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Why Synthetic Quantum Systems

Almost all materials are made of the same ingredients:

® Periodic arrangement of ionic cores
® Electrons hopping between sites

® Coulomb interactions

Metals Insulators Superconductors

maximummetals finolex ceramics.org Scientific American

Generalized material:

oo . ® Many different ways to make this
® Periodic arrangement of lattice sites

<4 o Many different ways to control this
® Particles hopping between sites Y Y

: o : ® Different realizations probe different questions
® Particle-particle interactions




® Coplanar Waveguide (CPW) Lattices

® Deformable lattice sites
® Line-graph lattices

® Interacting photons
® Band Engineering

® Hyperbolic lattice
® Gapped flat bands

® Mathematical Connections

® Bounds on gaps in graph spectra
® Connections to quantum error correction

® Fullerene spectra

® Experimental Data




Microwave Coplanar Waveguide Resonators

e 2D analog of coaxial cable

e Cavity defined by cutting center pin

® \/oltage antinode at “mirror”

Harmonic oscillator

Blais et al., PRA 69, 062320 (2014)




Adding Non-Linearity

The Transmon Qubit Putting Them Together

Anharmonic oscillator

[A{:4Ecﬁ2—EJCOS@

® CPWs are easy to control and pattern

e Qubits give non-linearity or act as
guantum magnets

Koch et al. PRA 76, 042319 (2007)



CPW Lattices

® Capacitive coupling of resonators
® Photonic material

® t <0, constant function at high energy

Hrg = wo Za;{ai —t Z (a;faj + a;ai)
i <ij>

/ N

multiple of the identity graph adjacency matrix

Houck et al. Nat Phys 8, (2012)
Underwood et al. PRA 86, 023837 (2012)




Deformable Resonators

® Frequency depends only on length
e Coupling depends on ends

e “Bendable”




Layout and Effective Lattices

Resonator Lattice Effective Photonic Lattice

® An edge on each resonator ® A vertex on each resonator

Layout X Line Graph [,( X)




® Coplanar Waveguide (CPW) Lattices

® Deformable lattice sites
® Line-graph lattices

® Interacting photons

® Band Engineering

® Mathematical Connections

® Experimental Data




Projecting to Flat 2D

n=>5 Distance is not
spherical preserved.

n=7 Distance is not
hyperbolic preserved.




Projecting to Flat 2D

n=>5

spherical Ce Distance is not
preserved.

t is preserved.

n=7 Graph is preserved.

hyperbolic




Heptagon-Kagome Device

® 2 shells
e Operating frequency: 16 GHz

® 4 input-output ports

Kollar et al. Nature 571 (2019)



Spectrum Calculations

Hyperbolic geometry is non-
commutative

e No Bloch theory

e Graph theory O pugd Ll

® Finite-size numerics

Normalized Eigenvalue Number




Line-Graph Lattices

Graphene Heptagon-Graphene
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Band Structure Correspondence

Line Graph L(X)




Band Structure Correspondence

Layout Tight-Binding Hamiltonian Incidence Operator

® Bounded self-adjoint operator on X ® From X to L(X)

Hy M (X)) — (L(X))

)
1, if e and v are incident,

0 otherwise.

Effective Hamiltonian \

® Bounded self-adjoint operator on L(X)

MM =21 + H,(X)

Kollar et al. Comm. Math. Phys. 376, 1909 (2020)



Density of States and Flat-Band States
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Subdivision Graphs and Optimally Gapped Flat Bands
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Kollar et al. Comm. Math. Phys. 376, 1909 (2020)



Subdivision Graphs and Optimally Gapped Flat Bands

Kollar et al. Comm. Math. Phys. 376, 1909 (2020)



® Coplanar Waveguide (CPW) Lattices

® Deformable lattice sites
® Line-graph lattices

® Interacting photons
® Band Engineering

® Hyperbolic lattice
® Gapped flat bands

® Mathematical Connections

® Experimental Data




Other Maximal Gaps?

Two Driving Questions
® Even larger gaps possible at other energies?

® Where can planar graphs have gaps?

Thm:

No large 3-regular graph can have a gap
larger than 2. 8/2n

® Have found 2 such gaps. Q o o o o o A A
® Conjecture that these are the only ones. >< >< >< ><

A.K.A.
n=2, m=0 carbon nanotube

Kollar et al. Comm. AMS 1,1 (2021)
Guo, Mohar Lin. Alg. and Appl. 449, 68-75 (2014)




Abelian Covers and Planar Gaps

Thm:

All points in [-3,3) can be gapped by
large 3-regular planar graphs.

New Lattice Viewpoint

® Use method of Abelian covers to

construct examples.
® “Unwrap” small graph to form lattice

Four Seeds

® Initial energies are k=0 energies of

the lattice
® Small graphs and their spectra
tabulated.
® “Periodic table” of unit cells to
start from.

® Combined gaps cover [-3,2V2].

® |teration of L(S(X)) covers the rest.
Kollar et al. Comm. AMS 1,1 (2021)




Line Graphs and Quantum Error Correction

Thm: (Chapman and Flammia)
A spin model can be solved exactly by
mapping to non-interacting fermions via the
Jordan-Wigner transformation if and if only
the anticommutation relations of its terms
have the structure of a line graph. But not the
ground state

Numerical Phenomenology

Large gap

® Relevant quantities from an

oriented version of the root graph
® Sum of absolute values of the
eigenvalues Large gap

® a.k.a. “skew” energy And th
nd the

ground state

Two Relevant Spectral Gaps

® Single-particle excitation gap
® Difference between middle two
eigenvalues in one orientation

® Skew energy gap
® Difference between the sum of
the absolute values of the
eigenvalues in two different
orientations Error suppression is limited by the skew
energy differences between
orientations, not single-particle gaps

Chapman et al. Quantum 4, 278 (2020) Chapman, Flammia, AJK, PRX Quantum 3, 03021 (2022)




Outlook: Nanotubes and Fullerenes

NEW CIass Of Graphs ® Previous result: Turns out that the

® Planar ® Gaps anywhere except 3 “nantoube” graphs
® If you let the size of the faces diverge > we keep seeing are

® What happens if you limit the size of the faces? incredibly important.

® 3-regular

® Faces of at most 6 sides

® Can be made planar
® Only hexagonal and
triangular faces
® gap =[-1,1]
® Largest possible gap

Nanotubes

® Planar
® Only hexagonal and pentagonal faces

® Largest possible gap with no squares or triangles

Kollar, Sarnak, Wei, in Preparation (2023)



Outlook: Nanotubes and Fullerenes

Nanotube Fullerenes

Fullerene Graphs
® Can have gaps

® 3-regular
® Only hexagonal and
pentagonal faces

Spherical Fullerenes ® Largest possible gap for a Fullerene

® C60 molecule Theorem 4.7. The essential spectrum of N5 o when Fullerene capped on one side
® No gaps at |arge size is the two intervals (—3,—E50) U (E50,3), where
Eso = \/1+4cos(m/10) cos(217/30) + 4 cos?(217/30) = 0.382....

and the point spectrum consists of three points

(1) Ay = 0.288...
(2) Ay = 0.360. ..
(3) Ao =—2.142. ..,

each with multiplicity two. The first two are exceptional eigenvalues which fall
outside the essential spectrum, and the last is bound state in the continuum.

Theorem 4.9. The set Zr = (—F5,,0.360...) U (0.360...,E5) is the largest
almost gap set of Fullerenes, where

Eso = /1 + 4cos(m/10) cos(217/30) 4 4 cos?(217/30) = 0.382.. ...

Le., every point in the interval (—Es 0, E5 ) can be gapped except the single excep-
tional eigenvalue 0.360. .., and no gaps are possible outside this interval.

Kroto et al., Nature 318, 14 (1985), Nobel Prize Chem. 1996 Kollar, Sarnak, Wei, in Preparation (2023)



® Coplanar Waveguide (CPW) Lattices

® Deformable lattice sites
® Line-graph lattices

® Interacting photons
® Band Engineering

® Hyperbolic lattice
® Gapped flat bands

® Mathematical Connections

® Bounds on gaps in graph spectra
® Connections to quantum error correction

® Fullerene spectra

® Experimental Data




Quasi-1D Lattice Design

Hardware Layout Device Design

Effective Lattice

Band Structure

® Flat bands

e Gapped

e Ungapped

Energy (|t|)

® Linear bands
e Quadratic bands—{ & _




Quasi-1D Lattice Device

Device

® 9 unit cells

e 3 working qubits

® Transmission ports

Transmission

Transmission

(gp) uolssiwued)
Flux Bias Voltage (V)




Energy (|t])

Half-Wave Modes

® Antisymmetric
on-site wave
function

® Mixed sign
hopping

Transmission Measurements

Differential Transmission




Two-Tone Spectroscopy of Lattice Modes

Cross-Kerr Signal
Full-Wave Modes

® Second harmonic

® Symmetric on-site
wave function

NN\

Energy (|t])




Transmission at the Full-Wave Modes
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Conclusion and Outlook

Circuit QED lattices ® Outlook

® Artificial photonic materials ® Synthetic graph systems

® Interacting photons ® Fullerene spectra

Hyperbolic lattices

® On-chip fabrication
Flat-band lattices

® Optimal gaps
Mathematical Connections

® Graph spectra

® (Quantum error correction

Kollar et al. Nature 571 (2019)

Kollar et al. Comm. Math. Phys. 376, 1909 (2020)
Boettcher et al. Phys. Rev. A 102, 032208 (2020)
Kollar et al. Comm. AMS 1,1 (2021)

Boettcher et al. arXiv:2105.0187 (2021)

Bienias et al. Phys. Rev. Lett. 128, 013601 (2022)

Chapman, Flammia, AJK, PRX Quantum 3, 03021 (2022)
Long, AJK et al. Phys. Rev. Lett. 128, 183602 (2022)
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Band Structure Correspondence

Line Graph L(X)




Band Structure Correspondence

Layout Tight-Binding Hamiltonian Incidence Operator

® Bounded self-adjoint operator on X ® From X to L(X)

Hy M (X)) — (L(X))

)
1, if e and v are incident,

0 otherwise.

Effective Hamiltonian \

® Bounded self-adjoint operator on L(X)

MM =21 + H,(X)

Kollar et al. Comm. Math. Phys. 376, 1909 (2020)



Band Structure Correspondence

Incidence Operator (
® From X to L(X)

M - KZ(X) N EQ(L(X)) \O otherwise.

1, if e and v are incident,




Band Structure Correspondence

Incidence Operator (
® From X to L(X)

M - KZ(X) N EQ(L(X)) \O otherwise.

ek

1, if e and v are incident,
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Subdivision Graphs and Optimally Gapped Flat Bands

(14+/1+4(Ex +3)

Ersx)y) = 4




Subdivision Graphs and Optimally Gapped Flat Bands

Kollar et al. arXiv:1902.02794 (2019)





















Kagome-Like Lattices

| heptagon ;| |octagon i| | nonagon

750
EigenvectoNIndex EigenvecYor Index

Kollar et al. arXiv:1802.09549 (2018)




Full-Wave Flat-Band States




Hyperbolic Lattices and Curvature

Gaussian Curvature

Tiling Polygon (n)

Lattice Constant

Medial Lattice Constant

/

0.566

0.492

8

0.727

0.633

9

0.819

0.714

10

0.879

0.767

11

0.921

0.804

12

0.952

0.831




Hyperbolic Numerics

Heptagon-Graphene

Octagon-Graphene




Hyperbolic Numerics

Heptagon-Kagome Heptagon-Kagome (HW) Octagon-Kagome
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