Circuit QED Lattices: Synthetic Quantum Systems on Line Graphs

Alicia Kollár

Department of Physics and JQI, University of Maryland

College de France, Dec 8, 2023

Why Synthetic Quantum Systems

Almost all materials are made of the same ingredients:

- Periodic arrangement of ionic cores
- Electrons hopping between sites
- Coulomb interactions

Generalized material:

- Periodic arrangement of lattice sites
- Particles hopping between sites
- Particle-particle interactions
- Many different ways to make this
- Many different ways to control this
- Different realizations probe different questions

Outline

- Coplanar Waveguide (CPW) Lattices
- Deformable lattice sites
- Line-graph lattices
- Interacting photons
- Band Engineering
- Hyperbolic lattice
- Gapped flat bands
- Mathematical Connections
- Bounds on gaps in graph spectra
- Connections to quantum error correction
- Fullerene spectra
- Experimental Data

Microwave Coplanar Waveguide Resonators

- 2D analog of coaxial cable
- Cavity defined by cutting center pin
- Voltage antinode at "mirror"

Harmonic oscillator

$$
\hat{H}=\frac{1}{2 C} \hat{n}^{2}+\frac{1}{2 L} \hat{\varphi}^{2}
$$

Adding Non-Linearity

The Transmon Qubit

Anharmonic oscillator $\hat{H}=4 E_{C} \hat{n}^{2}-E_{J} \cos \hat{\varphi}$

Putting Them Together

- CPWs are easy to control and pattern
- Qubits give non-linearity or act as quantum magnets

CPW Lattices

Deformable Resonators

- Frequency depends only on length
- Coupling depends on ends

- "Bendable"

Layout and Effective Lattices

Resonator Lattice

- An edge on each resonator

Layout X

Effective Photonic Lattice

- A vertex on each resonator

Line Graph $L(X)$

Outline

- Coplanar Waveguide (CPW) Lattices
- Deformable lattice sites
- Line-graph lattices
- Interacting photons
- Band Engineering
- Hyperbolic lattice
- Gapped flat bands
- Mathematical Connections
- Bounds on gaps in graph spectra
- Connections to quantum error correction
- Fullerene spectra
- Experimental Data

Projecting to Flat 2D

Distance is not preserved.

Distance is not preserved.

Projecting to Flat 2D

Graph is preserved.

Heptagon-Kagome Device

- 2 shells
- Operating frequency: 16 GHz
- 4 input-output ports

Spectrum Calculations

Hyperbolic geometry is noncommutative

- No Bloch theory
- Graph theory
- Finite-size numerics

Line-Graph Lattices

Band Structure Correspondence

Layout X

Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $\mathrm{L}(\mathrm{X})$

$$
\begin{array}{ll}
\bar{H}_{s}(X)=H_{L(X)} \quad & M^{t} M=D_{X}+H_{X} \\
& M M^{t}=2 I+\bar{H}_{s}(X)
\end{array}
$$

$$
\begin{aligned}
D_{X}+H_{X} & \simeq 2 I+\bar{H}_{s}(X) \\
E_{\bar{H}_{s}} & =\left\{\begin{array}{l}
d-2+E_{H_{X}} \\
-2
\end{array}\right.
\end{aligned}
$$

Density of States and Flat－Band States

O゙メー

Subdivision Graphs and Optimally Gapped Flat Bands

Subdivision Graphs and Optimally Gapped Flat Bands

Outline

- Coplanar Waveguide (CPW) Lattices
- Deformable lattice sites
- Line-graph lattices
- Interacting photons
- Band Engineering
- Hyperbolic lattice
- Gapped flat bands
- Mathematical Connections
- Bounds on gaps in graph spectra
- Connections to quantum error correction
- Fullerene spectra
- Experimental Data

Other Maximal Gaps?

Two Driving Questions

- Even larger gaps possible at other energies?
- Where can planar graphs have gaps?

Thm:

No large 3-regular graph can have a gap larger than 2.

- Have found 2 such gaps.
- Conjecture that these are the only ones.

A.K.A.
$\mathrm{n}=2, \mathrm{~m}=0$ carbon nanotube

Kollár et al. Comm. AMS 1,1 (2021)
Guo, Mohar Lin. Alg. and Appl. 449, 68-75 (2014)

Abelian Covers and Planar Gaps

New Lattice Viewpoint

- Use method of Abelian covers to construct examples.
- "Unwrap" small graph to form lattice

- Initial energies are $\mathrm{k}=0$ energies of the lattice
- Small graphs and their spectra tabulated.
- "Periodic table" of unit cells to start from.

Thm:

All points in [-3,3) can be gapped by large 3-regular planar graphs.

Line Graphs and Quantum Error Correction

Thm: (Chapman and Flammia)
A spin model can be solved exactly by mapping to non-interacting fermions via the Jordan-Wigner transformation if and if only the anticommutation relations of its terms have the structure of a line graph.

- Relevant quantities from an oriented version of the root graph
- Sum of absolute values of the eigenvalues
- a.k.a. "skew" energy

Two Relevant Spectral Gaps

- Single-particle excitation gap
- Difference between middle two eigenvalues in one orientation
- Skew energy gap
- Difference between the sum of the absolute values of the eigenvalues in two different orientations

Outlook: Nanotubes and Fullerenes

New Class of Graphs

- Planar
- 3-regular
- Faces of at most 6 sides
- Previous result:
- Gaps anywhere except 3
- If you let the size of the faces diverge
- What happens if you limit the size of the faces?

Turns out that the
"nantoube" graphs we keep seeing are incredibly important.

Nanotubes

- Planar
- Only hexagonal and pentagonal faces
- Largest possible gap with no squares or triangles

Outlook: Nanotubes and Fullerenes

Fullerene Graphs

- 3-regular
- Only hexagonal and pentagonal faces

Spherical Fullerenes

- C_{60} molecule
- No gaps at large size

Nanotube Fullerenes

- Can have gaps

- Largest possible gap for a Fullerene

Theorem 4.7. The essential spectrum of $\mathcal{N}_{5,0}$ when Fullerene capped on one side is the two intervals $\left(-3,-E_{5,0}\right) \cup\left(E_{5,0}, 3\right)$, where

$$
E_{5,0}=\sqrt{1+4 \cos (\pi / 10) \cos (21 \pi / 30)+4 \cos ^{2}(21 \pi / 30)}=0.382 \ldots
$$

and the point spectrum consists of three points

$$
\begin{aligned}
& \text { (1) } \lambda_{a}=0.288 \ldots \\
& \text { (2) } \lambda_{b}=0.360 \ldots \\
& \text { (3) } \lambda_{c}=-2.142 \ldots
\end{aligned}
$$

each with multiplicity two. The first two are exceptional eigenvalues which fall outside the essential spectrum, and the last is bound state in the continuum.

Theorem 4.9. The set $\mathcal{I}_{F}=\left(-E_{5,0}, 0.360 \ldots\right) \cup\left(0.360 \ldots, E_{5,0}\right)$ is the largest almost gap set of Fullerenes, where

$$
E_{5,0}=\sqrt{1+4 \cos (\pi / 10) \cos (21 \pi / 30)+4 \cos ^{2}(21 \pi / 30)}=0.382 \ldots
$$

I.e., every point in the interval $\left(-E_{5,0}, E_{5,0}\right)$ can be gapped except the single exceptional eigenvalue $0.360 \ldots$, and no gaps are possible outside this interval.

Outline

- Coplanar Waveguide (CPW) Lattices
- Deformable lattice sites
- Line-graph lattices
- Interacting photons
- Band Engineering
- Hyperbolic lattice
- Gapped flat bands
- Mathematical Connections
- Bounds on gaps in graph spectra
- Connections to quantum error correction
- Fullerene spectra
- Experimental Data

Quasi-1D Lattice Design

Quasi-1D Lattice Device

Device

- 9 unit cells
- 3 working qubits
- Transmission ports

Transmission

Transmission Measurements

Two-Tone Spectroscopy of Lattice Modes

Full-Wave Modes

- Second harmonic
- Symmetric on-site wave function

Transmission at the Full-Wave Modes

Conclusion and Outlook

- Circuit QED lattices
- Artificial photonic materials
- Interacting photons
- Outlook
- Synthetic graph systems
- Fullerene spectra

- Flat-band lattices
- Optimal gaps
- Mathematical Connections
- Graph spectra
- Quantum error correction

Kollár et al. Nature 571 (2019)
Kollár et al. Comm. Math. Phys. 376, 1909 (2020)
Boettcher et al. Phys. Rev. A 102, 032208 (2020)
Kollár et al. Comm. AMS 1,1 (2021)
Boettcher et al. arXiv:2105.0187 (2021)
Bienias et al. Phys. Rev. Lett. 128, 013601 (2022)
Chapman, Flammia, AJK, PRX Quantum 3, 03021 (2022)
Long, AJK et al. Phys. Rev. Lett. 128, 183602 (2022)

Circuit QED Lattices: Synthetic Quantum Systems on Line Graphs

Band Structure Correspondence

Layout X

Band Structure Correspondence

Layout Tight-Binding Hamiltonian

- Bounded self-adjoint operator on X

$$
H_{X}
$$

Effective Hamiltonian

- Bounded self-adjoint operator on $\mathrm{L}(\mathrm{X})$

$$
\begin{array}{ll}
\bar{H}_{s}(X)=H_{L(X)} \quad & M^{t} M=D_{X}+H_{X} \\
& M M^{t}=2 I+\bar{H}_{s}(X)
\end{array}
$$

$$
\begin{aligned}
D_{X}+H_{X} & \simeq 2 I+\bar{H}_{s}(X) \\
E_{\bar{H}_{s}}= & \left\{\begin{array}{l}
d-2+E_{H_{X}} \\
-2
\end{array}\right.
\end{aligned}
$$

Band Structure Correspondence

Incidence Operator

- From X to $L(X)$

$$
M: \ell^{2}(X) \rightarrow \ell^{2}(L(X))
$$

$$
M(v, e)= \begin{cases}1, & \text { if } e \text { and } v \text { are incident } \\ 0 & \text { otherwise }\end{cases}
$$

Band Structure Correspondence

Incidence Operator

- From X to $\mathrm{L}(\mathrm{X})$
$M: \ell^{2}(X) \rightarrow \ell^{2}(L(X))$

$$
M(v, e)= \begin{cases}1, & \text { if } e \text { and } v \text { are incident } \\ 0 & \text { otherwise }\end{cases}
$$

 $M M^{t}=2 I+\bar{H}_{s}(X)$

Subdivision Graphs：Flat Bands at 0

合岳 $\frac{1}{-3}$

OO

亚

Subdivision Graphs and Optimally Gapped Flat Bands

$L(\$(X))$

Subdivision Graphs and Optimally Gapped Flat Bands

Kagome-Like Lattices

Full-Wave Flat-Band States

Hyperbolic Lattices and Curvature

Tiling Polygon (n)	Lattice Constant	Medial Lattice Constant
7	0.566	0.492
8	0.727	0.633
9	0.819	0.714
10	0.879	0.767
11	0.921	0.804
12	0.952	0.831

Hyperbolic Numerics

Hyperbolic Numerics

