) in the Fourier domain to the fact that:

∑
ω=2πk∈Z

|ω|2q|x̂(ω)|2 < ∞

35

For this to be true, it’s necessary to impose a decay of x̂(ω) as a function of ω (the
small "o(a)" notation means negligible compared to "a"):

|x̂(ω)| = o(|ω|−q) = o(|k|−q); ω = 2πk

and q can be a real number α ∈ R. These functions belong to Sobolev spaces of α-times
differentiable functions. So, the decay of the Fourier coefficients is linked to the notion
of regularity through the concept of Sobolev differentiability.

From the approximation theorem, we remember that if the coefficients in a basis
(α > 1/2) satisfy:

|⟨x, gk⟩| = O(k−α) then ε2
M = ||x− xM ||2 = O(M1−2α)

This translates (in the continuous case with gk = ei2πku) to the fact that the Fourier
coefficients of a function α times differentiable in the Sobolev sense satisfy:

|⟨x, gk⟩| = |x̂(ω)| = o(|k|−α)

So, as soon as we have regularity, we have possible approximation, and vice versa. However,
as soon as there is a discontinuity, Sobolev regularity is not sufficient, and filtering in the
Fourier basis introduces errors (bias), requiring a change in the type of regularity.

Sampling Theorem: Let the set of functions whose high-frequency Fourier coeffi-
cients are zero be denoted as:

VM =
{
x/support of ĥ(ω) ∈ [−M/2,M/2]

}
The projection of x onto VM is such that:

xM = ProjVM
x = x ∗ hM ; ĥ(ω) = I[−M/2,M/2](ω)

Assuming x ∈ L2[R] (this is just to simplify the expression of h, otherwise, you need to
periodicize the cardinal sine), then:

hM(u) = sin πx/T
πx/T

; with T = 2π/M

36

Figure 9 – Series of translated cardinal sines hM,nT (u), T = 2π/M .

So, if hM(u− nT) = hM,nT (u) with n ∈ Z, then its Fourier coefficients are:

ĥM,nT (ω) = ĥM(ω)e−i2π n (ω/M)

where ĥM(ω) = 1 on the support of ω in [−M/2,M/2]. Therefore, we have a new ortho-
normal basis (see Poisson’s formula to show that any function in VM can be decomposed
into a sum of hM,nT (u)):

{hM(u− nT)}n∈Z

So, for all x ∈ VM , we obtain the decomposition:

x(u) =
∑
n∈Z

cnhM(u− nT)

=
∑
n∈Z

x(nT)hM(u− nT)

The second equality comes from the fact that hM(mT − nT) = δm,n.

Thus, from the samples x(nT), we can reconstruct the signal x(u) using inter-
polations given by hM(u − nT). For example, with T = 2 and n = −10,−9, . . . , 9, 10,
the hM(u− nT) functions appear as translated cardinal sines (see Figure 9). The smaller
T gets, the narrower the cardinal sines become, and the approximation of x(u) becomes
better, as shown in the example in Figure 10, where T = 2 is in yellow and T = 1 is in
green, while x(u) is in blue.

37

Figure 10 – Approximation of the function x(u) (blue) using two functions obtained
from sampling with T = 2 in yellow and T = 1 in green.

So, for uniformly regular functions, there’s no problem. However, as soon as there is
a discontinuity, we cannot benefit (in terms of the number of samples) from continuity
outside the discontinuity. This is the major limitation of Fourier analysis. We will explore
other types of regularities that adapt to the signal.

6.2.4 Interpolation and Sampling Theorem

The Sampling Theorem is more general; you should think of it in terms of the
associated interpolation basis. Let h(t) = 1 over the support [−T/2, T/2], and consider
the vector space generated by the collection of translated h:

VT = Vect {h(t− nT)}n∈Z

The Sampling Theorem associated with h then tells us:

x ∈ VT ⇔ x(t) =
∑

n

x(nT)h(t− nT)

We see that VT is the space of piecewise constant functions of size T .

But we can do better! If we take the "triangle" function h(t) from Figure 11 with
support [−T, T] and the value at 0 equal to 1, then VT is the space of linear splines (or
piecewise affine) functions that give approximations as shown in Figure 12.

38

Figure 11 – Triangle function.

Figure 12 – Approximation of a function f(x) (blue) by piecewise affine functions from
the Sampling Theorem with the triangle function.

39

Figure 13 – Filter associated with the triangle function.

We can calculate the associated filter, which gives the function in Figure 13. So,
we can obtain fine approximations of regular functions, but it’s more general than that
because we want to adapt to the function’s regularity (or its discontinuities) and thus
obtain a Sampling Theorem in the nonlinear case: this is Wavelet analysis.

6.2.5 Conventions for the Fourier Transform (NDJE)

Before concluding this chapter, let’s address a practical point, which is the conven-
tions for writing. Indeed, both in the literature and in the use of computer libraries, it’s
always good to know which convention is used. In Table 4, the Fourier Transform (FT)
depends on 2 parameters (m, q) that influence the writing of the formulas.

7. Wavelet Analysis

Recall that in the context of learning, we aim to perform dimensionality reduction
to understand the regularity patterns of the signal. In the case of Fourier analysis, by
truncating the representation to the first M coefficients, we implicitly introduce a uniform
(local) regularity. However, this approach is not suitable when the signal is "piecewise"
regular with singularities at junctions.

40

FT f̂(ω) = 1√
m

∫
f(x)eiqωxdx

Inverse FT f(x) =
√
m

2π

∫
f̂(ω)e−iqωxdx

Translation ̂f(x− h)(ω) = eiqwhf̂(ω)

Dilation 1̂
s
f(x
s

)(ω) = f̂(sω)

Mean f̂(0) = 1√
m

∫
f(x)dx

Plancherel
∫
f(x)g∗(x)dx = m

2π

∫
f̂(ω)ĝ∗(ω)dω

Parseval
∫

|f(x)|2dx = m

2π

∫
|f̂(ω)|2dω

Derivative f̂ (p)(x)(ω) = (−iqω)pf̂(ω)

Convolution f̂ ∗ g =
√
mf̂(ω)ĝ(ω)

Multiplication by a phase ̂eiξxf(x)(ω) = f̂(ξ/q + ω)

Table 4 – Examples of properties of the Fourier transformation expressed according
to a generic formulation in 1D. S. Mallat uses (m = 1, q = −1) which corresponds to
the convention (a = 1, b = −1) in Mathematica; but in the literature, you can find
formulations with m = 1, 2π and q = ±1,±2π.

41

It is in this extended context that Wavelets are introduced, with support localized
in both time and frequency. Dennis Gabor (Nobel Prize for Holography, 1971) introduced
the concept of coherent states in Quantum Mechanics in accordance with the uncertainty
principle ∆x∆p ≥ ℏ. Gabor later applied this concept to sound processing, where time-
frequency locality is associated with the notion of musical notes (Gabor spectrogram).
This type of representation generalizes across various fields.

The fundamental idea of a wavelet is that it is a kind of "localized sine wave", denoted
as ψ. Locality is expressed through the condition

∫ ∞

−∞
ψ(u)du = 0

To adapt to functions with varying degrees of regularity, two operations are performed:
— Translation (b ∈ R)
— Dilation (s ∈ R+∗)

applied to the base wavelet ψ(u) to create the family

ψs,b(u) = 1√
s
ψ

(
u− b

s

)

Figure 14 illustrates the effect of scaling on a wavelet: at the top: s = 1, in the middle:
s = 2 (low frequency), at the bottom: s = 1/2 (high frequency) 6.

7.1 Wavelet Transform

For a signal x(u), its wavelet transform is expressed as

Wx(s, u) = ⟨x, ψs,u⟩ =
∫
dv x(v) 1√

s
ψ∗
(
v − u

s

)
≡
∫
x(v)ψ̄s(u− v)dv

Here, 1) we assume that ψ is real, and 2) we define ψ̄ as follows:

ψ̄s(u) ≡ 1√
s
ψ
(

−u

s

)
6. Note: The representation on the board by S. Mallat is a bit misleading; it appears to depict ϕ(x),

also known as the "scaling function", centered at x = 0, rather than ψ(x).

42

Figure 14 – (Top): Base wavelet; (Middle): s = 2 low frequency; (Bottom): s = 1/2 high
frequency.

43

Figure 15 – Typical filter of a wavelet ψ.

So, we see that the Wavelet Transform is a convolution:

Wx(s, u) = (x ∗ ψ̄s)(u)

This is effectively a filtering operation by ψ̄s.

The Fourier transform of the wavelet is given by

ψ̂(ω) =
∫
ψ(t)e−iωtdt

Since, by definition, ψ̂(0) = 0 and the wavelet is real, we have

̂̄
ψs(ω) =

√
sψ̂∗(sω)

The frequency support is of a "bandpass" type, as shown in the spectrogram |ψ̂(ω)| of
the wavelet in Figure 15 (being real, the spectrogram is symmetric about 0). If s > 1, the
spectrogram shifts towards low frequencies, and conversely, if s < 1, it shifts towards high
frequencies, consistent with the scaling of the wavelet with respect to s.

For wavelets, the support satisfies a Heisenberg-like uncertainty relation, i.e.,

Area ≥ Const = 1/4

This support deforms along the frequency axis as schematically shown in Figure 16 when

44

Figure 16 – Evolution of wavelet supports in relation to frequency and time. The area
satisfies a Heisenberg-like uncertainty relation.

the wavelet is dilated; however, its shape remains unchanged when translated along the
time axis.

7.2 Wavelets and Function Regularity/Singularity

Let’s revisit the notion of Lipschitz-α regularity as follows:

|x(v) − pu(v)| ≤ Cu|v − u|α ∀v ∈ R

Here, pu(v) is a polynomial in the vicinity of u of degree q = ⌊α⌋ (the largest integer less
than or equal to α ≥ 0). If α = 0, the function is bounded; if α ≥ 1, it is differentiable,
and for 0 < α < 1, the function may exhibit a "pinch." All of this can be schematically
represented as shown in Figure 17.

Proposition: If x is Lipschitz-α at u, then the wavelet coefficient (cf. inner product)
satisfies the relation

|⟨x, ψs,u⟩| ≤ Cu β s
α+ 1

2

if ψ is a wavelet with zero moments 7, meaning it oscillates slightly to avoid seeing poly-

7. Note: Ingrid Daubechies’ wavelets have this property

45

Figure 17 – Types of Lipschitz-α functions.

nomial regularity: ∫
ψ(t)tkdt = 0; k ≤ q

(this property holds for the scaled and translated versions as well).

The proposition states that if s approaches 0 (small support) and α is close to
1 (differentiable function), then the wavelet coefficient tends to 0. So, the number of
coefficients decreases as s approaches 0, as illustrated in Figure 18. During the proof, we
find the constant β which depends only on the wavelet:

β =
∫

|y|α|ψ(y)|dy

Therefore, the Lipschitz-α regularity of the function is "imprinted" in the decay
of wavelet coefficients as a function of the scale change, following sα+1/2.

7.3 Orthonormal Wavelet Basis

In the 1940s, D. Gabor had found a family of functions based on the form:

ψGabor
ν (t) ∝ e−x2/2eiνx

These are "packets" of waves. Jean Morlet, an engineer at ELF Aquitaine, who was origi-
nally responsible for the term "wavelet", actually used the same family (only the real part)

46

Figure 18 – The shaded area schematically indicates the evolution of the support of
non-zero wavelet coefficients as a function of the scale s.

with ν =
√

2/ log 2. However, these functions ψs,b did not form an orthonormal basis. It
was only in the 1980s that Yves Meyer demonstrated the existence of such orthonormal
bases, against all expectations. This gave a new impetus to signal processing, and the use
of wavelets diversified in various mathematical fields for classifying "regularities".

To construct an orthonormal basis, we will first discretize the scales. Indeed, we
don’t need all the wavelet coefficients, as can be seen in Figure 16 where the wavelet
support extends in s, and there is redundancy in taking s continuous. It is sufficient to
take dyadic scales: 2j. In sound processing, intermediate values are used.

So, consider the family:

ψj(u) = 1√
2j
ψ
(
u

2j

)
∀j ∈ Z

The question then becomes: does knowing the wavelet coefficients for all j suffice to
reconstruct the signal? Obtaining these coefficients involves performing convolutions:

Wxj(u) ≡ ⟨x, ψj⟩(u) = (x ∗ ψj)(u)

In fact, the question boils down to whether we can reconstruct the Fourier transform

47

Figure 19 – Typical decay of the Fourier transform x̂(ω) compared to wavelet support.

of the signal x from the Fourier transform of the wavelet coefficients. Note the property:

ψ̂j(ω) =
√

2jψ̂∗(2jω)

So,

Ŵxj(ω) = x̂(ω)ψ̂j(ω) =
√

2j x̂(ω) ψ̂∗(2jω)

The product x̂(ω) ψ̂∗(2jω) can be schematically illustrated for some values of j as shown
in Figure 19. Therefore, to recover x̂(ω), there must be a wavelet for every ω that yields
a non-zero ψ̂∗(2jω). In other words, there must be some overlap.

We impose an additional condition (Littlewood-Paley) of "power conservation" (known
since the 1930s with the Fourier transform in an attempt to achieve localization):

∀ω,
∑
j∈Z

|ψ̂(2jω)|2 = 1

With this property, we will show that x(u) decomposes as:

x(u) =
∑
j∈Z

2−j(Wxj ∗ ψj)(u) =
∑
j∈Z

2−j[(x ∗ ψj) ∗ ψj](u)

48

Figure 20 – Optimal sampling by dyadic discretization of the (s, u) space.

In Fourier terms, this means:

x̂(ω) =
∑

j

2−jŴxj(ω)ψ̂j(ω)

=
∑

j

2−j
√

2j x̂(ω) ψ̂∗(2jω)
√

2j ψ̂(2jω)

= x̂(ω)
∑

j

|ψ̂(2jω)|2

which is true according to the power conservation imposed above. It can also be shown
that the energy of x is conserved:

||x||2 =
∑
j∈Z

2−j||Wxj||2

Now, regarding translation in u, we must also avoid leaving gaps. Referring to Figure
16, we can see that for low frequencies (small dilations: 2−j with j > 0), the support is
wide, so we don’t need a fine sampling. Conversely, at high frequencies, the support
narrows, so the sampling in u must be finer. We then define for s = 2j, a sampling
un = n2j. The scheme in Figure 20 summarizes the dyadic sampling.

49

The complete family 8 of wavelets is therefore written using the base wavelet ψ:

{
ψj,n(u) = ψ2j ,2jn(u) = 1√

2j
ψ

(
u− 2jn

2j

)}
j,n∈Z

It turns out that A. Haar in 1910 found an orthonormal basis of L2[0, 1] (square-integrable
functions on [0, 1]) defined as ψj,n(u) from the function ψ shown in Figure 21. (To this
collection of functions ψj,n, one must add the unit function 1). The Fourier transform of
ψ is quite oscillatory (see Figure 22) due to the singularities at 0, 1/2, and 1 9. However,
it is quite easy to show that the ψHaar

j,n are orthogonal because either their supports are
disjoint, or one support is in a constant part of the other, resulting in trivially zero inner
products. It can be shown that for all (n, j) such that 0 ≤ 2jn ≤ 1 (i.e., j ≤ 0 and
0 ≤ n < 2−j), then:

||x(u) −
0∑

j=−J

2−j−1∑
n=0

⟨x, ψj,n⟩ψj,n|| −→
J→∞

0

(Note: x differs by a constant). The approximation of the function x(u) is of the "piecewise
constant" type up to the scale 1/2J .

We would like a better approximation, but it was believed that it was not possible
at the same time to have an orthonormal basis of wavelets with much better regularity.

7.4 Wavelet vs. Filter

Let’s take the Haar basis and a discretized signal. Calculating wavelet coefficients
at scale 2j in this basis amounts to taking the average over two consecutive intervals each
of size 1/2 smaller and then averaging them. So, schematically, at step j, we proceed as
shown in Figure 23. In the next step, we iterate with the obtained positions. We have a

8. Note: Just an aside. There is potentially an issue: what about the continuous (very low frequency)
component of x? With only ψj,n, one would need an infinite number of wavelets with scale 2−j for j → ∞.
S. Mallat introduced the "scaling function" ϕ (which can also be used to define ψ) which is nothing but
a low-pass filter. So, one can reconstruct a signal with a finite series of dilated and translated ϕ and an
infinite series of ψj,n. See the section at the end of this course.

9. Note: The Haar wavelet is a special case of the Daubechies wavelets denoted Db1

50

Figure 21 – Haar wavelet ψ(x).

Figure 22 – Filter associated with the Haar wavelet ψ.

51

Figure 23 – Operation of the wavelet transform performed by the Haar wavelet.

cascade algorithm of the form:

(a, b) →
(
a+ b√

2
,
a− b√

2

)

This naturally takes the form of a cascade of 2 filters (Figure 24), one being low-pass (the
average in the case of Haar) and the other high-pass (the difference in the case of Haar). In
fact, Mallat & Meyer showed that it is possible to completely characterize and construct
wavelets from the knowledge of these two types of filters. Moreover, they showed that it
is possible to construct a fast algorithm for calculating the wavelet transform 10.

Now, neural networks (deep neural networks, DNN) are ultimately cascades of fil-
ters, and learning involves "learning" the filters. So, one can focus on the filters for
technical implementation aspects, but to understand the result, we want to know the
equivalent filter of the entire cascade. However, the significant difference between a
cascade of filters and a DNN lies in the nonlinearities introduced in the neuron res-
ponses. This makes it much more complicated.

10. Note: See, for example, http://cas.ensmp.fr/~chaplais/Wavetour_presentation/ondelettes/
Biortho_Wave_and_filt.html

http://cas.ensmp.fr/~chaplais/Wavetour_presentation/ondelettes/Biortho_Wave_and_filt.html
http://cas.ensmp.fr/~chaplais/Wavetour_presentation/ondelettes/Biortho_Wave_and_filt.html

52

Figure 24 – Cascade of low-pass and high-pass filters involved in a Haar wavelet trans-
form.

7.5 Sparsity

Consider a Lipschitz-α function. We know that the decay of wavelet coefficients
will occur at 2−j(α+1/2) (j > 0) as shown in Figure 25. The non-zero coefficients (above a
threshold) will concentrate at the singularities of the function. The wavelet’s support is 2−j

(for large j), and it shifts by this amount in translation. So, as long as the function is fairly
uniform over the wavelet’s support, the inner product is zero. The two regions of large
variations in the function (singularities) will only affect a small number of coefficients. At
a large scale (j small), remember that the wavelet has a large support, and the sampling
is also large, so we only keep a few samples.

When we keep only the samples above a threshold, the sampling is adaptive (hence
nonlinear), and the Gibbs phenomenon that affected the Fourier transform when we
only kept the first M terms disappears.

The course concludes with some illustrations in 1D and 2D cases. Before concluding
this chapter, I will allow myself to make a few additions.

53

Figure 25 – Estimation of the location of significant wavelet coefficients near the singu-
larities of the function.

7.6 Some Comments (NDJE)

In the course, S. Mallat introduced the wavelet ψ with bounded frequency sup-
port. It is well-suited for capturing signal discontinuities, which are more related to "high
frequency" and thus associated with the "high-pass" filter. However, the signal also has
regular components, which correspond to its "low-frequency" part. Therefore, a "low-pass"
filter is needed to capture it. S. Mallat briefly mentioned this in the context of the cascade
algorithm, alluding to these two "low-pass" filters for regularities and "high-pass" filters
for discontinuities.

I intend to summarize (without proofs) some properties of the Multi-Resolution
Analysis (MRA) developed by S. Mallat in the years 1987-89 11. It is highly likely that in
subsequent courses, he may delve into this topic further. Therefore, consider the following
as supplementary information for the curious.

7.6.0.1 The « scaling function » ϕ and its low-pass filter

We consider functions with square (energy) summability over R (cf. L2(R)). Let’s
examine a nested ensemble cascade of the form (n ∈ Z):

11. See reference Mallat, S.G., 1989, "A theory for multiresolution signal decomposition: the wavelet
representation, IEEE Trans. PAMI 11, 674-693."

54

· · · ⊂ V−n ⊂ · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ Vn ⊂ . . .

The intersection of Vi reduces to the function 0, while their union fills L2(R). If we
denote that Vj is associated with an introspection scale sj, then

Vj1 ⊂ Vj2 ⇔ sj2 < sj1

(Note: The sign change of the index may appear in the literature, depending on the
definition of the dilation operator in the following).

The "dyadic" choice for the scale associated with Vj has already been motivated. In
fact, a function from V0 and its "twin" version in Vj are related as:

f(2jx) ∈ Vj ⇔ f(x) ∈ V0

There exists a function ϕ ∈ V0 whose translations by integer steps cover the set V0,
meaning:

∀f ∈ V0, f(x) =
∑
k∈Z

ckTk[ϕ](x) =
∑
k∈Z

ckϕ(x− k)

And the {Tk[ϕ], k ∈ Z} form an orthonormal basis for V0. It can be shown that the
integral of ϕ satisfies the relation:

∫ ∞

−∞
ϕ(x)dx = 1

7.6.0.2 The « wavelet function » ψ and its high-pass filter: relation with ϕ

In the course, S. Mallat shows that from a wavelet ψ, one can construct an ortho-
normal basis for L2(R) through dyadic dilation and translation (Note: Be aware that here,
the sign of j is opposite to that in the course):

{
ψj,k(x) = 2j/2ψ(2jx− k) = DjTk[ψ](x), j, k ∈ Z

}

55

For a fixed j = j0, the family {Dj0Tk[ψ](x), k ∈ Z} is an orthonormal basis for the
space Wj0 = Vj0+1 ⊖ Vj0 ; meaning that Vj0+1 is the orthogonal sum of Vj0 and Wj0.

In the case j0 = 0, with the wavelet ψ being a member of V1, we have a scaling
relation similar to ϕ:

ψ(x) =
∑
k∈Z

gk

√
2ϕ(2x− k)

where the coefficients {gk, k ∈ Z} define the discrete filter associated with ψ. Similar
to m0, we define the transfer function m1 as:

m1(ω) = 1√
2
G(ω) = 1√

2
∑
k∈Z

gke
−iωk

Just as for ϕ, it can be shown that the Fourier transform of ψ is subject to the
relation:

ψ̂(ω) = m1(ω/2)ϕ̂(ω/2)

7.6.0.3 The Daubechies Wavelets

In the course, S. Mallat introduces Haar wavelets and provides arguments for using
wavelets with the first N moments equal to zero, especially in relation to the rapid decay
of wavelet coefficients for a Lipschitz-α signal x.

I. Daubechies (1992) invented a type of wavelet ψ with the first N moments equal
to zero and the property that:

|ϕ(x)| ≤ C2(1 + |x|)−α; α > N

Then, it can be shown that:

m0(ω) =
(

1 + e−iω

2

)N

× P(ω)

56

where P(ω) is a trigonometric polynomial.

The relations between m1 and m0 given in the previous paragraph yield:

|m0(ω)|2 + |m0(ω + π)|2 = 1

If we define:

|P(ω)|2 ≡ P0(y); y ≡ sin2 ω

2

with P0 being a polynomial, then:

(1 − y)NP0(y) + yNP0(1 − y) = 1

By using Bezout’s theorem since yN and (1−y)N are coprime, it can be shown that:

P0(y) =
N−1∑
k=0

 N + k − 1

k

 yk

Then, using a theorem from Fejér-Riesz, we can transition from P0 to P . In short,
we can reformulate P0 in terms of a polynomial in cosω, and then in z = eiω, as cosω =
(z + 1/z)/2:

P0(cosω) = a0

2 +
N−1∑
k=1

ak cosk ω =
N−1∑

j=−(N−1)
cjz

j = P0(z)

It can then be shown that:

P0(z) = c
∏
j=1

r(z − αj)(1/z − α∗
j)

with c > 0, and |αj| ≥ 1, which leads to:

57

P(ω) =
√
c

r∏
j=1

(eiω − αj)

Finally:

m0(ω) =
√
c

(
1 + e−iω

2

)N r∏
j=1

(eiω − αj)

Let’s consider an example with N = 2 concerning the wavelet denoted as Db2 (or
DAUB4) in the literature. So,

P0(y) = 1 + 2y
= 2 − cosω

= 1
2z (−z2 + 4z − 1)

= 2 −
√

3
2 (z − (2 +

√
3))(1/z − (2 +

√
3))

This leads to

P(ω) =

√
2 −

√
3√

2
(eiω − (2 +

√
3))

Since
√

2 −
√

3 = (
√

3 − 1)/
√

2, finally, m0 is given by

m0(ω) = 1
8
(
1 +

√
3 + (3 +

√
3)e−iω + (3 −

√
3)e−i2ω + (1 −

√
3)e−i3ω

)

The graphs of |m0(ω)|2 (low-pass) and |m1(ω)|2 (high-pass) corresponding to this
are shown in Figure 26.

From the development of m0, we can extract the elements of the discrete low-pass
filter hk and the high-pass filter gk:

58

Figure 26 – High-pass filters (m1) of ψ and low-pass filters (m0 of ϕ for the Daubechies
wavelet "Db2".

h0 = −g1 = 1+
√

3
4
√

2 ≈ 0.482963

h1 = g0 = 3+
√

3
4
√

2 ≈ 0.836516

h2 = −g−1 = 3−
√

3
4
√

2 ≈ 0.224144

h3 = g−2 = 1−
√

3
4
√

2 ≈ −0.12941

In general, the N -th order wavelet has associated filters of length 2N . To construct
a representation of ϕ(x) with support in [0, 2N − 1] (for Db2, N = 2), Daubechies and
Lagarias developed a simple algorithm, which consists of:

— Defining two matrices (2N − 1) × (2N − 1) as T0 =
√

2h2i−j−1; 1 ≤ i, j ≤ 2N − 1
and T1 =

√
2h2i−j; 1 ≤ i, j ≤ 2N − 1.

— For x ∈]0, 1], giving the list of binary digits of x truncated to m digits: e.g., for
m = 8, 0.0510 = 0.000011002 gives {0, 0, 0, 0, 1, 1, 0, 0} = d1≤j≤8.

— For each dj, associating Tdj
and constructing the matrix product

Tm(x) =
∏

1≤j≤m

Tdj

This matrix converges to a (2N−1)×(2N−1) matrix, where each column converges
to the vector:

59

Figure 27 – Wavelet ϕ(x) for Db2.

Tm(x) −→
m→∞



ϕ(x)

ϕ(x+ 1)

. . .

ϕ(x+ 2N − 2)


For Db2, this procedure yields ϕ(x), ϕ(x+ 1), and ϕ(x+ 2) by taking the row-wise

averages of Tm(x). The graph of ϕ(x) obtained in this way is shown in Figure 27.

The small structures are not due to numerical approximation artifacts. For ψ(x),
using the relation

ψ(x) =
∑
k∈Z

gk

√
2ϕ(2x− k)

and calculating ϕ(x) with the given high-pass filter coefficients, we obtain the graph
shown in Figure 28 12.

Before concluding this section, it’s worth mentioning that the solution to the Bezout
equation for P0 chosen earlier can be extended if the degree of P0 is not restricted to N−1.
In this case, one can take P (x) = P0(x) + yNR(1/2 − y) with R being an odd polynomial

12. Note: There exists another algorithm for directly calculating ψ(x).

60

Figure 28 – Wavelet ψ(x) for Db2.

that preserves the positivity of P (x). Thus, the Daubechies wavelet family discussed in
this section can be extended to include symlets, complex Daubechies wavelets, coiflets,
and more.

Now, let’s examine how to obtain wavelet coefficients of a discretized signal xi and
its synthesis.

7.6.0.4 DWT (Discrete Wavelet Transform) and its Inverse IDWT (Version)

Recalling the decomposition

L2(R) =
∞⊕

j=−∞
Wj = Vj0 ⊕

∞⊕
j≥j0

Wj

, this can be visualized using the "Russian dolls" concept (Figure 29).

In his course, S. Mallat elaborated the first decomposition to highlight the disconti-
nuities of a function. Instead, we have considered the second version where j0 is the finest
introspection scale.

If we take a signal f sampled at a fine introspection scale J , then f̃J ∈ VJ (note:
J ≫ 0), and we consider that the coarsest scale is j0. So, as

VJ = VJ−1 ⊕WJ−1 = Vj0 ⊕
J−1⊕
j≥j0

Wj

61

Figure 29 – Nesting sets of a multi-resolution analysis.

we have

f̃J(x) =

Vj0︷ ︸︸ ︷
∞∑

k=−∞
cj0,k2j0/2ϕ(2j0x− k) +

J−1∑
j≥j0


Wj︷ ︸︸ ︷

∞∑
k=−∞

dj,k2j/2ψ(2jx− k)


=
∑

k

cj0,kϕj0,k(x) +
J−1∑
j≥j0

∑
k

dj,kψj,k(x)

By applying the orthogonality of ϕj,k and ψj′,k′ , it follows that

cj0,k = ⟨f̃J , ϕj0,k⟩ =
∑

ℓ

hℓ−2k⟨f̃J , ϕj0+1,ℓ⟩

Using the equations defining the low-pass filters (hk) and high-pass filters (gk) involving

62

the scaling equation for ϕ and the equivalent one for ψ, it can be easily shown that

ϕj,ℓ =
∑

k

hk−2ℓϕj+1,k (1)

ψj,ℓ =
∑

k

gk−2ℓϕj+1,k (2)

All of this results in the recurrence relation (anonymizing j0):

cj−1,k =
∑

ℓ

hℓ−2kcj,ℓ

Similarly, the relation dj−1,k = ⟨f̃J , ψj−1,k⟩ gives a recurrence relation:

dj−1,k =
∑

ℓ

gℓ−2kcj,ℓ

The DWT (Discrete Wavelet Transform) algorithm can be summarized as shown in
Figure 30.

The inverse algorithm (IDWT) involves using cj0,., dj0+1,., . . . , dj,., . . . , dJ−1,. to syn-
thesize cJ,.. Locally, we would like to obtain cj,. from (cj−1,., dj−1,.). However, the expansion
of VJ can also be performed using the subdivision:

VJ = VJ−1 ⊕WJ−1 = Vj0−1 ⊕
J−1⊕

j≥j0−1
Wj

if we push the introspection scale one step further. Therefore,

f̃J(x) =
∑

k

cj0−1,kϕj0−1,k(x) +
J−1∑

j≥j0−1

∑
k

dj,kψj,k(x)

By identifying the common and different parts, and then equating the coefficients
of ϕj0,k, and finally anonymizing j0, we find the recurrence relation:

cj,k =
∑

ℓ

cj−1,ℓhk−2ℓ +
∑

ℓ

dj−1,ℓgk−2ℓ

63

Iterating this relation, it becomes clear that reconstructing cJ does not require the
intermediate cj,. values except, of course, for cj0,.. The IDWT scheme is thus depicted in
Figure 31.

However, if you pass through a DWT phase before proceeding to a new IDWT, for
example, after "cleaning" the detail coefficients, then you have access to the intermediate
cj,. values. The concrete implementation has some subtleties, which I will briefly touch
upon here for the DWT phase. In principle, as shown above, we start by initializing
cJ,k = xk for k = 0, . . . , Ns − 1 if we have Ns samples, and then we progressively calculate
(cJ−1,., dJ−1,.), (cJ−2,., dJ−2,.), and so on. However, it is more natural to initialize c0,k = xk

to proceed with the calculation of pairs (c1,., d1,.), (c2,., d2,.), and so forth. This is just a
simple index rearrangement, so the recurrence on the cj,k becomes:

cj+1,k =
∑

ℓ

hℓ−2kcj,ℓ; j = 0, . . .

Next, if we consider Daubechies wavelets of order N , the filter h has a length of 2N :
{h0, h1, . . . , h2N−1}. Thus, the sum over ℓ is constrained by 0 ≤ ℓ− 2k ≤ 2N − 1, which,
through a change of index, translates to the relevant elements of the cj,. vector as:

cj+1,k =
2N−1∑
ℓ=0

hℓ cj,ℓ+2k

This type of relation is typical of multiplying the cj,. vector by a circulant matrix with a
shift of 2 between each row, and the first row being {h0, h1, . . . , h2N−1, 0, . . . , 0} of length
Ns.

The question is to determine the dimension of the cj+1,. vector, given that of the cj,.

vector. In fact, this question is related to the handling of boundary effects. If the signal
has a length that is a power of 2, i.e., Ns = 2s, one possibility is to construct successive
matrices of dimension 2s−n × 2s−n+1 with a halving of the number of coefficients per
iteration and an assumption of periodic signal. Mathematica and pyWavelets (pywt) have
another strategy with a recurrence relation for the number of coefficients using w0 = Ns

64

Figure 30 – Diagram of a wavelet decomposition (Discrete Wavelet Transform).

Figure 31 – Signal reconstruction using wavelet coefficients (Inverse Discrete Wavelet
Transform).

65

Figure 32 – Digitized test function (4096 samples) with various types of discontinuities.

and FL = 2N (filter length):

wj =
⌈1

2(wj−1 + FL− 2)
⌉

(Mathematica) (3)

or wj =
⌊1

2(wj−1 + FL− 1)
⌋

(pywt) (4)

(⌈x⌉: ceil(x); ⌊x⌋: floor(x)). Note that the two relations are equivalent.

Finally, there is the maximum admissible introspection depth, which is the maximum
value of j in the recurrence relation for cj,. (where j = 0 is the input signal state). There
are different definitions depending on the libraries:

jmax =
⌊
log2(Ns) + 1

2

⌋
= s (Mathematica) (5)

jmax =
⌊
log2

(
Ns

FL− 1

)⌋
< s (pywt) (6)

(e.g., for pywt with Db2 wavelets, jmax = s − 1). The definition used by pywt aims to
minimize the impact of border effects on the cjmax,. vector.

7.6.0.5 Thresholding: Difference between FFT and DWT, Gibbs Phenomenon

Let’s consider the example of a signal like the one in Figure 32, sampled with 4096 =
212 samples. The decomposition using Db2 wavelets, where we limited the introspection
or refinement level to 6 (the maximum is 12), is shown in Figure 33. The coefficients
dj,k of the high-frequency "details" are shown on each row, and the coefficients c6,k of

66

Figure 33 – Wavelet coefficients ψ at different detail scales. The bottom row corresponds
to the low-frequency approximation obtained by the ϕ wavelet.

the low-frequency approximation are shown on the last row. The total number of detail
coefficients is 4109, and there are 66 approximation coefficients. In the course, S. Mallat
suggests keeping only the M most significant detail coefficients; let’s take M = 100. So,
there are 100+66=166 retained wavelet coefficients. Similarly, when performing an FFT,
one can keep the first M low-frequency coefficients.

Firstly, S. Mallat mentions the Gibbs phenomenon, which was highlighted in 1848
by H. Wilbraham, an English mathematician, but popularized in 1898 by A. Michelson
(of Michelson & Morlet). Michelson initially thought it was an artifact of his instruments,
but it was ultimately explained by J.W. Gibbs as a mathematical phenomenon related to
the Fourier transformation’s approximation error near discontinuities. This phenomenon
is clearly visible in our case of "thresholding", as shown in Figure 34. With the same
number of coefficients, the wavelet reconstruction is much more faithful (see Figure 35).
This demonstrates the importance of an adaptive algorithm (non-linear according to S.
Mallat’s notion). Of course, if you only had the FFT, you could get by with filtering
(which would smooth out the irregularities).

67

Figure 34 – Gibbs phenomenon near signal singularities when truncating the low-
frequency components of the Fourier transform.

Figure 35 – Signal reconstruction using IDWT by retaining only the most significant
detail coefficients, added to those of the low-frequency approximation, while keeping the
same total number of coefficients as the inverse FFT in Figure 34.

68

8. High-Dimensional Classification/Regression (Part I)

8.1 A Brief Recap

Recall that the central issue is the "curse of dimensionality" when trying to esti-
mate/approximate functions in very high dimensions. To address this problem, we have
seen that it is necessary to reduce the dimensionality of the problem by identifying forms
of regularity. We returned to lower dimensions to understand the topic of (Lipschitz)
regularity and explored Fourier Transform (linear case) and Wavelet Transform (non-
linear case), as well as more generally, sparse representations. These tools will allow us
to construct representations within the framework of classification and regression.

We will revisit these concepts in connection with algorithms, especially in this
course, linear classification/regression techniques with representations like kernel classi-
fiers.

8.2 Deterministic vs. Stochastic Models: It’s Not the Problem!

When addressing classification/regression problems, we can have two perspectives:

Deterministic Stochastic

Model y = f(x) y is a random function of x

Question We want to estimate f Find the most probable y (Bayesian)

However, deciding between the two perspectives ("one is better than the other") is
not the problem! The real question is: how can we capture the regularity of the problem
in order to determine the model parameters with as few samples as possible.

8.2.1 Bayesian and Deterministic Perspectives

Let’s examine the Bayesian perspective in the context of supervised learning in d

dimensions (x ∈ Rd), where we have n samples {xi, yi}i≤n. Let ỹ be the estimator of y

69

such that
ỹ = f̃(x)

To do this, we define a cost or risk (the term that will be used later) of making an error
when estimating y with ỹ: r(y, ỹ). We seek f̃ that minimizes the average risk, which is
given by

f̃ = argmin
f∈H

EX,Y [r(Y, f(X))]

where (X, Y) are the probability distributions that « generate » x and y. Recall that the
« classical » risk functions are:

— Classification, where y ∈ {−1, 1} (generalizable to K classes), using a binary risk
defined as

r(y, ỹ) =

0 if y = ỹ

1 if y ̸= ỹ

— Regression, where y ∈ R, using, for example, a quadratic risk

r(y, ỹ) = (y − ỹ)2

In this probabilistic approach, we need to calculate the average risk, which in the
case of regression is given by

EX,Y [r(Y, f(X))] =
∫ ∫

p(x, y)r(y, f(x))dxdy

=
∫
Rd
p(x)

∫
R
p(y|x)r(y, f(x))dydx

In classification, we would replace
∫
dy with a discrete sum over classes ∑K

y=1, and thus

EX,Y [r(Y, f(X))] =
∫
Rd
p(x)

K∑
y=1

p(x, y)r(y, f(x))dx

=
∫
Rd
p(x)

K∑
y=1

p(x, y) × I(y ̸= f(x))dx

So, when x is fixed, we want to minimize

K∑
y=1

p(x, y) × I(y ̸= f(x))

70

which means that when p(y, x) is large, we want f(x) ≈ y. In other words,

p(f̃(x)|x) = max
f

(p(f(x)|x))

This is the well-known Bayesian classifier that selects the most probable class given x. Is
this the end of the story since we have a formula/a scheme?

In fact, there is an underlying assumption of regularity on p(y|x) that can be for-
mulated quite trivially: when x varies only slightly, the probability p(y|x) does not change
much. This simply means that when x is « close » to a training sample xi, we consider
p(y|xi) = yi (a constant). This is the k-nearest neighbors algorithm that we encountered
in the lecture on 31/1/18 (Part 1). However, the space between samples in high dimen-
sions is enormous, so we need many samples n to reasonably estimate p(y|x). In other
words, we require a very high sample density to consider that the labeling error ε is low.
We have seen that

n ≈ ε−d

For the deterministic perspective, f is a unique function to be determined for which
y = f(x). In fact, we can define a conditional probability

p(y|x) = δ(y − f(x))

The fact that f is unique is not surprising, especially in the context of high dimensionality
d, where we have a lot of information to distinguish, for example, images of cats, dogs,
cars, etc., or sound samples for speech recognition (of course, this is the idea...). Thus, by
identifying p(y|x), we are reduced to the previous discussion.

Consider the case of regression with y as a continuous variable

EX,Y [r(Y, f(X))] =
∫
Rd
p(x)

∫
R
p(y|x)(y − f(x))2dy dx

In fact, we want to minimize (y − f(x))2 given x. Therefore, the solution is nothing else
but

f̃(x) = E[Y |X] =
∫
R
y p(y|x) dy

71

This is a specific result of the general result

min
µ

E[(Y − µ)2] ⇔ µ = E[Y]

The problem is that in high dimensions, to estimate E[Y |X] around a fixed x, either the
ball for collecting samples is huge, and then it is likely that p(y|x) = Cte is not correct,
or you need a high sample density to make the ball’s radius small, but then n ≈ ε−d.
We always encounter the same problem of the curse of dimensionality, which makes these
conditional expectations very difficult to calculate in high dimensions (see MCMC and
other quasi-Monte Carlo integration techniques).

So, whether from a deterministic point of view or from a probabilistic perspec-
tive that initially provides a scheme to solve the problem, the curse of dimensionality
remains.

The solution (perhaps temporary) is to circumvent the problem and impose strong
regularity either on f(y) (deterministic perspective) or on p(y|x) (probabilistic perspec-
tive). We no longer assume solely that the function is locally Lipschitz or Lipschitz-α,
but we drastically reduce the dimensionality d of the problem and reduce it to only 1
variable. Generalizing this (very rough) idea of going from d variables to 1 variable will
encompass almost all learning algorithms other than NN (MLP).

8.3 Dimensionality Reduction: Similarity Kernel and Hyperplane

For example, let’s consider binary classification y = ±1. The idea is as follows: to
separate the 2 classes in d dimensions, we use a transformation

z = ϕ(x)

such that the boundary between the 2 classes is a hyperplane: thus, we have linearized
the boundary. Figure 36 illustrates the process.

In the new space, to classify a sample, you only need to know its position relative to
the hyperplane, i.e., know the sign of the distance between the sample and the hyperplane.

72

Figure 36 – Linearization of the problem by changing the representation z = ϕ(x). We
then look for the hyperplane that separates the 2 classes of samples.

This is expressed by defining an estimator for y, denoted ỹ, as follows

ỹ = sgn {⟨w, ϕ(x)⟩ + b}

where w is the normal vector to the hyperplane, ⟨w, ϕ(x)⟩ is the vector projection of ϕ(x)
onto the normal, and b is the position of the affine plane. The parameters (w, b) must be
estimated: the components of vector w and the scalar b, i.e., d+1 variables. We introduce
the concept of similarity to characterize if two samples are « close » to each other, as in
the case of the k-nearest neighbors algorithm, which is natural in low dimensions (it is
known not to work well in high dimensions). So, let’s take the Euclidean distance in the
new space.

||ϕ(x) − ϕ(x′)||2 = ||ϕ(x)||2 + ||ϕ(x′)||2 − 2⟨ϕ(x), ϕ(x′)⟩

Therefore, two samples are similar if their distance is close to 0, meaning that their inner
product is large. So, studying similarity in the new space is equivalent to studying the
kernel function

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩

Finally, in this linearization example, we have the choice (and equivalence): either
define the function ϕ as the change of variables, or define directly the similarity kernel
between two points in the new space. So, the problem is to find the « right » change
of variables to linearize the boundary, or the « right » kernel that best aggregates the

73

samples into clusters.

Another way to view this problem is by expanding the dot product:

ϕ(x) = (φk(x))k≤d′ → ⟨w, ϕ(x)⟩ =
∑

k

wkφk(x)

We then obtain a weighted average (where w is normalized to 1) among d′ "patterns" or
"structures" φ(x), or in other words, we perform a "vote" among the structures, and w

is the discriminant vector 13.

Now that we have linearized the boundary to be sought to separate the two classes,
are we free from the curse of dimensionality? We need to answer two types of questions
(not necessarily in this order):

— Q1: How to optimize (w, b) ∈ Rd+1?
— Q2: How to optimize the change of variables or representation ϕ(x)?

Q2 is the more critical one, and to address it, two strategies are considered:
— Either we fix a priori the representation ϕ(x), which can be replaced by the choice

of the similarity kernel k(x1, x2);
— Or the algorithm is capable of learning the representation by itself because we

do not have enough elements/information to fix it a priori. This is the domain of
neural networks (NN/MLP).

8.3.1 Finding the hyperplane (w, b): Necessary Regularization

For now, we’ll forget about ϕ(x). In the new space, we denote it as x, which is a
vector in d′ dimensions, but we’ll use d for simplicity. We are looking for a classifier in
the form of

sgn
(∑

k

wkxk + b

)

The space of classifiers H is defined by the set of (w, b)

H =
{
(w, b) ∈ Rd+1

}
13. Note: S. Mallat shows in a simple example that counting the number of "red" pixels in an image

containing either fire trucks or regular trucks can be a simple discriminant pattern for recognizing fire
trucks.

74

However, we have seen in the course of 24/1/18 that the fluctuation error related to the
size of H is given by

ε2 ∼ log |H|
n

which is the ratio between the size of H and the number of examples/samples. Here, even
if Rd+1 is infinite, we can quantify it, but we would need an infinite number of bins, which
leads to an infinite set of « possibilities », resulting in the overfitting effect. Therefore, we
need to impose a condition to reduce the dimensionality of H to consider and reduce
overfitting.

Notation: If x′ = (x1, . . . , xd, b) and w′ = (w1, . . . , wd, 1), then ∑
k wkxk + b =∑

ℓ w
′
ℓx

′
ℓ. From now on, we’ll forget the ′.

Let’s consider the new regularized empirical risk (note that xi here represents the
i-th sample and not the i-th component):

R̃r(h) = 1
n

n∑
i=1

r(yi, h(xi)) + λ||w||2 with h(xi) = sgn⟨w, xi⟩

With the new term, we reduce H to a compact set. In general, the concepts of overfitting,
prediction stability, and convexity of H are closely related.

Let’s examine for a moment the case without regularization for a regression problem
(we will address classification afterward, which adds complexity). We have an empirical
risk R̃(h) such that

R̃(h) = R̃(w) = 1
n

n∑
i=1

(yi − h(xi))2

The minimization with respect to the components of w leads to a linear equation

1
n

∑
i

⟨w, xi⟩xi = 1
n

∑
i

yixi ≡ c

(Note: Here, xi is a vector in d + 1 dimensions, even though d is the dimension of the
space after the change of representation.) If we define the matrix A as

A = 1
n

∑
i

xix
T
i

75

then we need to solve a linear system of the form

Aw = c

whose solution, if A is invertible, becomes:

w = A−1c

But, there are two « buts »:

— In general, A is non-invertible. This can typically be handled using the concept of
the Moore-Penrose pseudo-inverse;

— A−1 is unstable (branch of « inverse problems »), and an error on c (changing the
response yi for an xi) leads to an amplification of errors. This naturally results in
overfitting.

Let’s take a closer look. The definition of A tells us that it is symmetric, so it is diagona-
lizable in the form:

A = ODOT

where O is an orthogonal matrix, and D is the diagonal matrix of eigenvalues of A. If
the space spanned by the n samples (V) is of dimension d, then A is invertible (D has
no zero values). If the space spanned is of lower dimension, then we need to construct the
pseudo-inverse denoted A+. The Rd space is divided into two vector subspaces, V and
V ⊥, defined by ∀x ∈ V ⊥ A+x = 0

∀x ∈ V x = Aw ⇒ A+x = w

Note that the singular value decomposition (SVD) can be used to define the pseudo-
inverse. The solution to the linear problem

Aw = c

consists of a general solution to the homogeneous equation Aw = 0 and a particular
solution given by applying the pseudo-inverse if (and only if) AA+c = c. Therefore, in
general, we have:

wsol = A+c+ P0w0

76

where P0 = I − A+A is the orthogonal projector onto the kernel of A; AP0 = 0.

8.3.2 How Does Regularization Help Stabilize the Response?

We have found a way to calculate the parameters of the hyperplane (w, b) that
separates the two populations of labeled samples {xi, yi}. But does this solve the problem
of generalization error, i.e., when we take test samples? So, after training, for any x, we
have an estimator of the response f̃(x) (recall: b is implicitly contained in x),

f̃(x) = ⟨w̃, x⟩

Depending on the type of x, we obtain different empirical risks:xi ∈ "Training set" → R̃(f̃)
xi ∈ "Test set" → Rtest(f̃)

Imagine that the « Test set » is identical to the « Training » set except for a single sample
(xk, ȳk). If the estimator f̃ is stable, then a small change of this kind has no influence
on the risk, and there is no overfitting. In fact, we wonder what would happen when we
calculate w after changing the value of c (denoted c̄) when changing yk to ȳk? It follows
that Aw̄ = c̄ and

||w − w̄|| = ||A−1(c− c̄)|| ≤ ||A−1|| × ||c− c̄||

In principle, ||c−c̄|| is small because we made a small change to only one sample. However,

||A−1|| = max(σ−1
ℓ)ℓ

So, if the matrix A has a very small eigenvalue, there will be instability. To guard against
small eigenvalues in « inverse problems », regularization is employed! This is a topic
discovered in several fields in the 1940s and is known as Tikhonov-Miller regularization,
as mentioned by S. Mallat.

How does this regularization actually stabilize things in practice? Recall that the

77

empirical risk is equal to

R̃r(h) = 1
n

n∑
i=1

(⟨w̃, xi⟩ − yi)2 + λw.wT

The gradient with respect to w gives the following regularized equation:

(A + λI)w = c

However, the matrix A + λI is always invertible because, using the decomposition of A,
we realize that the new diagonal matrix is given by:

Dr = D + λI

and thus the new eigenvalues are always σ′
ℓ ≥ λ. So, when we consider the effect of a small

change as before, we get the inequality

||w − w̄|| ≤ ||(A + λI)−1|| × ||c− c̄|| = 1
λ

||c− c̄||

Therefore, if ||c − c̄|| ≈ ε, then ||w − w̄|| ≈ ε. We have effectively eliminated/reduced
overfitting.

8.3.3 Convexity

Another way to see things is that problem (Pb1) boils down to minimizing

min R̃r(w) = min
(

1
n

n∑
i=1

(⟨w, xi⟩ − yi)2 + λ||w||22

)

which is equivalent to problem (Pb2) of constrained minimization, namely

min R̃(w) = min
(

1
n

n∑
i=1

(⟨w, xi⟩ − yi)2
)

with ||w||22 < β

Now, R̃(w) is a convex function that we want to minimize with a constraint. We can
interpret this problem as a Lagrangian problem, where a λ (Lagrange multiplier) cor-
responds to β, which bounds the L2 norm of w. In this context, solving problem Pb2

78

amounts to ensuring that the space of w (Hβ) has a smaller dimension than H without
constraints. Once again, we combat dimensionality by reducing the space of functions
in which we seek the solution.

Different types of regularization can be imposed, but we essentially consider L2 and
L1 norms:

— L2 Norm: ||w||22 = ∑
k |wk|2 < β, easier to handle;

— L1 Norm: ||w||1 = ∑
k |wk| < β, which favors a « sparse » w with many 0s (sparse

representation) and a few large components, used for feature selection.

8.3.4 Risk in terms of the dual variables of w

We quickly realize that w ∈ V , the space generated by the training samples xi.
Indeed, we can linearly decompose w into a V component (w1) and a V ⊥ component
(w2), so the regularized empirical risk is

min R̃r(w) = min
(

1
n

n∑
i=1

(⟨w, xi⟩ − yi)2 + λ(||w1||2 + ||w2||2)
)

The regularization term will make component w2 tend toward 0, which constrains w ∈ V ,
and mechanically, this implies that

w =
n∑

i=1
αixi

(this is the representer theorem, which has practical applications when n < d). The αi are
the dual variables of w. The regularized empirical risk to be minimized has the expression

R̃r(α) = 1
n

n∑
i=1

(
n∑

k=1
αk⟨xk, xi⟩ − yi)2 + λ

∑
k,k′

αkαk′⟨xk, xk′⟩

R̃r(α) is thus a convex quadratic form in αk with coefficients that are the inner
products ⟨xk, xi⟩. But let’s remember that in fact, these are the inner products after

79

changing the representation, so they should be seen as ⟨ϕ(xk), ϕ(xi)⟩. In the end, it is not
necessary to know ϕ, but rather the values of the similarity kernel k(xk, xi).

We have approximately n2 coefficients (inner products) independently of the dimen-
sion of ϕ(x) (14). So, if I have to compute them from ϕ(x), it can be prohibitive if the
dimension of ϕ(x) is large. Especially for very good reasons, we want to have a very large
dimension of ϕ(x) (e.g., several thousand). Indeed, in very high dimensions, you always
find a feature (in the broad sense) that is discriminative and can separate the two classes.
This was the hope in the 2000s because at that time we thought (in a caricatured way):
« we just have to work in very high-dimensional structures/features! ». Furthermore, if we
calculate the inner products directly using an analytical formula for the kernel, there is
no impact on the computation time.

But: everything will work, but if the dimension of ϕ(x) is too large, we will fall
into overfitting. So, in practice, we come back to very down-to-earth aspects of how to
find the right ϕ(x), or how to find the right features.

9. High-Dimensional Classification/Regression (Part II)

9.1 Regression (Kernel Model): Bias-Variance Trade-off

Recall that in the case of the « curse of dimensionality », the fluctuation error and
the number of samples behave as n ≈ ε−d. The work on changing the representation ϕ(x)
(cf. Part I) aimed to drastically reduce the dimension of the space in which we look for an
estimator f̃ (in the deterministic case where y = f(x)), keeping only the d+1 components
of w ∈ Rd+1 as parameters. Therefore, n ≈ dε−2, and there is no explosion as d becomes
large. But that doesn’t mean we’re out of the woods yet; we also need to find ϕ and avoid
overfitting.

If we define x ∈ Ω = {x ∈ Rd/||x|| ≤ 1} (bounded) and similarly, the res-
ponse y is bounded by [−1, 1] (in regression), the minimization problem R̃r(w) and

14. ndje: imagine that the components of ϕ(x) are all monomials of a certain degree obtained from the
components of x. Ex. (x1, x2, x3, x1x2, x1x3, x2x3, x

2
1x2, x

2
1x3, x

2
2x1, x

2
2x3, x

2
3x1, x

2
3x2, . . .)

80

w̃ = argmin
w

R̃r(w), which means w̃ is the best discriminative direction (minimizing the
regularized empirical risk). If we define the « true » risk as

R(w) = EX,Y [r(Y, ⟨w,X⟩)]

that we want to compare to E(R̃r(w̃)), which means

E(R̃r(w̃)) ≤ min
w∈H

R(w) + ε2

we would like ε2 to decrease rapidly as the number of samples (n) increases.

Theorem: If we constrain w to be sought in the set HB
√

d = {w/||w||2 < B2d} then

ε2 = 150B
2d

n
, and λ = ε

3dB2

Let’s see what we can expect with this result. On one hand, if we regularize with a
value of λ, the result on w is that its norm is constrained, and this is all the more true
as λ increases. Therefore, the size of class H decreases (∝ B) as λ increases. Thus, we
understand the relationship λ ↔ B. On the other hand, the first relation states that
ε2 ∝ (size of H)/n; this is what we expected from the general formula. Finally, we realize
that if we want ε to be small, we cannot choose λ too large because it would introduce a
too significant bias term.

Thus, as soon as the number of samples n is much larger than the size d of the
ϕ vector, we guarantee a small fluctuation error ε but now there is no guarantee that
the bias term min

w∈H
B

√
d

R(w) is small, meaning that I will approximate the training data

with a linear combination with w ∈ HB
√

d. This is the limit of such an estimator where
classification/regression relies on only one discriminative direction w.

9.2 The Counterpart for Classification

Compared to the regression discussed earlier, there is an added complication in
classification: the non-convexity of the problem at first glance. In regression, we have a
convex function (because the risk is convex) to minimize under constraints, which can be

81

Figure 37 – Convexification of the risk r(w) through the upper bound r̄(w).

solved perfectly with gradient descent. However, this is not the case in classification, as
we will need to go through a phase to make the problem convex.

In classification, we typically have a risk r(y, ỹ) with the estimator ỹ given by:

r(y, ỹ) =

0 if y = ỹ

1 if y ̸= ỹ
; ỹ = sgn(⟨w, x⟩ + b)

If we take yi = 1, as long as ỹi = −1 (I’m on the wrong side of the hyperplane), the
risk is 1, and as soon as ỹi = 1 (I’m on the right side), the risk is 0.

A few reminders about convexity: - A set Ω is convex if

∀x, y ∈ Ω, α ∈ [0, 1], αx+ (1 − α)y ∈ Ω

- A function f(x) is convex on Ω if

∀x, y ∈ Ω, α ∈ [0, 1], f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y)

- The set Ωc of x such that f(x) ≤ c is a convex set if f is convex. - Finally, if f has a
minimum fmin on a convex Ω, then

Ωmin = {x/f(x) = fmin}

82

is convex, and it reduces to a single point if f is strictly convex.

So the risk is not convex (see the red curve in the figure). Indeed, taking x1 = −1
and x2 = 1, we should have the property

α ∈ [0, 1], f(αx1 + (1 − α)x2) ≤ α

which is not satisfied for α = 1/2 − ϵ (ϵ ≪ 1) since the left-hand side is equal to 1.

To make it convex (by simplifying it) and ensure a small ε of fluctuations, as we
saw in regression, we use an upper bound for the risk r like the one shown in blue in the
figure (originating from the Hinge loss, the basis of Support Vector Machines by V. N.
Vapnik & A. Chervonenkis (1963)). Thus, when we obtain an upper bound for the new
risk (r̄), it effectively becomes an upper bound for the old risk (r).

9.3 Kuhn & Tucker’s Saddle Point Condition (1950)

This concerns the risk minimization with a constraint on ||w||2. Let’s consider pro-
blem 1:

min
x∈Ω

f(x) and Ck(x) ≤ 0 (Prob. 1)

where Ck(x) represents a series of constraints. Now, let’s introduce the Lagrangian
(λ = (λ1, . . . , λK), and λk ≥ 0):

L(x, λ) = f(x) +
K∑

k=1
λkCk(x)

A sufficient condition (Proposition 2) can be expressed as follows:

if there exists a saddle point (x̄, λ̄) (Figure 38), defined as:

∀(x, λ) ∈ Ω × (R+)K L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄) (Prop. 2)

then we have the following properties:

83

Figure 38 – Saddle point at the intersection of the blue (max) and red (min) curves.

x̄ is a solution of Prob. 1
and ∀k, λ̄kCk(x̄) = 0

The second property implies that if the constraint Ck(x̄) < 0, then λ̄k = 0, and at
the constraint boundary, λ̄k ̸= 0. This result is fundamental in optimization. The proof
is as follows:

So, if we have a saddle point, taking the first inequality and expressing the Lagran-
gian explicitly:

f(x̄) +
∑

k

λkCk(x̄) ≤ f(x̄) +
∑

k

λ̄kCk(x̄)

thus:

∀λk ≥ 0,
∑

k

(λk − λ̄k)Ck(x̄) ≤ 0

We can then choose, for a fixed k0:

λk0 = λ̄k0 + 1 and ∀k ̸= k0 λk = λ̄k, which translates to:

84

Ck0(x̄) ≤ 0

and this holds for all k0. Therefore, the constraints of Prob. 1 are satisfied.

Another particular case is when we fix λk0 = 0 for k0, and ∀k ̸= k0 λk = λ̄k. This
results in the relation:

λ̄k0Ck0(x̄) ≥ 0

Now, as we have shown that ∀k, Ck(x̄) ≤ 0, and λ̄k0 ≥ 0, then λ̄k0Ck0(x̄) = 0 for all
k0.

Now, let’s take the second inequality concerning the Lagrangian and express it:

f(x̄) +
∑

k

λ̄kCk(x̄) ≤ f(x) +
∑

k

λ̄kCk(x)

Since ∀k, λ̄kCk(x̄) = 0, and also Ck(x) ≤ 0 and λ̄k ≥ 0, we conclude that:

f(x̄) ≤ f(x)

So, x̄ is indeed a minimum, and it satisfies Prob. 1. ■

When the problem is convex, i.e., when f(x), the constraints Ck, and the set Ω in
which we seek x are all convex, then:

If ∃x0 ∈ Ω/Ck(x0) ≤ 0 ⇒ then Prop. 2 is necessary.

and we can express the result in the form of a differential, which is useful in convex
optimization. Thus, the necessary and sufficient conditions whenever we have a convex
risk with convex constraints (and a solution in a convex space) are given by:

85

∂xL(x̄, λ̄) = 0 = ∂xf(x̄) +
∑

k

λ̄k∂xCk(x̄) (7)

∂λL(x̄, λ̄k) = Ck(x̄) ≤ 0 (8)∑
k

λ̄kCk(x̄) = 0 (9)

The goal hereafter is to work within this framework of convexity, even if it means
convexifying (by upper-bounding) the risk, as in the case of classification.

10. Support Vector Machine Classification

This refers to research conducted from the 1990s to 2005. These are algorithms that
work well (not necessarily those used in practice), but there are interesting concepts: how
to linearize a problem, how to make it convex, and thus solve it with simple and efficient
algorithms. Moreover, the mathematical framework allows for control up to the risk of
estimators.

10.1 The Margin Criterion

So, we are in the case of a binary classification y = ±1 with x ∈ Rd.

The linear estimator/classifier is determined by the sign of x relative to the hyper-
plane (w, b) (Figure 39). If the problem is separable, then the hyperplane exists, and for
all training data:

∀(xi, yi)i≤n, yi × (⟨w, xi⟩ + b) ≥ 0

(= 0 on the hyperplane itself). However, the hyperplane is not unique, as shown in
Figure 40.

To obtain an optimal solution, we use Vapnik’s idea: we should choose the hyperplane
that is the most robust to small changes in the training data. In other words, choose the
hyperplane that is the "farthest" from both classes: x+

i and x−
i (Figure 41).

86

Figure 39 – Normal to the separating hyperplane.

Figure 40 – Which line (or hyperplane in dimension d) to choose?

87

Figure 41 – The concept of margin and support vectors.

Note that on the hyperplane ⟨w, x⟩ + b = 0 and outside it ⟨w, x⟩ + b = c ̸= 0.
On either side of the plane, we can find the points x1 and x2 closest to the hyperplane,
belonging to the two classes, and such that the hyperplane is in the middle (i.e., the point
(x1 + x2)/2 is on the hyperplane). Therefore:

⟨w, x1⟩ + b = m||w||

⟨w, x2⟩ + b = −m||w||

With m||w|| being the distance from x1 (x2) to the plane. We can rescale x such
that the distance between x1 and x2 is equal to 2, so:

||w|| = 1
m

Maximizing the margin « 2m » (and thus m) is equivalent to minimizing ||w||.
Knowing that w is a linear combination of xi, the problem is reformulated as follows:

yi × (⟨w, xi⟩ + b) ≥ 1; and min(||w||2)

88

10.2 Finding the Best Possible Hyperplane: Penalization

The problem is of the type seen in the previous class, with a function to minimize,
here the norm of w, and n constraints (Ci(w, b)). The Lagrangian is then written as:

L(w, b, α) = 1
2 ||w||2 +

∑
i

αi(1 − yi × (⟨w, xi⟩ + b))

Now, the minimization will indeed give the best hyperplane, provided it exists. Most
of the time, there will be no linear classifier (here, the hyperplane) that perfectly separates
all training samples 15. In this case, we seek a hyperplane that minimizes the classification
error. Vapnik suggests defining the error as how much we need to move the misclassified
samples to place them beyond the margin to reclassify them correctly. So, if we denote
ξi ≥ 0 as the distance for sample i that needs to be moved, then:

yi × (⟨w, xi⟩ + b) ≥ 1 − ξi (Soft SVM)

(if ξi = 0, it’s called « Hard SVM »). Of course, we want to penalize these rearran-
gements. So, we reformulate the problem as follows:

Min(1
2 ||w||2 + C

∑
i ξi)

yi × (⟨w, xi⟩ + b) ≥ 1 − ξi

10.3 Regularization

We have already seen that to ensure that fluctuations do not introduce too much
error, we need to constrain the size of the class (space) in which we search for parameters.
How does this translate into our problem? If we fix (w, c) then:

ξi ≥ 1 − yi × (⟨w, xi⟩ + b)

15. Note: except in a sufficiently high-dimensional space.

89

and we want ξi ≥ 0, so:

ξi = max(1 − yi × (⟨w, xi⟩ + b), 0)

So, the minimization can be written by posing ȳi = ⟨w, xi⟩ + b (linear regression):

1
2 ||w||2 + C

∑
i

max(1 − yiȳi, 0)

Now, the function:

r(x, y, w, b) = r(y, ȳ) = max(1 − yȳ, 0)

is nothing but a convexified version of the binary classification risk r(y, ỹ) with
ỹ = sgn(ȳ) as seen in the previous class. Therefore, the global risk:

R̃(w, b) =
n∑

i=1
r(xi, yi, w, b)

is convex, and the minimization problem appears as:

Min(R̃(w, b) + 1
2 ||w||2)

That is, the minimization of a convex risk regularized by the norm of ||w||2 which
restricts the size of the hypothesis class on (w, b) and thus minimizes fluctuations. The
problem is well-posed, and the calculation proceeds correctly.

10.4 Saddle Point Method

If we consider the case of Hard SVM (ξi = 0), then the Lagrangian is given by:

L(w, b, α) = 1
2 ||w||2 +

∑
i

αi(1 − yi × (⟨w, xi⟩ + b))

90

The saddle point is the point where we seek a minimum in the space (w, c) and a
maximum for αi with αi ≥ 0. The respective gradients of the Lagrangian give:


∑

i αiyi = 0 (R1)
w = ∑

i(αiyi)xi (R2)
1 − yi × (⟨w, xi⟩ + b) = 0 (∀αi ̸= 0) (R3)

The second equation shows that w is indeed a linear combination of xi (cf. αiyi =
±αi). If αi = 0, then 1 − yi × (⟨w, xi⟩ + b) < 0, meaning the sample is beyond the margin,
so the constraint does not apply. Thus, the number of « active » constraints (αi > 0)
depends on the number of points that lie on the two boundary hyperplanes.

In the end, the algorithm will be driven not by the total number of samples but only
by those that are closest to the hyperplane for which αi > 0, and thus:

w =
∑
i∈I

(αiyi)xi

Hence the term « Support Vectors of the samples in I ».

To solve the problem, we work in the dual space of the Lagrange multipliers (αi).
Taking into account R1 and R2, the Lagrangian expansion yields:

L(w, b, α) = −1
2

n∑
i,j=1

αiαjyiyj⟨xi, xj⟩ +
n∑

i=1
αi

which needs to be minimized for the αi. This can be done using conjugate gradient
and stochastic gradient techniques.

For the case of « Soft SVM », we must minimize:

1
2 ||w||2 + C

∑
i

ξi

which translates into an additional constraint on the αi:

0 ≤ αi ≤ C

91

10.5 Generalization to the Non-Linear Case

We have seen that optimizing the margin is equivalent to convexifying the risk and
regularization, and that ultimately, the problem depends only on the dot products ⟨xi, xj⟩,
resulting in a linear boundary (an hyperplane). To find a non-linear boundary, we need to
find a representation z = ϕ(x) that linearizes the problem. We have seen that everything
comes down to the transformation:

⟨xi, xj⟩ → ⟨ϕ(x)i, ϕ(x)j⟩ = k(xi, xj)

with k(x, x′) being a measure of similarity between x and x′ (a kernel).

The optimization is the same as in the linear case, and the solution for the estimator
yi is:

f̃(x) = sgn(⟨w, ϕ(x)i⟩ + b) = sgn(
∑

j

αjyj⟨ϕ(x), ϕ(x)j⟩ + b)

= sgn(
∑

j

αjyjk(xj, x) + b)

In the 1990s-2000s, there was an optimistic wave. It was understood that not only
could we find a very complex boundary, but we could also characterize the complexity of
the boundary, where the dimension of the vector ϕ(x) can be very large. Let’s look at two
examples: polynomial kernels and Gaussian kernels.

10.5.1 Polynomial Kernels

Let’s take an example of a kernel (x0 ≡ 1):

k(x, x′) = (1 + ⟨x, x′⟩)p =
 d∑

j=0
xjx

′
j

p

What are the Φ(x)? In fact, if j⃗ = {j1, . . . , jp} with all permutations:

92

Φ(x) =
{
φj⃗(x)

}
j⃗=(0,...,d)p

and

k(x, x′) =
∑

j⃗=(0,...,d)p

p∏
i=1

xji
x′

ji
=

∑
j⃗=(0,...,d)p

p∏
i=1

xji

p∏
i=1

x′
ji

= ⟨Φ(x),Φ(x′)⟩

So, dimΦ(x) = (1 + d)p = d′, and

φj⃗(x) =
p∏

i=1
xji

which means all monomials of degree p. The estimator f̃(x) (in regression) can be
expressed as:

f̃(x) =
n∑

ℓ=1
αℓyℓ

∑
j⃗=(0,...,d)p

p∏
i=1

x
(ℓ)
ji

p∏
i=1

xji

So, f̃(x) is an arbitrary polynomial of degree p.

The trick is that it was not necessary to fit these monomials of degree p (we fitted the
dual variables, i.e., αi), and thus p can be very large even in dimension d, so d′ = (d+ 1)p

terms! Imagine with d = 106 for an image and p = 5. . . Then, in fact, all sums are bounded
by n, so the number of scalar products is n(n + 1)/2. So the technique appears to be
very powerful. Is it a miracle, or is there a catch? Where is the price to pay? As one can
imagine, it’s in the fluctuations: overfitting is quickly a problem as we have too many
features and too few samples. The reason for success is not only that the algorithm is
stable but also that we can always put ourselves in a case where the hyperplane answers
the problem on the training samples (fitting in regression or separation in classification).
This comes from the following proposition:

Proposition: If the {xi}i≤n are linearly independent (and d′ ≥ n), then

∀yi, ∃w/ ⟨w, xi⟩ = yi

93

The matrix whose rows are the vectors xi is invertible, so w exists. So it is sufficient
to place oneself in a sufficiently high dimension.

We can even do a little better. If we take a sample at random (denoted x1) as a
reference for the coordinates, then

{x1 − xi}2≤i≤n

are linearly independent (d′ ≥ n− 1), then

∀yi, ∃(w, b)/ ⟨w, xi⟩ + b = yi

Indeed, we reduce ourselves to the case of the theorem:

⟨w, xi − x1⟩ = yi − y1

⟨w, x1⟩ + b = y1

The first equality indicates that w exists, and the second fixes b.

So in fact, we can always find ϕ(x) of sufficient dimension to find a suitable hy-
perplane. Returning to the original space of x, the boundary becomes non-linear.

However, the fluctuation error is

ε2 ≈ log |H|
n

= d′

n
= (1 + d)p

n

leading to a catastrophe, as the error can potentially be enormous. To control it,
d′ must be much less than n. So either d is small from the start, or feature reduction
must be performed, even if the dimension of d is slightly increased to d′.

10.5.2 Gaussian Kernel

Let’s imagine that we have a problem like the one shown in Figure 42.

94

Figure 42 – Isolated non-convex clusters, non-linear and non-convex boundary.

The boundary is clearly non-convex and cannot be generated by a polynomial kernel.
The kernel we will consider is defined by the Radial Basis Functions (RBF):

k(x1, x2) = e− 1
2σ2 ||x1−x2||2

What is Φ(x) in this case? It is shown that one solution can be written as:

φk⃗(x) = e− 1
2σ2 ||x||2 ∏

j⃗=(0,...,d)k

xji

but there are infinitely many k, so Φ(x) is of infinite dimension. However, we notice
that this kernel is calculated very simply, whereas if we went through the φk⃗(x) step, it
would have required an infinite number of operations!

If ||x1 − x2|| ≪ σ, then

k(x1, x2) ≈ 1 − ||x1 − x2||2/(2σ2)

so the kernel behaves like a local Euclidean distance, and we can determine a local
linear classifier (regression). Gradually, we will define a boundary that can be of any
structure.

95

Figure 43 – Through progressive application of a filter of size σ, we linearize locally,
and ultimately obtain a complex boundary.

96

But what is the price to pay? Always the bias-variance trade-off. If σ is too small,
there are not enough samples (remember: we are in high dimensions, the 2D drawing
is very misleading). So σ must be large enough so that the volume of the ball is of the
same order of magnitude as the size of the space, and the Gaussian classifier becomes a
linear classifier! Then we cannot account for details. σ is determined by cross-validation
in practice, and we can obtain not linear classifiers but slightly curved ones locally. But
there is no miracle.

10.6 NDJE. Comments

Before concluding this course, I wanted to revisit the SVM technique from a com-
pletely different perspective. So, consider {xi, yi}i≤n with yi ∈ {0, 1}. The idea is a linear
parametric probabilistic model (I’m trying to keep the notations related to S. Mallat’s
course):

hw(x) = P (y = 1|x;w) = 1 − P (y = 0|x;w)

So, the probability that y is 0 or 1 is given by:

P (y|x;w) = hw(x)y(1 − hw(x))1−y

We then form the likelihood as follows, assuming that all samples are independent:

L(w) =
n∏

i=1
P (yi|xi;w)

and seek a maximum to find the value of w. To use minimization algorithms, we ins-
tead use − log L(w) normalized by the number of samples n. Thus, we form the function:

J(w) = − 1
n

n∑
i=1

{yi log(hw(xi)) + (1 − yi) log(1 − hw(xi))}

Now, we need to provide an expression (model) for hw(x) (i.e., P (y = 1|x;w)). In
principle, in connection with S. Mallat’s course, we would look for something like:

97

Figure 44 – Several functions hw(z) for likelihood minimization.

hw(x) = 1
2(1 + sgn(⟨x,w⟩))

(Note that b is integrated into the dot product.)

But this expression is not suitable as an argument for log. This is why D. Cox (1958)
introduces the logistic function (Figure 44) in this type of problem:

hw(x) = 1
1 + e−⟨x,w⟩

Alternatively, we could introduce the "tanh" function:

hw(x) = 1
2(1 + tanh(⟨x,w⟩))

To conclude on logistic regression, we add regularization to correct overfitting by
introducing an L2 norm penalty, so J(w) becomes:

98

Figure 45 – Candidate risk/cost functions.

Jr(w) = − 1
n

n∑
i=1

{yi log(hw(xi)) + (1 − yi) log(1 − hw(xi))} + λ
d∑

j=1
|wi|2

For the "non-linear" step with kernels, I pointed out that the previous expression
could be generalized as follows (in the literature, λ is taken out of the {} and 1/(2λ) = C):

Jr(w) = 1
2 ||w||2 + C

n∑
i=1

{yicost1(⟨xi, w⟩) + (1 − yi)cost0(⟨xi, w⟩)}

The functions cost1(z) for the logistic and tanh expressions are shown in blue and
green, respectively, in Figure 45.

Let’s consider the case of the red curve, which represents a threshold effect. In S.
Mallat’s course, this is referred to as "hinge loss" associated with the margin, given the
geometric interpretation:

costhinge
1 (⟨xi, w⟩) =

1 − ⟨xi, w⟩ ⟨xi, w⟩ < 1
0 ⟨xi, w⟩ ≥ 1

99

These three functions are upper bounds of the "sign" function shown in black in
Figure 45, as in S. Mallat’s course. They serve to convexify the problem 16.

In the case of minimizing Jr(w), to interpret the choice of costhinge
1 , I considered the

case where C ≫ 1. The problem then becomes a minimization:

min
w

(1
2 ||w||2

)

under the constraints (which nullify the C term) as follows:

⟨xi, w⟩ ≥ 1 if yi = 1
⟨xi, w⟩ ≤ −1 if yi = 0

This problem is identical to the one mentioned by S. Mallat, adapted for yi = {0, 1}.
So, minimizing Jr(w) yields the same result as SVM in the case C ≫ 1.

11. Gradient Descent Method and an Introduction to Neu-
ral Networks

11.1 Gradient Descent Optimization

Minimization algorithms are not just tools; they are conditions of possibility. They
make learning possible. So, we have the following problem:

min
w∈H

R(w)

To achieve this, we calculate gradients:

∇⃗R(w) =
(
∂R(w)
∂wk

)
k≤d

≡ ∂wR(w)

16. Note that we rescaled the logistic/tanh cost functions by 1/ log(2) to do this, which does not
contribute to the minimization.

100

and through iteration, starting from an initial value w = w0, we obtain:

wk+1 = wk − η∇⃗R(wk)

In fact, the derivative of R(w) with respect to any unit vector n⃗ is given by:

∂R(w)
∂n⃗

= ∇⃗R(w).n⃗

So, the direction of the gradient maximizes the derivative, which is the steepest local
ascent.

The existence of gradients everywhere is guaranteed by the smoothness (at least
Lipschitz) of R(w), and the presence or absence of local minima is related to the convexity
of R(w). The convergence rate is determined by the Hessian (second derivative).

11.1.1 Quadratic Risk

R(w) = 1
2⟨Aw,w⟩ + ⟨b, w⟩

with A being symmetric and positive definite (typically a covariance matrix). The-
refore,

∂wR(w) = Aw + b

A necessary condition for w∗ to be the solution is that

∂wR(w∗) = 0 ⇒ w∗ = −A−1b

Hence, the convergence rate can be studied by looking at the deviation at each step
between wk and w∗:

wk+1 − w∗ = (I − ηA)(wk − w∗)

101

Thus, in terms of norm:

||wk+1 − w∗|| ≤ ||(I − ηA)|| × ||wk − w∗||

If we denote ||(I − ηA)|| = ρ, then:

||wk+1 − w∗|| ≤ ρk||w0 − w∗||

Convergence is ensured if ρ < 1, and we want it to be as small as possible by tuning
η. Now,

||(I − ηA)|| = max(|1 − ησi|) = max(|1 − ησmin|, |1 − ησmax|)

So, by taking:

η = 2
σ2

max + σ2
min

we achieve the best ρ:

ρ = σ2
max − σ2

min
σ2

max + σ2
min

We can see that if we condition the matrix A such that σmax ≈ σmin, we get rapid
convergence. All of this discussion generalizes by taking A as the Hessian matrix (second
derivatives) of the risk (making the problem locally quadratic).

11.1.2 Batch vs. Stochastic Gradient

In the case of learning with n samples, the empirical risk is calculated as the average
risk over all samples, and n can be very large. However, at each step wk+1 requires the
calculation:

102

∂wR̃(w) ∝
n∑

i=1
∂wr(yi, xi;w)

which involves n operations. This is called a Batch of n elements.

For stochastic gradient, the strategy is to calculate an estimate of the stepping
direction using one element:

wk+1 = wk − η∂wr̃(yi, xi;wk)

We still want to minimize the true risk (independently of the chosen technique),
which is:

min
w

R(w) = min
w

EY,X(r(Y,X,w))

and both methods guarantee this.

What is the advantage? If there are redundancies in the samples, the Batch method
is not efficient because it performs unnecessary calculations. In the Stochastic method,
redundant samples will be used at different steps (k) of the algorithm. However, Stochastic
Gradient is very noisy compared to Batch Gradient, resulting in a different convergence
rate. In a strongly convex case (where the Hessian is well-conditioned):

E(R̃(wk) − min
w

R̃(w)) ≈

O(1/k) (StochasticGradient)
O(ρk) (BatchGradient)

So, the « Stochastic Gradient » method is faster with a small number of iterations,
but the « Batch Gradient » converges faster with a large number of iterations. This is
schematically represented in Figure 46.

Some methods attempt to combine the advantages of both methods. See, for example,
the work of F. Bach et al. (SAG method) 17

17. See https://www.di.ens.fr/%7Efbach/Defazio_NIPS2014.pdf.

https://www.di.ens.fr/%7Efbach/Defazio_NIPS2014.pdf

103

Figure 46 – Diagram illustrating the convergence speed of stochastic gradient descent
and batch gradient descent.

11.2 Data Representation ϕ(x) and Introduction to Neural Networks

11.2.1 Introduction: What Does One Neuron and One Neural Network Do?

So far, the representation ϕ(x) has been separate from the classification/regression
operation. We make a choice a priori, for example, the type of kernel (e.g., polynomial,
Gaussian) and its internal parameters (e.g., degree p, width σ). Then, in the case of
classification, we provide a linear estimator:

h̃(x) = ⟨w, ϕ(x)⟩ + b

The lingering question is: how do we choose ϕ(x)? There are two possibilities: either
we have information about the data, and we can make an "informed" choice, or we let the
algorithm learn the right representation. Neural networks (referred to hereafter as NN:
Neural Net, or MLP: Multi-Layer Perceptron) learn both the representation and the
classifier simultaneously.

The representation is a cascade of linear classifiers passed through non-linear filters
(Figure 47).

104

Figure 47 – Operations performed by one neuron.

Figure 48 – Activation functions (ρ) of a neuron.

Regarding the non-linear function ρ(x), several choices have been/are being used.
Three typical ones (with ReLU: rectified linear unit = max(0, x)) are presented in Figure
48.

The result of a linear classifier (w, b) separates into two classes, and the function ρ

in the case of sigmoid/tanh reaffirms the class choice with a "fuzzy" transition zone. With
ReLU, below the hyperplane, we have classification, and above, we have linear regression.
In both cases, the neuron performs a separation of the space.

An MLP (Figure 49) constructs a representation ϕ(x) and a final linear regression,
possibly with classification.

If x0 is the input, with 2 hidden layers and 1 final regression, and we differentiate
the non-linear operations at each activation step of the neurons:

ỹ = ρ3 [W3ρ2 [W2ρ1[W1x0 + b1] + b2] + b3]

105

Figure 49 – The network produces both the representation ϕ(x) and the final classifica-
tion.

The challenge is to perform optimization for all neurons, meaning learning the
representation ϕ(x) while performing the final regression. We will minimize a risk as we
have done so far, but now the number of parameters will be very large. How can we
understand the architectures of MLPs? This is what Y. LeCun, G. Hinton, Y. Bengio,
and others have done using convolutions and input information to reduce connections.

11.2.2 Single Hidden Layer Network

In the case of a single hidden layer, we have an important result. So, consider the
network in Figure 50.

h̃(x) = ỹ = ρ

[
M∑

k=1
αk ρ

[
d∑

m=1
wk,mxm + bk

]
+ b

]
≈ f(x)

A quick reminder: when performing classification, we define an approximation class:

H = {hw/algorithm parameters (w)}

and minimize an empirical risk, possibly regularized:

min
h∈H

R̃(hw)

106

Figure 50 – Single hidden layer network with M neurons.

But is ỹ = h̃(x) close to y = f(x)? The class H must be large enough to fit any
function but not too large to avoid overfitting.

In the case of a single hidden layer, do we have enough parameters? In fact, we
can ask what family of functions is generated by this type of architecture. What is the
regularity of f(x)? In this case, the last non-linearity does not change the class (regularity),
so we can focus on the representation ϕ(x) such that:

ϕ(x) =
M∑

k=1
αk ρ

[
d∑

m=1
wk,mxm + bk

]
=
∑

k

αk ρ [⟨wk, x⟩ + bk]

In other words, if we leave (αk, wk, bk) free, what space do we generate? The answer
is simple and spectacular: any continuous function can be approximated with a single
hidden layer NN! 18.

Theorem (1989-93): If ρ ∈ C(R) (continuous) and is not a polynomial, then if
f ∈ C(Rd), f can be approximated with arbitrary precision by a single hidden layer NN
(NN-1 hidden layer) to say that:

18. Note, S. Mallat talks about a 2-layer NN

107

∀ε > 0,∀K(compact) ⊂ Rd ⇒ ∃ϕ (NN − 1 hidden layer) / max
x∈K

|f(x) − ϕ(x)| < ε

The proof will be presented next year. However, this result, while spectacular, does
not provide a general solution to the dimensionality problem because imagine that the
size of the hidden layer M explodes in dimension d, then we have not gained anything:
the fluctuation error explodes as the size of H grows.

Let’s take an example to understand why the theorem does not provide a general
solution to the dimensionality problem. Consider ρ(x) = eix (or cos(x)), i.e., the kernel of
Fourier series.

ϕ(x) =
M∑

k=1
αke

i(⟨wk,x⟩+bk) =
M∑

k=1
αke

ibkei⟨wk,x⟩

If we consider the compact x ∈ [0, 1]d, we find a Fourier series decomposition that
we have seen before:

ϕ(x) =
∑

wk∈Zd

ϕ̂(wk)ei2π⟨wk,x⟩

If the function’s regularity is Lipschitz, it guarantees a decay of Fourier coefficients,
and we can truncate the series:

0 ≤ |wk| ≤ C

But the number of wk grows as Cd, we fall back into the curse of dimensionality.

This result generalizes to any continuous function ρ (except polynomials), and it
shows that the number of parameters (neurons) explodes. So, a single hidden layer NN
can approximate any continuous function, but potentially at the expense of an explosion
of parameters in high dimension d.

108

The challenge of architectures is therefore to solve the dimensionality problem while
being able to approximate a wide class of functions with hidden regularity that the neural
network can capture. Why it works completely is not yet understood.

