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1. Foreword

Disclaimer: What follows are my informal notes in French, translated into rough
English, taken on the fly and reformatted with few personal comments ("NDJE" or dedica-
ted sections). It is clear that errors may have crept in, and I apologize in advance for them.
You can use the email address provided on the cover page to send me any corrections. I
wish you a pleasant read.

Please note that the Collège de France website has been redesigned. You can find
all the course videos, seminars, as well as course notes not only for this year but also for
previous years 1.

I would like to thank the entire Collège de France team for producing and editing
the videos, without which the preparation of these notes would have been less convenient.

Also, note that S. Mallat 2 provides open access to chapters of his book "A Wavelet
Tour of Signal Processing", 3rd edition, as well as other materials on his ENS website.

This year 2022 marks the fifth year of S. Mallat’s Data Science chair, with the theme
being Information Theory.

I have uploaded some notebooks on GitHub 3 to illustrate this course. This initiative
is minimalist, so you are invited to provide feedback and suggestions. I have used JAX as
the automatic differentiation library because it allows coding directly like Numpy, which
simplifies learning.

2. Lecture 19 Jan.

2.1 Introduction

Let’s take a look at some significant developments in the field of data science in
2021. For example, the recognition of the performance of very large systems such as

1. https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/
events

2. https://www.di.ens.fr/~mallat/CoursCollege.html
3. https://github.com/jecampagne/cours_mallat_cdf/cours2022

https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.college-de-france.fr/chaire/stephane-mallat-sciences-des-donnees-chaire-statutaire/events
https://www.di.ens.fr/~mallat/CoursCollege.html
https://github.com/jecampagne/cours_mallat_cdf/cours2022
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GPT-3 developed by Open AI 4, which was deployed in mid-2020. This system boasts a
whopping 175 billion parameters, making it the largest to date. It is a formal language
model that learns from databases drawn from the web, including sources like Common
Crawl, WebText2 5, Google Books, and Wikipedia. It is trained on hundreds of billions
of words. The ongoing trend since the inception of neural networks is that the more
parameters a model has, the more spectacular its performance becomes. Moreover, GPT-
3 is not confined to a specific task or corpus; it becomes somewhat of a generalist as it can
generate various types of text (e.g., translation into any language from a single example,
arithmetic, any programming language, text generation from examples), as well as engage
in dialogues, etc. Humans are increasingly struggling to discern whether articles, even
those over 200 words, are of artificial or human origin. Unfortunately, the downside is
that this opens the door to disinformation, and to fraudulent messages generated entirely
automatically.

Now, the field remains highly experimental, and these performances are poorly un-
derstood, despite the "discovery" of double descent in risk by Belkin et al. 6, which S.
Mallat discussed in his 2020 lecture 7, generating many avenues of study in the field of
over-parameterization. There is a plethora of publications (e.g., 15,000 papers at the last
NISP conference), an acceleration of research. Yet, there is a need to return to funda-
mentals for a global perspective. While some may think or observe that articles become
obsolete within a few months, some endure for centuries. For example, it was around the
1920s that Ronald A. Fisher (1890–1962) laid the foundations for Statistics, and we are
ultimately within the framework he established on January 1, 1922, with his paper "On
the mathematical foundations of theoretical statistics" 8. The same can be said of Claude
Shannon’s (1916-2001) 1948 paper "A Mathematical Theory of Communication" 9.

4. https://openai.com/blog/openai-api/, Tom B. Brown et al. Language Models are Few-Shot Lear-
ners, (July 2020) arXiv:2005.14165v4 https://arxiv.org/abs/2005.14165

5. https://commoncrawl.org/, https://www.eleuther.ai/projects/open-web-text2/
6. Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal, "Reconciling modern machine learning

practice and the bias-variance trade-off", arXiv:1812.11118v2
7. J.E.C note, "Notes and comments on S. Mallat’s lectures at the Collège de France (2020),

Multi-scale Models and Convolutional Neural Networks", February 2020; revised September 17, 2020.
https://www.di.ens.fr/ mallat/CoursCollege.html

8. https://doi.org/10.1098/rsta.1922.0009, available on the course website https://www.di.ens.fr/
~mallat/CoursCollege.html

9. C. E. Shannon, The Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, July, October.
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

https://openai.com/blog/openai-api/
https://arxiv.org/abs/2005.14165
https://commoncrawl.org/
https://www.eleuther.ai/projects/open-web-text2/
https://doi.org/10.1098/rsta.1922.0009
https://www.di.ens.fr/~mallat/CoursCollege.html
https://www.di.ens.fr/~mallat/CoursCollege.html
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
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In this course, we will therefore study the concept of Information. However, before
delving into that, we will ask what is meant by building a model (e.g., neural networks)
and what type(s) of model(s) can be chosen when dealing with high-dimensional analysis?

2.2 Deterministic vs. Stochastic Models

Implicit in this choice is a certain worldview 10, with, on one side, a Cartesian pers-
pective, mostly French (continental), and on the other, a Bayesian view, primarily En-
glish 11. Let’s say that these two perspectives on probability have their respective biases,
if we want to keep it brief. While culturally, one might lean one way or the other and
consider the two views equivalent, when dealing with high-dimensional problems, we are
somewhat limited in our choice.

Take the problem of supervised classification, for example. The goal is to estimate a
response y from data x ∈ Rd (d ≫ 1), and to do this, we have a training set {xi, yi}i<n.
The question that arises is: does it become more challenging to solve this problem as d

increases?

From the deterministic perspective, the answer is Yes, due to the curse of dimen-
sionality, which was a topic of discussion in the 2018 Lecture. If we consider an unknown
function y = f(x) in 1D, and if we have enough sampling points and the function f is
sufficiently regular, then we can interpolate it with good accuracy (Fig 1). However, when
we move into high dimensions x ∈ Ω (e.g., Ω = [0, 1]d), if we want sufficiently dense data,
for example, with a distance ε between adjacent points, we need N points to cover the
space Ω. This leads to the following scaling relation

N ∼ ε−d (1)

Now, if we have a regular function, for example, Lipschitz, then when we are near a
training point,

∥f(x)− f(xi)∥ ≤ C∥x− xi∥ (2)

10. See, for example, the 2019 Lecture Section 2.3.2
11. However, we will explore the contribution of Pierre-Simon de Laplace (1749-1827), who rediscovered

Bayes’ inverse probability law, leading to a Theory of Probabilities in 1812. These elements also form the
basis of current research.
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Figure 1 – Interpolations of two datasets (xi, yi) (non-noisy; red and green points) of
an unknown underlying function f (blue curve). The denser the sample population, the
better the interpolation.

and the point density helps bound the right-hand side, thereby estimating the generali-
zation error (left-hand side). Thus, the required number of data points N exponentially
explodes with dimension d to maintain fitting accuracy. This phenomenon of explosion
is what motivates this answer. However, one could always argue about the regularity of
the underlying functions of high-dimensional data, thinking that the problem can still
be tackled. For example, by expressing invariants/symmetries of the problem (e.g., the
theme of the 2020 Lecture) to perform dimensionality reduction. However, in the reaso-
ning above, there is no model on the data. This is where the stochastic approach, in a
way, attempts to go further in the analysis.

From the Bayesian perspective, the answer is No! Indeed, as d increases, we intui-
tively observe that an image has better resolution (the same applies to a sound clip), so
it seems natural that it should be easier to a priori recognize a higher resolution object
in the image. Thus, the negative answer seems natural, and it creates a dilemma. Let’s
consider level curves 12. of the function f (Fig. 2):

Ωy = {y / f(x) = y} (3)

12. Elaborated argument in the 2021 Lecture regarding A. Barron’s 1993 theorem (Section 5.2.3)
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Figure 2 – Example of a level curve f(x) = y.

What interests us is the geometry of these curves (in any dimension, these are surfaces).
Where do points concentrate in space? There is indeed concentration (Fig. 3), and the
space actually occupied by, for example, images of dogs, cats, cars, etc., is tiny compared
to the total possible space of images of the same dimension. The underlying phenomenon
is the law of large numbers. Ultimately, having the view of level curves is, in a way, opting
for a perspective similar to Lebesgue’s integral that uses the measure of these sets. And
when we say measure, we mean probability. Schematically, through a measure, we have
the probability density of x given y, denoted as p(x|y):

Ωy
measure−−−−→ p(x|y) (4)

Now, through Bayes’ theorem (Thomas Bayes 1701-61), we have

p(y|x) = p(x|y)p(y)
p(x) (5)

where p(y) and p(x) are the a priori probabilities 13, and p(x|y) is called the likelihood
that x is true given y. The Bayesian classifier defines the best y as the one that maximizes

13. We call it prior for p(y) and marginal likelihood for p(x) because we can write p(x) =∫
p(x|y)p(y)dy =

∫
p(x, y)dy
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Figure 3 – Concentration of object classes.

p(y|x):
ŷ = argmax

y
p(y|x) (6)

To realize this scheme, the Bayesian approach poses (or must pose) the question: where
do data concentrate? And then, we realize that we don’t need to find a solution y for
every x ∈ Ω but only for the x elements in Ωy.

Therefore, we need to address concentration phenomena of the measure and model
probabilities p(x|y) (unsupervised problem) or p(y|x) (supervised problem). Typically, we
study families of probabilities such as the exponential, and, for example, modeling like

p(x|y) = Z−1
y eΘy .Φ(x) (7)

raises the question of modeling Φ(x), which is the most appropriate representation of x

that linearizes log p(x|y).

It is then realized that the fields that study these types of probabilities are Statistical
Physics and Information Theory, which we will explore in this 2022 course.

2.3 Fisher’s Perspective

The first question that R. Fisher addresses in the 1922 article is how to define the
information in data about the estimation of a parameter θ. This is a problem of Inference.
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He engages in a thorough reflection on what we are trying to achieve in the field of
mathematical statistics and data analysis. According to him, we are attempting a form
of data compression, which means representing data with as few parameters as possible
while providing a representation of the significant information within the available data.
He then develops several key concepts, including:

— the notion of consistency of an estimator; does the estimator converge when we
have an infinite amount of data, and is it biased or not?

— the concept of inference through maximum likelihood
— the concept of information
— the notion of sufficient or exhaustive statistics, which accounts for the fact that

the statistics (a set of operations applied to a dataset) contains all the information
about the parameter(s) of the underlying probability distribution.

All these notions form the basis of current statistical mathematics.

To illustrate, if we have a dataset χ = {xi}i≤n, the problem at hand is to determine
the probability distribution underlying the creation of this particular dataset. Thus, R.
Fisher defines a family of probabilities indexed by θ, pθ(x), and the problem boils down
to estimating the "right" θ. For example, in 1D, we can think of θ = (µ, σ2) such that

pθ(x) = 1√
2πσ2

e− (x−µ)2

2σ2 (8)

Of course, the problem we have in mind with image classification, for example, involves
many more variables.

Given an estimator θ̂(χ), we would like it to converge as n = |χ| tends to infinity,
meaning

θ̂(χ) −−−−→
|χ|→∞

θ (9)

then we qualify θ̂(χ) as a consistent estimator. Fisher then finds a way to construct
consistent estimators, which is through maximum likelihood:

θ̂(χ) = argmax
θ

pθ(χ) (10)

In this way, we determine a model for which the observed data is as probable as possible.
Later, we will denote the estimator as θ̂ with observations χ. When we have identically
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and independently distributed observations (iid hereafter), then

pθ(χ) =
∏
i≤n

pθ(xi) (11)

It is tempting to use the logarithm, so we define the log-likelihood (sometimes we will omit
"log" to refer only to the likelihood)

ℓ(θ) := log pθ(χ) =
∑
i≤n

log pθ(xi) (12)

So, the ideal is to find the θ(χ) that maximizes the expectation of the likelihood.

θ̂(χ) = argmax
θ

Eχ[ℓ(θ, χ)] (13)

In this context, the notion of independence (of observations) is the form of regularity
that ultimately overcomes the curse of dimensionality.

Regarding the Fisher Information, it is the idea of calculating the uncertainty about
the parameter (and propagating it to the generalization estimation error). Since ℓ(θ̂) is
maximized, then

∂ℓ

∂θ

∣∣∣∣∣
θ=θ̂

= 0 (14)

and one can examine whether the maximum is more or less "narrow" by using, for example,
higher-order derivatives (notion of curvature). Another way to approach the problem, if
dealing with an unbiased estimator, meaning 14 E(θ̂) = θ, is to look at the variance (given
that E[∂ℓ(θ̂)/∂θ] = 0)

I(θ) = E


∂ℓ(θ̂)

∂θ

2
 (15)

which Fisher calls information 15. The Cramér-Rao result 16 provides an upper bound on

14. Expectation is to be understood in the sense that we are given a law for generating sets of obser-
vations χ, which makes θ̂(χ) random and allows us to calculate the expectation, variance, etc.

15. NDJE This is indeed the variance involving the first derivative of ℓ(θ), but if the function is twice
differentiable, we have the expectation of −∂2ℓ/∂θ2 with the appropriate sign change.

16. Harald Cramér (1893-1985) and Calyampudi Radhakrishna Rao (1920-).
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the estimation error
E[(θ̂ − θ)2] ≥ 1

I(θ) (16)

which gives meaning to the idea that the more (useful) information we have about the
parameter θ, the better its estimation.

It must be acknowledged that all of this scheme developed by R. Fisher is essentially
what we attempt to do when performing stochastic gradient descent to train a neural
network.

2.4 The Case of Neural Networks

Why is Fisher’s framework at work in the optimization of neural networks? The
problem is not so much about developing the formalism described earlier; the major
challenge is to specify the probability family pθ(x). Neural networks can be seen as a way
to specify this family.

For example, in Figure 4, we have schematized different typical stages of a neural
network. There is a cascade of linear filters (e.g., convolution), nonlinearities (e.g., ReLU),
and finally a linear operation that yields a vector zy(x) from which, through a "softmax"
operation 17, we obtain the probability distribution pθ(y|x) as follows:

pθ(y|x) = ezy(x;θ)∑
y′ ezy′ (x;θ) (17)

where y′ ranges over the set of classes to be separated (e.g., digits from 0 to 9). In this
context, the parameters θ include all the coefficients of the convolutional filters and the
final linearity. The estimator of the network’s output, here denoted as ŷ, maximizes the
probability:

ŷ = argmax
y

pθ(y|x) (18)

To optimize classification, we simultaneously compute θ̂ as the maximum likelihood,
which, as we will see, is equivalent to minimizing the Kullback-Leibler "distance" 18, i.e.,

17. See, for example, the 2020 course Section 3.4.
18. See, for example, the 2019 course Section 7.2.3.
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Figure 4 – Schematic of a multi-layer neural network (classification).

conditional entropy. If we denote D = {xi, yi}i≤n

θ̂ = argmax
y

E
{x,y}∼D

[log pθ(y|x)] (19)

Thus, we have a cost function to minimize (−ℓ(θ)), and for this, we use gradient descent 19.

The remarkable point is the realization that the probability families that neural
networks allow us to access are quite generic, enabling the solution of very broad classes
of problems such as image processing, text processing, audio analysis, physics/chemistry,
etc. An important focus is then to understand the nature of these probability families and
why these neural models are so versatile and complex.

2.5 Another Information: Shannon’s Information

The Fisher information developed so far is based on the a priori assumption that
we have a parameterized model, and we try to infer the best possible parameters based
on a given criterion. Another entirely different type of information was introduced by
Claude Shannon (1916-2001) in the 1940s. It is information that no longer depends
on the model. The idea is to ask what intrinsic information is contained within the
data. Underlying these developments are communication issues between sender-receiver,
as one needs to preserve the maximum amount of information in these exchanges. The
foundational article dates back to 1948, and its title is similar to that of R. Fisher: A

19. See, for example, the 2018 course Section 10 and the 2019 course Section 8.
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Mathematical Theory of Communication 20. Like Fisher, Shannon wrote 21 an article that
illuminated an entire field that remains relevant: the "why", the new tools, and the basic
theorems.

The framework is the same as before: we have a series of independent observations
χ = (xi)i≤n, generated by the same probability distribution 22, so they are iid data. If we
denote p(xi) as the probability of observation xi, then

p(χ) =
n∏

i=1
p(xi) =⇒ 1

n
log p(χ) = 1

n

∑
i

log p(xi) (20)

The right-hand side represents an average of the log-probabilities of xi. Now, since the
variables are independent, the law of large numbers tells us (if all goes well) that there is
convergence as n tends to infinity:

lim
n→∞

− 1
n

log p(χ) = E[− log p(x)] := H[p] (21)

where H is the Shannon Entropy 23. The key property here, independently of any model,
is that the probability of a set of observations tends to converge.

Let’s make this property explicit: the fact that it converges in probability means
that for any ε > 0, we have

P
(∣∣∣∣− 1

n
log p(χ)−H[p]

∣∣∣∣ ≤ ε
)

n→∞−−−→ 1 (22)

20. C. E. Shannon, The Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, July, October.
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf.

21. also at the age of 32, like Fisher.
22. S. Mallat notes that he uses the notion of probability according to the Lebesgue measure, but you

can also think of the concept of measure directly.
23. NDJE: A bit of history on the concept of entropy, even though the exercise can’t be exhaustive.

Since the work of Rudolf Clausius (1822-88), who introduced the concept of entropy in 1865, and then
the work of J. Clerk Maxwell (1831-79), who developed the theory of the distribution of velocities in
gases, generalized in 1896 by Ludwig Boltzmann (1844-1906), who interpreted the entropy according to
the famous formula "S = k log W" engraved on his tombstone, Statistical Mechanics has been based on
the works of Josiah Willard Gibbs (1839-1903). In 1901, he wrote a book titled "Elementary Principles in
Statistical Mechanics developped with especial reference to the Rational Foundation of Thermodynamics"
(Yale Univ. published in March 1902), establishing a solid bridge between Statistical Mechanics and
Thermodynamics and generalizing the statistical interpretation of a system’s entropy, which Claude
Shannon adopted in 1948.

https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
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Figure 5 – Schematic of a typical set T ε whose probability of membership tends to 1
as the number of observations tends to infinity. The size of the typical set is essentially
proportional to the Shannon entropy H. In green, a typical observation; in red, a rare
observation found at the boundary of T ε.

So, in reality, the observations x do not occupy the entire space Ω but concentrate in a
space called the typical set T ε, defined by the fact that (Fig. 5)

T ε =
{
{x} ∈ Ω /

∣∣∣∣− 1
n

log p({x})−H[p]
∣∣∣∣ ≤ ε

}
(23)

This set is potentially much smaller than the set Ω, and its size is determined by the
Shannon entropy H. In a sense, entropy will define the minimum number of bits required
to encode the observations. This introduces a notion of information, the origin of which
is more of an uncertainty concept, related to the size of the typical set. The remarkable
point is that the probability density within the typical set is uniform. We ultimately find
ourselves dealing with a geometry problem because characterizing the observations is
equivalent to characterizing the geometry of the typical set.

The impact of these concepts is profound as it underpins the entire telecommunica-
tions industry (coding, channel capacity). Additionally, it resurfaces in Statistical Physics
through the concepts of entropy and typical sets. In mathematics, when one wants to look
at the probability of rare events, entropy is used again 24. Rare events are found at the
boundary of typical sets.

24. NDJE: S. Mallat refers to the Theory of Large Deviations developed in the 1960s in the lineage of
C. Shannon, by authors including Harald Cramér (1893-1985), S. R. Srinivasa Varadhan, Jürgen Gärtner,
Richard S. Ellis, Ivan Nikolaevich Sanov (1919-1968), and Edwin Thompson Jaynes (1922-98).
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So, there is a beautiful theory developed by Shannon and his successors, but one
needs to be able to characterize the typical sets. In Fisher’s case, there is explicit para-
meterization, but in Shannon’s case, one needs geometry. What is this geometry, then?
One case that has been studied in great detail initially because it is simpler is that of
Gaussian Processes.

2.6 The Case of Gaussian Processes

In a sense, these Gaussian processes are Shannon’s equivalent of the parametrization
of the Gaussian family in Fisher’s work. Let’s denote the joint probability as follows 25:

pθ(x) = Z−1 exp
(
−1

2xT Θ−1x
)

(24)

where Θ is the covariance matrix of the Gaussian process (assumed to have zero mean):

Θ = E(xxT ) (25)

(x is a d × 1 dimensional vector, so Θ is of dimension d × d). In this context, what do
the typical sets correspond to? To understand this, we need to study the log-probability,
which is very simple here:

− log pθ(x) = log Z + 1
2xT Θ−1x (26)

The immediate idea that comes to mind is to diagonalize the matrix Θ and obtain its
eigenvalues and eigenvectors. Then, we can write

1
2xT Θ−1x =

d∑
k=1

x2(k)
2σ2

k

(27)

where (x(k))k≤d are the d coordinates of x in a basis that diagonalizes the covariance
matrix such that in this basis Θ = diag(σ2

1, . . . , σ2
d). In essence, we perform a Princi-

pal Component Analysis (PCA). Typical sets are thus characterized by ellipsoids with
symmetry axes aligned with the principal axes of the covariance matrix.

25. NDJE xT Θ−1x can be denoted as ⟨x, Θ−1x⟩.



18

However, even though the central limit theorem tends to support the usefulness of
Gaussian Processes, it remains true that real-world problems are rarely Gaussian. Take
a picture of our environment, for example; it contains numerous discontinuities that are
essential for distinguishing objects from one another. In such cases, Gaussian Processes
are incapable of capturing phenomena like turbulence, textures, etc. On the other hand,
the remarkable capabilities of neural networks seem to be well-suited for modeling these
phenomena. But in this case, characterizing typical sets is much more complex.

The central question, as developed in previous courses, is as follows: how, or through
what underlying mechanism, are the probability families induced by neural networks
generic? In the sense that the same type of operator cascades (convolution, rectifiers,
etc.) can capture the characteristics of widely independent/disconnected problems.

2.7 Complexity and Architectural Structures

This is a topic that S. Mallat addressed in his 2020 course 26 regarding the role of
Herbert A. Simon (1916-2001) 27, and his book The Architecture of Complexity, published
in 1962 28. The question raised is: Are there generic families for data processing?

Herbert A. Simon wrote a book that is quite different from those of R. Fisher
and C. Shannon, where he takes a step back from the field. In particular, he studies the
generic structures of the "world" (meaning by observing what happens in biology, language
processing, physics, etc.):

• Hierarchy is almost always the prevailing structure.

• A dynamic explanation (temporal) of this hierarchical structure is the search for
stability (survival).

• Scale separability (within the hierarchy) enables overcoming the curse of dimensio-
nality.

26. See the note in the 2020 course, Section 3.2.
27. Winner of the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel in 1978,

but more importantly, the Turing Award in 1975 for his contributions to Artificial Intelligence, making
him one of the pioneers of AI in the USA alongside Allen Newell (1927-92), with whom he shared the
Turing Award.

28. Proceedings of the American Philosophical Society, Vol. 106, No. 6. (Dec. 12, 1962), pp. 467-482.
https://www2.econ.iastate.edu/tesfatsi/ArchitectureOfComplexity.HSimon1962.pdf.

https://www2.econ.iastate.edu/tesfatsi/ArchitectureOfComplexity.HSimon1962.pdf
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• The temporal description should be seen as aggregative processes tending toward
global stability, rather than a succession of static states where the order is established
from the beginning.

As inspiring and fascinating as reading such articles may be, in the end, one is left so-
mewhat perplexed because there is no mathematical model to grasp onto, and the impact
is not at all on the same scale as the articles by Fisher and Shannon. However, what
has changed compared to the time when Simon wrote his article is that we now have
algorithms that implement hierarchical structures (e.g., the sequence of convolutions fol-
lowed by subsampling allows changing the analysis scale of an image, for example), but
mathematics is not yet able to fully comprehend everything. Nonetheless, in order to
try to understand the probability families underpinning neural networks, one must first
have a good understanding of the fundamentals of Fisher and Shannon’s theories. We will
address this in the following sections through Coding Theory, particularly image coding.

2.8 Image Coding

In a certain way, image coding boils down to specifying typical sets. If we use Gaus-
sian Processes to describe an image, we’ll see that it’s essentially considering structures
as smooth functions without any discontinuities, edges, etc. This won’t work if we want
fine details in the image description. What will genuinely help us is the use of sparse re-
presentations, which was the topic of the 2021 course. We will now make the connection
with coding.

Intuitively, by drawing the contours of objects in an image (Fig. 6), we already get
a good description of it. By doing this, we’re looking at the locations of singularities.
Can we describe the image in terms of "transitions"? If yes, then we realize that pixel
information is highly redundant and can be compressed. So, the scheme is as follows:
• Be able to represent transitions/variations,
• Do this at different resolutions.

We can unfold this scheme using an orthogonal wavelet basis 29. The geometries of typical
sets are then elongated along the axes of the basis due to sparsity. Thus, in certain
directions, wavelet decomposition coefficients can be large, but most coefficients are close
to zero (Fig. 7). In the 2021 course, we saw the equivalence between the ability to perform

29. Also, see elements on this subject in the 2018, 2020, and 2021 courses.
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Figure 6 – Drawing contours allows us to understand what the image is telling us. And
here, the algorithm used provides a lot (perhaps too much) information.

Figure 7 – Schematization of typical sets: when using an orthonormal wavelet basis, it
concentrates coefficients to be mostly non-zero along the decomposition axes.
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approximation, the existence of sparse representations, and the presence of underlying
regularity, a triptych then called the RAP triangle. The implementation of the resulting
codings is the JPEG-2000 standard, developed from 1997-2000 and officially ratified in
2015 by the three organizations ISO, IEC, and ITU. We will see that it combines wavelets
with entropy coding to compress images.

Regarding the course organization and challenges, it’s best to watch the recorded
course video (>1:15 from the beginning).

3. Lecture 26 Jan.

3.1 Revisiting Determinism vs. Probabilism

S. Mallat revisits the difference in approach between determinism and stochasticity
in high dimensions (Sec. 2.2).

Recall that when we want to relate a variable y to another variable x in the de-
terministic approach, we think of an unknown function f that exists beforehand, such
that y = f(x). If we have observations {xi, yi}i≤n (Fig. 1), then we know the values of
this function at the points (xi)i≤n. In this context, the mathematical problem is one of
interpolation, which works well when the function is regular. As mentioned in the previous
session, interpolation in high dimensions can potentially be very challenging due to the
curse of dimensionality. Nevertheless, it’s worth keeping in mind that in low dimensions,
interpolation is very effective, and if we manage to redefine the problem by reducing the
dimensionality, we have a powerful tool widely used in physics, where x ∈ R,R2,R3, or
even in problems involving time. It’s also used, for example, in image processing, where
interpolation can fill in "dead" areas of a CCD sensor. What happens in low dimensions,
which is the key to success, is that the density of sampling points is high (or can be low),
while in high dimensions, the problem becomes entirely different, as we’ve seen. Hence,
the idea of considering a probabilistic approach.

Now, concerning the types of functions f , in the 2021 course, we delved into the
notions of regularity and the relationship between approximation and sparsity. In low
dimensions, functional analysis asks questions like: what function space does f belong
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to? For instance, in Sobolev spaces, f has derivatives of a certain order, and in Hölder
spaces, f has singularities of a certain type, etc. All of this works well in low dimensions.
If we shift to high dimensions, which was also the basis for the 2021 course, what matters
most is that the x variables of interest are primarily indexed by u (x(u)), a variable of
low dimension (e.g., time in an audio sample, pixel position in an image), and secondly,
these x variables concentrate in relatively small areas compared to the size of the possible
space (see the notion of typical set in Sec. 2.5 and Fig. 5).

In the probabilistic case, what matters to us is not so much f but p(y|x). Therefore,
we deal with probability estimation problems, and the fundamental concept that allows
us to overcome the curse of dimensionality is independence. This is truly the point that
makes statistics effective.

3.2 The Concept of Independence and Separability

Consider observations (e.g., pixels in an image, sound samples in an audio frame,
words in a text), denoted as x = {xi}i≤d. If these observations are independent, then we
have

p(x1, x2, . . . , xd) =
d∏

i=1
p(xi) (28)

Why is this crucial in high dimensions? It’s thanks to an argument already discussed in
the 2020 course 30, namely the separability of variables. Taking the logarithm, we get

log p(x1, x2, . . . , xd) =
d∑

i=1
log p(xi) (29)

This means that from a problem with d variables, we reduce it to d problems with one
variable each, returning to the realm of "classic" low dimensions. In the deterministic case,
we would ask whether it’s possible to express the function f(x) as a sum of functions fk

involving subsets of the variables in x, in order to reduce the dimensionality of each fk.

So, in deterministic terms, we say "let’s try to separate the original high-dimensional
problem into smaller, hence simpler, subproblems" (akin to René Descartes’ approach in

30. See Course 2020 Sec. 4.3
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the "Discourse on the Method"). In probabilistic terms, we say "independence of random
variables".

The challenge when dealing with real observations is trying to find this "indepen-
dence" if it exists. For example, consider taking a photo of a tree bark and ask how to
generate new images of tree barks. The problem is that the pixel values in the original
photo are not independent, or perhaps there’s a correlation at one scale and much less
at another, and again a correlation at another scale, etc. So, either we assume a priori
that the observations are independent, and everything works smoothly, or we need to
discover the structures/scales that make the variables independent.

3.3 The Law of Large Numbers: Convergence to the Mean

The law of large numbers tells us that when we have many observations available,
frequencies converge to expectations, and we observe average phenomena. Once again,
underlying this, we have the notion of independence 31. The mathematical foundation is
built on the works of R. Fisher from 1922 and the concepts of estimator consistency,
maximum likelihood, information, and bounds/limits on approximation. S. Mallat tells
us that compared to the typical course of statistics, he will delve into the realm of high
dimensionality to highlight the non-obvious nature of these concepts, and behind them
lies the notion of optimization. We can view problems from two perspectives: either that
of statistics or optimization. For instance, the Hessian of likelihood allows us to control
convergence, and the error of estimators, which is related to Fisher’s information.

Regarding the convergence of a series of n random variables, there is the one in-
troduced by Andrey N. Kolmogorov 32 (1903-87), who defined the strong law of large
numbers, which can be summarized by the expression: if we have a random variable (r.v)
that depends on n, the number of observations, such that An −−−→

n→∞
A

P
[

lim
n→∞

An = A
]

= 1 (30)

31. NDJE This notion is crucial for assessing the effectiveness of certain statistical methods, such as
Markov chain generation. It defines the efficiency of sampling or the size of the set of independent samples
to judge the reliability of the statistics, such as confidence intervals.

32. NDJE Andrey N. Kolmogorov, as early as 1933, following the work of Émile Borel (1871-1956) and
Henri Lebesgue (1875-1941), developed probability theory and established a link between measure and
the probability of composite events.
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but the one we generally use is the weak law of large numbers, which states that

(
∀ε > 0, lim

n→∞
P [|An − A| ≤ ε] = 1

)
⇔
(

An
prob.−−−→
n→∞

A
)

(31)

In a way, this law tells us that it is rare for An to deviate from its limit value A.

Here is the theorem in the case where the r.v An is the average of n iid random
variables:

Theorem 1 (Weak Law of Large Numbers)
Let (Xi)i≤n be iid random variables, and E[Xi] = µ <∞. Then, if X̄n = 1

n

∑n
i=1 Xi,

we have convergence in probability

X̄n
prob.−−−→
n→∞

µ (32)

The proof of this theorem is somewhat technical in the general case, but its main drawback
is that it does not inform us about the rate of convergence. So, we will prove this theorem
in the case where the variance σ2 exists, meaning E[X2

i ] <∞.

Proof 1.
Let σ2(X̄n) be the variance of the empirical mean. Then, according to the assumption of
independence of r.v, we have simply

σ2(X̄n) = σ2

n
(33)

Therefore, it’s clear that as n increases, X̄n will be concentrated around its mean, which is
µ, and simultaneously, the tails of the distribution will be weak. The technical point here
is the Bienaymé-Tchebychev inequality 33. It’s a result of probability concentration 34, and

33. NDJE This is different from Chebyshev’s inequality on sums.
34. The proof relies on the fact that ∀x ∈ R, 1[|x| ≥ 1] ≤ x2 (1: indicator function). Applying this to

(X−µ)/α (α > 0) and remembering the growth of expectation and that E[1[A]] = P[A], we arrive at the
mentioned inequality.
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for V ar[X] = σ2, it states

P [|X − E[X]| ≥ α] ≤ σ2

α2 (34)

So, by combining the two results, we have

P
[∣∣∣X̄n − µ

∣∣∣ ≥ ε
]
≤ σ2

nε2 −−−→n→∞
0 (35)

The significant consequence is that the convergence of X̄n to the expectation µ is suffi-
ciently rapid at a rate of 1/n. ■

3.4 Consistency: Parameter Estimation

Following R. Fisher’s idea, we are given n observations, and we want to estimate the
underlying probability distribution, using a family of parameterized probabilities pθ(xi).
We need to estimate the "best" θ.

Definition 1 (Consistency)
Let Tn be a statistic as a function of (X1, . . . , Xn) (n random variables). We say it

is a consistent estimator of θ if

Tn(X1, . . . , Xn) prob.−−−→
n→∞

θ (36)

For example, an estimator of the mean µ is the empirical mean X̄n, and concerning the
variance, we can think of

Tn(X1, . . . , Xn) = 1
n

n∑
i=1

(Xi − X̄n)2 = 1
n

n∑
i=1

X2
i − X̄2

n (37)

To study the convergence, we need a little theorem.
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Theorem 2 Let a series of random variables An converge to A in probability, and
let g be a continuous function, then g(An) converges in probability to g(A).

Proof 2. The proof follows from the continuity assumption, which states that

∀ε > 0 ∃α > 0 s.t. |a− a′| ≤ α⇒ |g(a)− g(a′)| ≤ ε (38)

So we have
1 ≥ P(|g(a)− g(a′)| ≤ ε) ≥ P(|a− a′| ≤ α) prob.−−−→

n→∞
1 (39)

hence the result. ■

So, as X̄n converges in probability to µ, then X̄2
n also converges in probability to µ2.

Similarly, by setting Yi = X2
i , Ȳn converges to the expectation E[X2

i ], so

Tn(X1, . . . , Xn) = 1
n

n∑
i=1

(Xi − X̄n)2 prob.−−−→
n→∞

E[X2
i ]− µ2 (40)

which gives the convergence in probability to the variance of Xi. What will determine
the convergence dynamics is now the variance of X2

i . Therefore, we will impose that
E[X4

i ] <∞ to apply the law of large numbers.

Now, in the more general case, R. Fisher uses maximum likelihood to obtain consistent
estimators.

3.5 Maximum Likelihood

First, let’s give a definition of likelihood according to Fisher:

Definition 2 (Likelihood)
Let X = {Xi}i≤n be iid random variables. The likelihood of these observations for a
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parameter θ is defined as

Lθ(X) = pθ(X) =
n∏

i=1
pθ(Xi) (41)

Fisher’s idea is to say that if Lθ1(X) > Lθ2(X), then generating the observations is more
likely if we take θ = θ1 than if we take θ = θ2. In an abuse of language, we often take
a shortcut and say "θ1 is more likely than θ2." It would be better to say "θ1 is a better
estimator than θ2."

Definition 3 (MLE/Maximum Likelihood Estimator)
The MLE is defined as

θ̂MLE(X) = argmax
θ

Lθ(X) (42)

The question is whether θ̂MLE(X) converges to the true 35 value of θ. We need properties
of probability to answer this.

Property 1 (regularities)
We assume the following properties, knowing that θ ∈ Ω ⊂ Rd:

— The property of identification

θ = θ′ ⇒ pθ = pθ′ (43)

— The supports of pθ are identical (not necessarily necessary, but practical be-
cause it avoids singularities when calculating log-probabilities).

— The observations are actually generated by a θ∗ ∈ Ω.

Thus, we can formalize the intuition we have about maximum likelihood (see also Sec. 4.7).

35. NDJE: We assume that the data was generated according to a probability of the same family
pθtrue

(X) that we use for analysis. When conducting numerical simulations, we can control everything,
but in real life, what happens if we choose the wrong family?
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Theorem 3
Let θ∗ be the parameter of the probability underlying the iid observations X =
{Xi}i≤n, then

∀θ ̸= θ∗ P (Lθ∗(X) > Lθ(X)) prob.−−−→
n→∞

1 (44)

Proof 3.
We form the ratio of likelihoods and using the log-likelihood ℓ(θ) = logLθ, we have

ℓ(θ)
ℓ(θ∗) =

n∑
i=1

log pθ(Xi)
pθ∗(Xi)

(45)

We need to evaluate the probability that ℓ(θ)/ℓ(θ∗) < 0, or equivalently

1
n

n∑
i=1

log pθ(Xi)
pθ∗(Xi)

< 0 (46)

If we set Yi = log pθ(Xi)
pθ∗ (Xi) , we indeed have independent random variables, so in proba-

bility, the left member converges to an expectation. Therefore, we need to evaluate the
probability of

EX

[
log pθ(Xi)

pθ∗(Xi)

]
< 0 (47)

Now, the logarithm is a concave function, and Jensen’s inequality gives us

ϕ concave function⇒ ϕ(E(X)) ≥ E(ϕ(X)) (48)

Strict concavity implies strict inequality. Thus, we know that

EX

[
log pθ(Xi)

pθ∗(Xi)

]
< log

(
EX

[
pθ(Xi)
pθ∗(Xi)

])
(49)

Now, the observables are drawn according to the pθ∗(X) distribution, so

EX

[
pθ(Xi)
pθ∗(Xi)

]
=
∫

pθ∗(x) pθ(x)
pθ∗(x)dx = 1 (50)
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Thus, we have convergence in probability such that

∃µ s.t. Ȳn = 1
n

n∑
i=1

Yi = 1
n

n∑
i=1

log pθ(Xi)
pθ∗(Xi)

prob.−−−→
n→∞

µ < 0 (51)

So, if we choose ε = |µ|/2, we ensure that Ȳn is negative because, according to the law of
large numbers (Th. 1)

P(|Ȳn − µ| ≤ ε) prob.−−−→
n→∞

1 (52)

Thus, going back to the question posed (Eq. 46), we guarantee that ℓ(θ) < ℓ(θ∗) with a
probability that tends to 1 as n tends to infinity, which gives the theorem. ■

3.6 Some Examples

We will explore through a few examples that the concepts described in the previous
sections are not as trivial as they may seem.

3.6.1 Median Estimator vs. Empirical Mean

So, we aim to determine θ̂ that maximizes the likelihood L(θ) = pθ(x) or rather the
log-likelihood denoted as ℓ(θ) (Definition 3). In this context, if we define

θ̂ = argmax
θ

ℓ(θ)⇒ ∂ℓ

∂θ

∣∣∣∣∣
θ=θ̂

= 0 (53)

we define the score, which is nothing but the derivative of ℓ(θ) that we will try to set to
zero.

Let’s take the Laplace distribution 36

pθ(x) = 1
2 exp{−|x− θ|} (54)

36. Here we take the second parameter of the Laplace distribution equal to 1.
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and we want to identify the parameter θ, so let’s go through the formalism. If we have n

observables
ℓ(θ) = −n log 2−

n∑
i=1
|xi − θ| ⇒ ∂θℓ(θ) =

n∑
i=1

sign(xi − θ) (55)

To set the score to zero, there must be as many positive signs as negative signs, and thus

θ̂Laplace = median({xi}i≤n) (56)

If we had taken a known variance Gaussian distribution, then

pθ(x) = 1√
2πσ2

exp
{
−(x− θ)2

2σ2

}
(57)

and therefore

ℓ(θ) = −n

2 log
(
2πσ2

)
− 1

2σ2

∑
i

(xi − θ)2 ⇒ ∂θℓ(θ) ∝
∑

i

(θ − xi) = nθ −
∑

i

xi (58)

Thus, the estimator is the empirical mean of xi

θ̂Gaussian = 1
n

n∑
i=1

xi (59)

What is curious is that in both cases, Laplace vs. Gaussian, we need to estimate the mean
of the distribution, yet we have two estimators: the first one is the median, and the second
is the empirical mean. The issue with the Laplace distribution lies in the slow decay of
the distribution tails, which can generate observations far from the mean (called outliers).
Now, if we calculate an empirical mean with outliers that occur infrequently, we get large
dispersions, whereas the median calculation is much more robust against outliers. This
outlier phenomenon is not just a mathematical anecdote because in signal processing,
physics, economics, etc., we are confronted with such issues.

3.6.2 Gradient Descent in High Dimensions

Now, let’s move on to high dimensions and first, let’s study the logistic classifier 37.
It’s a classification problem, yet it’s often referred to as logistic regression. So, we’re in

37. Course 2018 Sec. 9.6, Course 2019 Sec. 7.3.3
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Figure 8 – Schematic of the objective in logistic classification, trying to find the preferred
directions θy pointing towards different clusters of observations with the same label.

a scenario where we want to estimate the conditional probability p(y|x) (y being a label
and x an observation) in Fisher’s formalism, where the probability family is indexed by
θ. Therefore, we aim to identify the best y (ŷ) for a given x, but before that, we need to
determine the best θ from a training set {xi, yi}i≤n. The probability family is defined as
follows:

pθ(y|x) = e⟨x,θy⟩∑
y′ e⟨x,θy′ ⟩ = softmax(⟨x, θy⟩) (60)

where x ∈ Rd, and the goal is to find the preferred directions θ̂y pointing towards
areas where observations with the same labels aggregate (Fig. 8). This is because we will
choose, as the class estimator for a new observation xnew, the label such that:

ŷ = argmax
y

pθ̂(y|x
new) (61)

We will connect this problem with the identification of exponential distributions,
which is central to Statistical Physics.

Let’s define hot-vectors (dimension K × 1), which are widely used in machine lear-
ning:

yi = (0, . . . , 0, 1, 0, . . . , 0)T (62)

where the 1 is positioned at the i-th place to identify the class c(xi) = ci of observation
xi among K possible classes. Simultaneously, Θ is a d×K matrix defined by the column
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vectors θy mentioned earlier, such that:

Θ = (θ1, θ2, . . . , θK) (63)

With these notations:

⟨x, θci
⟩ = ⟨x, Θ yi⟩ = xT Θ yi (64)

Therefore, we can place ourselves in the following family of probabilities:

pθ(y|x) = Z−1
Θ (x) exp

{
xT Θy

}
(65)

The crucial point is that the argument of the exponential is linear in the parame-
ters, which simplifies our task. The log-likelihood for n observations 38 (xi, yi)i≤n becomes:

ℓ(Θ) =
n∑

i=1
xT

i Θ yi −
n∑

i=1
log

(
K∑

k=1
exp

{
xT

i Θ yk

})
= −ℓ̃(Θ) (66)

Notice that the terms ykxT
i form a matrix representing the correlation between

observations and classes:

xT Θ y =
∑
kk′

x1,kΘk,k′yk′,1 =
∑
kk′

Θk,k′(yxT )k′,k := Θ • (yxT ) (67)

The notation • means that we flatten the matrix coefficients to form a vector of
dimension Kd and expose an inner product.

How do we get the coefficients of Θ (optimization problem)? In the case at hand,
we will perform gradient descent 39 (GD) using the cost function ℓ̃(Θ) = −ℓ(Θ), and we
know that this method converges. Implicitly, for this to converge, there is a convexity
property. The GD algorithm proceeds with an initialization of parameters Θ0, and step

38. NDJE here, i indexes an observation, and yi is the hot-vector associated with that observation,
encoding its class.

39. See Course 2018 Sec. 10 and 2019 Sec. 8, for example.
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by step, it updates as follows (t can be seen as discrete time):

Θt = Θt−1 − η∇Θℓ̃(Θt−1) (68)

with η > 0. Let H be the Hessian matrix:

H[ℓ̃][Θ] =
(

∂2ℓ̃

∂Θi∂Θj

)
(69)

As H is a symmetric matrix, it can be diagonalized, and if all eigenvalues are positive,
we say that H is positive, denoted as H ≥ 0. In 1D, this corresponds, for example, to the
curvature of the function x2. If we perform an expansion around Θ0, then (g = ∇Θℓ̃(Θ0)):

ℓ̃(Θ) = ℓ̃(Θ0) + (Θ−Θ0)T∇Θℓ̃(Θ0) + 1
2(Θ−Θ0)T H[ℓ̃](Θ0)(Θ−Θ0)

= ℓ̃(Θ0)− η∥g∥2 + η2

2 gT H[ℓ̃](Θ0)g (70)

The GD method indeed reduces ℓ̃(Θ) to the first order, and the existence of a
minimum condition implies:

∥g∥ = 0, gT H[ℓ̃](Θ0)g ≥ 0 (71)

The optimal step is then (∇Θℓ̃(Θ1) = 0):

Θ1 −Θ0 = −
(
H[ℓ̃](Θ0)

)−1
∇Θℓ̃(Θ0) (72)

However, for this to work well, the Hessian must be invertible (the smallest eigen-
value of the Hessian must be non-zero). This scheme is of the 2nd order, where we can
access second derivatives. The problem is that in high dimensions, this calculation is very
costly, if not impossible, so we resort to a 1st order scheme (Eq. 68) with various schedu-
ling strategies to evolve the parameter (learning rate) η over time (t). In particular, the
η factor is bounded because we don’t want to take steps larger than what the method
with the Hessian allows. So let λmax be the largest eigenvalue of the Hessian; we have the
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following bound:
η <

1
λmax

(73)

However, if the gap between the smallest eigenvalue of the Hessian, denoted as λmin,
and the largest, λmax, is too significant, then by forcing too small steps to constrain the
direction associated with λmax, we will get stuck and stagnate in the direction associated
with λmin. This is reflected in the concept of Hessian’s condition:

Theorem 4 (Convergence of GD)
Let λmin > 0 and λmax be the minimum and maximum eigenvalues of the Hessian,

gradient descent converges if η ≤ 1
λmax

, and the difference between Θt and the optimal
value Θ∗ is given by:

∥Θt −Θ∗∥ ≤
(

1− λmin

λmax

)t

∥Θ0 −Θ∗∥ ≤ ∥Θ0 −Θ∗∥ exp
{
−λmin

λmax

t

}
(74)

The conditioning rate is given by τ = λmin

λmax
(τ is the inverse of the Hessian’s

conditioning).

The theorem tells us that the gradient descent method converges especially in the
case of exponential families (linear in the parameters), but convergence can be very
slow if the Hessian is ill-conditioned. This is very important, and all the issues related
to Hessian’s conditioning come from Fisher’s information, which defines the statistical
properties of the estimator. Through this, we see the connection between the field of
optimization and statistics at the heart of Machine Learning. We cannot think of one
without the other.

4. Lecture 2 Feb.

4.1 A brief recap of the previous session

We delved into the connection between optimization and statistics, two inseparable
domains of current Machine Learning. We started studying the development of Fisher’s
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theory of maximum likelihood, focusing on the exponential family of probabilities, where
the log-probability depends linearly on the parameters. This case encompasses nearly all
of Statistical Physics. We will continue this study because, although the mathematics
are somewhat simpler, algorithms converge to a unique minimum, it allows us to ta-
ckle the issue of high dimensionality. We will explore convergence and the consistency of
maximum likelihood estimators, which will lead us to the concept of Fisher Information.
This, through the Hessian, regulates the convergence conditions of algorithms, defines the
geometry of the optimization space, and the parameter estimation errors (Cramér-Rao
bound).

Referring to section 3.6.2, the gradient descent algorithm on ℓ̃(Θ) can also be seen
as gradient ascent on the log-probability ℓ(Θ). So, for reference 40 (Eqs. 68, 69), at step t

of the algorithm, the parameter update Θ is done through the following relationship:

Θt −Θt−1 = −η∇Θℓ̃(Θt−1) = η∇Θℓ(Θt−1) (75)

with η > 0; and the Hessian matrix

H[ℓ][Θ] = −
(

∂2ℓ

∂Θi∂Θj

)
= −H[ℓ̃][Θ] (76)

must be positive for the minimization to be convex. If we require strict positivity, meaning
that the smallest eigenvalue of H is nonzero 41, then convergence is guaranteed, but the
convergence speed can be very slow. We need to consider Hessian conditioning (κ) or the
conditioning tau τ :

τ = λmin

λmax

= κ−1 (77)

which led us to Theorem 4, stating that

∥Θt −Θ∗∥ ≤ ∥Θ0 −Θ∗∥e−t/κ (78)

The conditioning is better when κ ≈ 1. If, on the other hand, κ ≫ 1, convergence
is very slow. This occurs, for example, in the case shown in Figure 9 where one of the

40. NDJE: I’m maintaining consistency with my notations from the previous session. In the video, S.
Mallat uses the notation θ for parameters. I hope this isn’t too confusing.

41. Reminder: all eigenvalues of the Hessian are positive or zero.
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Figure 9 – A convex case where the landscape is unfavorable because one direction has
very low curvature: the algorithm "oscillates" in the direction of high curvature with very
slow progress in the low curvature direction.

two directions in the parameter plane has very low curvature. Indeed, the step size η is
controlled by the largest curvature to prevent taking overly large steps. The remedy for this
is to make the step η depend on the direction (second-order method where η = H−1(Θt))
to adjust better and increase the convergence speed. However, in high dimensions, we can
never use a second-order method because the Hessian is a huge matrix that is impossible to
estimate and, consequently, invert. We need other methods to train large neural networks.
Nevertheless, we can attempt to precondition the Hessian.

4.2 Case of Exponential Distributions

These distributions, which encompass Statistical Physics, also cover the case of
logistic classification discussed in the previous session. Let’s consider the probability family
expression as follows:

pθ(x) = Z−1
θ e−θ•U(x) (79)

where the symbol • has been exaggerated intentionally to emphasize that it represents a
potentially high-dimensional dot product (later, it will be reduced to a . and then disap-
pear). Here, U(x), which in Physics is the potential, is a family of functions {Uk(x)}k≤p
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representing, for example, different types of interactions. To be complete:

θ · U(x) =
∑

k

θkUk(x) (80)

Regarding the constant Zθ (partition function in Stat. Physics), it is such that:∫
pθ(x)dx = 1⇒ Zθ =

∫
e−θ·U(x) dx (81)

We assume that the conditions are met for this integral to make sense: typically in Physics,
interaction potentials are either of finite range or vanish at infinity. This probability family
makes it simple to calculate the log-likelihood:

−ℓ(θ) = − log pθ(x) = log Zθ + θ · U(x) (82)

Note that even if the Uk(x) are potentially nonlinear in x, what matters in the optimization
method is the gradient of −ℓ(θ) with respect to θ and not with respect to x.

In the case of a neural network, the function U(x) is denoted as Φ(x) in Figure 4,
and the parameters θ are used to construct an estimator of the log-probability. The U(x)
is the result of the sequence of linear and nonlinear operators through which the input
x passes. However, it should be noted that in the case of neural networks, U(x) itself
depends on parameters. But, it is assumed that there is enough a priori information 42

(e.g., system symmetries) so that U(x) does not need to be learned.

Now, let’s calculate all the important quantities that will allow us to explore general
optimization concepts.

Theorem 5
Consider the partition function:

Zθ =
∫

e−θ·U(x) dx (83)

42. The theme of the 2020 course, particularly see Sec. 9.5 Scattering Operators.
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It allows us to calculate all the "average" quantities a

−∇θ log Zθ = E
x∼pθ(x)

[U ] (84)

Regarding minimization (gradient descent), we have

−∇ℓ(θ) = U(x)− Eθ[U ] (85)

In the case of a realization of observables x, the set of parameters to which the
minimization leads satisfies U(x) = Eθ[U ]. Finally, the Hessian that governs the
convergence speed is given by the covariance of the potential U , i.e.:

−H[ℓ](θ) = Covθ(U) (86)
a. To simplify notation, we will denote the right-hand side expectation as Eθ.

Proof 5.
To prove the first two results, it suffices to calculate the gradients, which becomes ele-
mentary for the exponential family considered here. Note in passing that if we consider
the dependence on a particular parameter θk, we have:

−∇θk
ℓ(θ) = Uk(x)− Z−1

θ

∫
Uk(x)e−θ·U(x) dx = Uk(x)− Eθ[Uk] (87)

which can be vectorized easily. Concerning the Hessian, as the potentials Uk(x) do not
depend on the parameters θ, we get:

−∇θq∇θk
ℓ(θ) = −Z−1

θ

∫
Uq(x)e−θ·U(x) dx× Z−1

θ

∫
Uk(x)e−θ·U(x) dx

+ Z−1
θ

∫
Uq(x)Uk(x)e−θ·U(x) dx

= −Eθ[Uq]Eθ[Uk] + Eθ[UqUk] = covθ(Uq, Uk) (88)

which can also be put in matrix form if we consider U as a vector of dimension p× 1 and
UUT of dimension p× p:

−H[ℓ](θ) = Eθ[UUT ]− Eθ[U ]Eθ[UT ] (89)
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■

It is noteworthy that H[ℓ](θ) does not depend on x; it only depends on expectations,
which are probability averages integrated over x.

4.3 Consistency (BatchNorm)

We would like the Hessian to be as close to the identity as possible to ensure optimal
conditioning. Suppose Eθ[U ] = 0. The diagonal terms of the Hessian are then the variances
σ2

k = Eθ[U2
k ]. We can perform a rescaling:

U ′
k = Uk

σk

(90)

This forces the diagonal terms of the new Hessian to be equal to 1, thereby improving
conditioning and accelerating optimization. The operation that achieves this in neural
networks is BatchNorm 43.

Is it sufficient to impose that the diagonal elements be equal to 1? Let’s consider a
counterexample using the (discrete) second derivative operator:

−f ′′(x) ≈ −f(x− h) + 2f(x)− f(x + h)
h2 (91)

Consider, for example, the following banded matrix:

O =



2 −1 0 . . . 0 −1

−1 2 −1 0 . . . 0
...

−1 0 . . . 0 −1 2


(92)

The fundamental observation to make reflexively is that O is a convolution operator, thus

43. See Lecture 2019 Sec. 8.2.3.
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diagonalizable on a Fourier basis 44. Either one analyzes it discretely and realizes that the
extreme eigenvalues of the matrix are close to 0 and 4, or one analyzes it continuously. In
the continuous case, the eigenvectors of the second derivative operator (up to sign) are of
the form eiωt, and the eigenvalues are ω2, resulting in equally poor conditioning. All of this
to say that "conditioning" the Hessian’s diagonal isn’t sufficient. We need/would need to
work in a representation where the natural basis is the Fourier basis, because in such a
representation, BatchNorm ensures that the diagonal terms are equal to 1 without band
terms. In fact, under these conditions, using BatchNorm is akin to using a second-order
technique without explicitly saying so. The challenge is that we don’t a priori know the
basis that diagonalizes the representation U(x), especially when there are nonlinearities.
Nevertheless, we would like to get closer to it, and that’s at the heart of constructing
neural network architectures.

4.4 Connection with Information Geometry

NDJE: S. Mallat mentions the 2 seminars dedicated to this topic, the first after this
session, and the other associated with the next session.

The idea is that the pθ(x) are mappings from Rp to R; they form manifolds, and
gradient descent takes us along these manifolds until we reach the point pθ∗(x). To these
manifolds, we attach measures (Riemannian) that, at each point θ, involve the tangent
plane, whose principal axes are precisely defined by the Hessian. Therefore, moving ef-
ficiently on these manifolds is equivalent to using a second-order method by utilizing
the inverse of the Hessian. We can understand this concept with the Kullback-Leibler
pseudo-distance, which will be discussed later in this year’s course.

In the following, we will explore examples, starting with Gaussian distributions.

44. See, for example, Lecture 2021 Sec. 3.4 Fourier Analysis, Lecture 2020 Sec. 6.2, Lecture 2018 Sec.
5.2 for a development of Discrete Fourier Analysis. Also, refer to S. Mallat’s book chapters.
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4.5 Gaussian Distributions

Let’s take the following parameterization of the probability density (zero mean):

p(x) = Z−1 exp
{
−1

2xT C−1x
}

(93)

with Z = (2π)p/2|C|1/2. In this case, the parameter vector θ is composed of the covariance
matrix C−1. To set the notations, x is a p × 1 vector, and C−1 is a positive definite
symmetric matrix of dimension p × p, [C−1]kk′ = ckk′ , and the Gram matrix [xxT ]kk′ =
xkxk′ :

xT C−1x =
∑
k,k′

xkckk′xk′ := C−1 • (xxT ) (94)

where we group the elements of the covariance matrix and the Gram matrix into two
vectors of dimension p2 to compute a dot product. Thus, under these conditions, we can
rewrite the probability density as follows:

pθ(x) = Z−1
θ exp{−θ • U(x)} U(x) = 1

2xxT (95)

Recall that the covariance matrix C satisfies, for a realization of x (x ∼ pθ(x)):

Ckk′ = [Covθ(U)]kk′ = (Eθ(xk, xk′))kk′ (96)

The point we outlined in the previous section is that we need to identify the basis
in which the covariance is diagonal. If we consider a stationary case 45 (in an image, this
would be the case if we consider translation invariance), then

Eθ(xk, xk′) = F (k − k′) (97)

Translation invariance (Toeplitz matrix) indicates that the diagonalization basis is the
Fourier basis. An eigenvalue σ2

k of the covariance matrix in this basis is called spectral
power here indexed by ω (σ2

ω = P (ω)), and in the case of a classic image, the power
spectrum behaves as a power law 1/|ω| as shown in Figure 10. Therefore, the typical
difference between the smallest and largest eigenvalues is very large.

45. See Course 2021 Sec. 4.4
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Figure 10 – Power spectrum of a classic image, obtained as the radial average of the
squared norm of the 2D Fourier transform of the image. Here, k is the wavenumber in
arbitrary units. We observe a 1/k law.



43

The geometry of realizations x is that of an ellipsoid in dimension p. If we take a
small iso-probability volume:

dV (α) = {x, 0 ≤ α ≤ pθ(x) ≤ (α + dα) ≤ 1} (98)

For example, imagine we are in dimension 2 and in the diagonal basis C−1 = diag(σ−2
min, σ−2

max),
then we indeed have layers of ellipses:

−2 log(Z(α + dα)) ≤ x2
1

σ2
min

+ x2
2

σ2
max

≤ −2 log(Zα) (99)

which become smaller (or larger) as α approaches 1 (or 0). It can be seen that what matters
is the product of the probability value and the iso-probability volume. The ellipsoids are
typical sets (Eq. 23) introduced by C. Shannon.

4.6 Beyond Gaussian Fields

S. Mallat provides some examples from Fluid Mechanics (e.g., turbulence) and Cos-
mology (e.g., interstellar gas). In Figure 11, we have an example on the left of an image
of turbulent fluid 46, in the center its power spectrum, and on the right, a realization of a
Gaussian field generated from this power spectrum. To do this, all we need to do is mea-
sure the two-point correlation function (Fourier transform of the power spectrum), which
is estimating the covariance matrix. At first glance, what we notice is that the Gaussian
field lacks structures as the turbulent field does. However, Gaussian turbulence models
are not as naive as they might seem. A. Kolmogorov established the foundation for them
in the early 1940s 47. What’s remarkable about neural networks is that they can reproduce
fields as structured as real ones. However, U(x) is much more complex. Nevertheless, as
S. Mallat states, physicists did not wait for neural networks to go beyond Kolmogorov’s
theory.

The system that has been extensively studied in Statistical Physics is the Ising model
of spin networks 48. Without going into details, what can be said is that the interaction

46. Image source: https://phys.org/news/2015-10-key-features-transition-liquid-smooth.html.
47. He wrote four very short articles that were as enlightening for the field as those by Fisher and

Shannon.
48. The problem that Lars Onsager (1903-76) exactly solved in 1944 is the famous 2D Ising model:

https://phys.org/news/2015-10-key-features-transition-liquid-smooth.html
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Figure 11 – On the left, an image of turbulent fluid in a pipe (Credit: Piotr Siedle-
cki/public domain); in the center, the power spectrum derived from the image (∝ k−2.2);
on the right, a Gaussian field generated from this power spectrum.

of all spins on one particular spin can be represented by a potential, the shape of which
can be modeled as a so-called "Mexican hat". This gives rise to the λϕ4 theory, which is
also used in Particle Physics to explain the generation of the masses of the W ± and Z0

bosons through the Higgs mechanism 49. So, U(x) can be decomposed in such a way that

θ • U(x) = 1
2xT C−1x + V (x) (100)

with a Gaussian term and a potential V (x) whose shape is given, for example, in Figure
12 as

V (x) = x4 + (1 + 2b)x2 (101)

this interacting spin model was introduced by Wilhelm Lenz (1888-1957) in 1920, and his student Ernest
Ising (1900-98) had solved it in 1D only and could not find a phase transition. Onsager’s exact solution
allowed understanding its significance and the study of critical exponents and the development of the
Renormalization Group Equation (RGE) in Statistical Mechanics. This theory was initiated in Particle
Physics Field Theory in 1954 by Murray Gell-Mann (1929-2019) and Francis E. Low (1921-2007) as part
of Quantum Electrodynamics (QED), and it was then generalized by Curtis Callan and Kurt Symanzik
(1923-83) by establishing what are called the Callan–Symanzik equations. Developments in Statistical
Mechanics date back to Kenneth G. Wilson’s (1936-2013) Ph.D., obtained under Gell-Mann’s supervision
in 1961. Wilson bridged the developments in Field Theory with those in Statistical Mechanics, developing
the theory of critical exponents in connection with phase transitions, which became a key theme in the
field in the 1970s, as seen in the famous "Les Houches Session XXVIII (1975): Methods in Field Theory"
with remarkable contributions.

49. This involves additional contributors and becomes the Brout-Englert-Higgs-Hagen-Guralnik-Kibble
mechanism.
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Figure 12 – Shape of the potential V (x) experienced by 1 spin in the case of the Ising
model in ϕ4 (or it could be the intensity of a pixel in an image) for different values of the
shape parameter b, where the value can yield 2 minima for b ≤ bc = −1/2. The minima
are located at ±

√
−(1 + 2b)/2, and the value of the wells is given by −(1 + 2b)2/4.

What is the role of this potential V (x)? It is there to constrain the values of x to take
values "trapped" in the (negative) potential wells and thereby increase the probability
pθ(x).

This Ising model helped understand phenomena of phase transitions that manifest
themselves in the thermodynamic limit by spontaneous symmetry breaking. To briefly
outline the phenomenon, consider a collection of N spins, which should, in principle, have
energy invariant under the reversal of all spins. Moreover, the higher the temperature T

of the system, the more random the orientation of the spins, and the average residual
magnetization is zero. Now, if we subject the system to an external field h, it tends to
align the spins in a preferred direction: there is a balance between this tendency toward
order via h and a tendency toward disorder via temperature. For a given N , if we let
h tend to 0, we end up in the previous case, with no spontaneous magnetization on
average. But when we let the number of spins N tend to infinity (thermodynamic limit)
and then let h tend to 0, it turns out that depending on the value of T (which could
govern the value of b in the model (101)), especially if it becomes lower than a critical
temperature Tc (b < bc), then spontaneous magnetization is not zero, indicating the
phase transition, a symmetry breaking that shows a collective alignment effect with
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long-range correlations (the correlation length diverging at T = Tc). Around T = Tc,
the system can be considered unstable, transitioning from one phase to another, with each
transition involving a symmetry discontinuity.

In neural networks, the parameters θ can be governed by a kind of temperature,
and we can also observe collective effects. These kinds of phase transitions with system
instability at their edges are signs of Hessian instability, which changes behavior with
conditioning breakdowns. So, we have phenomena that are at the heart of optimization
and, therefore, touch many domains.

Now, we can ask whether we can go beyond Ising-type models? The answer is yes,
and this is where neural networks have changed the game. By using Generative Models
or Variational Autoencoders, we can reproduce complex textures such as clouds, piles
of rocks, bubbles, etc 50 (Fig. 13). The problem is that these networks have millions of
parameters, and we are "quite far from understanding" (sic): why does this work? How do
we relate the parameters to the underlying physics interactions?

These are open problems that S. Mallat and his team, for example, are working on,
and the fundamental point that emerges is that we need to understand the interactions
between scales (See Course 2020 Sec. 9.). By dividing the image into patches of different
sizes, with small scales, we examine highly localized high-frequency interactions, and at
larger scales, we examine less localized low-frequency interactions. But what allows the
creation of complex structures is how different scales interact with each other.

So, ultimately, with the "linear" θ model of families of probability densities, we
can represent very complex and infinitely rich phenomena. The crucial point here is the
modeling of U(x). The counterpart in Machine Learning is kernel models 51, for which
the kernel K(x, x′) is none other than {U(x)UT (x′)}, i.e., the covariance matrix. Once the
kernel is chosen, linear regression (Kernel Ridge Regression) works well, but the problem
is having the (right) kernel. And ultimately, there are limitations because if it doesn’t fit,
what do we do? The field was somewhat stuck for a while until neural networks opened
up a new perspective. Indeed, we can see them as a way to learn the right kernel U(x).
However, after realizing the effectiveness of neural networks, we end up wondering what’s
behind these learned U(x)?

50. See Course 2019 Sec. 2.7. Also, see the paper S. Zhang and S. Mallat (2021) https://arxiv.org/pdf/
1911.10017.pdf.

51. See, for example, Course 2018 Secs. 7.3, 9.5

https://arxiv.org/pdf/1911.10017.pdf
https://arxiv.org/pdf/1911.10017.pdf
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Figure 13 – (Top) Example of different textures: a turbulent interstellar cloud, another
type of fluid, a pile of stones, and bubbles. (Bottom) Generation of new textures.

4.7 Ensuring Consistency

In the previous sections, we saw how to obtain an optimal estimator, the maximum
likelihood estimator (MLE). However, we would like to know the conditions that ensure
the consistency of the estimator. That is, what guarantees that when the number of
observations tends to infinity, we converge with probability 1 to the correct estimator
that maximizes the likelihood on average? This complements the properties discussed in
Section 3.5. Let’s examine the properties of the maximum likelihood estimator (MLE)
defined as

θ̂ = argmax
θ

ℓ(θ) (102)

Theorem 6 (Change of Variable)
Let η = g(θ) be a change of variable, then g(θ̂) = η̂ is a maximum likelihood esti-
mator (MLE) if θ̂ is an MLE.

Although the proof is simpler if g is invertible, it is not required. The more important
result concerns consistency.
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Theorem 7 (Consistency of MLE)
Consider the likelihood

ℓ(θ, x) = log pθ(x) (103)

with x = (x1, . . . , xn) iid. We assume that the observations are described by a certain
θ, denoted θ∗, which defines the true probability density. Furthermore, we consider
the following regularity assumptions:

R0) If θ ̸= θ′, then pθ(x) ̸= pθ′(x);

R1) The supports of the pθ functions are the same;

R2) θ∗ is inside Ω, the parameter space.

R2b) Moreover, we assume that pθ is differentiable at θ.

For an MLE, we have
∂ℓ(θ̂n, x)

∂θ
= 0 (104)

This equation potentially has multiple solutions, but there exists a particular solution
for which we have convergence in probability, i.e.,

∃ θ̂n s.t. θ̂n
prob.−−−→
n→∞

θ∗ (105)

This is a different theorem from the one we examined in Section 3.5 (Th. 3, and we will
examine the proof in the next session before discussing Fisher Information and Cramér-
Rao bounds.

5. Lecture 9 Feb.

5.1 A Brief Prelude

Before delving into the proof of Theorem 7, let’s provide a brief preamble. We
recall that the data distribution comes from a parameterized family, meaning that ptrue ∈
{pθ}θ = Fθ, and we are trying to determine the correct θ. However, what if ptrue ̸∈ Fθ?
What happens if we persist in using this family of distributions? We can represent the
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Figure 14 – Schematic of the probability family Fθ and the potential error if the true
probability underlying the observations (ptrue) does not belong to this family.

family as a manifold, and finding the MLE involves evolving pθ on this manifold. The
search for the MLE is, in fact, associated with the Kullback-Leibler divergence 52:

DKL(p||q) :=
∫

p(x) log p(x)
q(x)dx (106)

It does not have all the properties of a distance, especially DKL(p||q) ̸= DKL(q||p). We will
see in the second part of the course that log(p) is the optimal code for encoding elements
from the p(x) distribution, and thus, the divergence DKL(p||q) measures an inefficiency
in coding that would occur if we took log(q), which is optimal for coding elements from
the q(x) distribution. Thus, if we want to assess the inefficiency of finding ptrue by using
pθ, it gives

DKL(ptrue||pθ) =
∫

ptrue(x) log ptrue(x)dx−
∫

p(x) log pθ(x)dx

= Eptrue [log ptrue]− Eptrue [log pθ] (107)

So, maximizing the likelihood minimizes the Kullback-Leibler divergence. But if ptrue ̸∈
Fθ, we cannot reach zero; we make an error related to the projection information of ptrue

onto Fθ (Fig. 14).

5.2 Consistency of the MLE

Let us examine the MLE consistency theorem.

52. See, for example, the 2019 Course Section 7.2.3.
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Proof 7. Recalling from Theorem 3, for x = (xi)i≤n iid, we have

∀θ ̸= θ∗ P (ℓ(θ∗, x) > ℓ(θ, x)) prob.−−−→
n→∞

1 (108)

(NDJE here we consider the log-likelihood). And we want to show that there exists a
unique sequence of MLEs θ̂n that converges in probability to θ∗. If at each step n there
are multiple solutions θ̂n, we can extract a sequence that converges to θ∗. We are reasoning
in 1D, but this is generalizable.

Let a > 0 be defined such that [θ∗ − a, θ∗ + a] ∈ Ω, which is possible according to
assumption (R2). Let Sn be the set of observations x defined as

Sn = {x / ℓ(θ∗, x) > max (ℓ(θ∗ − a, x), ℓ(θ∗ + a, x))} (109)

What we know from Theorem 3 is that in probability

P(Sn) prob.−−−→
n→∞

1 (110)

In other words, almost all observations will belong to Sn.

Within the interval [θ∗−a, θ∗ + a], as ℓ(θ) is differentiable and therefore continuous,
by the Rolle’s theorem, we find a value of θ that nullifies ∂θℓ(θ), denoted as θ̂n. Thus, let’s
define the set S̃n of observations as

S̃n =
{
x / ∃θ̂n, s.t. ∂θℓ(θ̂n, x) = 0 and ∥θ∗ − θ̂n∥ < a

}
(111)

What we know is that Sn ⊂ S̃n because we cannot a priori determine for x ∈ S̃n if
ℓ(θ̂n, x) < ℓ(θ∗, x). Therefore, P(Sn) ≤ P(S̃n). Thus, by taking the limit in probability, we
have

P(S̃n) prob.−−−→
n→∞

1 (112)

So, for any a > 0, in probability, we will find a θ̂n close to θ∗. Thus, we have our
theorem, with the caveat that at each step n, we take one value θ̂n if there are multiple
solutions to form the sequence that converges to θ∗. ■
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Figure 15 – Schematic representation of the constraint of two observations in parameter
space.

5.3 Fisher Information

The question that arises after showing that the MLE is a consistent estimator is
whether we can do better to estimate θ∗? We then ask about the efficiency of the MLE
estimator. To answer this question, we’ll take an arbitrary estimator and obtain estimation
bounds. This is done here using the concept of Fisher Information.

The underlying idea is to quantify the amount of information that observations will
provide about the parameter θ.

(NDJE) Here’s how we can think about the idea of information using a simple example.
Consider observations (xi

1, xi
2)i≤n and imagine that underneath, xi

2 = a∗xi
1 + b∗. We think that

by combining 2 observations, we have a system of 2 equations with 2 unknowns, and if our 2
observations are arbitrary, then Cramer gives us the values of (a∗, b∗). But actually, let’s ask
in the parameter space (a, b) what does it mean to observe (x1, x2)? It’s a linear constraint as
illustrated in Figure 15. This constraint, defining a geometric locus in the (a, b) space, is the
information given by the observation. And the data from 2 observations is indeed sufficient to
determine the model parameters (a, b). If we consider noisy observables, then the constraint from
one observation is not restricted to a line but defines a "tube" as a region of constraints, and the
intersection of n tubes from all observations then constrains the determination of parameters
(a, b) in a small ellipsoidal region centered on (a∗, b∗).

We’ll assume an additional regularity assumption (R3) in addition to those in Theo-
rem 7, namely that pθ is twice differentiable in θ. To facilitate the proof, we also add (R4)
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the following assumption: (∫
pθ(x)dx

)′′
=
∫

p′′
θ(x)dx (113)

which means that typically, the second derivative of the probability must be dominated,
which is the case in practice. Let’s consider the score

s(θ, x) = ∂ log pθ(x)
∂θ

(114)

which only equals zero when calculated for θ = θMLE. For θ = θ∗ which gives the true
probability distribution of observables (ptrue = pθ∗), then

Ex∼pθ∗ [s(θ∗, x)] = 0 (115)

Indeed,

Ex∼pθ∗ [s(θ∗, x)] =
∫

����pθ∗(x) ∂θpθ(x)|θ=θ∗

����pθ∗(x) dx = ∂θ

∫
pθ∗(x)dx︸ ︷︷ ︸

=1

|θ=θ∗ = 0 (116)

Now, what is the variance of the score? This gives us a definition of the Fisher Informa-
tion.

Definition 4 The Fisher Information is the variance of the score

s(θ, x) = ∂ log pθ(x)
∂θ

(117)

calculated at θ∗ (i.e., the true θ). That is,

I(θ∗) = Ex∼pθ∗

( ∂ log pθ(x)
∂θ

∣∣∣∣∣
θ=θ∗

)2
 = V arx∼pθ∗ [s(θ∗, x)] (118)

The underlying idea is that if this information is significant, then we are very sensitive to
variations in the estimation of the maximum likelihood when we take data samples. Being
very sensitive means we are better able to determine θ∗. To express this intuition, we
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state the following theorem:

Theorem 8 (Fisher Information and Second Derivative)
The Fisher Information is related to the curvature of the log-likelihood calculated

at θ∗, i.e.,

I(θ∗) = −Ex∼pθ∗

[
∂2 log pθ(x)

∂θ2

∣∣∣∣∣
θ=θ∗

]
(119)

Proof 8. The proof proceeds as follows,

Ex∼pθ∗

[
∂2 log pθ(x)

∂θ2

∣∣∣∣∣
θ=θ∗

]
=
∫

pθ∗ × ∂2 log pθ(x)
∂θ2

∣∣∣∣∣
θ=θ∗

dx

=
∫ [
− 1

pθ∗
(p′

θ(θ∗))2 + p′′
θ(θ∗)

]
dx

= −
∫

pθ∗

(
∂ log pθ(x)

∂θ

∣∣∣∣∣
θ=θ∗

)2

dx︸ ︷︷ ︸
I(θ∗)

+
∫

p′′
θ(θ∗)dx︸ ︷︷ ︸

(
∫

pθ(x)dx)′′
θ=θ∗ = 0

(120)

■

Now let’s consider the additivity of Fisher information. The observations (xi)i≤n are
iid, so we can write

∂ log pθ(x1, . . . , xn)
∂θ

=
n∑

i=1

∂ log pθ(xi)
∂θ

(121)

The variables (∂ log pθ(xi)/∂θ) are iid, so the variance adds up. Thus 53,

I(θ∗; x1, . . . , xn) = n I(θ∗; xi) = n I1(θ∗) (122)

53. NDJE: I have introduced the notation I1 referring to 1 observation.
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5.4 Cramér-Rao Bound

We will use the Fisher Information to establish a bound on the precision of estimating
the parameter θ∗. In the context of a learning problem, θ represents the set of parameters
of a network, and we want to estimate how accurately we can determine them.

Theorem 9 (Cramér-Rao)
Let (x1, . . . , xn) be n iid observations, all distributed a according to pθ(x). Consider

an estimator Y of θ that is a statistic b of the variables (xi)i≤n:

Y = T (x1, . . . , xn) (123)

The expectation of this estimator is denoted as follows:

Ex∼pθ
[Y ] := τ(θ) (124)

The variance of Y is then bounded by:

V ar(Y ) ≥ |τ
′(θ)|2

nI1(θ) (125)

where I1(θ) represents the Fisher Information for 1 observation.

We qualify an estimator as unbiased if τ(θ) = θ, and in this case:

V ar(Y ) ≥ 1
nI1(θ) (126)

The Fisher Information gives us the minimal bound on the ability to estimate the
parameter θ from observations. Note that the independence of observations gives the
factor 1/n.

a. NDJE: Please note, depending on the context, x is either a specific observation or the set of
observations. Additionally, here, for brevity, θ represents the true parameter.

b. Traditionally, the term "statistic" means "function".

Proof 9. The strategy of the proof involves the direct calculation of τ ′(θ). Using the iid
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nature of the observations and the results on the score (Eqs. 115, 118), we get:

τ(θ) =
∫

pθ(x)T (x)dx =
∫

T (x1, . . . , xn)
n∏

i=1
pθ(xi)

n∏
k=1

dxk

⇒ τ ′(θ) =
∫

T (x1, . . . , xn)
n∑

i=1
p′

θ(xi)
1

pθ(xi)︸ ︷︷ ︸
(log pθ(xi))′

n∏
j=1

pθ(xj)
n∏

k=1
dxk

=
∫

T (x1, . . . , xn)∂ log pθ(x1, . . . , xn)
∂θ

n∏
j=1

pθ(xj)
n∏

k=1
dxk

=
∫

T (x)∂ log pθ(x)
∂θ

pθ(x)dx

= Ex∼pθ
[Y × s(θ, x)] = Cov[Y × s(θ, x)] + E[Y ]× E[s(θ, x)]︸ ︷︷ ︸

=0

(127)

So, the Cauchy-Schwarz inequality tells us that

|τ ′(θ)|2 = |Covx∼pθ
[Y × s(θ, x)]|2 ≤ V ar[Y ]× V ar[s(θ, x)] = V ar[Y ]× I(θ) (128)

Thus, we have the result of the theorem, knowing that I(θ) = nI1(θ). ■

This Cramér-Rao result is both very important for understanding how to perform parame-
ter inference and quite unique because it is rare to have an explicit bound on the accuracy
of an estimator. The primary focus of researchers in the field of inference is to find esti-
mators of the underlying model parameters that have the highest Fisher Information.
For example, from astrophysical observations across the electromagnetic spectrum, how
can we design observables and statistics to estimate cosmological parameters with the
highest possible efficiency (i.e., the highest Fisher Information)? It’s worth noting that
while the basic standard model of Cosmology (ΛCDM 54) has 6 parameters 55, inferences
typically involve about a hundred parameters, including nuisance parameters related to
poorly understood astrophysical effects and instrumental effects, for instance. Therefore,
it’s an understatement to say that the task is not simple.

The previous formalism easily generalizes to the multidimensional case where θ ∈ Rd.

54. Cold Dark Matter + Cosmological Constant
55. Planck 2018 https://arxiv.org/abs/1807.06209.

https://arxiv.org/abs/1807.06209
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We have already experienced that the derivative with respect to θ becomes the gradient,
thus:

∇θℓ(θMLE, x) = 0 Ex[∇θℓ(θ∗, x)] = Ex[s(θ∗, x)] = 0 (129)

and the Fisher Information becomes:

I(θ∗) = Ex[∥∇θℓ(θ∗, x)∥2) = −Ex[H[ℓ](θ∗, x)] (130)

where the Hessian appears. Thus, the Fisher Information governs the convergence rate
of the gradient descent algorithm (Th. 4) 56.

5.5 Optimality of MLE

Theorem 9 provides us with a bound, but the question is whether this bound can be
achieved? To answer this, we will introduce the efficiency of an estimator. Let’s consider
the case of an unbiased estimator, which means that E(Y ) = θ∗ 57. Throughout, we will
denote the estimator as θ̂n out of habit from the sections on MLE. The first property we
desire is consistency (Definition 1), meaning convergence in probability of the sequence
(θ̂n)n to θ∗. However, we also want to add a property concerning the estimation error: we
would like it to reach the Cramér-Rao bound. Consider the variance of θ̂n and its relation
to the Fisher Information to define the estimator’s efficiency:

eff. := [nI1(θ∗)]−1

V ar[θ̂n]
≤ 1 (131)

The question then arises: can we achieve 100% efficiency? To answer this, we will prove a
result about the MLE that tells us its distribution converges to a Gaussian distribution
with the variance precisely being the Fisher Information. We need to define what we

56. NDJE: Note, however, that the estimation of parameters and their confidence intervals in an inter-
mediate dimension (e.g., astro-cosmo) uses a different method. From ref. 55: "[The] nuisance parameters
are sampled, along with cosmological parameters, during Markov chain Monte Carlo (MCMC) exploration
of the likelihood." This requires the incorporation of priors.

57. Note that here, we reuse the notation θ∗ as the parameter of the true distribution.
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mean by convergence in distribution 58:

Definition 5 (Convergence in Distribution)
Consider a collection of random variables (x1, . . . , xn), the question is whether the

distribution of these random variables converges to the distribution of a variable x?
Denote the cumulative distribution function (or simply distribution function) of the
probability pn(x) as

Fn(a) =
∫ a

−∞
pn(x)dx (132)

(similarly, F is the distribution function of p(x)). Thus, convergence in distribution,
denoted as

p(xn) dist.−−−→
n→∞

p(x) (133)

means that

∀a such that F (a) is continuous, lim
n→∞

Fn(a) = F (a) (134)

This definition is related to the Central Limit Theorem established in 1809 by Pierre-
Simon de Laplace (1749-1827), generalizing the earlier work of Abraham de Moivre (1667-
1754) on the Bernoulli distribution:

Theorem 10 (Central Limit Theorem)
Let (x1, . . . , xn) be iid with E(xi) = µ and 0 < V ar(xi) = σ2 <∞. Define

X̄n := 1
n

n∑
i=1

xi (135)

58. NDJE After discussions with S. Mallat, we realized a difference between the notion of convergence
in distribution in the Anglo-Saxon sense as presented here and the French notion of "convergence en loi",
which states that the sequence of random variables (Xn)n>0 in Rd converges in law: Xn

loi−−−−→
n→∞

X if
for every bounded continuous function f from Rd to R: E[f(Xn)] −−−−→

n→∞
E[f(X)]. The point is that for

d = 1, convergence in law is equivalent to convergence of distribution functions, thus to convergence in
distribution, and furthermore, convergence in law is equivalent to convergence of generating functions.
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We know that (see the Law of Large Numbers, Theorem 1 and its proof)

X̄n
prob.−−−→
n→∞

µ, V ar[X̄n] = σ2

n
(136)

So, if we consider the random variable

Zn := n1/2
(

X̄n − µ

σ

)
(137)

its mean is 0, its variance is 1, and furthermore, we have

p(Zn) dist.−−−→
n→∞

N (0, 1) (138)

S. Mallat indicates that the proof is done using characteristic functions and leaves it to
the readers.

Now, consider the following theorem about the normal distribution convergence of
the MLE:

Theorem 11 (Normal Distribution Convergence of MLE)
We revisit the regularity assumptions of the MLE consistency theorem 7, along with

those on the second derivative (Eq. 113), to which we add a new assumption (R5)

|(log pθ(x))′′′
θ | < M(x) (139)

such that E[M(x)] <∞. This allows us to apply the dominated convergence theorem
to the error terms. Given these assumptions, for any sequence of MLEs θ̂n that
converges in probability to θ∗ (we know at least one such sequence exists), then

p(
√

n(θ̂n − θ∗)) dist.−−−→
n→∞

N (0, I−1(θ∗) = [nI1(θ∗)]−1) (140)

(note: in dimension n, we take the matrix inverse of the Hessian). This theorem
tells us that the MLE is an asymptotically optimal estimator because it reaches the
Cramér-Rao bound.
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Proof 11. We will outline the steps of the proof. If we take an MLE θ̂n, we know that the
derivative of the log-likelihood is zero at this point. So, by performing a Taylor expansion
around θ̂n and evaluating it at θ∗, we get

ℓ′(θ∗) = �
���

ℓ′(θ̂n) + (θ∗ − θ̂n)ℓ′′(θ̂n) + . . . (141)

In ℓ′(θ∗), we recognize the score of n iid random variables whose mean is zero (Eq. 115)
and whose variance equals the Fisher Information (Eq. 118) (I(θ∗) = nI1(θ∗)). By the
central limit theorem, we obtain

n1/2
(

ℓ′(θ∗)
I1/2(θ∗)

)
dist.−−−→

n→∞
N (0, 1)⇒ n1/2ℓ′(θ∗) dist.−−−→

n→∞
N (0, I(θ∗)) (142)

Now, we need to consider

n1/2(θ̂n − θ∗) = −n1/2ℓ′(θ∗)
ℓ′′(θ̂n)

(143)

and deal with the denominator, which is the trickiest part. Be aware that the Fisher
Information can be expressed in terms of second derivatives (Theorem 8) (−ℓ′′(θ∗) =
I(θ∗)), but these derivatives are calculated at the point θ∗ and not θ̂n. If we perform a
Taylor expansion around θ∗, we obtain

ℓ′′(θ̂n) = ℓ′′(θ∗) + (θ̂n − θ∗)ℓ′′′(θ∗) + . . . (144)

The condition that the term involving ℓ′′′(θ∗) tends to zero relies on assumption R5. For
now, let’s imagine we neglect this term 59

n1/2(θ̂n − θ∗) ≈
n→∞

n1/2ℓ′(θ∗)
I(θ∗)

dist.−−−→
n→∞

N (0, I−1(θ∗) = [nI1(θ∗)]−1) (145)

This gives us the theorem. So, the technical challenge lies in controlling the terms in-
volving ℓ′′′(θ∗). The theorem generalizes to dimension d thanks to the extension of the
dominated convergence theorem. ■

Once we have this result, we realize that we have access to confidence intervals (2D

59. if u ∼ N (µ, σ2), then u/a ∼ N (µ, σ2/a2).
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contours). This is crucial in physics, where the primary task is not only to produce results
on certain parameters but also to provide the probability of finding a parameter within cer-
tain confidence bounds. Furthermore, the scientific community becomes concerned when
there are tensions at the n-sigma level between different experiments giving results on the
same parameters. However, this issue of estimating confidence intervals tends to emerge
in machine learning as well. For example, in logistic regression, we know that there’s
uniqueness of θ∗ (due to convexity), and thus, theoretically, as n tends to infinity, θ̂n is
consistent (converges in probability), and we have a confidence interval thanks to conver-
gence in distribution. Unfortunately, this technique doesn’t work for neural networks for
many reasons. Here are two:

— There’s no uniqueness of θ∗ at all because there’s no convexity.

— The point is that the formalism implicitly assumes that d is fixed, and n ≫ d

(classical statistics regime). However, the number (huge) of parameters far exceeds
the number of samples, and this over-parametrization d ≳ n is highly effective (see
Section 2.1). For example, in the case of neural networks, the number of parameters
often greatly exceeds the number of available samples. Therefore, we cannot expect
to consistently estimate the entire PCA basis. In such cases, what remains consistent
in this partial estimation? In the best cases, we have access to the largest eigenvalues
(and associated eigenvectors). Thus, we need to step out of the classical statistical
framework, opening up new avenues for exploration in machine learning.

In the second part of the course, we will take a different approach, following in the footsteps
of C. Shannon. This approach involves providing parameter-independent information. C.
Shannon’s problem was not to discover the parameters of a physical phenomenon but to
transmit data as efficiently as possible. Therefore, the question was how to minimize the
number of bits needed to transmit information. Even though we seem far from Fisher In-
formation at first glance, we will realize that there is convergence between these concepts,
highlighting a well-known concept in statistical physics: entropy.
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6. Lecture 16 Feb.

6.1 Introduction

In this section, we will explore Claude Shannon’s perspective on the concept of
information (1948). As previously mentioned (Sec. 2.5), the goal is to uncover intrinsic
information within observations, without reference to any underlying model. This intrinsic
information is linked to the minimum number of bits required to encode or transmit
it through channels, a process that can introduce errors. What is remarkable is that
Shannon’s work has opened up connections to Statistical Physics through the notion of
Entropy, which quantifies the number of configurations of a system. In the 1960s, Andrey
Kolmogorov revisited Shannon’s question from the perspective of the minimum amount
of information needed to reproduce observations. However, Kolmogorov used a Turing
Machine to define complexity (or Kolmogorov’s information) as the size of the minimum
program required to replicate a sequence. There is a correspondence between these two
notions when considering stationary ergodic processes 60, as there is equivalence between
Shannon’s entropy and the quantity of Kolmogorov’s information (up to a constant).

Why focus on Shannon’s information rather than Kolmogorov’s? This can be justi-
fied by the fact that Kolmogorov’s information, except in a few cases, is very challenging
to compute, while Shannon’s entropy is not only intuitive but also estimable from obser-
vations. We will delve into this notion of entropy, demonstrate its additivity, which allows
it to be linked to the concept of information. We will also explore the concentration phe-
nomena, which form the basis of Shannon’s theory. According to him, the reason entropy
effectively quantifies the minimum size of a code that would reproduce the observations
is that these observations, geometrically, concentrate within typical sets (Eq. 23, Fig. 5)
whose size is specified by entropy. Therefore, by counting the number of elements in these

60. A brief note on vocabulary: 1) a process is ergodic if its statistical properties can be studied from
a single realization that is sufficiently long (e.g., ergodicity regarding the mean where temporal averages
converge to ensemble averages); 2) a process is stationary if its statistical properties characterized by
mathematical expectations are independent of time. These two notions are not identical. If X(t) = x0 +n
with x0 as a constant and n as a random variable, then E[x(t)] = x0 +E[n] is independent of time, making
it a stationary process. However, it is not ergodic. For example, if xi(t) is a realization that fixes the
value of n to ni, then 1

2T

∫ T

−T
xi(t)dt → x0 + ni. This result depends on the realization, indicating that

the process is not ergodic.
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sets, we can determine the number of bits required to encode them. Ultimately, using en-
tropy, we will be able to define models, leading us to the concept of Fisher information,
through the maximum entropy models. This principle was developed in 1957 by Edwin
Thompson Jaynes (1922-98) and establishes a connection with maximum likelihood. One
of the applications of this coding theory is signal compression and the concepts of dis-
tortion versus compression. Through this, we implicitly raise the question of where the
signal structures and their representation lie in order to grasp the geometry of typical
sets.

6.2 Shannon’s Entropy

We consider a scenario where we have a finite alphabet, denoted as A = {ak}1≤k≤K ,
where the symbols ak represent the values taken by a random variable X with probabilities
p(ak) assigned to each of them. Can we determine the uncertainty about the value of x,
a realization of X? Let’s imagine that the probabilities p(ak) are all identical (e.g., 1/K),
then we have a sort of maximum uncertainty about the value of x, meaning that no
particular symbol is favored. Conversely, if p(ak0 = 1), then we know with certainty what
the outcome of x will be. To some extent, variance would provide us with information
about the error on x, but it is primarily related to the concept of coding. Indeed, envision
a distribution concentrated on only a few symbols; it’s tempting to want to express these
favored symbols with few bits since they are often used, while allowing the use of a
maximum number of bits for rarely used symbols. This is particularly effective when
encoding natural language sentences, where the "symbols" are words from a vocabulary
corpus.

Definition 6 (Shannon’s Entropy)
Shannon’s entropy is given by

H(X) := −Ex∼p[log p(X)] ≥ 0 (146)

which, for a random variable X taking values in an alphabet A = {ak}1≤k≤K, is
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expressed as a

H(X) = −
K∑

k=1
p(X = ak) log p(X = ak) (147)

a. The "log" is used here without specifying the base.

NDJE: By the way, I denote entropy with the letter H for two reasons: 1) Claude Shannon
used the letter H, and 2) it needed to be distinguished from the "H" of the Hessian.

If we revisit the two extreme examples mentioned earlier, for a uniform distribution,
H[U ] = log K = log |A|, and for a distribution concentrated on only one symbol, H[δ] = 0.
We will see that log |A| is the upper bound for H(X) (Eq. 4). Thus, we understand that
Shannon’s entropy effectively measures an error regarding the value of a realization x.

Considering two random variables, we define joint entropy and conditional entropy
as follows:

Definition 7 The joint entropy of two random variables X and Y with values in A
is defined as

H(X, Y ) := −E(x,y)∼p[log p(X, Y )] = −
∑
k,k′

p(X = ak, Y = ak′) log p(X = ak, Y = ak′)

(148)

Definition 8 The conditional entropy of two random variables X and Y with values
in A is defined as

H(Y |X) := −
∑

k

p(X = ak)H(Y |X = ak)

= −
∑
k,k′

p(X = ak, Y = ak′) log p(Y = ak′|X = ak)

= −E(x,y)∼p[log(Y |X)] (149)

Later on, we can simplify the notation, either by using p(ak) = p(X = ak) and
p(ak, ak′) = p(X = ak, Y = ak′), or by referring to p(x, y), p(x), p(y|x), which are less
prone to confusion. The two aforementioned entropies are related as follows:
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Property 2
H(X, Y ) = H(X) + H(Y |X) (150)

Indeed,

H(X, Y )−H(X) = −
∑
x,y

p(x, y) log p(x, y) +
∑

x

p(x) log p(x)

= −
∑
x,y

p(x, y) log p(x, y) +
∑

x

(∑
y

p(x, y)
)

log p(x)

= −
∑
x,y

p(x, y) log p(x, y)
p(x) = −

∑
x,y

p(x, y) log p(y|x)

= H(Y |X) (151)

In passing, we note that if entropy measures uncertainty, the above relationship is quite
intuitive.

Let’s explore the additivity of the entropy defined in this manner. To do this, we
will use the concept of mutual information through Kullback-Leibler divergence (See note
52), or relative entropy. It is a very useful tool in probability.

6.3 Relative Entropy and Mutual Information

Let’s recall the definition of Kullback-Leibler divergence:

Definition 9 (Kullback-Leibler)
If the support a of q includes the support of p, then

D(p∥q) :=
∑

x

p(x) log p(x)
q(x) <∞ (152)
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Figure 16 – Schematic representation of entropy H(X) and H(Y ), of H(Y |X), as well
as mutual information (Eq. 153) and joint entropy (Eq. 150).

The sum can be transformed into an integral if necessary.
a. By convention, we set 0 log 0 = 0 and 0 log(0/0) = 0.

Now, let’s define mutual information, which will provide us with a measure of indepen-
dence based on Kullback-Leibler divergence:

Definition 10 (Mutual Information)
Consider two random variables, X and Y , with a joint probability distribution p(x, y)
and marginal distributions p(x) and p(y). Mutual information is defined as follows:

I(X, Y ) := D(p(x, y)∥p(x)p(y)) (153)

The connection with entropy is expressed through the following property:

Property 3

I(X, Y ) = H(X) + H(Y )−H(X, Y )
= H(X)−H(X|Y )
= H(Y )−H(Y |X) (154)

Indeed, it can be easily shown that:



66

I(X, Y ) + H(X, Y ) = −
∑
x,y

p(x, y) log[p(x)p(y)]

= −
∑

x

∑
y

p(x, y)︸ ︷︷ ︸
p(x)

log p(x)−
∑

y

∑
x

p(x, y)︸ ︷︷ ︸
p(y)

log p(y)

= H(X) + H(Y ) (155)

Then, we use Eq. 150. In some way, mutual information is measured by the impact
of knowledge about x on the reduction of uncertainty about the value of y (and vice
versa when exchanging the roles of x and y). If the two variables are independent, the
reduction in uncertainty is zero. These different concepts can be schematically represented
as shown in Figure 16.

To prove certain results, we need Jensen’s inequality in the context of probabilities 61:

Theorem 12 (Jensen’s Inequality)
Let f be a convex function in one dimension (with a second derivative that is

positive or non-negative). Then, for any random variable X:

E[f(X)] ≥ f(E[X]) (156)

If f is strictly convex (with a second derivative strictly positive), we have
equality if and only if the only value taken by X is E[X].

We will use this theorem to show that Kullback-Leibler divergence is positive.

Theorem 13 (Positivity of Kullback-Leibler Divergence)

D(p∥q) ≥ 0 D(p∥q) = 0 if and only if p(x) = q(x) ∀x (157)

61. See also Eq. 48.
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Proof 13. The function log is strictly concave, so − log is strictly convex:

D(p∥q) =
∑

x

p(x) log p(x)
q(x) = −

∑
x

p(x) log q(x)
p(x)

= Ep

[
− log q(x)

p(x)

]
≥ − logEp

[
q(x)
p(x)

]
= − log(1) = 0 (158)

The strict concavity of the log function implies that the inequality above becomes
an equality if and only if p(x)/q(x) takes a unique value. Let c be this value, as ∑x p(x) =∑

x q(x) = 1, then c = 1, and we have the second result of the theorem.

■

Therefore, Kullback-Leibler divergence indeed provides a kind of "distance" between
the two probabilities p and q in the sense that it indicates similarity when close to 0.
However, it is not a distance because D(p∥q) ̸= D(q∥p).

One consequence of the positivity of D(p∥q) concerns mutual information since it is
directly related to it by definition. Thus,

I(X, Y ) ≥ 0 (159)

and we have equality if and only if in the case of independence:

I(X, Y ) = 0 if and only if X, Y are independent (160)

Another consequence concerns the entropy of a random variable taking its values in
an alphabet (see the two examples in Sec. 6.2):

Property 4 For a random variable X with values in a finite set A, we have:
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H(X) ≤ log |A| (161)

Indeed, let A = {ak}1≤k≤K and consider the uniform distribution on this alphabet,
q(ak) = 1/K for all k. Then, for any random variable X with probability p(x):

0 ≤ D(p∥q) =
∑

k

p(ak) log p(ak) +
∑

k

p(ak) log K = −H(X) + log K (162)

Another intuitive property, considering entropy as a measure of uncertainty, is that
if we add information by conditioning on another random variable, then:

Property 5
H(X|Y ) ≤ H(X) (163)

This property is evident when we remember the relationships between mutual in-
formation and entropy (Eqs. 3) and the fact that mutual information is always positive.
One way to visualize this relationship is given in Figure 16, where H(Y |X) is the smaller
orange crescent compared to H(Y ).

So, in conclusion, Shannon’s entropy aligns with our intuition about what error in
a random process should be. The crucial point we do not prove here is that conversely,
if we have the relationships mentioned above and we ask what form H(X) should take,
then we arrive at Shannon’s entropy.

(NDJE) In his 1948 paper, Shannon gives 3 conditions for the function H(p1, p2, . . . , pK)
where (pk)k are the known probabilities of K events:

1) H should be a continuous function of all its variables pk;

2) In the case of equiprobability pk = 1/K (∀k), then H should be a monotone function
of K, reflecting that with more choices, there is more uncertainty;

3) In the case where the original problem is subdivided into subproblems, then the ori-
ginal function H should be a weighted sum of the functions H of the subproblems.
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Under these conditions, he demonstrates that

H = −C
∑

k

pk log pk (164)

with C being a positive constant that he takes equal to 1, which is a sort of unit choice
(he also doesn’t specify which type of logarithm is used).

So, Shannon’s entropy aligns with our expectations regarding uncertainty in pro-
cesses, but where it becomes very powerful is when we link it to phenomena of concen-
tration.

6.4 Typical Sets

When we aim to model observations, we try to visualize the geometry of the space
in which they evolve. As we have already discussed (Sec. 2.2), in high dimensions, where
the probabilistic perspective is often more powerful than the deterministic one, this is
primarily due to concentration phenomena (Fig. 3). In machine learning, we often talk
about "manifolds", but let’s not be mistaken: these sets are not necessarily differentiable.
Therefore, we would like to characterize the geometry of these sets and calculate their
size, which we believe should be much smaller than the size of the set in which they exist.
In this context, we will see that entropy characterizes the volume of typical sets (or the
number of elements in the discrete case) (Eq. 23, Fig. 5).

Let’s consider a case where we have iid realizations (x1, x2, . . . , xn) of a process X.
The probability of these realizations is, of course,

p(x1, x2, . . . , xn) =
n∏

i=1
p(xi) (165)

and as in the case of the likelihood concept, we want to take the logarithm of this expres-
sion. If we weight it by 1/n, we have

1
n

log p(x1, x2, . . . , xn) = 1
n

n∑
i=1

log p(xi) (166)

In other words, we have an average of iid random variables. So, according to the Law of
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Large Numbers (Th 1) for probability convergence, we get

1
n

log p(x1, x2, . . . , xn) prob.−−−→
n→∞

Ex∼p(x)[log p(x)] = −H(x) (167)

Therefore 62,

∀ε > 0 lim
n→∞

P
(∣∣∣∣− 1

n
log p(x1, x2, . . . , xn)−H(x)

∣∣∣∣ ≤ ε
)

= 1 (168)

Thus, we can focus on the observations that will actually (for a given ε) have an expec-
tation that is within ε of the entropy. By denoting {xi}1≤i≤n = {x}

T ε
n =

{
{x} ∈ An,

∣∣∣∣− 1
n

log p({x})−H(x)
∣∣∣∣ ≤ ε

}
(169)

For any ε > 0 and sufficiently large n, we have

P[{x} ∈ T ε
n] ≥ 1− ε (170)

In other words, almost all realizations will belong to T ε
n, hence the name "typical set".

The next question is: what is their size?

If we rewrite the constraint defining T ε
n and use the base-2 logarithm (which sets

the constant c mentioned above), then for ∀ε > 0

∣∣∣∣− 1
n

log p({x})−H(x)
∣∣∣∣ ≤ ε⇒ 2−n(H(x)+ε) ≤ p({x}) ≤ 2−n(H(x)−ε) (171)

Note that due to the additivity of entropy, nH(x) = H({x}), which is a constant inde-
pendent of any particular realization {x}. What’s remarkable here is that, up to ε, the
probability is almost constant on these typical sets. Thus, observations concentrate wi-
thin these sets while being distributed anywhere inside them at the same time, which
is a consequence of independence. This is referred to as asymptotic equipartition 63. We

62. NDJE: For the definition of typical sets Eq. 23, the notation was slightly different: (x1, . . . , xn) =
{x}, and H[p] is actually H(x). Here, I have used notation related to the definition of entropy in this
session.

63. NDJE: This should be considered in the context of the fundamental principle of equiprobability of
microstates in a thermodynamic system of energy within the interval [E, E + dE].
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can state the following two properties of typical sets:

Property 6 In addition to

P[{x} ∈ T ε
n] ≥ 1− ε (172)

the cardinality of the set T ε
n satisfies

(1− ε)2n(H(x)−ε) ≤ |T ε
n| ≤ 2n(H(x)+ε) (173)

which implies that the number of elements {x} in the set is approximately 2nH(x)

(also 2H({x})).

The second property can be demonstrated as follows. For {x} ∈ An, using the relation
171, we have

1 =
∑

{x}∈An

p({x}) ≥
∑

{x}∈T ε
n

p({x}) ≥
∑

{x}∈T ε
n

2−n(H(x)+ε) = |T ε
n| × 2−n(H(x)+ε) (174)

which yields one of the two inequalities. Considering the first property, we have

∑
{x}∈T ε

n

p({x}) ≥ 1− ε (175)

thus, using Eq. 171, we get

1− ε ≤
∑

{x}∈T ε
n

2−n(H(x)−ε) = |T ε
n| × 2−n(H(x)−ε) (176)

which gives the other inequality. These properties will be useful for coding.

6.5 Typical Code

Why can we perform coding? Let’s imagine I have 64 X = (x1, x2, . . . , xn) with
n coordinates, knowing that these coordinates are iid random variables governed by a

64. NDJE: Here, X represents what was previously denoted as {x}.
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probability distribution p(x) where the values of x are either taken from a finite alphabet
of size K or from an interval in R, in any case for which I can calculate H(x). We associate
a binary word w(X) with X, which has a certain length ℓ(X) (or ℓ(w(X))), and we look
at the average length (or number of bits) per symbol:

R = 1
n

∑
X

ℓ(X)p(X) (177)

The word w(X) can vary from one observation X to another, so we want to know the
minimum size on average.

Now, knowing the existence of the typical set associated with p(x), we can say that
either X ̸∈ T ε

n, but this will be the case with very low probability (≤ ε), or X ∈ T ε
n with

a high probability, which is almost uniform over the set. The idea is, therefore, to use
shorter codes when the probability is high and longer codes when the probability is low
(recall the coding of natural language, Sec. 6.2). Now, for X ∈ T ε

n, since the elements are
equiprobable, it is natural to use a code of the same length for these elements. The code
length should be sufficient to distinguish all the elements within this typical set, so it is
approximately log2 |T ε

n|. Thus, we define the typical code or ε-typical code as follows:

Definition 11 (ε-Typical Code)

— If X ∈ T ε
n, ℓ(X) = ⌈n(H(x) + ε)⌉ = ⌊n(H(x) + ε)⌋+ 1

— If X ̸∈ T ε
n, recalling the size of this set, ℓ(X) = ⌊n log2 K⌋+ 1

— We add 1 bit to each ℓ(X) to indicate whether X is in the typical set or not.

We can then bound R as follows:

Theorem 14 (Shannon Bound)
∃C such that for all ε > 0, for sufficiently large n and an ε-typical code, the average

number of bits per symbol satisfies

R ≤ H(x) + Cε (178)
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Proof 14. Let’s express R as follows:

R = 1
n

∑
X∈T ε

n

ℓ(X)p(X) + 1
n

∑
X ̸∈T ε

n

ℓ(X)p(X)

= 1
n

(⌊n(H(x) + ε)⌋+ 2)
 ∑

X∈T ε
n

p(X)
+ 1

n
(⌊n log2 K⌋+ 2)

 ∑
X ̸∈T ε

n

p(X)
 (179)

Now, ∑X∈T ε
n

p(X) ≤ 1 and ∑X ̸∈T ε
n

p(X) ≤ ε, and since ⌊x⌋ ≤ x, we have

R ≤ 1
n

(n(H(x) + ε) + 2) + 1
n

(n log2 K + 2)ε ≤ H(x) + ε
( 3

n
+ log2 K

)
+ 2

n
(180)

This allows the upper bound and identifies C by justifying that n is sufficiently large. ■

So, with the ε-typical code, the number of bits (per symbol) is roughly bounded by the
entropy of the symbol probability. Can we do better? This would be the case if we could
show that observations concentrate "even more" in subsets of typical sets... However, a
priori, we have shown that the probability within typical sets is nearly uniform, so it
seems quite challenging. This is what we will explore next.

6.6 Typical Sets are "Optimal"

In a sense, we will show that typical sets are the right objects, not only do obser-
vations concentrate in them, but also we cannot hope for anything better. Let Bn

δ be the
smallest set such that

P(X ∈ Bn
δ ) ≥ 1− δ (181)

Can it be smaller in size than the typical set? The answer is no, and this is due to the
following theorem:

Theorem 15 (Optimality of Typical Sets)
With X = (x1, . . . , xn) where the xi are iid random variables with distribution p(x)
∀δ, δ′ > 0,

P(X ∈ Bn
δ ) ≥ 1− δ ⇒ 1

n
log2 |Bn

δ | ≥ H(x)− δ′ (182)
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Proof 15. The proof focuses on the intersection between Bn
δ and T ε

n.

P(T ε
n ∩Bn

δ ) = P(T ε
n) + P(Bn

δ )− P(T ε
n ∪Bn

δ ) ≥ (1− ε) + (1− δ)− 1 = 1− ε− δ (183)

Now, every element in the intersection is an element of T ε
n, and we can use the inequalities

171. Thus,

P(T ε
n ∩Bn

δ ) =
∑

X∈T ε
n∩Bn

δ

p(X) ≤ |T ε
n ∩Bn

δ | × 2−n(H(x)−ε) ≤ |Bn
δ | × 2−n(H(x)−ε) (184)

Which can be rewritten as

|Bn
δ | × 2−n(H(x)−ε) ≥ 1− ε− δ ⇒ 1

n
log2 |Bn

δ | ≥ H(x)− ε + 1
n

log2(1− ε− δ) (185)

We can then, for any δ and δ′, find ε and n large enough 65 so that

1
n

log2 |Bn
δ | ≥ H(x)− δ′ (186)

■

So, the minimum-size set that concentrates the observations is indeed the set whose size is
given by the entropy, i.e., the typical set. Therefore, we cannot find a code that surpasses
the typical code, and the bound given by Theorem 14 is optimal.

While geometry gives us insight into typical sets and their connection to entropy,
the typical code is not practical at all. The reason is simple to understand: in the typical
code, it is necessary to set a bit if a sequence belongs to the typical set, but one would
need to be able to test if this is the case directly! However, this is not feasible. Therefore,
we need to find ways to implement this notion of typical coding in efficient algorithms
that achieve the Shannon bound. These are called instantaneous entropy codes.

To address the topic that will be developed next time, let’s take a sequence X =
(x1, x2, . . . , xn) where each xi takes its value from an alphabet A = {ak]}1≤k≤K . So, each
ak value is encoded by a binary word w(k) of length ℓ(k), and defining a code means

65. For example, ε ≤ δ′/2 and n ≥ log2(1− δ − δ′/2)/(δ′/2).
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Figure 17 – Representation of a binary tree used to create a coding that satisfies the
prefix constraint by taking the tree’s leaves.

giving each symbol ak the word w(k) in a way that minimizes the length. We don’t code
the entire sequence X, but each of its elements individually. Thus, we want to minimize
the quantity:

R =
∑

k

ℓ(k)p(ak) (187)

One possibility would be, for example, to arrange the symbols in decreasing order of
occurrence, and in the case of 4 symbols, define the variable-length code as follows: w1 =
0, w2 = 10, w3 = 101, w4 = 111, with the background idea of using shorter (longer) binary
words for frequent (rare) symbols. Two remarks come immediately: first, we need to know
the probabilities p(ak) a priori, and second, the code must be decodable. Suppose we have
an idea of the occurrence frequencies of the symbols through preliminary analysis, the
second problem is more serious. Indeed, if I send (a2a2) via the code 1010, the receiver
can interpret not only (a2a2) but also (a3a1), which is particularly inconvenient. The code
is not satisfactory because it is not uniquely decodable. Note that the receiver who receives
1111 due to a simple transmission error would start decoding a4 and then would not know
what to do with the remaining 1; they would likely wait for additional bits...

Let’s assume that the communication channel is ideal. The source of ambiguity
between a2a2 and a3a1 lies in the fact that the word w2 is the beginning of the word w3.
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Adding separators would not help because we would need to code the separator, which
would increase the amount of information to transmit. Instead, we need a constraint known
as the prefix constraint, which states that no binary word is the beginning of another word.
With this type of constraint, in a sense, we have a separator without the additional cost
of increasing the number of bits to transmit. However, this prefixing is a constraint, so
it would be useful to construct codes easily. Here the elegant observation to make is the
correspondence with a binary tree, and the prefixing constraint is satisfied if and only if
we take the leaves of the tree (Fig. 17). Indeed, if we take only the leaves of the tree, we
cannot have two words where one is the beginning of the other, and conversely, suppose
I have a code satisfying the prefixing condition, then I can construct the tree and cut it
at the level of the code words, which are, in fact, the leaves of the tree.

The remaining point to see, not to mention problems with noisy and/or faulty
channels, is the optimization of R. However, ℓ(k) corresponds to the depth of w(k) in
the binary tree. So, R represents the average depth of the leaves of the binary tree
representing the code. Thus, the problem, given the p(ak), is to construct a binary
tree whose leaves have, on average, the smallest possible depth. Incidentally, this also
validates using short words for the most probable sequences. The answer gives the optimal
code.

7. Lecture 23 Feb.

For reference, in the last session, we saw that if we want to encode a series of values
X = (x1, x2, . . . , xn) where the xi are elements from a finite alphabet A = {ak}1≤k≤K ,
then the average number of bits per symbol satisfies 66

H(x) ≤ R ≤ H(x) + Cε (188)

66. The upper bound is from Theorem 14, which was obtained for typical sets, while the lower bound
has not been proven, in fact. We can outline a possible proof: the relationship between the size of the
typical set and entropy is roughly H(x) ≈ 1/n log2 |T ε

n|, which, in other words, is the average number of
bits needed to encode elements of the set. Taking into account the result in Sec. 6.6 (after Theorem 14)
which states that there is no set that concentrates information better than the typical set, the value of
R cannot be smaller than entropy H(x). However, the precise proof within the framework of typical sets
remains to be established. I present a proof established using the Kraft lemma in this session.
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for an ε-typical coding (Definition 11), and that we cannot do better. From a geometric
perspective, the coding of the n symbols, which is an element of An, is actually an element
of the typical set T ε

n, which has a size of approximately 2nH(x), and so the number of bits
is of the order of the logarithm of this quantity, which is H per symbol. Ultimately,
there exists no set smaller than T ε

n.

7.1 Instantaneous Coding (One Symbol at a Time)

In practice, implementing a typical code is generally not feasible because one must
determine if a sequence is an element of the typical set or not in order to toggle a bit. We
have seen that simpler codes (called instantaneous codes) that operate symbol by symbol,
by assigning one binary word wk to each symbol ak satisfying a prefix constraint, can be
considered. This can be achieved by constructing a binary tree, where the code words are
the leaves (Fig. 17). Each word wk has a length ℓk, and thus the problem becomes: given
the probabilities of occurrence p(ak) = pk for each symbol, find the wk such that first,
decoding is possible (satisfying the prefix constraint), and second, the average length of
a coded symbol (average number of bits)

R =
∑

k

ℓkpk (189)

is minimized. Note that the length ℓk exactly corresponds to the depth of the word wk in
the binary tree.

Intuitively, to construct the tree, we consider that the most frequent words should
be encoded with short words, thus with leaves of the tree close to the root. Conversely, less
frequent words are encoded with words corresponding to leaves farther from the root. If
this is in the background for constructing the tree, we need to understand the relationship
between ℓk and pk. For this purpose, let’s see a first theorem by C. Shannon.

Theorem 16 (Shannon’s Code)
Given a source X of symbols ak with known probabilities denoted as pk, then for a
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prefix code, we have
R ≥ H = −

∑
k

pk log2 pk (190)

and there exists a code called Shannon’s code such that

R ≤ H + 1 (191)

In other words, the inefficiency is at most 1 bit compared to entropy.

The proof is based on a very important lemma in Information Theory, which is as fol-
lows 67:

Lemma 1 (Kraft’s Lemma)
Any prefix code with K binary words wk of length ℓ(wk) = ℓk satisfies the following

inequality:

K∑
k=1

2−ℓk ≤ 1 (I1) (192)

Conversely, if the collection of ℓk satisfies inequality (I1), then there exists a prefix
code {wk}1≤k≤K such that the lengths of the binary words satisfy ℓ(wk) = ℓk.

Proof 1. Let’s consider the necessary condition. Suppose we have a prefix code (binary
tree with leaves as code words), and let m be the maximum depth of the tree:

m := max
k

ℓk (193)

For each leaf of the original binary tree, we make it the root of a new binary tree that is
extended to reach depth m. For an original leaf with depth ℓk, the number of leaves in its
tree at depth m is 2m−ℓk (Fig. 18). At this maximum depth, all words are disjoint, and
their number is less than the total number of possible words at this depth (due to the

67. by Leon Gordon Kraft, a lemma he published in his thesis in 1949.
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Figure 18 – Example of a binary tree with maximum depth m, and its leaves (green dots)
extended by binary subtrees to the maximum depth. Kraft’s lemma imposes a constraint
on the total number of leaves existing at the maximum depth.

presence of the original leaves at this depth):

K∑
k=1

2m−ℓk ≤ 2m (194)

This gives us relation (I1) by dividing both sides by 2m.

Conversely, we have a set of word lengths ℓk. Let’s start by ordering them: ℓ1 ≤ ℓ2 ≤
· · · ≤ ℓK (with a redefinition of indices if needed). For example, in Figure 18, the depths of
the leaves (green dots) from left to right are {3, 3, 5, 5, 5, 4, 4, 1}, which can be rearranged
as {1, 3, 3, 4, 4, 5, 5, 5}. Next, we find the maximum depth, denoted as m = 5. We then
construct a complete tree up to this depth and attach K subtrees of sizes 2m−ℓk , starting
from the left, for example. We know that we can include them thanks to inequality (I1)
(Fig. 19). The roots of the subtrees are identified as the leaves of the binary coding tree,
and we observe that they form a prefix code with lengths ℓ(wk) equal to the original ℓk.
■

Now, let’s return to the proof of Theorem 16.
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Figure 19 – Reconstruction of a binary tree based on word lengths (Kraft’s lemma).
The cross signifies that an unused leaf is ultimately removed.

Proof 16. To the problem of finding the words wk such that their lengths ℓk minimize

R =
K∑

k=1
ℓkpk (195)

we add the condition
K∑

k=1
2−ℓk ≤ 1 (196)

to satisfy the prefix condition. We then have a linear minimization problem with a convex
constraint. The solution is unique and given by the Lagrange multipliers 68. We define the
Lagrangian as

L ({ℓk}, λ) =
K∑

k=1
ℓkpk + λ

(
K∑

k=1
2−ℓk − 1

)
(197)

The saddle point (or col) satisfies ∀i

∂L

∂ℓi

= pi − λ 2−ℓi loge 2 = 0 (198)

Summing over all i, the sum of probabilities is 1, and the constraint becoming an equality

68. See Course 2018 Sec. 8.3.
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provides

λ∗ loge 2 = 1 ℓ∗
i = − log2 pi (199)

This establishes the link between the word length ℓk and the probability pk of symbol ak

occurring.

The set of minimum values {ℓ∗
k}k gives the corresponding value of R:

Rmin = −
∑

k

pk log2 pk = H (200)

NDJE: With Kraft’s lemma, we can prove that for any prefix code, R ≥ H. Indeed,
for a prefix code based on the probabilities (pk)k and the set of lengths ℓ′

k, Kraft’s lemma
requires that

C ′ =
K∑

k=1
2−ℓ′

k ≤ 1

Now, define the probabilities (qk)k as

qk := 2−ℓ′
k

C ′ ⇒ − log2 qk = ℓ′
k + log2 C ′

Now,
D(p∥q) =

∑
k

pk log pk −
∑

k

pk log qk ≥ 0

which gives
R′ ≥ H(x)− log C ′ ≥ H(x)

So, for any prefix binary code, R is greater than or equal to H, and the result of the
theorem then tells us that we could possibly reach the bound by taking the lengths
{ℓ∗

k}k.

But why, in practice, is this not the case, hence the presence of Shannon’s second
inequality? The reason is simple: the ℓ∗

i must represent depths in a tree, so they are
integers, but the pk are not necessarily powers of 2. In practice, we have an approximation
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of this optimal code (called entropy coding). Shannon gives the following example:

ℓ̃k = ⌈− log2 pk⌉ (Shannon) (201)

which satisfies Kraft’s inequality because ⌈x⌉ ≥ x. Regarding the value of R, we have
⌈x⌉ ≤ x + 1

R ≤
∑

k

pk(− log2 pk + 1) = H + 1 (202)

which gives Shannon’s second inequality. ■

This theorem is remarkable because it is constructive and provides lower and upper bounds
on the average number of bits per symbol. However, it is not optimal; it merely establishes
a connection between a theoretical code and a feasible one. Is it a problem that this code
is not optimal? Well, it depends on the problem, but if we consider images, for example,
although the pixel value is coded with 8 bits (0: black, 255: white), on average, we have only
about 1/4 of a bit per pixel. In this case, adding 1 bit per pixel due to code inefficiency
is very penalizing. So, it’s worth the effort to reduce the bound so that typically

R ≤ H + O(ε) (203)

The inefficiency arises because the lengths of code words are constrained to be integers.
Therefore, we will consider not just 1 symbol at a time but blocks of n symbols, especially
since for large n, we know that we will concentrate the probabilities. We expect to lose 1
bit per block of size n, so per symbol, we will lose only 1/n bit.

7.2 Block Entropic Coding

So, let’s consider X = (x1, . . . , xn) ∈ An, where each xi is still an element of an
alphabet with K symbols, so the set of all X has a size of |An| = Kn. If we apply
the theorem from the previous section, we then obtain that the average number of bits
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required to code X using Shannon’s code satisfies

H(X) ≤ RX ≤ H(X) + 1 (204)

If we assume that the (xi)i are iid (independent and identically distributed), then naturally

H(X) = nH(x) (205)

By the way, when considering iid variables, we are dealing with the worst-case scenario.
Indeed, if this is not the case, the actual entropy is smaller than the iid entropy 69, and
hence the code is less efficient than if we had considered the correlation between the
symbols. We will revisit this later. But let’s stay in the iid case for now; then the number
of bits per symbol satisfies

H(x) ≤ R ≤ H(x) + 1
n

(206)

So, we have an algorithm at hand that, in principle, becomes optimal as we consider
blocks of symbols of increasing size (n approaching infinity). However, Shannon’s solution
is not optimal because, for a fixed n, it does not guarantee that we have the coding that
achieves the minimum R.

7.3 Optimal Huffman Code

The idea behind the optimal code stems from the following observation: if we consi-
der the tree associated with the optimal prefix code, then a leaf deeper in the tree always
has a lower probability than a shallower leaf. In other words, the deeper we go into the
tree, the less probable the symbols become. Indeed, consider the situation depicted in
Figure 20. If, all else being equal, pk′ ≤ pk for two leaves where ℓk′ ≤ ℓk, then 70

pk′ℓk + pkℓk′ ≤ pkℓk + pk′ℓk′ (207)

So, by swapping symbols k and k′, we obtain a coding with a better R value. David

69. NDJE: to put it in the context of statistical mechanics: "there is less disorder due to correlations",
and therefore, the code is less efficient than if we had taken the correlation between the symbols into
account. We will come back to this. But for now, let’s stick to the iid case.

70. NDJE: simply realize that (pk − pk′)(ℓk − ℓk′) ≥ 0 and expand this expression.
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Figure 20 – A situation where a deeper leaf has a higher probability, pk ≥ pk′ : swapping
the symbols involved reduces the value of R.

Albert Huffman (1925-99) at MIT in 1951 used this idea to solve a problem posed by
his professor Robert Fano 71 (1917-2016). Robert Fano himself had developed the tree
starting from the largest probabilities (top-bottom), while Huffman proceeded from the
smallest probabilities (bottom-up).

Definition 12 (Huffman Code)
Suppose we arrange the K symbols in increasing order of probabilities: p(ak) ≤
p(ak+1). We will relate the problem of K symbols to that of K − 1 symbols. To do
this, we start with the 2 least frequent symbols (a1, a2) to create a symbol a1,2 (a1

or a2) with a probability equal to the sum p1 + p2 = p1,2. By eliminating (a1, a2) in
favor of a1,2, we reduce the problem by 1 unit, going from K to K−1 symbols. Thus,
if we have an optimal code for the K − 1 symbols {ak}k>2 ∪ {a1,2}, then we have an
optimal code for the K symbols by dividing the leaf a1,2 into two sub-leaves.

The proof is based on the above observation regarding the relative position of probabilities
in the tree and the reflection that in a complete prefix tree, there is never a single leaf whose
codeword has the maximum length. An example of the implementation of the Huffman
code is provided in a Python notebook associated with this course 72. The Huffman code

71. His older brother Ugo Fano is well-known among nuclear physicists.
72. https://github.com/jecampagne/cours_mallat_cdf/cours2022, Simple_huffman_code.ipynb.

https://github.com/jecampagne/cours_mallat_cdf/cours2022
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is truly optimal in a practical sense, meaning it cannot be improved upon (unless we
consider block coding), and its inefficiency compared to the entropy code is significantly
less than 1 bit. In the exercise proposed in the notebook, you will observe that R ≈ 2.24,
while the entropy is 2.18, resulting in an inefficiency of 0.06 bits. However, the Huffman
code has some drawbacks, such as the need to transmit the coding tree and the rigidity
of the code, which must be recalculated for each transmitted text.

7.4 Differential Entropy

All the algorithmic developments we’ve discussed so far work perfectly for a finite
alphabet. The practical problem arises when we have measurements, which are real num-
bers. Therefore, we need to define the counterparts of information, entropy, and associated
algorithms, knowing that a real number can possibly be represented by an infinite number
of bits. However, in the real world, so to speak, "floats" are represented by 32, 64-bits, or
even more sometimes, so we transition into the finite domain at the cost of quantization
that introduces an error. Before considering that, let’s see how we extend the theory,
entropy, and typical sets to real values, thus bridging the gap with the first part of the
course, which is Fisher’s information.

Definition 13 (Differential Entropy)
Let X be a random variable with probability density with respect to the Lebesgue

measure dx denoted as p(x) (x ∈ R or Rn). The differential entropy is then defined
as

Hd = −
∫

p(x) log p(x) dx (208)

Unlike its discrete counterpart (Def. 6), differential entropy is not necessarily positive.
Here’s an example:

X ∼ U([0, a])⇒ Hd = log a (209)

So, if a < 1, the differential entropy is negative. We need to view this entropy as relative
to a reference measure, in this case, the Lebesgue measure (dx). Concerning the Gaussian
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distribution, we have

X ∼ N (µ, σ2)⇒ Hd = 1
2 + 1

2 log
(
2πσ2

)
= 1

2 log(2πe) + log σ (210)

In fact, a or σ can be seen as scale factors, and in general (∀α > 0)

Hd(αX) = Hd(X) + log α (211)

This comes from the fact that p(αx)(αdx) = p(x)dx, i.e., p(αx) = 1
α
p(x). Therefore, the

measurement scale affects the relative character of entropy.

From this definition of entropy, we can extend all the concepts we’ve discussed,
including typical sets. What we want to verify is that if we take n iid random variables,
the joint probability satisfies

p(x1, . . . , xn) =
∏

i

p(xi) ≈ 2−nHd(x) (212)

This is the counterpart of Equation 171 in Section 6.4 about typical sets in a finite
alphabet. In fact, we have the following property

− 1
n

log p(x1, x2, . . . , xn) prob.−−−→
n→∞

−Ex∼p(x)[log p(x)] = Hd(x) (213)

So, the log-probability of a block of n iid random variables concentrates, to an epsilon,
around its mean, i.e., the differential entropy. This leads us to define sets that contain al-
most all realizations of these n blocks, which are the associated typical sets. The definition
follows the one given by Equation 169 using differential entropy 73:

T ε
n =

{
{x} ∈ Rn,

∣∣∣∣− 1
n

log p({x})−Hd(x)
∣∣∣∣ ≤ ε

}
(214)

And the convergence in probability, for sufficiently large n, guarantees that

P({x} ∈ T ε
n) ≥ 1− ε (215)

73. NDJE: in Equation 169 and the following ones, {x} ∈ An as opposed to what may have been
written in previous versions. I apologize for any confusion.
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If the parallel is striking, what is the difference between the two versions (discrete vs.
continuous) of the theory? In the discrete case, entropy (always positive) measures, to
within ε, the number of bits needed to encode an element of the typical set (See typical
code Def. 11), or in other words, it gives the number of elements in the typical set (Prop. 6).
In the continuous case, not only is differential entropy not guaranteed to be positive, but
the number of elements in a typical set is infinite. The connection is given by the following
theorem

Theorem 17 (Typical Volume)
Let the volume of a set Ω be relative to the Lebesgue measure:

V (Ω) :=
∫

Ω
dx

For sufficiently large n,

(1− ε)2n(Hd(x)−ε) ≤ V (T ε
n) ≤ 2n(Hd(x)+ε) (216)

Proof 17. We provide only a part of the proof, which follows its discrete counterpart.
Denoting {x} = X, membership in X in T ε

n means that

2−n(Hd(x)+ε) ≤ p(X) ≤ 2−n(Hd(x)−ε) (217)

Now,
1 =

∫
p(X)dX ≥

∫
T ε

n

p(X)dX ≥ 2−n(Hd(x)+ε)
∫

T ε
n

dX (218)

which gives one side of the double inequality. ■

Thus, typical volumes have volumes such that

V (T ε
n) ≈ 2nHd(x) ≈ 1

p(X) (219)

So, the probability is nearly constant and is given by the inverse of the volume. Differential
entropy can then be seen as the base-2 logarithm of the length of one side of an equivalent
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volume (in n dimensions).

To use discrete codes like Huffman’s, we need to establish a kind of tiling of the
typical sets T ε

n. Each ball in this tiling defines a symbol, and the set of symbols can
be used to describe any element of T ε

n within a (small) error. The challenge is to find
"optimal" tilings. We will see that there are simpler ways to approach the problem, as in
the discrete case. Before that, we will draw the link between this notion of entropy and
inference (Fisher’s information).

7.5 Maximum Entropy Principle

NDJE: In order to reformulate Statistical Mechanics, especially with the aim of
addressing problems out of equilibrium, a principle 74 was formulated in 1957 by Edwin
Thompson Jaynes (1922-98): it’s called the Maximum Entropy Principle. It turns out
that from this principle, one can reconstruct all of Statistical Mechanics by considering
it as a deductive theory (i.e., a theory of inference), as it naturally leads to the Gibbs
partition function. Thus, according to E. Jaynes, Shannon’s entropy should be regarded as
the primary concept from which other observables are derived.

Jaynes’ idea is about how to best utilize partial information or constraints that we
have about a system. For instance, consider a gas with a fixed temperature. According to
Boltzmann’s theory, the system will "optimize" its configuration in such a way that the
probability of the configuration is given by

P ≈ Z−1 exp
{
− H

kBT

}
(220)

where H is the system’s Hamiltonian (equal to the constant total energy) governing the
motion of each gas particle. Here, we see a connection with the idea of typical sets, where
the system’s configuration is one point in the set, and the probability is nearly constant.
Typical sets are the largest sets that correspond to the fixed temperature constraint.
Jaynes extends this idea beyond Statistical Mechanics.

Jaynes points out that in many problems, the observables we have are mean values.

74. In the original sense, it is a guide for ordering the world, some may see it as an axiom/postulate.
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So, for an observable Uk(x) (k ≤ K), which we have access to:∫
p(x)Uk(x)dx = Ex∼p[Uk(x)] = µk (221)

But we only know µk while p(x) is unknown. The functions Uk(x) can be more or less
complicated. Given the (µk)k, the question is: What probability density p(x) underlying
the studied processes will naturally satisfy these observation constraints? However, just
giving the (µk)k is not sufficient; we need a guiding principle. The idea is to constrain p(x)
to be as uniform as possible in a space of maximum volume. This is where the connection
with typical sets comes in. Maximizing volume means maximizing differential entropy.
Jaynes seeks a priori probability distribution as least informative as possible 75. In the
end, we have an optimization problem with convex constraints, which yields the following
Boltzmann/Gibbs theorem in Statistical Physics:

Theorem 18 (Boltzmann/Gibbs)
Given the problem of finding the probability p∗(x) such that the function

H(p) = −
∫

p(x) log p(x)dx

and K functions ck from Rn → R satisfy

p∗ = argmax
p

H(p); and ∀k, ck(p) = 0 (222)

If the solution p∗ exists, it is unique and can be written as

p∗(x; θ) = Z−1 exp
{
−
∑

k

θkUk(x)
}

(223)

with θ = (θk)k as the Lagrange multipliers. We recover the Fisher-parametrized
probability density.

Moreover, we know that H(p∗) ≥ H(ptrue), but if they are equal then p∗ = ptrue.

75. NDJE: It can be noted that E. Jaynes follows the subjectivist tradition of probabilities, following
Harold Jeffreys (1891-1989), in studying non-informative priors.



90

This result is related to the inverse problem of finding the (Uk)k to approximate the
true probability, which is related to issues in neural network architectures.

Proof 18. Let’s consider the first part of the theorem. The solution achieves the extremum
of the Lagrangian

L (p, θ) = H(p) +
K∑

k=1
θkck(p) + θ0

(∫
p(x)dx− 1

)
(224)

where ck(x) = µk −
∫

p(x)Uk(x)dx. Here, the variables (θk)k≤K are the Lagrange multi-
pliers. Thus, p∗ satisfies (in the sense of Gâteaux differentiation)

∂L

∂p(x) = − log(p(x))− 1−
K∑

k=1
θkUk(x) + θ0 = 0 (225)

Therefore,

p∗(x) = exp
{

θ0 − 1−
K∑

k=1
θkUk(x)

}
(226)

and the normalization condition yields the value of θ0, which is represented by the partition
function Z as follows:

p∗(x; θ) = Z−1 exp
{
−

K∑
k=1

θkUk(x)
}

(227)

Z(θ) =
∫

exp
{
−

K∑
k=1

θkUk(x)
}

dx (228)

The θk values are determined by the constraints on the means:∫
p∗(x; θ)Uk(x)dx = µk (229)

■

Therefore, if p∗ exists, we have its expression. However, this is not always the case. But
first, let’s consider a classic example where we have constraints on the mean and variance
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or the covariance matrix in arbitrary dimension Rn. So, let’s define the constraints as:

E[X] = µ E[(X − µ)(X − µ)T ] = Σ (230)

In the case of d = 1, where X ∈ R and we know the mean µ and variance σ2, these
constraints translate to E[X] = µ and E[X2] = σ2 + µ2. Hence, we have U1(x) = x and
U2(x) = x2. As a result, we find that 1/θ2 = 2σ2, θ1 = −µ/σ2, and Z =

√
−π/θ2e

−θ2
1/(4θ2).

Finally, the distribution p∗(x) takes the form:

p∗(x) = 1√
2πσ2

exp
{
−(x− µ)2

2σ2

}
= N (µ, σ2) (231)

This generalizes to dimension n as follows:

p∗(x) = 1√
(2π)n detΣ

exp
{
−1

2(x− µ)T Σ−1(x− µ)
}

(232)

with entropy given by:
Hd = 1

2 (n + log((2π)n detΣ)) (233)

Note that if we had imposed constraints on E(Xk) with k = 1, 2, 3 in dimension 1,
we would not have found a solution due to the divergence of the integral caused by the
presence of the term e−θ3x3 . Therefore, we must set θ3 = 0, which restricts the number of
constraints. The solution found (the Gaussian) will have higher entropy than the original
problem with 3 constraints. Hence, we have an upper bound on the entropy given by the
entropy of the Gaussian, but there is no physical distribution that can reach the entropy
corresponding to the problem with 3 constraints. However, we can perform a perturbative
expansion to iteratively approach the solution.

7.6 Link with Inference

Starting from the theorem by imposing constraints and the Maximum Entropy Prin-
ciple, we arrive at an exponentially parametrized probability distribution. We can view
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the problem differently by considering Maximum Likelihood Estimation (MLE). Thus,

ℓ(θ) = log pθ(x) (234)

which, in the case of an exponential family (Th. 5), yields ∀k

−∇θk
ℓ(θ) = Uk(x)− Ex∼pθ

[Uk(x)] (235)

And if we calculate for θ = θ∗ that achieves the MLE, then (Eq. 115)

Ex∼pθ∗
k

[∇θℓ(θ)] = 0 (236)

So, we deduce that
Ex∼pθ∗ [Uk(x)] = Ex∼pθ

[Uk(x)] = µk (237)

which is true in particular for the set of θ values that give the true probability 76, which
determines the values of µk, hence its presence in the above expression. Therefore, the
MLE satisfies the constraints on the means and has an exponential form. Thus,

Theorem 19 The maximum entropy solution is the Maximum Likelihood Estimator
(MLE).

MLE and Maximum Entropy Principle are two equivalent concepts. In other words,
aiming to determine a distribution that maximizes entropy as uniformly as possible (the
least informative), which is the Maximum Entropy Principle, is equivalent to adopting
an exponentially parametrized model and maximizing likelihood.

In particular, to determine the Lagrange parameters, one can proceed with gradient
descent, as we have seen in Sec. 3.6.2. But again, we encounter problems of instability
and the conditioning of the Hessian, which, for the record, is nothing but the Fisher
Information I(θ∗). Note, in passing, that the GD calculation step is written as:

θt+1
k = θt

k + ε(Eθt(Uk)− µk) (238)

76. NDJE: Recall that in the context of Fisher, the true probability belongs to the same family as the
pθ.
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However, the term Eθt(Uk) is difficult to calculate because it requires estimating this
integral:

Eθt(Uk) =
∫

Uk(x)pθt(x)dx (239)

This is done using Monte Carlo sampling methods (Importance Sampling, Metropolis-
Hastings, Gibbs Sampling, Markov Chain, etc.), which demand a lot of resources at each
iteration of GD.

Let’s return to the second property of Theorem 18. The observation is that if the
entropy of the found solution is indeed equal to that of the underlying distribution, then
it’s the correct solution (recall the case where we didn’t reach the entropy of the problem).
This is interesting when we flip the problem around. In Statistical Mechanics, we are given
observables and asked to calculate the state of the system, but in machine learning, the
problem doesn’t really take this form. In ML, we generally have observables distributed
according to an unknown distribution p̄, from which we define descriptors (the Uk(x))
whose average values (variances and other moments) are calculated. These descriptors
give us a model of p(x) that we hope to approach as closely as possible to p̄(x). In fact, we
are looking for the "right" Uk(x), which can, for example, be the result of the cascade layers
of a neural network. What we know is the entropy of the studied system H(p̄), and we know
that the entropy of the model is always greater (H(p) ≥ H(p̄)). So, what we’re looking for
is to minimize the maximum entropy (minimax) 77. In general, we say that we will define
an approximation by fixing the mean and covariance, which would correspond in Physics
to the term of kinetic energy. However, we now know that we end up with a Gaussian
model, which is not suitable for many problems (Sec. 4.6). We need other constraints,
but how do we obtain them? One method is to create sparse representations. However,
in this case, the distribution of coefficients in the basis (e.g., wavelets) of an image (e.g.,
Fig. 58 Course 2021) is not at all Gaussian but rather Laplacian because most coefficients
are zero and only a few coefficients are important. Thus, the Gaussian model will not be
suitable, especially for compression of the image or the field in 1D, 2D, 3D, etc. We then
impose that the moments of the descriptors reflect this sparsity of coefficients. These
are the new constraints we are looking for.

77. NDJE: In Statistical Mechanics, it’s the problem of the free energy of the model compared to the
free energy of the system (e.g., mean field theory).
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8. Lecture 2 Mar.

8.1 Towards Compression by Orthogonal Transformation

We will approach Shannon’s theory from a more practical perspective by considering
the problem of signal compression, i.e., reducing the number of bits required to represent,
for example, images, videos, audio, etc. Here, we have two aspects to consider: the pers-
pective of Information Theory and the perspective of Representation, a theme addressed
in 2021. In short, whether in the framework of Fisher or Shannon, there is a fundamen-
tal assumption of independence of observations. However, in practice, considering, for
example, images or audio, there is a lot of redundancy, and at the same time, there is
fundamental structure since it is what allows us to recognize a face, a voice, etc. And
ultimately, we are not dealing with independent measurements. So, the problem is to
understand how to use the redundancy and structure of observations to minimize the
number of bits needed to represent/transmit them and somehow approach problems
with independent samples.

Historically, speech coding has been particularly enlightening because, fundamen-
tally, we have a physical/physiological model that allows us to establish a parameterized
model, which enables addressing information coding/reduction based on these parame-
ters. Thus, we find ourselves more naturally in a Fisher framework for model construction.
But there is a broader view of the problem if we approach it from the audio side, which
is to capture any type of sound. And in this case, we don’t really have a priori models
to rely on because, on the one hand, the source is of any nature, and on the other hand,
the signal propagation makes modeling even more challenging and leads to the design of
another methodology, especially one involving representations in orthogonal bases aimed
at decorrelating the signal coefficients in these representations. Thus, the concept of
compression by orthogonal transformation was implemented. This perspective has the
advantage of working for any type of signal, including images with JPEG/JPEG2000 stan-
dards. These standards essentially differ in the choice of the representation basis: JPEG
uses the Discrete Cosine Transform (DCT), while JPEG2000 uses a Wavelet basis 78.

For example, considering voice in the context of telephony with sufficient quality to

78. See Courses from 2018, 2020, and 2021.
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Figure 21 – Typical processing for voice in the telephony context, where parameterized
filters ht are considered to be stationary over a scale of 1,000 samples.

recognize and understand the interlocutor, the Fourier spectrum considered is typically
limited to the range [200, 3400] Hz, while the human ear (young) can hear in the range
[20, 20k] Hz. So, very low frequencies are restricted, and in the high frequencies, only
the first 2 harmonics are considered, allowing the recognition of all vowels. Let’s assume
that the maximum frequency is 4 kHz, and the signal is sampled at 8,000 samples per
second (Nyquist-Shannon Theorem 79). If each sample is encoded as an 8-bit word, then
we would have a flow of 64 kb/s (kbits/sec). This is the bitrate that would be required if
this kind of brute-force coding were applied. However, for economic reasons, we want to
reduce this bitrate while maintaining transmission quality. Currently, for Voice over IP,
a significant reduction is achieved, requiring only a flow of about 2.5 kb/s. To do this,
models of excitation and response to different physical processes are used, considered as
stationary filters over scales of 1,000 samples (Fig. 21) to implement coding.

If we consider audio, which is a broader context than Voice over IP, such as the
transmission of pieces of music, we want signals of much higher quality (high fidelity).
The CD-Audio, which set the standards in the 1980s, covered a range of [0, 20k] Hz, i.e.,
the entire range of human hearing sensitivity. Therefore, the sampling rate was 44.1 kHz,
and each sample was encoded as 16 bits, resulting in a bitrate of 706 kb/s. However,
to stream music in real-time, we need to compress the information without degrading
listening quality. The idea this time is to use orthogonal bases that restore high fidelity

79. Course 2021 Sec. 6.4
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with bitrates of around 100 kb/s. If you want to reduce the bitrate even further, it will
affect the quality of playback.

Regarding static imaging, typically with a size of 1024x1024 pixels, each of which is
encoded, for example, as 8 bits (1 byte), this results in roughly 1 MB of data. However, to
save space on storage media, JPEG compression reduces this to 0.5 bit per pixel, resulting
in a gain between 10 to 20 without significant degradation. The gain of switching to
JPEG2000 becomes noticeable when you want to achieve high compression ratios.

Finally, for video, one could think of the flow as a sequence of 2D images, creating a
simple 3D extension by combining all the images into a single block. This way of looking at
it is quite inefficient because typically during a video, there is a static (invariant) scene in
which a few elements move. So, there is a significant difference between the time variable
and the 2 spatial variables. Taking into account these specifics was the basis of MPEG
coding (1988). In essence, we attempt to calculate the velocity field (optical flow) of pixel
movements from one image to the next, and then we encode this field. Thus, starting from
one image, we can predict what the scene will be like, and then we perform subtraction
from the real image to obtain an error image, which is encoded as in the case of static
images, often in JPEG. The part that requires the most bits is encoding the error image
because the velocity field is relatively lightweight, as typically very little changes.

8.2 Distortion and High-Resolution Assumption

At the core of capturing sounds, images, etc., there is a digitization process, which
takes us from real values to an infinite amount of information to integers on 8, 16... bits.
Therefore, it is necessary to address the distortion that this digitization implies. Let’s
begin with a random variable X because this will allow us to bridge the gap between
entropy over finite-sized alphabets and differential entropy, which applies to real random
variables. So, let p(x) be the probability density of X, and digitization involves defining
a quantizer Q, which segments the real axis into possibly variable-sized bins (Fig. 22):

Q(x) = ak if x ∈]yk−1, yk] (240)

Of course, this (non-linear) operator introduces an error, and the distortion is defined
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Figure 22 – Schematic representation of the quantization operator (Eq. 240).

as 80 (nb. norme quadratique) according to the expression:

D = E(∥X −Q(X)∥2) =
∫

(x−Q(x))2p(x)dx (241)

Certainly, we want to minimize this distortion, which means we need to consider how to
choose the bins (yk)k. To do this, we will make an assumption of simplifying regularity
initially before discussing its limits. It is called high-resolution quantization and consists
of the following:

∀x ∈]yk−1, yk], p(x) ≈ p(ak) (High Resolution Assumption) (242)

Thus,

pk = P{Q(X) = ak} = P{x ∈]yk−1, yk]} =
∫ yk

yk−1
p(x)dx ≈ p(ak)(yk − yk−1) = p(ak)∆k

(243)

80. In itself, the mean squared norm is not a bad measure, but in certain cases, there are better ones.
See the discussion in Sec. 8.6.
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Theorem 20
Under the high-resolution quantization assumption, ak = (yk + yk−1)/2, and the
distortion can be expressed as:

D =
∑

k

pk
∆2

k

12 (244)

The proof proceeds by transforming the expression for D under the given assumption:

D =
∫

(x−Q(x))2p(x)dx

=
∑

k

∫ yk

yk−1
(x− ak)2p(ak)dx

min=
∑

k

p(ak)2
3

∆3
k

23 =
∑

k

pk
∆2

k

12 (245)

(Nb. it is not surprising that we recover the contribution of the variances of the uniform
distributions over each bin of width ∆k.) In the case of uniform quantization where all
∆k are constant and equal to ∆, then:

D = ∆2

12 (Constant Quantization) (246)

The error is independent of the underlying distribution p(x) but provided that we can
make the high-resolution assumption. We will revisit this.

8.3 Optimal Quantizer

Now, the problem of compression can be stated as follows: how to choose the right
quantizer, either to minimize the number of bits for a fixed error or to minimize the
error given a fixed number of bits. Let’s consider the second version of the problem. One
might think that we should reduce the size of the bins where the probability is high and
vice versa where the probability is low; we would tend to want to increase the size of the
bin. Is this the correct answer? Be cautious; we are fixing the number of bits! However,
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Figure 23 – Example of two strategies for dividing the x-axis of the probability density
p(x), which is triangular here on [−1, 1]: on the left, it is uniform quantization, and on the
right, it is the division performed to obtain constant probability in each bin. The latter
is achieved by considering the cumulative distribution function F (x) (bottom right) and
a uniform division of the y-axis.

this constraint is not equivalent to fixing the number of quantization bins (whose optimal
solution would have been different).

If we perform a "naive" coding and fix the number of bins (K), then the number of
bits is roughly log2 K. But, we know we can do better because, to within an epsilon, the
average number of bits for the optimal code is given by the entropy H = −∑k pk log2 pk.
What we will observe is that the optimal quantizer is the constant quantizer. Why?
The reason lies in the small argumentation at the beginning of Section 6.2. Taking bins
of variable size as described above implicitly optimizes the fact that the probability of
each bin is uniform, which results in high entropy. In contrast, taking a uniform quantizer
reflects the probability p(x) in each bin, and it significantly reduces entropy (in the limit,
if p(x) is in only one bin, entropy is zero). One could argue that we lose in error with the
uniform quantizer solution. So, we need to do the math...

NDJE To numerically illustrate the point, we can refer to the example in Figure 23.
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In the case of uniform quantization (graph on the top left), the entropy and distortion
values are approximately H = 3/4(1 + log2(8/3)) ≈ 1.81 and D = 1/48 = 0.0208, while
for the uniform probability quantization scheme (graphs on the right), H = 2 and D =
(2−
√

2)/24 = 0.0244. Although the values of H and D are approximately the same for both
quantization schemes, uniform quantization is the better choice. Note that the differential
entropy in this context is 2/ log 16 ≈ 0.72.

Theorem 21 (Optimal Quantizer)
Let p(x) be the probability density of X, with differential entropy

Hd[X] = −
∫

p(x) log2 p(x)dx (247)

Under the assumption of high-resolution quantization, we can define the source en-
tropy of Q(X), which is also the number of bits R required to encode it

H[Q(X)] = −
∑

k

pk log2 pk = R (248)

then
H[Q(X)] ≥ Hd[X]− 1

2 log2(12D) (249)

and equality holds if and only if the quantization is uniform with step size ∆, which
minimizes H, and we have

R = H[Q(X)] = Hd[X]− log2 ∆ (250)

Thus, the constant quantizer is the optimal quantizer.

Through this theorem, we obtain the connection between differential entropy (continuous
framework) and entropy (discrete framework). If we remember that the volume of a typical
set is approximately V ≈ 2nHd(x), and the volume in n dimensions of the bin around an
element of this set δV ≈ ∆n, then the relation above actually gives us log2 Nb = nH,
where Nd is the number of quantization bins needed to tile the entire typical space. Let’s
move on to the proof, but before that, it would be better to get an idea of the result to
understand it better.
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Proof 21. So, we want to calculate H, which is

H = −
∑

k

pk log2 pk (251)

under the high-resolution quantization assumption, so pk = p(ak)∆k, and over the interval
]yk−1, yk], the probability is constant, p(x) = p(ak). Thus,

H = −
∑

k

log2(p(ak)∆k)×
∫ yk

yk−1
p(x)dx

= −
∑

k

∫ yk

yk−1
log2(p(x)∆k)p(x)dx

= −
∑

k

∫ yk

yk−1
p(x) log2 p(x)dx−

∑
k

∫ yk

yk−1
log2(∆k)p(x)dx

= Hd −
∑

k

pk log2(∆k) (252)

Given that the probability density is fixed, H and Hd are fixed, and only the values of
(∆k)k and pk remain to be optimized, knowing that∑k pk = 1. So, we have an optimization
under constraint. But the function to minimize is the average of the logarithm, that
is, −∑k pk

1
2 log2(∆2

k). Now, since − log(x) is a strictly convex function, using Jensen’s
inequality (Theorem 12), we get

H ≥ Hd −
1
2 log2

(∑
k

pk∆2
k

)
= Hd −

1
2 log2(12D) (253)

This gives the expected result, but we will agree that if we had only proceeded with
the proof, its meaning would not have been immediately revealed. Furthermore, Jensen’s
inequality becomes an equality if ∆k = Cte = ∆. This provides the second result. The
optimum is achieved for the constant quantizer. ■

NDJE. In the case (constant quantizer) of the example in Figure 23, we have Hd =
2/ log(16) ≈ 0.72, so Hd−1/2 log2(12D) = 1.72, while H ≈ 1.81. If we increase the number
of quantization bins from 4 to 10, then Hd−1/2 log2(12D) ≈ 3.04, while H = 3.06 (relative
agreement to 7 10−3), and for 100 bins, the relative agreement is accurate to 5 10−5. Thus,
the agreement becomes perfect asymptotically.
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If we return to the coding problem, if the distortion (error) D is fixed, then the
average number of bits is given by

R(D) = −
∑

k

pk log2 pk = H = Hd −
1
2 log2(12D) (254)

or if R is fixed, we obtain a minimum error given by

D(R) = 1
1222(Hd−R) (255)

This results in exponential decay of D as a function of R: e.g., if we add 1 bit, the
quadratic error is divided by a factor of 4. Thus, this result gives us the error when we
have a real random variable coded with the optimal quantizer. This is the basic result.
However, the practical problem that arises is that of a signal, possibly in high dimensions,
which has redundancy and structure, i.e., two characteristics that we would like to exploit.
So, we will try to find a representation that is best suited for these signals. The simplest
and algorithmically efficient technique is the use of orthonormal bases. This theme was
the subject of the 2021 Course, relating Sparsity, Regularity, and Approximation. This
time, we will take the approach of coding by orthogonal transform. Recall that this
coding is very well suited for signals whose structure is not sufficient to attempt dedicated
parametric models. Before that, we need to quantize the signal.

8.4 Scalar Quantization

Let Y be a vector of size N (0 ≤ n < N) with components denoted as Y [n], and let
B be an orthonormal basis in RN , B = {gm}0≤m<N with

⟨gm, gm′⟩ =
∑

n

gm[n] g∗
m′ [n] = δ(m−m′) (256)

The decomposition of the vector Y can be expressed as

Y =
∑
m

⟨Y, gm⟩ gm =
N−1∑
m=0

A[m] gm (257)
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So, instead of coding the components of Y in a canonical Dirac basis, we have the freedom
to choose a basis B and code the coefficients of Y in it (i.e., coding the inner products).
Be aware that in the process, A[m] becomes random variables because

A[m] =
N−1∑
n=0

Y [n] g∗
m[n] (258)

meaning that A[m] is a linear combination of the N random variables Y [n]. In the follo-
wing, uppercase letters X, Y represent random variables, while lowercase letters represent
scalars.

Therefore, the problem of coding the vector Y boils down to solving the coding
problem for A[m]. We begin by assuming that

E[A[m]] = 0 (259)

If this is not the case, we assume that these means can be subtracted, and both the
transmitter and receiver of Y can store them once and for all.

The next step is to perform scalar quantization, where we operate on one component
at a time, meaning

Â[m] := Q(A[m]) (260)

We could consider the block of N values A[m] and attempt to adapt the quantization
box in N dimensions to the probability distribution. Indeed, in N dimensions, there
is no obstacle to taking non-regular tessellations adapted to the probability distribution.
However, scalar quantization is much simpler; it amounts to taking cubes in N dimensions.
One might think this simplification is abrupt and that there is something better to do.
What S. Mallat tells us is that after a lot of research in this area, optimizing the tessellation
in high dimensions ultimately doesn’t bring much. In fact, the gain from these tessellation
optimizations is offset by the optimization of the representation, which is more complex
than orthonormal bases, while still using scalar quantization. Until 3-4 years ago, the
problem seemed fixed, with standards in audio/imaging, etc., but since then, there have
been new developments because neural networks are better at compressing signals, so
they have captured something that was missing from previous representations. However,
even in this (new) context, quantization is still scalar.
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This quantization introduces an error, as we saw in the previous section, and the
vector Ŷ constructed from Â[m] (the received signal at best) is given by

Ŷ =
∑
m

Â[m]gm (261)

From this, the mean squared error between Y and Ŷ is easily calculated thanks to the
orthonormality of the basis B

D = E[∥Y − Ŷ ∥2] = E[
∑
m

∥A[m]− Â[m]∥2] =
∑
m

E[∥A[m]− Â[m]∥2]︸ ︷︷ ︸
Dm

(262)

This means that the total distortion is the sum of the quantization distortions on each of
the components A[m] of Y in the basis B. The total number of bits required to code Y

is the sum of the number of bits needed to code each quantized component, denoted as
Rm. Therefore, finally,

D =
∑
m

Dm and R =
∑
m

Rm (263)

Thus, we encounter the problem developed for one random variable, this time in the ex-
tended context of N random variables, namely, what is the total distortion D considering
a total number of bits R (and vice versa). This is a bit allocation problem where we
have coding, quantization, and ultimately, base selection issues.

8.5 Bit Allocation

So, we want to fix the total number of bits to code the vector Y (or rather its
components in my chosen basis), but at the same time, this leaves us some freedom to
optimize the number of bits required for each of the N directions. What we know is that
each Â[m] will be encoded with a constant quantizer to be optimal. So, what remains to
be optimized are the N quantization steps (∆m)m<N . Thus, the problem boils down to
whether we should favor certain directions to reduce the error? Again, Jensen’s inequality
will provide the answer, and once again, the result is very simple and intriguing.
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Theorem 22 (Optimal Allocation)
Under the assumptions of high-resolution quantization, given a fixed total distortion

D, the total number of bits R is minimized if we set all the steps ∆m to a single
value ∆ such that

D =
∑
m

Dm = N
∆2

12 ⇔ ∆2 = 12D

N
(264)

Furthermore, if the number of bits per coefficient is denoted as R̄ = R/N , and the
average differential entropy is defined as

Hd := 1
N

∑
m

Hd(A[m]) (265)

then the total distortion is given by the expression

D(R̄) = N

1222(Hd−R̄) (266)

Note that Hd is fixed once we have chosen the decomposition basis and for reference,
the A[m] (the inner products) are random variables. The theorem then tells us that in
N dimensions with high-resolution quantization, the single constant quantization for all
components is optimal. We proceed with tiling small hypercubes with edge length ∆.

Proof 22. The number of bits is defined by entropy (entropy coding), so for each quantized
component Â[m], it is given by Theorem 21. That is,

Rm = H(Â[m]) = Hd(A[m])− log2 ∆m = Hd(A[m])− 1
2 log2(12Dm) (267)

If we take the average over the N components, we get

R̄ = Hd −
1
2

(
1
N

∑
m

log2(12Dm)
)

(268)
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To optimize the Dm, again, we are faced with an average of logs. So, due to the strict
convexity of − log, we have

R̄ ≥ Hd −
1
2 log2

(
12
N

∑
m

Dm

)
= Hd −

1
2 log2

(12D

N

)
(269)

Equality holds, and thus optimization is achieved when we reach the lower bound if
Dm = cte = D/N , which implies that all ∆m are equal to ∆ such that

∆2 = 12D

N
(270)

which is the first result. Similarly, by writing the equality, we get

R̄ = Hd −
1
2 log2

(12D

N

)
(271)

providing the second result of the theorem. ■

So, this theorem tells us that in the context of high-resolution quantization, the optimal
solution is the simplest one, namely the one obtained with a single step, either with fixed
D or fixed R. We have regular tiling in hypercubes along the axes of the orthonormal
basis. So, the question that arises now is that of choosing the basis.

How are we going to proceed? When we look at the theorem above, we notice that
the only connection with the basis is the factor Hd, i.e., the differential entropy of the inner
products of Y with the basis vectors. Now, Hd is the average of the differential entropies of
the probability distributions of the (non-quantized) components A[m] (pm(x)). We know
that entropy is smaller when the probability is concentrated around its mean value 81. By
construction, the mean is zero (

∫
pm(x)dx = 0), so the expected concentration is around

the value 0. Now, this is precisely what happens when we have a form of sparsity
generated by a sparse decomposition. Note that since there is energy conservation in an
orthonormal basis, if there are many 0s, there are large coefficients elsewhere (but they are
few). The problem we will see is that by pushing the sparsity reasoning to the extreme, it
will conflict with the high-resolution assumption, which will lead us to revisit the results
obtained so far.

81. Let’s recall the small example from section 6.2.
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But before we go too far, let’s make use of the results obtained to optimize the
orthonormal basis because they formed the basis for all coding ideas until the 1990s.

8.6 Choosing the Orthonormal Basis

If we recall the expression for Rm (Eq. 267), we need to be cautious about the
presence of differential entropy because it can be negative (unlike its non-differential
counterpart). We haven’t imposed that Rm should be positive, or even that it should be
an integer. So, in terms of the number of bits, we need to be careful. In a way, we need to
find equivalents to Huffman coding (Sec. 7.3) that satisfy R ∈ N. For example, we will use
"greedy" algorithms 82 (NDJE: see an example in Sec. 8.7) that allocate bits successively
among the different components while minimizing the overall distortion. We find the
optimal solution because the problem is convex. What we also notice is an asymptotic
behavior (N large) comparable to that of Theorem 22.

Another aspect to consider before addressing the choice of basis is that, for certain
applications, taking errors into account for some components is unnecessary. For example,
in the case of audio, if we end up with coding that generates large errors for frequencies
beyond 20 kHz, it’s not critical because the human ear will be unable to detect them.
So, the perception of the receiving device needs to be taken into account. Translated into
more mathematical terms, this amounts to asking whether the L2 norm is suitable for our
case. The way we can account for perception is by using weighted norms. Therefore, we
replace the expression for D (Eq. 263) with

Dw =
∑
m

Dm

w2
m

=
∑
m

Dw
m (272)

with weights 1/w2
m. By the way, if we think of m as a frequency axis (or equivalent), then

wm takes into account the receiver’s frequency response.

82. In general, a "greedy" algorithm is one that makes the optimal choice at each step without concern
for what has come before or what will happen afterward, hoping to achieve the optimal overall result but
without guarantees. Huffman coding is an example of this. Other examples outside of coding include giving
change, optimizing room occupancy, finding the traveling salesman’s route, determining the shortest path
in a network...
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Now, how do the previous results transform if we optimize Dw? Note that

Dw
m = E

[
1

w2
m

∥A[m]− Â[m]∥2
]

= E

∥∥∥∥∥A[m]
wm

− Â[m]
wm

∥∥∥∥∥
2 (273)

This means weighting the coefficients by wm. But be careful, Q(w−1
m A[m]) ̸= w−1

m Q(A[m])
in general. However, what is optimal based on what we’ve seen in the previous theorems
is to perform a constant quantization (uniform) of A[m]w−1

m with a step equivalent 83 to
quantizing A[m] with a step

∆m = wm∆ (274)

So, we develop "non-uniform" quantizations adapted to the specific problem, not because
of the optimal bit allocation strategy in the case of an error in L2 norm but because, on the
contrary, we adapt the metric by weighting the distortions, which allows allocating more
error to certain channels. The larger 1/w2

m is (small value of wm like a better definition
of signal perception), the greater the contribution to D, so we need to allocate a smaller
quantization step. Conversely, with large values of wm (poorer definition), 1/w2

m is small,
hence a small contribution to the total error, and we can quantize with a large step.
We will come back to this point because there are cases where neurological physiology
suggests that it makes sense to adapt the allocated error for each channel (frequency)
depending on the signal itself.

To choose the orthonormal basis, we will exploit the signal’s redundancy. We assume
that the signal is piecewise regular, and let’s assume that this is in terms of time. We
want to find an orthonormal basis in which the differential entropy of the signal is as
small as possible. Now, a very regular signal implies that the decay of Fourier coefficients
at high frequencies is rapid 84. From the spectral decay, we can read the regularity class of
the function (in the Sobolev sense). Thus, on each interval (in time), we discretize into N

points, and the orthonormal basis of discrete Fourier on RN is given by the set of vectors

83. This simply means that (A[m]w−1
m )/∆ = A[m]/(wm∆).

84. See, for example, Course 2021 Sec. 3.3, Course 2019 Sec. 5.3.1, Course 2018 Sec. 5.2.3.
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{gk}k<N as follows 85:

BF =

gk(n) =
exp

{
i2πk

N
n
}

√
N

 , (k, n) ∈ J0 , N − 1K (275)

But will this work? Or rather, can we be certain that there will be no high frequencies?
The point to note is that implicitly, the definition of gk(n) imposes a periodicity condition
on Z outside of n = 0, . . . , N − 1. However, the signal in question in the interval is not
periodic, and there is a discontinuity at the boundaries, which then leads to a spectrum
in 1/ω or 1/k (ωk = 2πk). This consequence results in spending a lot of bits coding the
discontinuity. Therefore, we will have to opt for the cosine basis.

8.7 NDJE: Example of a Greedy Bit Allocation Algorithm

I will illustrate Theorem 22 in the case where the A[m] are independent random
variables, each following a Gaussian distribution N (0, σ2

m). Under these conditions, the
differential entropy of each component is given by

Hd(m) = 1
2 log2(2πeσ2

m) (276)

And the distortion Dm associated with the optimal quantization is related to the allocated
number of bits Rm by

Dm = 1
1222(Hd(m)−Rm) = πe

6 σ2
m2−2Rm (277)

Note that if Rm = 0, then Dm ∝ σ2
m (where c = πe/6 is the proportionality

constant), and adding one bit reduces it by a factor of 4. Therefore, the problem is,
given the values (σ2

m)m, how to allocate the Rm bits to each component m, knowing that∑
m Rm = R is fixed. A simple "greedy" algorithm 86 is to iteratively allocate one additional

bit to the component with the largest distortion to reduce it by a factor of 4:

85. NOTE: To match the notations from earlier sections, you should probably consider (gm)m instead
of (gk)k.

86. See the notebook Allocation_de_bits.ipynb.
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Figure 24 – Result of the bit allocation algorithm 1 for N = 50 and R = 100.

Algorithm 1 (Bit Allocation)

Initialization : For all m = 0, . . . , N − 1, set Dm = σ2
m and Rm = 0.

While-loop : Under the condition ∑N−1
m=0 Rm < R, proceed successively with:

• Find m = argmax
n

Dn

• Update Rm ← Rm + 1

• Update Dm ← Dm/4

An example of the result of this algorithm is shown in Figure 24.

Next, we can compare the value of the total distortion obtained by summing all the
Dm values to the optimized expression of D:

Dalgo =
N−1∑
m=0

Dm Doptim = N
πe

6

(
N−1∏
m=0

σ2
m

)1/N

4−R/N (278)

In the example, for a specific configuration of σ2
m values, we obtain the following

distortion values: Dalgo ≈ 88.25 and Doptim ≈ 81.08, resulting in an efficiency of 91.9%.
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9. Lecture 9 Mar.

9.1 Recap from the Previous Session

In this session, we will explore applications of the theoretical framework developed
during this year’s course. We will discover unexpected results that challenge this frame-
work. To understand the origins of these differences, we will revisit sparsity, which is at
the heart of the problem. Through this, we will connect with previous years’ courses,
particularly the one from 2021 on representations.

In the last session, we motivated the use of compression by orthogonal transfor-
mation when there is no underlying model for the generation of observations/data (e.g.,
audio, which covers all types of sounds, in contrast to speech, which can be modeled).
Thus, if we have a vector Y with N components Y [n] (0 ≤ n < N), its representation in
an orthonormal basis is given by the inner products of Y with the unit vectors of the basis
B = {gm}m<N , denoted as ⟨Y, gm⟩ = A[m]. We also saw that constant (uniform) quanti-
zation of these components is optimal, and we were able to develop a simple greedy bit
allocation algorithm that is nearly optimal.

The signal reconstructed from the quantized components is not identical to the
original signal:

Ŷ =
∑
m

Â[m]gm (279)

To optimize quantization, we used mean square error as the measure of distortion, which
is simply the sum of distortions on each of the components:

D = E[∥Y − Ŷ ∥2] =
∑
m

E[∥A[m]− Â[m]∥2] =
∑
m

Dm (280)

And if we fix the total number of bits R to code Y , then R = ∑
m Rm, the sum of bits

allocated for each component. Optimization led us to relate Rm to the differential entropy
(Eq. 267), which I’ll recall here for reference:

Rm = H(Â[m]) = Hd(A[m])− log2 ∆m = Hd(A[m])− 1
2 log2(12Dm) (281)

We saw that all quantization steps ∆m are equal to ∆ (a constant step for all components).
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Theorem 22 gives us the formula that relates D to the average number of bits R̄ = R/N ,
resulting in a scaling of D ∝ 4−R̄. It’s essential to remember that all this theory relies on
a "high-resolution" assumption (Eq. 242), which states that for all quantization intervals,
we can approximate the probability density pm(x) of A[m] by a constant.

The remaining degree of freedom is related to the pre-factor of the distortion D

(Th. 22), which is the average differential entropy:

Hd := 1
N

∑
m

Hd(A[m]) (282)

Indeed, the more concentrated the distribution of A[m] is around its mean (which is
zero by construction), the smaller the differential entropy. This criterion of concentration
around 0 implies sparsity related to a sparse representation of Y in the orthonormal
basis B. Therefore, we are addressing the choice of the orthonormal basis.

9.2 Piecewise Regular Signals: The DCT

Let’s consider the case of piecewise regular signals. Typically, we divide the time
frame into intervals, for example, of size N , on which we perform signal coding. What we
discussed at the end of the last session is that the discrete Fourier basis that comes to
mind,

BF =

gm(n) =
exp

{
i2πm

N
n
}

√
N

 , (m, n) ∈ J0 , N − 1K (283)

will pose a problem due to the implicitly imposed periodicity (N) by the gk. However,
the signal itself does not need to follow this periodicity. Discontinuities appear at the
boundaries of the intervals, generating a spectrum with high-frequency components
that are entirely counterproductive. Not only do we expect the spectrum of a regular
signal to decay rapidly, which is not the case here, but we also spend bits coding these
artificial discontinuities. We need to smooth out these discontinuities.

To do this, instead of directly forcing the periodicity of the extracted signal inter-
val (N samples), we start by symmetrizing, which eliminates discontinuities of order 0.
Periodizing with a period of 2N leaves discontinuities at the edges concerning the deriva-
tive (order 1), which is less troublesome (Fig. 25). Moreover, the symmetry is around a
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half-integer, which ultimately motivates the use of the basis

BF Sym =

gm(n) =
exp

{
iπm

N
(n + 1/2)

}
√

2N

 , (m, n) ∈ J0 , N − 1K (284)

Let x̃(n) be the symmetrized sampled signal,

x̃(n) =

x(n) if 0 ≤ n < N

x(−n− 1) if −N ≤ n < −1
(285)

It decomposes into the BF Sym basis, and if we separate the real and imaginary parts:

x̃(n) =
N−1∑
m=0

αm cos
(

πm

N
(n + 1/2)

)
+

N−1∑
m=0

βm sin
(

πm

N
(n + 1/2)

)
(286)

Now, x̃(n) is even with respect to n = −1/2, so the sum over sines is identically zero.
Thus, the natural orthonormal basis for piecewise regular signals is the one of cosines:

Bcos =

gm[n] = λm

√
2
N

cos
(

πm

N
(n + 1/2)

) , (m, n) ∈ J0 , N − 1K (287)

with the factor λm that adjusts the normalization:

λm =

1/
√

2 if m = 0
1 otherwise

(288)

Note that we have the following relations:

⟨gm, gm′⟩ = δ(m−m′) =
N−1∑
n=0

gm[n]gm′ [n]
N−1∑
m=0

gm[n]gm[n′] = δ(n− n′) (289)

Thus, the so-called DCT (Discrete Cosine Transform), derived from the FFT, requires
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Figure 25 – Top: Schematic of the symmetrization procedure to counteract the effect of
implicit periodicity in a discrete Fourier basis. Directly periodizing the extracted signal
introduces significant junction discontinuities. After symmetrization, there are disconti-
nuities in the derivative but much less troublesome. Bottom: Zooming in on the junction
point of symmetrization shows that symmetry occurs around a half-integer.
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O(N log2 N) operations and is defined as follows 87:

x[n] =
N−1∑
m=0

x̌[m]gm[n] =
√

2
N

N−1∑
m=0

x̌[m]λm cos
(

πm

N
(n + 1/2)

)

x̌[m] = ⟨x, gm⟩ =
√

2
N

λm

N−1∑
n=0

x[n] cos
(

πm

N
(n + 1/2)

)

9.3 Audio Case: MPEG Standard

How do we apply this transformation to audio coding? The first thing to do is to
divide the time frame into intervals of about 1024 samples. For this, we use a fixed-size
sliding window 88 of size N = 1024

w[n] = 1 if 0 <= n < N (290)

Thus, extracting samples between JpN , (p + 1)N − 1K is given by the multiplication of
x[n] by w[n − pN ], and then we apply the DCT as described above. In particular, this
sequence of operations introduces the concept of block basis{

w[n− pN ] cos
(

πm

N
(n + 1/2)

)}
∀m < N,∀p ∈ Z (291)

There is a possible extension in which different window sizes are used, but the essence is
there.

Now, we need to adjust this basis to achieve minimal distortion. However, the mean
squared error is not entirely suitable for the perceptual system, especially because of
masking phenomena 89. We would like to account for errors in the budget only when
they originate from stimuli above the perception threshold. However, the threshold itself
depends on the height of the stimulus itself. In essence, if we stimulate the ear with a sine

87. NDJE: I have opted for a symmetric form here; there are other practical definitions, and I recom-
mend referring to the documentation of each library.

88. NDJE: I use the notation w for window to differentiate it from the gm of the basis. It may also be
wise to use windows with softer edges than a rectangle.

89. See, for example, http://www.cochlea.eu/son/psychoacoustique. See also the 2020 Course Sec 7.3
Naturalistic Digression.

http://www.cochlea.eu/son/psychoacoustique
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Figure 26 – Example of energy calculation for critical frequency bands and a time
interval of 1024 samples.

wave at frequency ω, there is a frequency band around ω that is less well perceived, while
outside of this band, hearing is not affected. In practice, below 700Hz, there are 7 critical
masking bands (each with a width of 100Hz), and above 700Hz, the bands increase in size
(logarithmically constant in scale) as the frequency increases. The organ of Corti at the
center of the cochlea is covered with cilia bathed in a liquid, and the response of these
cilia can be modeled as bandpass filters that strongly resemble those of wavelets with
a constant width in log scale. Therefore, the auditory signal is the result of convolution
with these wavelet filter banks (and of constant width at low frequencies).

The algorithms proceed as follows:

— After extracting the samples in an interval of width N , we calculate the frequency
energy for each critical band (MEL filter banks 90 as illustrated in Figure 26.

— We will encode the m-th component of the signal in the DCT basis (x̌[m]) such that
the coding error Dm is imperceptible. However, the perception threshold depends
on the energy in each band. Since Dm ∝ ∆2

m, the quantization step ∆m is calculated
based on the energy for each critical band.

So, in the end, it appears that we adjust the error to the perception problem with

90. See the 2020 Course Sec. 7.4 MFC (Mel-Frequency Cepstrum).
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Figure 27 – The 64 elements of the 2D cosine basis (Eq. 293) with L = 8. Going from
low to high frequencies by moving from top left to bottom right in a zigzag ordering. The
color of the square m1 = m2 = 0 is given by the constant pixel values of 1/8.

a variable step. However, we saw last session that the use of weighted quadratic norms
accounts just as well for the phenomenon. It’s then the weighting coefficients that are
adjusted based on the energy in the critical bands. These are weights that are not fixed
in advance but are calculated based on the signal at hand.

In practice, for audio in the [0, 20k]Hz range, 25 critical bands are defined, and
standards allow for achieving compressions that result in a data rate of 100kbits/sec, or
about a 7x compression factor while maintaining excellent sound quality.

9.4 Image Case: JPEG Standard

Once again, we need to adapt the orthonormal basis. As in the case of sound in
the previous section, we start by dividing the N × N image into blocks of L × L pixels,
typically with L = 8 for JPEG and L = 16 in video. If we have small patches of uniform
intensity, it is natural to decompose them into a cosine basis in both directions (u, v) of
the image. We will then use the following theorem:
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Theorem 23
If B = {gm[n]}m<L is an orthonormal basis of RL, we can obtain a separable ortho-
normal basis of RL × RL by taking the product

{gm1,m2 [n1, n2] := gm1 [n1]gm2 [n2]}(m1,m2)<L (292)

Thus, the elements of the 2D basis are given by

Bcos,2D =
{

gm1,m2 [n1, n2] = λkλj
2
L

cos
(

πm1

L
(n1 + 1/2)

)
cos
(

πm2

L
(n2 + 1/2)

)}
(m1,m2)<L

(293)
with the λk, λj defined previously for the 1D cosine basis. The pair (n1, n2) identifies a
pixel in the L×L patch. The 64 elements of the 2D basis with L = 8 are shown in Figure
27. The patch extracted from the original image is decomposed into this cosine product
basis as follows:

x[n1, n2] =
∑

m1,m2

⟨x, gm1,m2⟩ gm1,m2 [n1, n2] (294)

Note that we can group the pair of indices (n1, n2) into a single index n, and we find the
same type of expression used in 1D. And, just like in 1D, we can define an orthogonal
basis over the entire image by moving a sliding 2D window.

Now, the goal is to obtain a sparse representation of the signal (in this case, the
image). The question that arises is when do we have large coefficients? An example is given
in Figure 28. It is clear that in both cases, the coefficient corresponding to m1 = m2 = 0
is the largest, representing the sum of the pixels in each image within a small factor 91.
But apart from this coefficient, in the randomized image, the coefficients are close to zero.
In contrast, for the image with 2 uniform regions, there are 2 or 3 other non-zero coeffi-
cients. So, we have more non-zero coefficients when there are transitions/discontinuities.
However, we would like to reduce the number of these non-zero coefficients as much as
possible. Therefore, we need patch sizes adjusted to avoid intensity transitions. Why not
reduce the size to L = 2? The reason is that we cannot obtain lower frequencies than
the size of the patch. So, for a uniform area of sufficient size, we will not capture the

91. With the definition of the basis taken, the factor is 1/L. For an image with an average pixel value
of 128, the value of the first coefficient is approximately 128 ∗ L ≈ 1024.
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Figure 28 – Examples of calculation of decomposition coefficients for patches in the
basis of 64 elements shown in Figure 27. At the top: 8× 8 images with intensity encoded
on 8 bits, with a transition image between 2 uniform regions on the left and a random
uniform image on the right. At the bottom, the coefficient table for each image. The scales
are common for either the images or the coefficients.

redundancy between patches, and we will encode the low-frequency coefficient multiple
times unnecessarily (Fig. 29). On the other hand, if the patches are too large, then each
one may contain a discontinuity, which generates several non-zero coefficients to code per
patch, resulting in a loss of compression rate. So, we need to use the largest possible
patches with compromises to achieve the best compression rate. After testing, it seems
that for typical images taken in everyday life, a size of 8× 8 is a good compromise.

We can index the coefficients to obtain a progression from low to high frequencies
(zigzag ordering) and produce an equivalent of a spectrogram as shown in Figure 30. We
can clearly observe the rapid decrease in amplitude of the coefficients as a function of
"frequency" (index of the coefficient). Thus, the information retained for coding is as
follows:

— The position of coefficients whose quantization is non-zero. This is done first
through a binary vector of size L2, where each 1 indicates the index of the coef-
ficient with non-zero quantization. Then, this vector is compressed using a Run
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Figure 29 – Example of two different-sized patchings of the same underlying image (in
blue). If the patches are too small, as on the left, then the unique low-frequency coefficient
is repeated multiple times (around 9 times) unnecessarily. If the patches are too large,
as on the right, then there are discontinuities in each patch, resulting in several non-zero
coefficients to code per patch, and a loss of compression rate.

Figure 30 – The squared magnitude values of the 64 coefficients in the decomposition
of the two images in Figure 28: "1" corresponds to the image with a discontinuity, and "2"
is for the random image.
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Figure 31 – Left: JPEG compression rate is 0.2 bpp. Right: JPEG compression rate is
0.5 bpp.

Length Code, which encodes the lengths of segments with the same value, I for 1s
and Z for 0s, using entropy coding. Finally, it ends with a special word end-of-block,
indicating that there are only 0s.

— The quantized value of these coefficients.

There are libraries that allow you to compress in JPEG format by specifying a quality
factor, such as ImageMagick or cjpeg on Linux 92. Therefore, you need to calibrate to
establish the correspondence between this factor and the number of bits per pixel. Figure
31 shows two levels of compression (0.2bpp and 0.5bpp) of the same 512 × 512 image
initially encoded at 8 bits per pixel (bpp).

Contrary to what you might think at first, you can restore the image with good
visual quality even with fewer than 1 bit per pixel.

Why is this possible? The fundamental reason is that we have used spatial re-
dundancy through the use of the orthogonal transform. If we had considered pixels as
independent of each other, we could only binaryize the image, which would correspond to

92. https://imagemagick.org/script/convert.php, https://www.unix.com/man-page/linux/1/cjpeg/

https://imagemagick.org/script/convert.php
https://www.unix.com/man-page/linux/1/cjpeg/
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encoding each pixel with either the value 0 or 1 (1bpp) 93. The gain from the transform
is at least a factor of 2. Note that if you zoom in on the image, you observe oscillations
(Gibbs phenomenon 94) because we have removed high frequencies.

Now, changing the compression rate is done by changing the quantization step.
However, the basis of cosine products remains the same, meaning that L is always 8 pixels.
In audio, we were more subtle by using a weighted norm to adapt to the perception
of the ear. Therefore, if we switch from an equal step ∆1 to a larger step ∆2 > ∆1,
all coefficients smaller than ∆2 that were non-zero with ∆1 are set to zero, degrading
the image reconstruction quality by destroying high frequencies, resulting in blocking
artifacts. It’s a bit better for the boat’s mats because the intensity is greater, so there are
more bits to represent the signal in those cases. The effect is much more visible in image
regions where there are not many structures, such as the sky.

How can we achieve higher compression rates without degrading the image quality?
We need to use different scales and exploit redundancies at all levels. This is done using
orthonormal wavelet bases.

9.5 Using Wavelets: JPEG2000 Standard

Note: For the introduction to 1D and 2D wavelet bases, it wouldn’t have been ap-
propriate to copy-paste from the 2021 course. You can refer, for example, to sections 5.3,
6.3, 8, and 9.3. You can also find additional information in the 2020 course.

Just for reference, wavelet decomposition is performed using a fast algorithm in filter
banks with complexity O(N), faster than the FFT. The only non-zero coefficients are
those for which the wavelet, localized both in frequency and in space while respecting
the Heisenberg inequality, signals the presence of a discontinuity, as can be seen in Figure
32. Then, we proceed with quantization of the non-zero coefficients somewhat similar to
JPEG. The result in Figure 33 demonstrates the efficiency of wavelet decomposition for
a compression rate of 0.2 bpp by comparing JPEG and JPEG2000 images 95.

93. See the 2021 Course Figure 57.
94. See the 2021 Course, footnote in Section 8.3
95. Note: The images were obtained using the convert/ImageMagick tool on Linux/Mac by adjusting

the "-define jp2:rate=x" option in addition to the "jp2:nomct" and "jp2:numrlvls=4" options. Then, as
pdflatex does not understand the "jp2" format, I converted the files to "png" format and verified that the
rendering was the same.
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Figure 32 – Example of wavelet decomposition of a boat image. The colormap has
been reversed to highlight the sparse non-zero coefficients, which are few in number and
localized at hue discontinuities.
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Figure 33 – Examples showing the difference in image quality when using the same
compression rate of 0.2 bpp, either with the JPEG standard on the left or JPEG2000 on
the right. It can be observed that at higher compression rates, the use of wavelets allows
capturing redundancies at all scales to achieve better image reconstruction.
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Figure 34 – Images in JPEG2000 format with a compression rate of 0.05 bpp.

If we push the compression by an additional factor of 4 (Figure 34) to achieve a
rate of 0.05 bpp, some distortions become visible. These are not block artifacts like in
JPEG but rather a result of the lack of high-frequency coefficients, resembling the Gibbs
phenomenon present in JPEG. However, these effects are less pronounced in JPEG2000.

9.6 Confrontation of Theory with a Real Case

After showing examples of JPEG and JPEG2000 compression, let’s examine their
alignment with theory, particularly the expression of distortion D in terms of the bits
per pixel R̄ from Theorem 22. To do this, we introduce a quality indicator, the PSNR
(peak signal-to-noise ratio). For images containing N pixels with values encoded in 8 bits
(maximum pixel value equals 255), we have

PSNR(R̄,Hd) := 10 log10
2552

D(R̄,Hd)/N
(295)

where Hd is given to reflect the dependence on signal properties. Thus, we expect a
linear relationship of the form
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PSNR(R̄,Hd) = (20 log10 2)R̄ + C(Hd) (296)

In Figure 35, we show the evolution of PSNR as a function of R̄ for the boat image
compressed with JPEG and JPEG2000 formats. What can be observed is indeed a linear
behavior 96 for R̄ > 1. However, as shown in the right figure, for R̄ < 1, the behavior is
more linear in log2(R̄). Therefore, it is necessary to amend the theory and understand
the origin of this image quality loss phenomenon.

Why is it important to consider the R̄ < 1 region? In practice, this is the region
of interest, as explained following Shannon’s theorem (Th. 16). The reason lies in the
distribution of wavelet coefficients, as shown in Figure 36. What is noticeable is that these
distributions are sharply peaked at 0, which challenges the high-resolution assumption
that requires a constant distribution over a scale ∆. The error here is due to quantization
within the bin [−∆/2, ∆/2].

9.7 Behavior When R̄ < 1

Let’s establish a connection with the 2021 course. Consider a signal to which we
apply quantization on the decomposition coefficients in an orthonormal basis:

x̂ =
∑
m

Q(⟨x, gm⟩) gm (297)

The distortion is given by:

D =
∑
m

|⟨x, gm⟩ −Q(⟨x, gm⟩)|2

=
∑

|⟨x,gm⟩|≤ ∆
2

|⟨x, gm⟩|2 +
∑

|⟨x,gm⟩|> ∆
2

|⟨x, gm⟩ −Q(⟨x, gm⟩)|2 (298)

96. Note: At the time these notes were written, these curves are still preliminary because whether using
ImageMagick/convert or cjpeg, the slope is not as expected with 20 log10 2 but approximately half of
that for R̄ > 1
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Figure 35 – Evolution of PSNR as a function of bits per pixel for the boat image
compressed in JPEG (top) and JPEG2000 (bottom). On the right, the scale of R̄ is in
log2, while on the left, it is linear.
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Figure 36 – On the left and in the middle are two images. On the right, in red, is the
normalized histogram of wavelet coefficients (details only) for the boat image, and in blue
for the one showing more textures, the monkey image.

Let M be the number of coefficients whose magnitude is greater than ∆/2. Follo-
wing an argument from 2021, the approximation that only keeps M coefficients of the
decomposition 97:

x̃M =
∑

m∈I(M)
⟨x, gm⟩ gm (299)

generates an error:

∥x− x̃∥2 =
∑

m̸∈I(M)
|⟨x, gm⟩|2 (300)

To minimize this error, the absolute values of scalar products should be minimized
for m ̸∈ I(M) and maximized for m ∈ I(M). In particular, a threshold T (M) is set, which
keeps only the M largest coefficients to define I(M):

I(M) = {m / |⟨x, gm⟩| > T (M)} and T (M) such that |I(M)| = M (301)

97. NDJE: I(M) is a set that, in Fourier, would be, for example, the M low-frequency coefficients
(linear approach: M does not depend on the signal). In Wavelets, this would be the set of coefficients
whose magnitude is greater than a certain threshold (non-linear effect: because the threshold depends on
the signal itself).
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Figure 37 – Illustration of sorting coefficients c[k] and the relationship between the
number of coefficients M and the threshold ∆/2.

By setting the threshold to T (M) = ∆/2, we not only fix the number M of retained
coefficients but also the level of approximation error. Let xM be the approximation of x

such that:

xM =
∑

|⟨x,gm⟩|≥ ∆
2

Q(⟨x, gm⟩) gm (302)

(the sum contains only M terms). Then, the distortion D can be bounded as follows:

∥x− xM∥2 ≤ D ≤ ∥x− xM∥2 + M
∆2

4 (303)

Indeed, the error ∥x−xM∥2 is given by the power of coefficients for which |⟨x, gm⟩| ≤
∆/2, and an upper bound of |⟨x, gm⟩ −Q(⟨x, gm⟩)| is ∆/2.

To obtain a relationship of the type D(R̄), we need to relate the number of coeffi-
cients M to R̄ and ∥x − xM∥ to M . To achieve this, we need an assumption about the
scalar products, guided by the profiles of their distributions in practice.
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Theorem 24
If we order the coefficients of the decomposition of x in the basis in descending

order (Fig. 37):

c[k] = |⟨x, gk⟩|, c[k] ≥ c[k + 1] (304)

and assume that the decrease is of the form:

|c[k]| = ck−α α > 1/2, c > 0 (305)

then the distortion behaves as follows:

D(R) ≈
(

R

(α− 1) log2 R + O(log N)

)1−2α

(306)

Proof 24. We will outline the proof. First, let’s calculate ∥x − xM∥2. According to the
order of coefficients and the fact that xM retains only the first M coefficients (the largest
ones):

∥x− xM∥2 =
N∑

k=M+1
|c[k]|2 ≈

N∑
k=M

c2k−2α ≈ c2M1−2α (307)

Now, we need to relate M to R, the number of bits. To do this, we distinguish in R

the contribution R0 that encodes the position of non-zero coefficients, and the contribution
R1 that encodes their values. The non-zero coefficients satisfy the decreasing relation, so
a priori c[k] ∈] − c, c[, an interval divided into boxes of width ∆. Therefore, the number
of quantization boxes is:
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K ≈ 2c

∆ (308)

and log2 K gives the number of bits for a coarse coding of a coefficient. Thus:

R1 = M log2(2c/∆) (309)

Now, the relationship between M and ∆ is roughly given by:

c[M ] = ∆
2 ≈ cM−α ⇒ R1 ≈ αM log2 M (310)

To obtain R0, we need to calculate the entropy of a random variable that takes the
value 1 with probability p and the value 0 with probability 1 − p. This is the entropy of
a Bernoulli distribution:

HB = −(1− p) log2(1− p)− p log2(p) (311)

Now, p = M/N is the frequency of occurrence of non-zero coefficients among the
N coefficients of the decomposition. Thus 98, R0 = NHB. Finally, in the case of a high
compression rate M/N ≪ 1, then:

R/M ≈ (α− 1) log2 M + log2 N + o(log2 N) (312)

Inverting the relation gives M as a function of R, which yields:

M ≈ R

(α− 1) log2 R + log2 N + o(log2 N) (313)

And since M(∆/2)2 ≈ c2M1−2α, just like ∥x − xM∥2, then D(R) indeed follows a
law:

D(R) ≈
(

R

(α− 1) log2 R + log2 N + o(log2 N)

)1−2α

(314)

98. Note: There are as many coefficients as samples of the signal, which is N .
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■

What will be crucial at high compression rates (R̄ small) is indeed the number
of non-zero coefficients M , as the number of bits is roughly proportional to it, just like
the error, which should be as small as possible. And ultimately, once we know how
to perform efficient coding, the most challenging part is finding the basis that best
compresses the information. This optimal basis eliminates data redundancy by finding
regularity patterns, which was the subject of the 2021 course, navigating the triangle:
Regularity, Approximation, Sparsity.

10. Epilogue

Finally, a century after the publication of Fisher’s article, we are still operating
within the framework of his program to find a parametric model of the distribution that
best reflects the observations. This lies at the heart of Machine Learning, and in a way,
neural networks are parameterized systems designed to ultimately maximize likelihood,
all while performing gradient descent to determine the parameters. Of course, what has
fundamentally changed over a century is the complexity of the models.

This probabilistic aspect, according to S. Mallat, is essential for understanding the
perplexing results of neural networks. Let’s say that the probabilistic viewpoint, as op-
posed to the deterministic one, is indeed the conceptual framework in which we hope
to understand the statistical properties. After all, if these networks can estimate these
parameterized distributions in very high dimensions, it means they are capturing highly
relevant information contained in the observations. This simplification is undoubtedly
related to the concentration of probability, which is a reflection of the fact that the ob-
servations are not arbitrary; they "live" in Shannon’s typical sets.

Between the 1950s and 2000s, Information Theory fully exploited the use of entropy,
especially. However, the problem that emerged was that, except for some simple cases in-
volving Gaussians for brevity, we didn’t know how to calculate the entropy of systems. It’s
from the 2000s onwards, and increasingly with neural networks with a colossal number of
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parameters, that we are much better able to grasp these typical sets of probability distri-
butions. So, while the theoretical framework remains the same, the (pleasant) surprise is
that we are getting closer to these typical sets, which allows us to tackle new problems,
such as delving into approximation errors, for example, using harmonic analysis.

Now, Shannon’s viewpoint, which ignores any form of parameterization to focus so-
lely on the intrinsic information of observations, and Fisher’s viewpoint, are ultimately in
a natural relationship. In statistical physics, particularly when dealing with observables
from which moments are drawn (broadly speaking, averages), if we want to infer dis-
tributions by maximizing entropy (Jaynes’ Maximum Entropy Principle), this leads to
modeling by the exponential family, which is a formalism of Fisher-parameterized pro-
babilities. Among the questions that arise, for example, is whether we can do better in
the context of data compression with neural networks. Perhaps we will see new standards
emerging in the near future.


