$$
\frac{\text { PRESCRIBING THE SPECTRA }}{O F \text { CUBIC GRAPHS }}
$$

Peter Sarnak

Lecture college de france Nov 2023

JOINT WORK WITH
alicia molar and fan wei

The CONTEXT

- X a large (compact) locally UNIFORM GEOMETRY, P A DIFFERENTIAL OPERATOR ON X (EG LAPLACIAN); WHAT GAPS IN THE SPECTRUM OF P CAN BE ACHIEVED?

EXAMPLES:

- X is locally euclidean (GEOMETRY of NUMBERS)
- X is locally hyperbole HYPERBOLIC SURFACE HYPERBOLIC 3-MANIFOLDS.
- X is a regular graph OR A BRUHAT-TITS BUILDING

We fixate on 3-regular graphs "CUBIC" GRAPHS.

CUBIC DENOTES THE SET OF ALL 3-regular connected graphs.

PLANAR THE SUBSET OF CUBIC WHICH ARE planar.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{1}=0
\end{aligned}
$$

Peterson:

$$
\lambda_{1}=1
$$

Th 3-REGULAR TREE (NNIVRSAL COVER)
$X \in C U B I C, V(x)$ VERTICES S $|V(x)|=n$
ADJACENCY OPERATOR A:

$$
\begin{aligned}
& A: \ell^{2}(V(x)) \rightarrow \ell^{2}(V(x)) \\
& A f(x)=\sum_{y \sim x} f(y) \quad \text { FOR } f: V(x) \rightarrow+ \\
& \quad \text { (REAL SyMmeTRIC) }
\end{aligned}
$$

its spectrum $\sigma(X) \subset[-3,3]$

- 3 is a simple eigenvalue
- -3 is an eigenvalue if X is bipartite.

$$
\sigma(x): 3=\lambda_{0}(x)>\lambda_{1}(x) \geqslant \lambda_{2}(x) \ldots \geqslant \lambda_{n-1}(x)=\lambda_{\min }(x)
$$

NB: The eigenvalues are totally real ALGEBRAIC INTEGERS!
SPECTRUM OF A ON $l^{2}\left(T_{3}\right)$:

$$
\sigma\left(T_{3}\right)=[-2 \sqrt{2}, 2 \sqrt{2}]
$$

KESTEN, SALLY-SHALIKA 2-Adic PLANChérel MEASURE.

$$
2 \sqrt{2}=2.8284 \ldots
$$

What GAps can be created in $\sigma(X)$ FOR LARGE X ?

- GAP at the top (Ie 3) is THE "BASS NOTE" GAP $3-\lambda_{1}(x)$
AND it being bounded below by a positive constant is the notion of being an Expander.
- tight binding hamiltonians in PHySICS ASK FOR a GAP at The BOTTOM (AT -3).
- in chemistry large carbon clusters (fullerenes) the GAP IN THE MIDDLE IS DECISIVE (HUCKELL ORBITAL STABLY).

Fig. 6 | The heptagon-kagome device. a, Resonator layout (dark blue) and effective lattice (light blue) for a circuit that realizes two shells of the heptagon-kagome lattice. Orange circles indicate three-way capacitive couplers. \mathbf{b}, Photograph of a physical device that realizes the layout and effective graphs in a. The device consists of 140 CPW resonators with fundamental resonance frequencies of 8 GHz , second harmonic frequencies of 16 GHz and a hopping rate of -136.2 MHz at the second harmonic. Four additional CPW lines at each corner of the device couple microwaves into and out of the device for transmission measurements.

Short stubs protruding inward from the outermost three-way couplers are high-frequency $\lambda / 4$ resonators, which maintain a consistent loading of the sites in the outer ring, ensuring uniform on-site energies. c, Experimental transmission $\left(S_{21}\right)$ for the device in \mathbf{b} is shown in dark blue. The red curves show theoretical transmission for an ensemble of theoretical models including small systematic offsets in the on-site energies and realistic disorder levels, demonstrating reasonable agreement between theory and experiment.

Device measurements

We have constructed a device to realize a finite section of the heptagonkagome lattice. It consists of one central heptagon and two shells of neighbouring tiles, and is shown schematically in Fig. 6a, where each resonator has been approximated by a single line, and the lengths have not been held fixed. The resonators are 7.5 mm long with a fundamental resonance frequency of 8 GHz and a second harmonic of 16 GHz . The second harmonic of this device realizes the heptagon-kagome lattice with a hopping rate of -136.2 MHz . (The fundamental modes of the device obey a different tight-binding model owing to the asymmetry of the mode function within each resonator ${ }^{22}$. See the Methods for details.)
To minimize parasitic systematic frequency differences between resonator geometries, each resonator type was fabricated individually, and the corresponding resonant frequencies were measured. Commercial microwave simulation packages were unable to achieve the required level of absolute or relative accuracy, so the resonator lengths were then fine-tuned empirically to remove the residual offsets at the level of 30 MHz . For the device shown in Fig. 6b, the average difference between the fundamental frequencies of resonators with different shapes is approximately $0.13 \%(10 \mathrm{MHz})$, limited by intrinsic reproducibility within a fabrication run ${ }^{23}$ and wire-bonding or parasitic capacitances sensitive to variations between fabrication runs. Each individual shape has a fabrication-induced reproducibility of $0.036 \%(2.9 \mathrm{MHz})$, consistent with previous work ${ }^{23}$. In addition to the lattice itself, the circuit contains four measurement ports, visible in each corner, which are used to interrogate the lattice.
Theoretical transmission curves for 15 different disorder realizations are shown in Fig. 6c, along with a plot of the experimental transmitted power near the second harmonic frequency of the device. These theoretical curves reproduce most of the qualitative features of the data,
including the onset of peaks, the location and Fano-like lineshapes of the highest-frequency peaks, and the markedly larger linewidth of the modes near 16.2 GHz which have the largest overlap with the coupling ports. This device therefore demonstrates that hyperbolic lattices can be produced on chip by using CPW resonators, and it paves the way to the study of interactions in hyperbolic space and to simulation of new models with non-constant curvature.
Because of the combination of systematic and random disorder, in practice the flat band will no longer be completely degenerate and will hybridize slightly with the rest of the spectrum. For this heptagonkagome device, the systematic shape-dependent disorder causes the largest effects: about $0.12|t|$ for the worst shapes and about $0.07|t|$ for typical ones. Random disorder contributes at about the $0.04|t|$ level. Using graph-theoretic studies beyond the scope of the discussion here, we have have shown that the bulk gap for the heptagon-kagome lattice is about $0.4|t|$ and that the lower-lying eigenvalues seen in finite-size numerics are whispering-gallery-like edge modes which are very strongly confined to the boundary ${ }^{46}$. Therefore, the gapped flat band of the heptagon-kagome lattice is noticeably broadened, but is able to survive in the experimental realization. These graph-theoretic studies also revealed the existence of closely related and readily realizable lattices with gaps as large as $|t|$ for which the hierarchy of energy scales is favourable.

Conclusion

We have shown that lattices of CPW resonators can be used to produce artificial photonic materials in an effective curved space, including hyperbolic lattices which are typically prohibited as they cannot be isometrically embedded, even in three dimensions. In particular, we conducted numerical tight-binding simulations of hyperbolic analogs of the kagome lattice and demonstrated that they display a flat band
bASS NOTE SPECTRUM:
FOR \mathcal{F} C CUBIC (EG PLANAR) WE DEFINE THE BASS NOTE SPECTRUM of 7

$$
\operatorname{BASS}_{A}(\mathcal{F})=\overline{\left\{\lambda_{1}(x): x \in \mathcal{F}\right\}} \subset[-1,3]
$$

- It has a discrete part and a continuous part.

$$
\text { THEOREM }(\ldots . .)
$$

$$
\begin{aligned}
& B A S S_{A}(C \cup B \mid C)= \\
& \text { BASS } S_{A}^{D}(C \cup B \mid C)=\{-1,0,1,1,1,1,1.56, \ldots\} \\
& \text { DISCRETE } \\
& \text { infintre in } \\
& {[-1,2 \sqrt{2})} \\
& \text { BASS }_{A}^{L}(\text { CUB } 1 C)=[2 \sqrt{2}, 3] \\
& \text { BASS }_{A} \text { (PLANAR) is RIGID } \\
& B A S S_{A}^{D}(P \text { PAAR })=\{-1,1,1, \ldots\} \subset[-1,3) \\
& \text { DISCRETE } \\
& \operatorname{BASS}_{A}^{L}(P \cdot L A N A R)=\{3\} \text {. }
\end{aligned}
$$

COMMENTS
(a) FOR PLANAR; $\lambda_{1}(x) \rightarrow 3$ as $|x| \rightarrow \infty$ (EG LIPTON-TARJAN)
"planar graphs cannot be Expanders"
(b) For $x \in C \cup b i c$ J.friedman shows that

$$
\lambda_{1}(x) \geqslant 2 \sqrt{2}-\frac{100}{(\log x)^{2}} \Rightarrow \begin{gathered}
15 \text { DiSCRETE N } \\
{[-1,2 \sqrt{2}) .}
\end{gathered}
$$

(c) SIECIAL RAMANUJAN GRAPHS CONSTRUCTED FROM MODULAR FORMS ENSURE THAT

$$
\left|B A S S_{D}(C \cup B C C)\right|=\infty
$$

- N. Zubrilina using work of r.colemad and B.EDIXHOVEN

SHOWS THAT FOR CERTAN OF THESE

$$
\begin{aligned}
& \text { WI THAT FOR CERTAN OF } \\
& \lambda_{1}\left(x_{N}\right) \leqslant 2 \sqrt{2}-(1.3)^{|x(N)|}
\end{aligned}
$$

- marrus-Spielman-srivastava gives X_{N} 's witt

$$
\frac{A N-\operatorname{RINASNA}}{\lambda_{1}\left(x_{N}\right) \leq 2 \sqrt{2}}-\frac{100}{N}
$$

(d.) USING THAT THE RANDOM X IN CUBIC IS ALMOST RAMANUJAN (FRIEDMAN) AND THAT its eigenvectors are delocaltzed. (hi.iyaulhuang...)
EWES AND N. ALOW SHOW THAT EVERY POINT, IN $[2 \sqrt{2}, 3]$ is a LIMHT POINT OF $\lambda_{1}(x)^{\prime} s$.
gap at the bottom -3; hoffman spectrum 14 IF Z IS ANY CONNECTED GRAPH $L(Z)$ ITS LINE GRAPH:
VERTICES OF $L(Z)$ ARE EDGES OF Z AND JOIN TWO IF THEY SHARE A VERTEX.

- FActorization via the incidence matrix \Rightarrow

$$
\begin{aligned}
\sigma_{A}(L(z)) & =\{-2\}^{m-n} \cup \sigma\left(-2 I+A_{z}+D_{z}\right) \\
& \in[-2, \infty)
\end{aligned}
$$

$m=\#$ OF EDGES OF Z

$$
n=\# \text { OF VERTICES }
$$

"HOFFMAN GRAPH"
so $\quad \lambda_{\min }(L(z)) \geqslant-2$
FROM $\quad \lambda_{\text {min }}(z)=\min _{v \neq 0} \frac{\left\langle v, A_{z} v\right\rangle}{\langle v, v\rangle}$
IT FOLLOWS THAT FOR ANY INDUCED SUBGRAPH B OF Z

$$
\lambda_{\min }(Z) \leq \lambda_{\min }(B)
$$

SO IF Z is A HOFFMAN GRAPH THEN (5) IT CANNOT CONTAIN A HOST OF SMALL induced minors.
\Rightarrow CLASSIFICATION OF HOFFMAN GRAPHS using caftan matrices
CAMERON - GOETHELS-SEIDEL-SHULT (1975) "LINE GRAPHS, ROOT SYSTEMS AND ELLIPTIC GEOMETRY"" EXCEPT FOR A FINITE LIST OF SPORADIC. GRAPHS ALL HOFFMAN GRAPHS ARE GENERALIZED LINE GRAPHS.

- To construct line graphs in cubic DEFINE

$$
T: C \cup B|C \rightarrow C \cup B| C
$$

FIBS $x \rightarrow S(x)$ BY SUBDIVIDING x FADING VERTCES AT THE MIDPONTS OF EDGES THIS GIVES A 2-3 REEULAR GRAPH

$$
\text { LET } \quad T(x):=L(S(x)) \in C U B I C .
$$

$$
|x(x)|=3|x|
$$

(Equivalent to sewing in a triangle at each VERTEX OF X)
from the classification of graphs with $\lambda_{\text {min }} \geqslant-2$ ONE DEDUCES

Proposition (AlICIA Kolltr, FITZPATRIK, HOUCK, S)
IF $y \in C U B I C$ AND $\lambda_{\text {mix }}(y) \geqslant-2$ THEN EITHER $y=K_{4}$ (WHEN $\left.\lambda_{\min }(y)=-1\right) \quad O R$ $\lambda_{\text {min }}(y)=-2$, AND IF Y IS LARGE THEN. $y=T(z)$ FOR SOME $Z \in C U B I C$.
DEFINE THE HOFFMAN SPECTRUM OF CUBIC graphs to be the values of $\lambda_{\text {min }}$:

$$
\operatorname{HOFF}_{A}(C \cup B I C):=\overline{\left\{\lambda_{\min }(y): y \in C \cup B I C\right\}}
$$

IT is kNOWN (HOFFMAN,.., YU) THAT

DEFINITIONS: y A SUBSET OF CUBIC.

- An open $u c[-3,3]$ is a gap set FOR $\frac{y}{}$ IF ThERE ARE INFINITELy MANY XEY WITH

$$
\sigma(x) \cap U=\phi
$$

- A closed $K \subset[-3,3]$ is $y_{\text {-SPECTRAL }}$ IF There are infinitely many $x \in f$ Wi TH $\sigma(X) \subset K$.
- $\xi \in[0,3)$ is \exists-GAPED IF ξ has a neH u WHICH IS AN y-gAP SET.
the previous proposition shows that $[-3,2)$ IS A MAXIMAL CUBIC GAP INTERVAL AND WE SAW THAT $(2 \sqrt{2}, 3)$ IS AS WELL.

We seek maximal gap sets or MINIMAL SPECTRAL SETS AND THEIR DEPENDENCE ON \mathcal{F}.

SIMILAR QUESTIONS IN ANOTHER SETtING:

- zeros of zeta functions (or eiefnhlues OF FROBENIUS ON COHOMOLOGY) OF CURVES AND abelian varieties a over a fixed finite field \mathbb{F}_{q}.
(TFASMAN-VLADUT, DRINFELD, SERE) IN CONNECTION WIFI GOPPA CODES.

A -DIMENSION 9 . 2 g eigenvalues SyMmetric. (CONT INVARIANCE)

- WHAT KIND SPECTRAL SETS K B B ACHIEVED AS

$$
g \rightarrow \infty \text { ? }
$$

- For curves tfasman-vladut show that No GAPS CAN BE CREATED - RIGID!
- For abelian varieties $\mathrm{A} / \mathbb{F}_{q}$, gere 2018 SHOWS USING HONDA TATE THEORY THAT THE ONLY CONSTRAINT ON SYMMETRIC SPECTRAL SETS $K \subset C_{q}$ IS THAT THERE TRANFINITE DIAMETER OR CAPACITY BE AT LEAST $q^{1 / 4} \quad\left(\operatorname{CAP}\left(C_{q}\right)=q^{1 / 2}\right)$.
- For kc \neq compact; its transfinite diameter or capacity is defined by

$$
\begin{array}{ll}
n \geqslant 1 ; & d_{n}(k)=\max _{z_{1}, \ldots z_{n} \in K} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2 / n(n-1)} \\
& d_{n}(k) \text { is DECREASNE AND } \quad \operatorname{CAP}(K)=\lim _{n \rightarrow \infty} d_{n}(k) .
\end{array}
$$

THEOREM (FEKETE 1930)
FOR $K C \notin$ COMPACT; IF $\operatorname{CAP}(K)<1$
THEN. $\{\alpha: \alpha$ AN ALGEBRAIC INTEGER $\}$ ALL OF WHOSE CONJ FINITE!
are in K

- raphael robinson proved an essential CONVERSE FOR SETS $K \subset \mathbb{R}$, THAT IF $\operatorname{CAP}(K) \geqslant 1$ THEN K CONTAINS INFINITELY MANY SUCH TOTALLY REAL ALGEBRAIC INTEGERS!
- Jere reduces the "Well number" or ellenvalues of frobenius for abelian varieties to ROBINSON'S CONSTRUCTION.
- Very recently alex smith resolved a Quantitative version of robinson concerning LIT the Possiblenmeasures associated to the distribution OF THE GALOIS ORBITS CONDENSING ONTO K.

BACK TO SPECTRAL GAPS FOR CUBIC:
THEOREM (A.KOLLAR,S 2021):
(a) ANY CUBIC SPECTRAL SET K has capacity at least 1.
(b) A CUBIC GAP INTERVAL CAN HAVE LENGTH AT MOST 2 .
(c) EVERY POINT $\xi \in[-3,3)$ can be gapped with planar Graphs.
(d). THERE ARE PLANAR CUBIC SPECTRAL SETS OF CAPACITY 1.
(e) $(-1,1)$ AND $(-2,0)$ ARE MAXIMAL GAP INTERVALS AND THE FIRST CAN bE GAPPED WITH planar graphs.

COMMENTS ABOUT PROOFS:
(Q) THE LOWIAR BOUND ON THE CAPACITY of sprctral sets has its roots in frekete.
of 2
(b) THE UPPER BOUNDMON THE LENGTH OF A GAP INTERVAL IS PROVED COMBINATORIALLY: ONE SHOWS THAT ONE CAN CONSTRUCT AN APPROXIMATE eigenfunction with eigenvalue in a larger interval by building ONE IN THE NBH OF A LONG GEODESIC.
(C) The proof that the gappabliz set of planar graphs is all of $[-3,3$) involves various STEPS:
(i) USING ABELIAN COVERS OVER (N F FACT SPECIAL LARGE CYCLIC COVERS) OF SMALL MEMBERS OF CUBIC, ONE ANALYZES INFINITE SUCH TOWERS USING BLOCH WAVE THEORY (GENERALIzation of Floquet theory) and great some GAPS.
(ii). THESE ROOT EXAMPLES ARE USED TOGETHER WITH THE MAP

$$
T: C \cup B I C \rightarrow C \cup B I C
$$

To move the gaps around dynamically.
The most difficult region to gap IS NEAR 3 SINCE WI ARE PLANAR GAPING AND 3 ITSELF CANNOT be GAPPED.

THE DYNAMICS ARE USED AS FOLLOWS
the spectrum of $T(x)$ is Related to x (12)
VIA

$$
\sigma(T(x))=f^{-1}(\sigma(x)) \cup\{0\}^{n / 2} \cup\{-2\}^{n / 2}
$$

WHERE

$$
f(x)=x^{2}-x-3
$$

So THE DYNAmics of f on \mathbb{R} and $[-3,3]$ is critical.

$$
\begin{aligned}
& f^{-1}([-3,3])=[-2,0] \cup[1,3] \\
& {[-3,3] \supset f^{-1}([-3,3]) \supset f^{(-2)}[-3,3] \supset \cdots} \\
& \infty
\end{aligned}
$$

$$
\Lambda=\bigcap_{m=0}^{\infty} f^{-m}([-3,3])
$$

Is A canto Set (THE TULA OF SET
$f^{m}(x) \rightarrow \infty$ \#S $m \rightarrow \infty \quad$ IF $x \notin \Lambda$.
$f l_{\Lambda}$ is topologically equivalent to THE SHIFt ON $\{0,1\}^{N}$.
LET $\quad A=\Lambda \cup \bigcup_{m=0}^{\infty} f^{-m}(\{0\}$. $)$
A is closed And consists of the CANTOR SET Λ TOGETHER WITH ISOLATED POINTS THAT ACCUMULATE ON A.
(13)

- A is a minimal spectral set, $1 T$ has capacity 1 AND $\{X \in C U B I C: \sigma(X) \subset A\}$ CONSISTS OF FINITELy MANY T-ORBITS (AND x^{\prime} 's are Planar!).
- the maximal gap intervals $(-1,1)$ AND $(-2,0)$ WERE FOUND By ENGINIERRING SOME ABELIAN COVERS AND "FLAT BANDS".
- Another minimal cubic spectral SET IS $[-2 \sqrt{2}, 2 \sqrt{2}] \cup\{3\}$.

THAT THIS SET IS SPECTRAL FOLLOWS FROM THE EXISTENCE OF RAMANUJAN GRAPHS THAT IT IS MINIMAL FOLLOWS FROM A THEOREM OF ABERT-GLASNER-VIRAG Any sequence of ramanujan graphs MUST BS CONVERGE TO TB.
\bar{W}_{α} is contained in $\sigma\left(\bar{W}_{\alpha}\right)$. This follows from G_{α} being amenable. If Γ_{α} acts freely on the vertices of \bar{W}_{α}, i.e. any element $\gamma \neq 1$ in Γ_{α} fixes none of the vertices of \bar{W}_{α}, then the quotient $\bar{W}_{\alpha} / \Gamma_{\alpha}$ is a multigraph whose spectrum is contained in $\sigma\left(\bar{W}_{\alpha}\right)$. If Γ_{α} acts without fixing any edges, then the quotient is a graph. We examine each case $\alpha=a, b$ in turn.

Figure 13. Finite planar quotients of \bar{W}_{b}. a: The infinite graph \bar{W}_{b}. Four sample involution symmetry points are indicated by black dots. b: The quotient obtained with respect to the automorphism σ_{0} : rotation about O or O^{\prime} by π. New edges induced by the quotient are indicated in red. In this case, no loops or multiple edges appear. c: The quotient with respect to σ_{P}. In this case, two loops appear. d: The quotient with respect to reflection about the central axis. Infinitely many multiple edges appear. e, f: The quotient with respect to σ_{O} and $\sigma_{O^{\prime}}$, when O and O^{\prime} are four unit cells apart. This quotient is a planar graph which is $(-1,1)$ gapped.

Consider first \bar{W}_{b}. Its automorphism group is generated by four types of elements.
(i) Translations $t(n)$ by n unit cells. The quotients $\bar{W}_{b} /\langle t(n)\rangle$ for $n \geq 2$ are the hamburger graphs $W_{b}(n)$ shown in Fig. $14 \mathbf{b}$.
(ii) The involution σ_{O} rotating about a central point O by π. Two example points O and O^{\prime} are shown in Fig. 13a. The quotient $\bar{W}_{b} /\left\langle\sigma_{O}\right\rangle$ is the graph shown in Fig. 13b.
(iii) The involution σ_{P} rotating about a central point P by π. Two example points P and P^{\prime} are shown in Fig. 13a. The quotient $\bar{W}_{b} /\left\langle\sigma_{P}\right\rangle$ is a multigraph, shown in Fig. 13c.

RIGIDITY:
WE RESTRICT TO planar graphs in cubic.
FOR k AN INTEGER LET $\mathcal{f}(k)$ dENOTE THE PLANAR SUCH GRAPHS WITH AT MOST k EDGES PER FACE.
equivalently Their duals are triangulations of S^{2} FOR WHICH THe VERTILES have degree at mot k.

- $F(k)$ is Finite for $k<6$ (Euler's formula)
- $F(6)$ is already quite rich and correspond to what thurston calls triangulations of "non-negative curvature". He paramerizes THEM IN TERMS OF THE ORBITS OF INTEGER POINTS under the linear action of an arthyetc subgroup of $\operatorname{SU}(9,1)$.
- $F(k), k \geqslant 7$ are already very rich.

THE SUBSET OF $\mathcal{y}(6)$ CONSISTING of planar cubic graphs with 6 or 5 faces (hexagons and pentagonsthere being exactly 12 pentagons) are called fullerenes.

FIGURE $2 \mid$ A selection of different 3 D shapes for regular fullerenes (distribution of the pentagons D_{P} are set in parentheses). 'Spherically' shaped (icosahedral), for example, (a) $C_{20} I_{h}$ (b) $C_{60}-I_{h}$, and (c) $C_{960}-I_{h}\left(D_{P}=12 \times 1\right.$); barrel shaped, for example, (d) $C_{140}-D_{3 h}$ ($D_{P}=6 \times 2$); trigonal pyramidally shaped (tetrahedral structures), for example, (e) $C_{1140}-T_{d}\left(D_{P}=4 \times 3\right)$; (f) trihedrally shaped $C_{440}-D_{3}\left(D_{P}=3 \times 4\right)$; (g) nano-cone or menhir $C_{524}-C_{1}\left(D_{P}=5+7 \times 1\right)$; cylindrically shaped (nanotubes), for example, (h) $C_{360}-D_{5 h}$ ((i) $C_{1152}-D_{6 d}$, (j) $C_{840}-D_{5 d}\left(D_{P}=2 \times 6\right)$. The fullerenes shown in this figure and throughout the paper have been generated automatically using the Fullerene program. ${ }^{35}$
properties, not least of which is their deep connections to algebraic geometry. ${ }^{19}$

Fullerenes have the neat property that the graphs formed by their bond structure are both cubic, planar, and three-connected, for which all faces are either pentagons or hexagons. Because of this, the mathematics describing them is in many cases both rich, simple, and elegant. We are able to derive many properties about their topologies, spatial shapes, surface,
as well as indicators of their chemical behaviors, directly from their graphs.

Planar connected graphs fulfil Euler's polyhedron formula,

$$
\begin{equation*}
N-E+F=2 \tag{1}
\end{equation*}
$$

with $N=|\mathcal{V}|$ being the number of vertices (called the order of the graph), $E=|\mathcal{E}|$ the number of edges, and $F=|F|$ the number of faces (for fullerenes these are

THEOREM (AlICIA KOLLAR/FANWEI/S 2022):
(a) FOR $k \geqslant 64$ EVERY $\bar{j} \in[-3,3)$ CAN BE $\mathcal{F}(k)$ GAPPED. WE CONJECTURE THAT THIS CONTINUES TO HOLD FOR $k \geqslant 7$.
(b) RIGIDITY: THE ONLY POINTS THAT CAN BE $\because(6)$ GAPPED ARE IN $(-1,1)$ and this interval is the unique MAXIMAL $\mathcal{F}(6)$ GAP SET.
(C) ThE ONLY pOINTS that cAN be Fullerene gappid are in

$$
J=(-a, b) \cup(b, a)
$$

WHERE $\quad a=0.382 \ldots, b=0.288 \ldots$
(a AND b ARE EXPLICIT ALGEBRAIC INTEGERS).
MOREOVER J IS ESSENTIALLY the unique maximal fullerene. GAP SET.

COMMENTS ON PROOFS

- $k \geqslant 64$. IN ORDER TO LIMIT THEE NUMBER OF FACES IN AN ITERATIVE PROCESS OF CONSTRUCTING X^{\prime} 's $\mathbb{N} \quad y(k)$ WITH GAPS (ESPECIALLY NEAR 3) WE SEW IN SOME CAREFULLY CRAFTED \wedge GRAPHS IN THE EDGES of an initial graph. THE Formulae for THE NEW SPECTRA OF THE SEVEN IN GRAPHS INVOLVE RATIONAL FUNCTIONS OF λ AND THEIR INTERATED DYNAMICS ARE STUDIED THROUGH CONTINUED FRACTIONS.
- For the \boldsymbol{y} (6) rigidity, we NEED A DETAILED STUDY OF THE BS LIMITS OF $f(6)^{\prime} s$. THESE CORRESPOND TO INFINITE QUOTIENTS OF THE HEXAGONAL LATTICE, KNOWN AS NANO-TUBESYAN EXPLICIT DETERMINATION OF THEIR SPECTRA AND CONVERGENCE OF SPECTRA.
- For fullerenes there is the ISSUE OF cAPPING NANO-TUBES WITH pentagons (and hexagons). This leads To the study of the spectra of INFINITE ONE SIDED NANO-TUBES AND in particular their bound states. spectrally
The \wedge Extremal nanotube that Can be fullerene capped has a unique ONE SIDED SUCH CAPPING and The singular Point b in J that cannot be FUlLERENE GAPPED CORRESPONDS TO A BOUND STATE.
OPEN QUESTION: WHILE THE THEOREM GIVES A COMPLETE DESCRIPTION OF GAP SETS FOR FULLERENE IT DOES NOT ANSWER THE QUESTION OF WHETHER THE GAP BETWEEN THE TWO MIDDLE eigenvalues of a fullerene x The homo-lumo gap in huckel theory, must $\left.\begin{array}{c}\text { HOMOS } \\ \text { CLOSE AS }|X| \rightarrow \infty\end{array} ? \quad \begin{array}{c}\text { CARBON CLUSTER } \\ \text { STABILITY }\end{array}\right)$

Higher rank S :
VARIOUS RIGIDITY SETS IN. LEADING TO spectral rigidity.
(1) THE FAMILY 7 of quotients ARE ALL ARITHMETIC (MARGULIS); AND USUALLY EVEN CONGRUENCE SO THE SPECTRA OF ANY P become part of tire general ramanujan CONJECTURES (DISCUSS in lecture 4).
(2) Any sEquicr of quotients X_{j} OF S BS CONVERGE TO S As $\operatorname{VoL}\left(x_{j}\right) \rightarrow \infty$
A BERT-BERGERON-BRINGER-GELANDER-NIKOLOV-RAMBAULT-SEMET.

References
ABERT-BERGERON-BITRGER-GELANDER-NIKOLOV-RAIMBAULT-SAMET ANNALS OF MATH 185 (2017) 2925-2964.

BOREL-PRASAD PUBL IHES 69 (1989) 119-171.
BUSER-BURGER-DODZIUK LNM 1339, 54-63 (1987)
BERGER "EEOMETRY REVEALED" SPRINGER (2009).
ELOMER - BRUMLEY ANN OF MATH 174 (ZON1) 581-605
CAMERON-GOETHELS-SEIDEL-SHULT J. ALGEBRA 43(1976)305-327.
CHAVEL-DODZIUK J. DIFF GEOM 39 (1994) 123-137.
COLBOIS-COURTOIS ANN.SC.ENS (1991) 507-518.
COLEMAN-EDIXHOVEN MATH ANN 310 (1998) 119-127.
FEKKETE MATHZ 17 (1923) 228-249
ELSTRODT-GRUNEWALD-MENNICKE SPRINGER 1998 "GROUSSACTINGOH HYPLRBOLLC FRACZYK INVENT MATH 224 (2021) 917-985 SPACE. FRIEDIMAN D.M.J. VOL 69 (1993) 487-502.

FRIEDMAN PROC $35^{\text {TH }}$ STOC $720-724$ (2003) HUBER PROC SYMP PURE MATH XXXVI (1979) 181-184. HUANG-YAU arXiU 2206.06580 (2022)
HARTIMAIA - MAZAC-RASTELLI J. HIGH ENERGY PHYSICS (2019) HIDE - MAGEE arXIV 2107.05292 (2021) KOLAR - ARARX COMM AMERMA期 SOC 1 (2021) 1-38.
KESTEN TAMS 92 (1959) 336-354.
KRAVCHUK-MAZAC-PAL arXiv 2111.1271 (2021)

