Determinants of the Laplacian and random surfaces

F. Naud, Sorbonne université, Institut Mathématique de Jussieu

Séminaire de la *Chaire de Géométrie Spectrale*, Collège de France, December 15th

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Determinants and path integrals

If A is a positivive self-adjoint operator on \mathbb{R}^N , then we have the classical gaussian integral formula

$$\frac{1}{(2\pi)^{N/2}} \int_{\mathbb{R}^N} e^{-\frac{1}{2}\langle Ax, x \rangle} dx = (\det A)^{-1/2}.$$

If (M,g) is a compact connected Riemannian manifold, then one could define by analogy the functional integral by

$$\begin{split} Z(m) &:= \int \exp\left(-\frac{1}{2}\int_M (|\nabla_g \phi|^2 + m^2 \phi^2) d\mathrm{Vol}_g\right) \mathcal{D}\phi \\ &= (\det(\Delta_g + m^2))^{-1/2}, \end{split}$$

where Δ_g is the (positive) Laplacian on M and provided that one can give a rigourous meaning to $\det(\Delta_g + m^2)$.

Set m = 0 for simplicity and let

$$0 = \lambda_0 < \lambda_1 \le \ldots \le \lambda_j \le \ldots$$

denote the discrete spectrum of Δ_g . For all $s \in \mathbb{C}$ with $\operatorname{Re}(s)$ large enough, we know by Weyl's law that the spectral zeta function

$$\zeta(s) = \sum_{j=1}^{\infty} \frac{1}{\lambda_j^s}$$

is well defined and holomorphic. The regularized determinant is then usually defined by

$$\log \det(\Delta_g) := -\zeta'(0),$$

provided one can prove an analytic extension to s = 0 of ζ . Practically, one performs a meromorphic continuation by noticing that for large $\operatorname{Re}(s)$ we have

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} (\operatorname{Tr}(e^{-t\Delta_g}) - 1) dt,$$

and use the short times asymptotics of the heat kernel: uniformly in $x \in M$, one has as $t \to 0$

$$e^{-t\Delta_g}(x,x) = t^{-d/2} \left(\sum_{j=0}^p a_j(x)t^j\right) + O(t^{p-d/2}),$$

where a_j are smooth functions on M and $d = \dim(M)$. From a statistical physics point of view, Z(m) is a partition function and

 $\frac{\log(Z(m))}{\operatorname{Vol}(M)}$

is an intensive physical quantity. A relevant problem is to understand the thermodynamical limit when $Vol(M) \rightarrow +\infty$, in particular we want to discuss the behaviour of

$$\frac{\log \det(\Delta_g)}{\operatorname{Vol}(M)}$$

for sequences of manifolds with $Vol(M) \to +\infty$, as in the sequences of manifolds with $Vol(M) \to +\infty$.

An example on the torus

Let Δ_L be the flat Laplacian on the torus $\mathbb{T}_L = \mathbb{R}^2/(\mathbb{Z} \oplus iL\mathbb{Z})$, then we have a classical identity ¹

$$\det(\Delta_L) = L^2 |\eta(iL)|^4,$$

where $\eta(\tau)$ is the Dedekind Eta modular form, defined for all ${\rm Im}(\tau)>0$ by

$$\eta(\tau) = e^{\frac{i\pi\tau}{12}} \prod_{n=1}^{\infty} \left(1 - e^{2i\pi n\tau}\right).$$

The proof follows directly from Poisson summation formula and Kronecker limit formula for Eisenstein series. As a consequence,

$$\lim_{L \to +\infty} \frac{\log \det(\Delta_L)}{\operatorname{Vol}(\mathbb{T}_L)} = \frac{-\pi}{12}.$$

¹See for example Kierlanczyk's PhD Thesis, MIT 1986. 🖅 🚛 🚛 🔊 🤉

Large cyclic covers

Let $M = \widetilde{M}/\Gamma$ be with $H^1(M, \mathbb{Z})$ infinite. Consider surjective homomorphisms $\pi_N : H^1(M, \mathbb{Z}) \to \mathbb{Z}_N$. Then $\Gamma_N := \operatorname{Ker}(\pi_N)$ defines an *N*-cyclic cover of *M* via $M_N := \widetilde{M}/\Gamma_N$, and $\operatorname{Vol}(M_N) = N\operatorname{Vol}(M)$.

<u>Thm</u> (N.V. Dang 2023) For all m > 0, we have

$$\lim_{N \to +\infty} \frac{\log(\det(\Delta_N + m^2))}{\operatorname{Vol}(M_N)} = C_M,$$

where C_M depends on M. Moreover, the limit still exists if m = 0and M is hyperbolic or a Torus.

Compact congruence covers of surfaces

- Let ℍ² be the usual real hyperbolic plane with curvature −1 and Γ a non-elementary discrete group of isometries.
- We assume that Γ is co-compact (no elliptic elements) so that $X = \Gamma \backslash \mathbb{H}^2$ is a compact hyperbolic surface.

If Γ ⊂ PSL₂(ℝ) is an arithmetic co-compact group, each γ has entries in the ring of integers O of a totally real number field and given a prime ideal P ⊂ O, one can define congruence subgroups Γ(P) = {γ ∈ Γ γ ≡ I mod P}.

<u>Thm</u> (folklore) Let $\Delta_{\mathcal{P}}$ be the hyperbolic Laplacian on $X_{\mathcal{P}} := \Gamma(\mathcal{P}) \setminus \mathbb{H}^2$, then there exists E > 0, universal, such that

$$\lim_{N(\mathcal{P})\to+\infty} \frac{\log \det(\Delta_{\mathcal{P}})}{\operatorname{Vol}(X_{\mathcal{P}})} = E.$$

- The proof follows from a uniform spectral gap result of Sarnak-Xue (1991) combined with the fact that the injectivity radius of $X_{\mathcal{P}}$ goes to infinity. General ideas from Bergeron-Venkatesh (2013) and the 7 Samurais (2017) ² give the result.
- In higher dimension, similar results hold for the Laplacian on functions, however determinants of Laplacian on k-forms are much more subtle to analyze.

²See "On the growth of L^2 -invariants for sequences of lattices in Lie groups" by ABBGNRS.

The Bergeron-Venkatesh conjecture (2013)

Let $M = \Gamma \setminus \mathbb{H}^3$ be a compact connected hyperbolic 3-manifold. Consider a decreasing sequence of finite index subgroups $\Gamma_n \subset \Gamma$ such that $\cap_n \Gamma_n = \{Id\}$. On each cover $M_n := \Gamma_n \setminus \mathbb{H}^3$, denote by $\Delta_n^{(k)}$ the Hodge-Laplacian acting on differential k-forms. *Conjecture*:

$$\lim_{n \to \infty} \frac{1}{2} \sum_{k=0}^{3} (-1)^{k+1} k \frac{\log \det(\Delta_n^{(k)})}{\operatorname{Vol}(M_n)} = \frac{-1}{6\pi}.$$

- The *LHS* is called the analytic torsion and is related via Cheeger-Müller's Theorem to the growth of *torsion homology* in the covers M_n .
- The analog of the above result is known when the Laplacians are twisted by certain representations of Γ which guarantee a uniform spectral gap for all Laplacians.

Models of random hyperbolic surfaces

<u>Brooks-Makover</u>: (Random Belyi surfaces) Glue ideal hyperbolic triangles according to random 3-regular graphs (Bollobás) with 2n vertices. One obtains a random (non-compact) surface X_n with area $2\pi n$.

Random glueing of triangles

One can then compactify X_n by cutting cusps, filling conformally with discs and then getting a hyperbolic metric on the compactified surface X_n^C .

Random covers: An n-sheeted connected riemannian cover

$$\widetilde{X} = \widetilde{\Gamma} \backslash \mathbb{H}^2 \to X = \Gamma \backslash \mathbb{H}^2$$

corresponds to a subgroup $\widetilde{\Gamma}\subset \Gamma$ of index n. On the other hand, we have a bijection

$$\left\{\widetilde{\Gamma} \subset \Gamma : [\Gamma : \widetilde{\Gamma}] = n\right\} \leftrightarrow \left\{\text{transitive hom. } \phi : \Gamma \to \mathcal{S}_n\right\},\$$

where S_n is the symmetric group of permutations of $\{1, \ldots, n\}$. We consider the uniform probability measure on the "discrete Teichmuller space" Hom (Γ, S_n) . It is known that

$$|\text{Hom}(\Gamma, \mathcal{S}_n)| = (n!)^{2g-1} \sum_{\lambda \text{ irred}} \frac{1}{d_{\lambda}^{2g-2}} = (n!)^{2g-1} (2 + O(n^{-2})).$$

 Γ acts on $\{1, \ldots, n\}$ via $\phi_n \in \operatorname{Hom}(\Gamma, S_n)$, let $S \subset \{1, \ldots, n\}$ be a set of representative of the orbits and set

$$X_n = \bigsqcup_{i \in S} \Gamma_i \backslash \mathbb{H}^2,$$

where $\Gamma_i := \operatorname{Stab}_{\Gamma}(i) \subset \Gamma$ is a finite index subgroup of Γ .

- X_n is an n-sheeted cover of X, possibly non-connected, in general non-Galois.
- a.a.s. as $n \to +\infty$, X_n is connected.
- $\operatorname{Vol}(X_n) = n\operatorname{Vol}(X).$

Smooth Weil-Petersson model:

Let \mathcal{M}_g be the moduli space of compact hyperbolic surfaces with genus g, up to isometry, then \mathcal{M}_g is endowed with a smooth volume form (Weil-Petersson volume). Moreover, the volume of the moduli space is finite, which by normalization gives a probability measure. Recall that by Gauss-Bonnet, if $X \in \mathcal{M}_g$, then we have $\operatorname{Vol}(X) = 4\pi(g-1)$.

Determinant of the Laplacian on typical surfaces <u>Thm 1</u> (N. 2023) For all previous models of random surfaces, there exists a universal E > 0 s.t. for all $\epsilon > 0$ we have as $Vol(X) \rightarrow +\infty$,

$$\mathbb{P}\left(\frac{\log \det(\Delta_X)}{\operatorname{Vol}(X)} \in [E - \epsilon, E + \epsilon]\right) \to 1$$

<u>Thm 2</u> (N., Wu and He 2023)

• In the random cover model, we have for all $\beta > 0$,

$$\lim_{n \to +\infty} \mathbb{E}_n \left(\frac{|\log \det \Delta_{X_n}|^{\beta}}{(\operatorname{Vol}(X_n))^{\beta}} \right) = E^{\beta}.$$

• In the Weil-Petersson model, we have for all $0 < \beta < 2$,

$$\lim_{g \to +\infty} \mathbb{E}_g \left(\frac{|\log \det \Delta_X|^\beta}{(\operatorname{Vol}(X))^\beta} \right) = E^\beta,$$

while for $\beta \geq 2$, we have $\mathbb{E}_g(|\log \det \Delta_X|_{\alpha}^{\beta}) = +\infty$.

If M_n is a sequence of compact hyperbolic manifolds with $M_n = \Gamma_n \setminus \mathbb{H}^d$, and $\operatorname{Vol}(M_n) \to +\infty$, we say that (M_n) converges in the sense of Benjamini-Schramm to \mathbb{H}^d iff we have for all R > 0,

$$\lim_{n \to +\infty} \frac{\operatorname{Vol}((M_n)_{< R})}{\operatorname{Vol}(M_n)} = 0,$$

where $(M_n)_{< R}$ is the set of $x \in M_n$ such that Inj(x) < R. From the 7 Samurais, one can extract the following fact: assume that (M_n) is such that

- 1. (M_n) converges in the sense of Benjamini-Schramm to \mathbb{H}^d .
- 2. (M_n) has a uniform spectral gap i.e. there exists $\beta > 0$ such that $\lambda_1(M_n) \ge \beta$ for all n.

Then

$$\lim_{n \to \infty} \frac{\log \det \Delta_n}{\operatorname{Vol}(M_n)}$$

exists and is a universal constant.

The proof of Theorem 1 uses similar ideas combined with the fact that for all 3 models, surfaces with small spectral gap and lots of closed geodesics with bounded length have small probability. More precisely, we have

(1) There exists C > 0 such that as Vol(X) → +∞,

$$\mathbb{P}\left(\lambda_1(X) \ge C\right) \to 1.$$

• (2) Set $N_X(L) : \#\{\gamma \in \mathcal{P}_X, k \in \mathbb{N} : k\ell(\gamma) \le L\}$. For all R > 0, for all $1 > \alpha > 0$, as $Vol(X) \to +\infty$

$$\mathbb{P}\left(N_X(R) \le (\operatorname{Vol}(X))^{\alpha}\right) \to 1.$$

Here \mathcal{P}_X denotes the set of primitive closed geodesics on the surface X.

- Non effective uniform spectral gaps are due to Brooks-Makeover (2001) for their model. An effective bound is due to Petri in his Thesis (2017).
- Effective uniform spectral gaps are due to Magee-Naud-Puder (2022) in the random cover model.
- Effective Uniform spectral gaps in the Weil-Petersson model are due (with increasing quality) to Mirzakhani (2013), Wu-Xue/Wright-Lipnowski (2022), Anantharaman-Monk (2023).
- The bound (2) follows from Petri (2017) in the Brooks-Makeover case, Petri-Mirzakhani (2019) in the Weil-Petersson model, Magee-Puder (2023) in the random cover case.

Proof of Theorem 2 requires more work and uses Theorem 1 plus some good enough a priori bounds of the determinant on moduli space.

$$|\log \det(\Delta_X)| \ll \operatorname{Vol}(X) \left(1 + |\log(\lambda_*(X))| + \frac{1}{\ell_0(X)}\right)$$

 $+ \frac{\log^+ \ell_0^{-1}(X)}{\ell_0(X)} N_X(1),$

where $\ell_0(X)$ is the shortest closed geodesic on X and $\lambda_*(X) = \min\{\lambda_1(X), 1/4\}$. This bound blows up when X has small closed geodesics and/or small spectral gap.

A key observation by Mirzakhani is that

$$\int_{\mathcal{M}_g} \frac{1}{\ell_0(X)} dm_{WP}(X) \le CV_g,$$

where $V_g = m_{WP}(\mathcal{M}_g)$ and C > 0 is uniform in g.

- Similarly, from Cheeger's inequality it follows that for all $0<\alpha<1$,

$$\int_{\mathcal{M}_g} \frac{1}{(\lambda_1(X))^{\alpha}} dm_{WP}(X) \le CV_g.$$

Combining these estimates (and more work) yields Theorem 2 in the Weil-Petersson case. In the random cover case, $\ell_0(X)$ is uniformly bounded from below so only $\lambda_1(X)$ is a real obstacle. A combinatorial argument plus a min-max type estimate shows that for random covers of degree n, $\lambda_1(X_n) > C/n^{3/2}$, whenever X_n is connected.

Concluding remarks

- The analysis of moments of $\log \det(\Delta)$ require extra work in the Brooks-Makover model.
- In particular we need to show that for large n,

$$\mathbb{E}_n\left(\frac{1}{(\ell_0(X_n^C))^{\alpha}}\right)$$

is uniformly bounded for some $\alpha > 0$.

• This will require an "effective conformal compactification", see the paper of Mangoubi. ³

³Dan Mangoubi. Conformal extension of metrics of negative curvature. J. Anal. Math., 91 (2003).