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Definition
On (N , g) closed Riemannian manifold, the geodesic flow ϕt : T ∗N\{0} ⟲ is
generated by the vector field X , defined by Ω (X , .) = dH with Hamiltonian
function H (q, p) = ∥p∥gq with p ∈ T ∗

qN\{0}.

In local coord. (q, p) ∈ T ∗Rd+1 = Rd+1 × Rd+1 we have X =
(

∂H
∂pj

,− ∂H
∂qj

)
j=0...d

.

geodesic flow

compact surface
N

X

X

Es
Eu

q

ϕt(m)

M = T ∗
1N

m = (q, p)

Energy shell M := T ∗
1 N =

{
(q, p) , ∥p∥gq = 1

}
is invariant.

“geodesic flow = motion of a free particle or adhesive tape”
Anosov property: if curvature κ < 0 then TT ∗

1 N = RX ⊕ Eu ⊕ Es .
called “sensitivity to initial conditions” in physics.
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Observation of the geodesic flow dynamics

The geodesic vector field X =
∑

j Xj (x)
∂
∂xj

on M = T ∗
1 N is a derivation

operator, generator of the pull back of functions v by the flow ϕt , t ∈ R:

ut = u ◦ ϕt = etXu ⇔ dut
dt

= Xut .

Vector field

stable

E0(x)

Eu(x)

unstable direction

X X

Es

Eu

Flow ϕt(m)

Es(x)

M

u
t ≫ 1

v

etXu

etXu

m

Its dual
(
etX

)∗ called “Ruelle transfer operator”, transports probabilities, e.g.(
etX

)∗
δm = δϕt(m) : particle dynamics.
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Observation of the geodesic flow dynamics

video bolza 1 particle, video bolza rays, video bolza 1e6 particles, video circle on the Bolza billiard

Mixing property: ∀u ∈ C∞ (T ∗
1 N ) , v ∈ C∞ (T ∗

1 N ; det (TM)),

⟨v |u ◦ ϕt⟩ →
t→+∞

⟨v |1⟩⟨ 1
Vol (T ∗

1 N )
|u⟩+ Ou,v

(
e−t/2

)
(for Bolza)

https://youtu.be/Pjxw_U7V1QA
https://youtu.be/WqsKAJhTPG0
https://youtu.be/kr6RJqmp5wk
https://www.youtube.com/watch?v=VjWYKGTHsuI


Observation of the geodesic flow dynamics

video bolza 1 particle, video bolza rays, video bolza 1e6 particles, video circle on the Bolza billiard

Question: What is in the remainder Ou,v

(
e−t/2

)
?

Can we describe the “fluctuations” around equilibrium? (idem waves and
storms on a deep ocean)

https://youtu.be/Pjxw_U7V1QA
https://youtu.be/WqsKAJhTPG0
https://youtu.be/kr6RJqmp5wk
https://www.youtube.com/watch?v=VjWYKGTHsuI


On (N , g) closed, let π : M = T ∗
1 N → N ,

Pull back by π: for u ∈ C∞ (N ), let v = (π◦u) = u ◦ π ∈ C∞ (T ∗
1 N )

Pull-back by the flow: for v ∈ C∞ (T ∗
1 N ), w = etX v = v ◦ ϕt ∈ C∞ (T ∗

1 N )

Average on fibers: for w ∈ C∞ (T ∗
1 N ),

(
(π◦)† w

)
(q) =

∫
π−1(q) w ∈ C∞ (N )

Definition
“Spherical mean” . For t > 0, let Lt defined by

Lt := (π◦)
†
etXπ◦ : L2 (N ) → L2 (N ) .

with induced measure.

π

N
q

(Ltu)(q) =
∫
Cq,t

u

M = T ∗
1N

ϕt

ϕt

ϕt

Cq,t

Mixing for Bolza gives (Ratner 87): Lt = 1⟨ 1
Vol(N )

|.⟩+ OL2→L2

(
e−t/2

)
.

but what is in this remainder OL2→L2

(
e−t/2

)
?

Video: spherical mean of u of non zero average, Video: mean of u of zero average * exp(t/2), V’.

https://youtu.be/aynOSHc_-sI
https://www.youtube.com/watch?v=5Iuq2ulx1CE
https://youtu.be/gcuKZY46TFI
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On hyperbolic surfaces (special case)

On an hyperbolic surface N = Γ\SL2R/SO2, with co-compact Γ,

Theorem (Spherical mean on hyperbolic surface)
For t ≫ 1, on L2 (N ),

Lt = Rt︸︷︷︸
finite rank

+e−
1
2 t

W e it
√

∆− 1
4︸ ︷︷ ︸

wave propagator

+e−it
√

∆− 1
4 W † + OL2→L2

(
e−t)

W : Hs (N ) → Hs+1/2 (N ) ,∀s ∈ R,
invertible. Re(z)

Im(z)

0

Spect(−1
2 + i

√
∆− 1

4)

−3/2 −1/2
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2 t
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√
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Spect(−1
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Proof: use representation theory, principal series of sl2R.
(similar to Guillemin 77, Flaminio Forni 2002, Anantharaman 2023)

https://en.wikipedia.org/wiki/Representation_theory_of_SL2(R)


On hyperbolic surfaces (special case)

On an hyperbolic surface N = Γ\SL2R/SO2, with co-compact Γ,
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Rem: Rt = 1⟨ 1
Vol(N ) |.⟩+ other terms (compl. and discrete series),

Rem: ut = e±it
√

∆− 1
4 u0 implies ∂2ut

∂t2 = −
(
∆− 1

4

)
ut : “wave equation”



On Anosov manifold (more general case)
Let (N , g) be a closed Riemanian manifold with an Anosov geodesic flow etX on
M = (TN )1 (TM = Eu ⊕ Es ⊕ RX )

Recall the spherical mean Lt = (π◦)† etXπ◦ bounded on L2 (N ), ∀t ∈ R,

For k ∈ N, let Fk = |detEs |−1/2 ⊗ Polk (Es) → M and define
γ±
k := limt→±∞ log

∥∥etXFk

∥∥1/t
L∞(M;Fk )

< 0. Rem: γ+
k →

k→∞
−∞.

(for hyp. surf. γ±
1 = − 3

2 , γ
±
0 = − 1

2 , γ
±
k = − 1

2 − k.)

Theorem (Spherical mean on Anosov manifold (F.T. 21 and in progress))

With pinching conditions γ+
1 < γ−

0 ≤ γ+
0 (explained later), for t ≫ 1,

Lt = Rt︸︷︷︸
finite rank

+WetA + etA
†
W † + OL2→L2

(
e(γ

+
1 +∀ϵ)t

)
W : Hs (N ) → Hs+1/2 (N ) , ∀s ∈ R, invertible.

A = i
√
∆+ OL2→L2

(
Hs → Hs− 1

2
)

∀ϵ > 0,∃C > 0, ∀t ≥ 0,∥∥∥etA∥∥∥
L2

≤ Ce
t
(
γ+
0 +ϵ

)
,
∥∥∥e−tA

∥∥∥−1
L2

≥ 1
C

e
t
(
γ
−
0 −ϵ

)
,
∥∥∥eitA∥∥∥

L2
≤ C

Operators W ,A are unique (up to finite rank, given
later).

Re(z)

Im(z)

Spect(A)

γ−
0γ+

1 γ+
00
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On Anosov manifold (more general case)
Let (N , g) be a closed Riemanian manifold with an Anosov geodesic flow etX

Theorem (Spherical mean on Anosov manifold (F.T. 21 and in progress))
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Operators W ,A are unique (up to finite rank). Re(z)

Im(z)
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by twisting with the bundle F = |detEs |1/2, we
get γ+

1 < γ±
0 = 0 (F.-Tsujii 2013)

More internal bands: assuming γ+
K+1 < γ−

K , we

can get remainder OL2→L2

(
e(γ

+
K+1+

∀ϵ)t
)
,

∀K ∈ N.

Re(z)

Im(z)

Spect(A)

γ+
1 γ+

0 = γ−
0 = 0



On Anosov manifold (more general case)
Let (N , g) be a closed Riemanian manifold with an Anosov geodesic flow etX
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Eigenfunctions of A are in C∞ (N ).
We will see that Spect(A) = first band of Ruelle spectrum of X (discrete poles of
(z − X )−1 : C∞ (M) → D′ (M)).(Ruelle, Baladi-, sujii, Gouezel, Liverani, ...)

So discrete Ruelle spectrum has an intrinsic existence and manifestation in L2 (N )
(no anisotropic Sobolev space here).
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From Atiyah-Bott trace formula, Spect(A) are zeroes of a semi-classical
zeta function determined from the periodic orbits
(Giulietti-Liverani-Pollicott 2012, Dyatlov-Zworski 2013, F.-Tsujii 2013).



Some related works

Emergence of quantum dynamics, band structure of Ruelle spectrum:
▶ for contact extension of linear cat map on T2 (F. 2006)

(this is a “normal form”, and shows the main mechanism with symplectic
spinors)

▶ for contact extension of symplectic Anosov diffeom. (F.-Tsujii 2012)
▶ for geodesic flow on hyperbolic manifolds (Dyatlov-F-Guillarmou 2014,

Hilgert-Weich 2016)
▶ for contact Anosov flows (F-Tsujii 2016, 2021, Guillarmou-Cekic 2020)

Spherical mean
▶ on Euclidean space with obstacles (Dang, Léautaud, Riviere 2022)
▶ ...



General remarks on “quantization” in mathematics
Quantization Op (.), (e.g. Op (pj) = −i ∂

∂qj
) applied to the geodesic flow

gives the “wave operator”
√
∆ ≈ Op

(
∥p∥g

)
(with the Hodge Laplacian

∆ = d†d), that generates the wave equation, for ut ∈ C∞ (N ) , t ∈ R:

∂tut = i
√
∆ut =⇒ ∂2

t ut = −∆ut
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∆ = d†d), that generates the wave equation, for ut ∈ C∞ (N ) , t ∈ R:

∂tut = i
√
∆ut =⇒ ∂2

t ut = −∆ut

Semi-classical analysis (WKB theory, Egorov’s Theorem etc) shows that for
small wave-length λ≪ 1, function ut is approximately transported by the
geodesics:

wave equation =⇒
t fixed,λ→0

geodesic flow

Ex: geometrical optics is a limit of wave optics with λ ≈ 0.5µm.
Classical Newtonian mechanics is a limit of quantum Schrödinger mechanics. movie
of wave packet

N

wave ut

https://youtu.be/fUx5IrYBUJw
https://youtu.be/fUx5IrYBUJw


General remarks on “quantization” in mathematics
Quantization Op (.), (e.g. Op (pj) = −i ∂

∂qj
) applied to the geodesic flow

gives the “wave operator”
√
∆ ≈ Op

(
∥p∥g

)
(with the Hodge Laplacian

∆ = d†d), that generates the wave equation, for ut ∈ C∞ (N ) , t ∈ R:

∂tut = i
√
∆ut =⇒ ∂2

t ut = −∆ut

Semi-classical analysis (WKB theory, Egorov’s Theorem etc) shows that for
small wave-length λ≪ 1, function ut is approximately transported by the
geodesics:

wave equation =⇒
t fixed,λ→0

geodesic flow

Curiously, Thm 4 concerns the opposite direction:

geodesic flow =⇒
t≫1

wave equation

What does it mean?



General remarks on quantization(s) in mathematics

Quantization is not unique: many quantum operators (PDO) have the
same classical limit (principal symbol) but have different spectra.

▶ For example with Weyl quantization, the operator depends on the choice of
coordinates. In geometric quantization, the operator depends on the choice of
polarization.

▶ Hence the classical dynamics does not determine the quantum spectrum in
general.

The operator A in Thm 4 is one quantization among others but uniquely
defined from the Anosov geodesic flow and has therefore special
properties w.r.t. the dynamics, e.g. almost exact Trace formula,
Van-Vleck formula (remainders are Oℏ

(
e−Ct

)
→

t→∞
0)

▶ We expect that this quantization may be specially interesting to study
“quantum chaos”.
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Physical meaning? (informal discussion)

Let us observe the following similarities:
1 Thm 4 shows that the propagation of probability measures under a

deterministic but chaotic dynamics (Anosov geodesic flow) is an
equilibrium measure + small fluctuations governed by the Schrödinger wave
equation, i.e. “quantum dynamics emerges” .

2 In physics, experimental phenomena are explained by “quantum waves
formalism” with a probabilistic interpretation: p (x) dx = |ψ (x)|2 dx .
Physicists wonder if there is a underlying deterministic model for this.

Question: are there relationship between 1) and 2)? Does it suggest a
deterministic underlying model in physics from which the quantum formalism
emerges?
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Ingredients of proof of thm 4
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Based on:
1 arxiv:2102.11196, with M. Tsujii that concerns contact Anosov flows
2 (Work in progress) “spherical mean” for geodesic Anosov flows

https://arxiv.org/abs/2102.11196
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Step 1: “discrete Ruelle spectrum with bands”.
▶ Anisotropic Sobolev spaces HW (M) (from a weight function W on T ∗T ∗

1 N
adapted to the dynamics)

▶ We deduce discrete Ruelle spectrum of X in HW (M), with gaps if γ+
1 < γ−

0 .
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We use microlocal analysis of X using symplectic geometry,
At the heart of the proof: symplectic spinors and emergence of quantum
dynamics for the bundle of linear symplectic maps

d
(
dϕt

)∗
: TT ∗M ⟲
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Step 2: “spherical mean” . Deduce asymptotics t ≫ 1 of

Lt = (π◦)† etXπ◦

▶ Use that the vertical direction V = Ker (dπ) is transverse to Eu,Es

(Klingenberg 74). Hence averaging erases the wave-front set of Ruelle
distributions.
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Define a spectral (bounded) projector for the first band

P± : HW (M) → Im (P±) ⊂ HW (M) .

From transversality, V ⊥ (Eu,Es), the pull back is Fredholm:

B± := P±π
◦ : L2 (N ) → Im (P±)
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Then (roughly),
Lt = (π◦)

†
etXπ◦ = L+

t + L−
t + Rt + O

(
eγ

+
1 t
)

with B± := P±π
◦, A± := B−1

± XB±, W± = (π◦)† B±,

L±
t = (π◦)

†
etXP±π

◦ = (π◦)
†
B±B

−1
± etXB± = W±e

tA±
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Rem: for a ∈ C∞ (M), we have etXMae
−tX = Ma◦ϕt . Define

Op (a) := B−1MaB : L2 (N ) → L2 (N ). Then

etAOp (a) e−tA =
(
B−1etXB

) (
B−1MaB

) (
B−1e−tXB

)
= Op

(
a ◦ ϕt

)
: Exact Egorov
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etX is a Fourier integral operator: in the limit of high frequencies,
its action is well described on the cotangent bundle T ∗M with the induced
flow ϕ̃t := (dϕt)

∗, t ∈ R.

https://en.wikipedia.org/wiki/Fourier_integral_operator


Steps of the proof

flow
Lifted flow
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Introduce a Hörmander metric g on T ∗M, Ω−compatible.
define an L2-isometric “wave-packet transform”

T : C∞ (M;F ) → S (T ∗M;F )

to use micro-local analysis on T ∗M for the pull back operator etX .
The unit boxes for the metric g correspond to the effective size of
wave-packets and reflect the uncertainty principle.



Steps of the proof

flow
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The dynamics ϕ̃t is a “scattering dynamics” on the trapped set
Σ = R∗A ⊂ T ∗M (Liouville 1-form)
Σ is symplectic and normally hyperbolic.

In the outer part of Σ, we put a weight W such that W
(
ϕ̃t (ρ)

)
decays

with t → +∞. Hence the operator etX has a negligible contribution in some
anisotropic Sobolev space HW .
So only the dynamics in a vicinity of Σ plays a role for our purpose.



Steps of the proof
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We consider a vicinity of Σ of a given g−size ωµ/2, at ρ = ωA (m) ∈ Σ,
with some 0 < µ < 1.
The projection on M has size ≍ ω−(1−µ)/2 ≪ 1 if ω ≫ 1.
This will allow us to use the linearization of the dynamics ϕ̃t as a local
approximation.
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At ρ = ωA (m) ∈ Σ, there is a micro-local decoupling (idem symplectic
spinors)

TρT
∗M = TρΣ︸︷︷︸

Tangent

⊥
⊕ (Nu (ρ)⊕ Ns (ρ))︸ ︷︷ ︸

normal

: invariant decomp.
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The dynamics on the normal direction N is hyperbolic and responsible for the
emergence of polynomial functions along the stable direction Ns ≡ Es idem
V = −x d.

dx , Vxk = (−k) xk on R.

What remains for large time, is an effective Hilbert space of functions (or
quantum waves) that live on the trapped set Σ, valued in the vector bundle
Fk = |detEs |−1/2 ⊗ Polk (Es).
We deduce band structure of X and other properties.



What is the meaning of going beyond the equilibrium description for the Ruelle
spectrum?
Illustration: the ocean is quite, deep, flat, gentle ≡ Equilibrium state, but with
a better look, the behavior at the surface may be furious, wavy, and never stop to
move. Are they neglictible?

Some very speculative question: can quantum dynamics in the physics world
emerges from an underlying chaotic deterministic yet unknown system?

Thank you for your attention!
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(*) Wave packets
Local flow box coordinates on M: y = (x , z) ∈ Rn × R s.t. X = ∂

∂z and dual
coordinates η = (ξ, ω) ∈ Rn × R on T ∗

y M.

η−α

δ

z
x

X

flow direction

M

m

ξ

ω

δ−1

0

ω = 0

η

ηα

T ∗
mM

Let 1
2 ≤ α < 1 and 0 < δ ≪ 1. Wave packet function is:

φ(y,η)

(
y ′) ≈

|η|≫1
a exp

(
iη.y ′ −

∣∣∣∣ x ′ − x

⟨η⟩−α

∣∣∣∣2 −
∣∣∣∣ z ′ − z

δ

∣∣∣∣2
)

,
∥∥φ(y,η)

∥∥
L2(M)

≈
|η|≫1

1

Metric g on T ∗M, compatible with Ω = dy ∧ dη:

gy,η =

(
dx

⟨η⟩−α

)2
+

(
dξ

⟨η⟩α

)2
+

(
dz

δ

)2
+

(
dω

δ−1

)2

Rem: α ≥ 1
2 ⇔ g remains equivalent uniformly/η after change of flow box

coordinates.
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Rem: α ≥ 1
2 ⇔ g remains equivalent uniformly/η after change of flow box

coordinates.



(*) Wave packets
Local flow box coordinates on M: y = (x , z) ∈ Rn × R s.t. X = ∂

∂z and dual
coordinates η = (ξ, ω) ∈ Rn × R on T ∗

y M.

η−α

δ

z
x

X

flow direction

M

m

ξ

ω

δ−1

0

ω = 0

η

ηα

T ∗
mM

Let 1
2 ≤ α < 1 and 0 < δ ≪ 1. Wave packet function is:

φ(y,η)

(
y ′) ≈

|η|≫1
a exp

(
iη.y ′ −

∣∣∣∣ x ′ − x

⟨η⟩−α

∣∣∣∣2 −
∣∣∣∣ z ′ − z

δ

∣∣∣∣2
)

,
∥∥φ(y,η)

∥∥
L2(M)

≈
|η|≫1

1

Metric g on T ∗M, compatible with Ω = dy ∧ dη:

gy,η =

(
dx

⟨η⟩−α

)2
+

(
dξ

⟨η⟩α

)2
+

(
dz

δ

)2
+

(
dω

δ−1

)2

Rem: α ≥ 1
2 ⇔ g remains equivalent uniformly/η after change of flow box

coordinates.



(*) Wave packet transform (or FBI, wavelet, Bargmann, Anti-Wick... transform)

(Abuse of notations that forget charts and partitions of unity.)

T :

{
C∞ (M) → S (T ∗M)

u (y ′) → (T u) (y , η) := ⟨φy,η, u⟩L2(M)

Lemma (fundamental 1. ”Resolution of identity”)

T ∗ ◦ T = Id

Bergmann projector

L2(M)

T

P = T T †

L2(T ∗M)

u

v

Im(T )

T †

Remarks: ∀u ∈ C∞ (M) , u (y ′) =
∫
T∗M

φy ,η (y
′) ⟨φy ,η, u⟩ dydη

(2π)n+1 .

T : L2 (M) → Im (T ) ⊂ L2 (T ∗M) is an isomorphism. Hence we “lift the
analysis to T ∗M” .
Π = T ◦ T ∗ : L2 (T ∗M) → Im (T ) is an orthogonal projector.


