Hyperbolic surfaces

References 0

Séminaire de géométrie spectrale Nalini Anantharaman Collège de France December 22, 2023

Spectral projectors on hyperbolic surfaces

Jean-Philippe Anker (Université d'Orléans) <anker@univ-orleans.fr>

Ongoing collaboration with

Pierre Germain (Imperial College) Tristan Léger (NYU & Princeton University)

Content

- The problem
- Some history
- Output States States
- Some references

The problem	Hyperbolic surfaces	References
●O		
The problem		

$$X \begin{cases} \text{Riemannian manifold (complete)} \\ \text{dimension } n \end{cases}$$

e.g.
$$X = \mathbb{R}^n$$
, \mathbb{T}^n , \mathbb{S}^n , \mathbb{H}^n

- Δ Laplacian, $D = \sqrt{-\Delta}$
- $P_{\lambda,\eta} = \mathbf{1}_{[\lambda-\eta,\lambda+\eta]}(D)$ projector in a spectral window

Problem

Estimate
$$\|P_{\lambda,\eta}\|_{L^2 \to L^p}$$
 for
$$\begin{cases} p > 2 \\ \text{large frequency } \lambda \ge 0 \\ \text{small width } \eta > 0 \end{cases}$$

The problem		Hyperbolic surfaces	References
00			
The proble	m (continued)		

I he problem (continued)

Remark 1 (
$$TT^*$$
 trick)

$$\|P_{\lambda,\eta}\|_{L^2 \to L^p} = \|\overbrace{P_{\lambda,\eta}^*}^{P_{\lambda,\eta}}\|_{L^{p'} \to L^2} = \|\overbrace{P_{\lambda,\eta}}^{P_{\lambda,\eta}}\|_{L^{p'} \to L^p}^{1/2}$$

As usual $2 and <math>1 \le p' < 2$ are dual indices: $\frac{1}{p} + \frac{1}{p'} = 1$

Remark 2 (smooth version)

We can replace
$$\mathbf{1}_{[\lambda-\eta,\lambda+\eta]}(D)$$
 by $\psi(\frac{D-\lambda}{\eta})$ where ψ is a smooth bump function

Related problem

Estimate
$$\|dP_{\lambda}\|_{L^{p'}\to L^{p}}$$
 where $dP_{\lambda} = \delta_{\lambda}(D) = \lim_{\eta\to 0} \frac{1}{2\eta} P_{\lambda,\eta}$

Comment.

 $dP_{\lambda} \iff$ eigenfunctions $P_{\lambda,\eta} \iff$ quasimodes

The problem	Some history	Hyperbolic surfaces	References
	00000		
Stein-Toma	s restriction theore	m	

The Fourier transform

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-i\langle x,\xi \rangle} dx$$

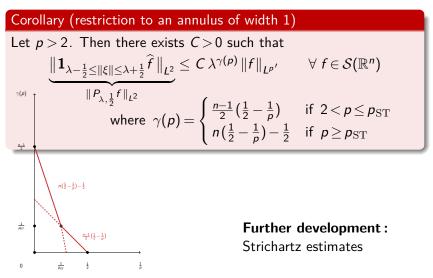
of a function $f \in L^1(\mathbb{R}^n)$ is a continuous function (vanishing at infinity) and thus it makes sense to restrict it to the unit sphere $\mathbb{S}^{n-1} = \{\xi \in \mathbb{R}^n \mid ||\xi|| = 1\}$

▶ The Fourier transform \hat{f} of $f \in L^2(\mathbb{R}^n)$ runs through $L^2(\mathbb{R}^n)$ and thus it makes no sense to restrict it to \mathbb{S}^{n-1}

Nevertheless

Stein-Tomas restriction theoremLet $p \ge p_{\mathrm{ST}} = 2 \frac{n+1}{n-1}$. Then $\|\widehat{f}\|_{\mathbb{S}^{n-1}}\|_{L^2} \lesssim \|f\|_{L^{p'}} \quad \forall f \in \mathcal{S}(\mathbb{R}^n)$

By rescaling and interpolation, one gets the following sharp result



The problem	Some history	Hyperbolic surfaces	References
	00000		
Sogge's resu	It and its consec	luences	

Sogge's theorem

Let X be a compact Riemannian manifold. Then there exists $\eta_0\!>\!0$ such that

$$\left\|P_{\lambda,\eta_{0}}\right\|_{L^{2}\to L^{p}}pprox\lambda^{\gamma(p)}$$

for p > 2 and λ large

Remark

This result is local and holds true for X with bounded geometry :

- injectivity radius bounded from below
- ▶ uniform local geometry in all small balls B(x, r₀) of fixed radius r₀ > 0

Corollary

Let X be a Riemannian manifold with bounded geometry. Then there exists $\eta_0\!>\!0$ such that

$$\max_{\lambda-\eta_0 \leq \mu \leq \lambda+\eta_0} \left\| P_{\mu,\eta} \right\|_{L^2 \to L^p} \gtrsim \lambda^{\gamma(p)} \eta^{\frac{1}{2}}$$

for $p\!>\!2$, λ large and η small

Let say
$$\|P_{\lambda,\eta}\|_{L^2 \to L^p} \gtrsim \lambda^{\gamma(p)} \eta^{\frac{1}{2}}$$

Back to problem

- Behavior in λ of ||P_{λ,η}||_{L²→L^p} should be always λ^{γ(p)}
- Behavior in η depends on the global geometry of the manifold

The problem	Some history	Hyperbolic surfaces	References
00	0000●	00000000000	0
Examples			

Sharp result for
$$\mathbb{R}^{n}$$
:
 $\|P_{\lambda,\eta}\|_{L^{2} \to L^{p}} \approx \lambda^{\gamma(p)} \times \begin{cases} \eta^{\frac{n+1}{2}(\frac{1}{2}-\frac{1}{p})} & \text{if } 2$

• Conjecture for \mathbb{T}^n : under the assumption $\eta > \lambda^{-1}$,

$$\left\|P_{\lambda,\eta}\right\|_{L^2 \to L^p} \approx \lambda^{\gamma(p)} \times \begin{cases} \eta^{\frac{n-1}{2}(\frac{1}{2} - \frac{1}{p})} & \text{if } 2$$

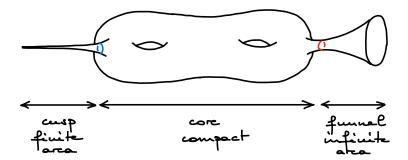
Partial results [Bourgain, Demeter, Germain, Myerson] (1)

¹ See Germain's survey [arXiv:2306.16981]

Riemannian manifold (complete, connected)

X { dimension
$$n=2$$

 ${\rm curvature} \ -1$



² Borthwick's book, 2016

The problem

Some histo

Hyperbolic surfaces

References

Hyperbolic surfaces (continued)

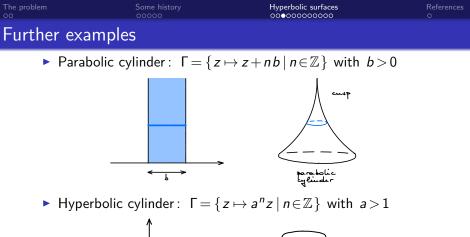
Example (universal cover)

Hyperbolic plane $\mathbb{H} = \mathbb{H}^2 = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$ Riemannian metric $ds^2 = \frac{d|z|^2}{(\text{Im } z)^2}$ Isometry group $\text{Isom}(\mathbb{H}) = \underbrace{\text{Isom}^+(\mathbb{H})}_{G = \text{PSL}(2,\mathbb{R}) = \text{PSL}(2,\mathbb{R})/\{\pm \text{Id}\}}$

Other definition of hyperbolic surfaces

 $X = \Gamma \setminus \mathbb{H}$, where Γ is a discrete torsion free subgroup of G

+ finiteness assumption



• Modular surface : $\Gamma = \mathsf{PSL}(2,\mathbb{Z})$ not torsion free

The p 00		Some history 00000	Hyperbolic surfaces 000●00000000	
Cri	tical exponen	t		
	Equivalent defin	itions of the crit	ical exponent δ of Γ	
			counting function	
			$f \in \Gamma \mid d(x, \gamma.y) \leq R \}$	
	• $\delta = \inf\{s > $	$0 \mid \sum_{\gamma \in \Gamma} e^{-sd}$	$(x,\gamma,y)<\infty$	

Remarks

▶ Both definitions are independent of $x, y \in \mathbb{H}$

Poincaré series

- ► $0 \le \delta \le 1$
- $\bullet \ \ \delta = \begin{cases} 0 & \text{for the hyperbolic cylinder} \\ \frac{1}{2} & \text{for the parabolic cylinder} \\ 1 & \text{for the modular surface} \end{cases}$

The	problem

Some histor

Hyperbolic surfaces

Results

Proposition [A-Germain-Léger 2023]

If X has cusps, then
$$\left\| P_{\lambda,\eta} \right\|_{L^2 o L^p} = \infty$$

Theorem [A-Germain-Léger 2023]

Assume that X has funnels (infinite area) and no cusps

• Optimal upper bound when $0 \le \delta < \frac{1}{2}$:

$$\|P_{\lambda,\eta}\|_{L^2 \to L^p} \lesssim \lambda^{\gamma(p)} \eta^{\frac{1}{2}}$$

► Upper bound when $\frac{1}{2} \le \delta < 1$: for every $\varepsilon > 0$ and N > 0, $\|P_{\lambda,\eta}\|_{L^2 \to L^p} \lesssim \lambda^{\gamma(p)+\varepsilon} \eta^{\frac{1}{2}-\varepsilon}$ under the condition $\eta > \lambda^{-N}$

The problem	Some history	Hyperbolic surfaces	References
00	00000	00000000000	O
Damaula			

• In dimension n=2, $p_{\rm ST}=6$ and

emarks

$$\gamma(p) = \begin{cases} \frac{1}{4} - \frac{1}{2p} & \text{if } 2$$

• Replace
$$D = \sqrt{-\Delta}$$
 by $D = \sqrt{-\Delta - \frac{1}{4}}$

• The first part of the theorem holds true more generally for locally symmetric spaces $\begin{cases} \operatorname{rank} 1 \\ \operatorname{convex} \operatorname{cocompact} \\ \text{and for } 0 \leq \delta < \rho \ (\Rightarrow \operatorname{infinite} \operatorname{volume}). \end{cases}$

Moreover, in this case, $\left\| d P_\lambda
ight\|_{L^{p'} o L^p} \lesssim \lambda^{2\gamma(p)}$

The problem

Some histo

Hyperbolic surfaces

References

Basic tool

and

Spherical Fourier transform on $\,\mathbb{H}\,$

There is a Fourier transform on $\mathbb H$ and an inverse transform, which reduce to

$$\mathcal{F}f(\xi) = \int_{\mathbb{H}} f(x) \varphi_{\xi}(x) dx = 2\pi \int_{0}^{\infty} f(r) \varphi_{\xi}(r) (\sinh r) dr$$
$$f(r) = \frac{1}{2\pi} \int_{0}^{\infty} \mathcal{F}f(\xi) \varphi_{\xi}(r) (\tanh \pi \xi) \xi d\xi$$
$$= -\frac{1}{2^{3/2} \pi^{2}} \int_{r}^{\infty} \frac{\partial}{\partial s} \widehat{\mathcal{F}f}(s) \frac{ds}{\sqrt{\cosh s - \cosh r}}$$

for radial functions f(x) = f(r), where r = d(x, i). These formulae involve the spherical functions $\varphi_{\xi}(x) = \varphi_{\xi}(r)$, which can be expressed in terms of special functions (Legendre or hypergeometric)

Remark. Analogy with the Fourier transform of radial functions on \mathbb{R}^n (Hankel transform), which involves modified Bessel functions

The problem		Hyperbolic surfaces	References
		00000000000	
Another he	pful tool		

Kunze-Stein phenomenon on *G* [Kunze-Stein 1964]

$$L^2(G) * L^{2-\varepsilon}(G) \subset L^2(G) \qquad \forall \ 0 < \varepsilon \le 1$$

The right convolution by a radial kernel ${\mathcal K}$ on ${\mathbb H}$ satisfies actually

Kunze-Stein phenomenon on 𝔣 [Herz/Stein 1970]

$$\|f * \mathcal{K}\|_{L^2} \lesssim \|f\|_{L^2} \int_0^\infty |\mathcal{K}(r)| e^{\frac{r}{2}} r dr$$

The same operator satisfies

Kunze-Stein phenomenon on X [Fotiadis-Mandouvalos-Marias 2018/Zhang 2019] Assume that $0 \le \delta < \frac{1}{2}$ and let $0 < \varepsilon < \frac{1}{2} - \delta$. Then, for every p > 2, $\|f * \mathcal{K}\|_{L^p} \lesssim \|f\|_{L^{p'}} \Big[\int_0^\infty |\mathcal{K}(r)e^{(\delta+\varepsilon)r}|^{\frac{p}{2}}e^{(\frac{1}{2}-\delta-\varepsilon)r}r\,dr\Big]^{\frac{2}{p}}$

► Use the inverse spherical Fourier transform to express and estimate the kernel on H

$$p_{\lambda,\eta}(x,y) = C \int_0^\infty \left[\psi(\frac{\xi-\lambda}{\eta}) + \psi(\frac{\xi+\lambda}{\eta}) \right] \varphi_{\xi}(r) (\tanh \pi \xi) \xi d\xi$$
$$= C \eta \int_r^\infty \frac{\partial}{\partial s} \left[\cos(\lambda s) \widehat{\psi}(\eta s) \right] \frac{ds}{\sqrt{\cosh s - \cosh r}}$$

where r = d(x, y) and ψ is an even Schwartz function whose Fourier transform has compact support

$$\implies |p_{\lambda,\eta}(x,y)| \lesssim \begin{cases} \lambda \, \eta & \text{ for small } r = d(x,y) \\ \lambda^{\frac{1}{2}} \, \eta \, e^{-\frac{r}{2}} & \text{ for large } r = d(x,y) \end{cases}$$

► Estimate the kernel on
$$X = \Gamma \setminus \mathbb{H}$$

 $p_{\lambda,\eta}^{\Gamma}(x,y) = \sum_{\gamma \in \Gamma} p_{\lambda,\eta}(\gamma.x,y) = \sum_{\gamma \in \Gamma} p_{\lambda,\eta}(x,\gamma.y)$

- Estimate related kernels
- Use interpolation and/or the Kunze-Stein phenomenon on X

▶ **Decompositions.** Given bump functions $\psi \in C_c^{\infty}(\mathbb{R})$ and $\theta \in S(\mathbb{R})$ such that $\theta > 0$ and supp $\hat{\theta}$ is compact, write first

$$\psi(\frac{D-\lambda}{\eta}) = \theta(D-\lambda)^2 \int_{-\infty}^{+\infty} Z(t) e^{itD^2} dt$$

in terms of the Schrödinger group e^{itD^2} , where $Z = Z_{\lambda,\eta}$ denotes the Fourier transform of

$$\tau \longmapsto \begin{cases} \frac{1}{2\pi} \frac{\psi(\frac{\sqrt{\tau}-\lambda}{\eta})}{\theta(\sqrt{\tau}-\lambda)^2} & \text{if } \tau > 0\\ 0 & \text{otherwise} \end{cases}$$

Given a smooth partition of unity $1 = \sum_{j=0}^{m} \chi_j$ corresponding to the decomposition $X = X_0 \cup (\bigcup_{j=1}^{m} X_j)$, split up next

$$\psi(\frac{D-\lambda}{\eta}) = \theta(D-\lambda) \sum_{j} \chi_{j} \int_{-\infty}^{+\infty} Z(t) \theta(D-\lambda) e^{jtD^{2}} dt$$

- **Estimates in the core.** Main tools
 - Sogge's theorem
 - ▶ Resolvent estimates [Bourgain-Dyatlov 2018] in dim n=2 $\|\chi_0 (D^2 - \lambda^2 \pm i0)^{-1} \chi_0\|_{L^2 \to L^2} \lesssim \lambda^{-1+2\varepsilon}$ for λ large
 - ► Kato's local L^2 smoothing theorem yields $\|\chi_0 \theta(D-\lambda) e^{itD^2} f\|_{L^2_t L^2_x} \lesssim \lambda^{-\frac{1}{2}+\varepsilon} \|f\|_{L^2}$
- Estimates in the funnels. Tools from the case $0 \le \delta < \frac{1}{2}$

• improved Strichartz estimates for $\theta(D-\lambda)e^{itD^2}$:

 $\|\theta(D-\lambda)e^{itD^2}f\|_{L^q_t(L^p_x)} \lesssim \lambda^{\frac{1}{2}-\frac{1}{p}-\frac{1}{q}}\|f\|_{L^2} \quad (p>2, q\geq 2)$

► global L^p smoothing estimate for e^{itD^2} : $\|D^{\frac{1}{2}-\gamma(p)}e^{itD^2}f\|_{L^p_x(L^2_t)} \lesssim \|f\|_{L^2}$ (p>2)

commutator estimates

Piece results together (method goes back to Staffilani-Tataru)

Some histo

Hyperbolic surfaces

Low frequency estimate

Theorem [A-Germain-Léger 2023]

Assume that

- X has funnels (infinite area) and no cusps
- $\bullet \quad 0 \le \delta < \frac{1}{2}$

Then

$$\left\| \mathsf{P}_{\lambda,\eta} \right\|_{L^2 \to L^p} \lesssim (\lambda + \eta) \eta^{\frac{1}{2}}$$

for $p\!>\!2,\;0\!\leq\!\lambda\!<\!1$ and $0\!<\!\eta\!<\!1$

Remark

Again this result holds true more generally

```
for locally symmetric spaces \begin{cases} \operatorname{rank} 1\\ \operatorname{convex} \operatorname{cocompact} \end{cases}
and for 0 \leq \delta < \rho (\Rightarrow infinite volume).
Moreover, in this case, \|dP_{\lambda}\|_{L^{p'} \to L^{p}} \lesssim \lambda^{2}
```

The problem		Hyperbolic surfaces	References
			•
Some referen	ces		

- J.-Ph. Anker, P. Germain & T. Léger: Spectral projectors on hyperbolic surfaces, preprint [arXiv:2306.12827]
- D. Borthwick: Spectral theory of infinite-area hyperbolic surfaces, Progress Math. 318, Birkhäuser, 2016
- J. Bourgain & S. Dyatlov: Spectral gaps without the pressure condition, Ann. Math. (2) 187 (2018), no. 3, 825–867
- P. Germain: L² to L^p bounds for spectral projectors on thin intervals in Riemannian manifolds, preprint [arXiv:2306.16981]
- P. Germain & T. Léger: Spectral projectors, resolvent, and Fourier restriction on the hyperbolic space, J. Funct. Anal. 285 (2023), no. 2, Paper No. 109918