Séminaire de géométrie spectrale Nalini Anantharaman Collège de France December 22, 2023

Spectral projectors on hyperbolic surfaces

> Jean-Philippe Anker (Université d'Orléans)
> anker@univ-orleans.fr

Ongoing collaboration with
Pierre Germain (Imperial College)
Tristan Léger (NYU \& Princeton University)

Content

(1) The problem
(2) Some history
(3) Hyperbolic surfaces
(3) Some references

The problem

$X\left\{\begin{array}{l}\text { Riemannian manifold (complete) } \\ \text { dimension } n\end{array}\right.$
e.g. $X=\mathbb{R}^{n}, \mathbb{T}^{n}, \mathbb{S}^{n}, \mathbb{H}^{n}$
\triangle Laplacian, $D=\sqrt{-\Delta}$
$P_{\lambda, \eta}=\mathbf{1}_{[\lambda-\eta, \lambda+\eta]}(D)$ projector in a spectral window

Problem

Estimate $\left\|P_{\lambda, \eta}\right\|_{L^{2} \rightarrow L^{p}}$ for $\left\{\begin{array}{l}p>2 \\ \text { large frequency } \lambda \geq 0 \\ \text { small width } \eta>0\end{array}\right.$

The problem (continued)

Remark 1 ($T T^{*}$ trick)

$$
\left\|P_{\lambda, \eta}\right\|_{L^{2} \rightarrow L^{p}}=\|\overbrace{P_{\lambda, \eta}^{*}}^{P_{\lambda, \eta}}\|_{L^{\prime} \rightarrow L^{2}}=\|\overbrace{P_{\lambda, \eta} P_{\lambda, \eta}^{*}}^{P_{\lambda, \eta}}\|_{L^{p^{\prime} \rightarrow L^{p}}}^{1 / 2}
$$

As usual $2<p \leq \infty$ and $1 \leq p^{\prime}<2$ are dual indices: $\frac{1}{p}+\frac{1}{p^{\prime}}=1$
Remark 2 (smooth version)
We can replace $\mathbf{1}_{[\lambda-\eta, \lambda+\eta]}(D)$ by $\psi\left(\frac{D-\lambda}{\eta}\right)$ where ψ is a smooth bump function

Related problem

Estimate $\left\|d P_{\lambda}\right\|_{L^{p^{\prime}} \rightarrow L^{p}}$ where $d P_{\lambda}=\delta_{\lambda}(D)=\lim _{\eta \rightarrow 0} \frac{1}{2 \eta} P_{\lambda, \eta}$
Comment. $\quad d P_{\lambda} \leftrightarrow \leadsto$ eigenfunctions

$$
P_{\lambda, \eta} \quad \rightsquigarrow \quad \text { quasimodes }
$$

Stein-Tomas restriction theorem

- The Fourier transform

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-i\langle x, \xi\rangle} d x
$$

of a function $f \in L^{1}\left(\mathbb{R}^{n}\right)$ is a continuous function (vanishing at infinity) and thus it makes sense to restrict it to the unit sphere $\mathbb{S}^{n-1}=\left\{\xi \in \mathbb{R}^{n} \mid\|\xi\|=1\right\}$

- The Fourier transform \widehat{f} of $f \in L^{2}\left(\mathbb{R}^{n}\right)$ runs through $L^{2}\left(\mathbb{R}^{n}\right)$ and thus it makes no sense to restrict it to \mathbb{S}^{n-1}

Nevertheless

Stein-Tomas restriction theorem

Let $p \geq p_{\mathrm{ST}}=2 \frac{n+1}{n-1}$. Then

$$
\left\|\left.\widehat{f}\right|_{\mathbb{S}^{n-1}}\right\|_{L^{2}} \lesssim\|f\|_{L^{p^{\prime}}} \quad \forall f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Stein-Tomas restriction theorem (continued)

By rescaling and interpolation, one gets the following sharp result
Corollary (restriction to an annulus of width 1)
Let $p>2$. Then there exists $C>0$ such that

$$
\begin{aligned}
& \underbrace{\left\|\mathbf{1}_{\lambda-\frac{1}{2} \leq\|\xi\| \leq \lambda+\frac{1}{2}} \widehat{f}\right\|_{L^{2}}}_{\left\|P_{\lambda, \frac{1}{2}} f\right\|_{L^{2}}} \leq C \lambda^{\gamma(p)}\|f\|_{L^{p^{\prime}}}
\end{aligned} \quad \forall f \in \mathcal{S}\left(\mathbb{R}^{n}\right) ~ \begin{cases}\frac{n-1}{2}\left(\frac{1}{2}-\frac{1}{p}\right) & \text { if } 2<p \leq p_{\mathrm{ST}} \\
n\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{2} & \text { if } p \geq p_{\mathrm{ST}}\end{cases}
$$

Further development :

Strichartz estimates

Sogge's result and its consequences

Sogge's theorem

Let X be a compact Riemannian manifold. Then there exists $\eta_{0}>0$ such that

$$
\left\|P_{\lambda, \eta_{0}}\right\|_{L^{2} \rightarrow L^{p}} \approx \lambda^{\gamma(p)}
$$

for $p>2$ and λ large

Remark

This result is local and holds true for X with bounded geometry:

- injectivity radius bounded from below
- uniform local geometry in all small balls $B\left(x, r_{0}\right)$ of fixed radius $r_{0}>0$

Corollary

Let X be a Riemannian manifold with bounded geometry. Then there exists $\eta_{0}>0$ such that

$$
\max _{\lambda-\eta_{0} \leq \mu \leq \lambda+\eta_{0}}\left\|P_{\mu, \eta}\right\|_{L^{2} \rightarrow L^{p}} \gtrsim \lambda^{\gamma(p)} \eta^{\frac{1}{2}}
$$

for $p>2, \lambda$ large and η small
Let say $\left\|P_{\lambda, \eta}\right\|_{L^{2} \rightarrow L^{p}} \gtrsim \lambda^{\gamma(p)} \eta^{\frac{1}{2}}$
Back to problem

- Behavior in λ of $\left\|P_{\lambda, \eta}\right\|_{L^{2} \rightarrow L^{p}}$ should be always $\lambda^{\gamma(p)}$
- Behavior in η depends on the global geometry of the manifold

Examples

- Sharp result for \mathbb{R}^{n} :

$$
\left\|P_{\lambda, \eta}\right\|_{L^{2} \rightarrow L^{p}} \approx \lambda^{\gamma(p)} \times \begin{cases}\eta^{\frac{n+1}{2}\left(\frac{1}{2}-\frac{1}{p}\right)} & \text { if } 2<p \leq p_{\mathrm{ST}} \\ \eta^{\frac{1}{2}} & \text { if } p \geq p_{\mathrm{ST}}\end{cases}
$$

- Conjecture for \mathbb{T}^{n} : under the assumption $\eta>\lambda^{-1}$,

$$
\left\|P_{\lambda, \eta}\right\|_{L^{2} \rightarrow L^{p}} \approx \lambda^{\gamma(p)} \times \begin{cases}\eta^{\frac{n-1}{2}\left(\frac{1}{2}-\frac{1}{p}\right)} & \text { if } 2<p \leq p_{\mathrm{ST}} \\ \eta^{\frac{1}{2}} & \text { if } p \geq p_{\mathrm{ST}}\end{cases}
$$

Partial results [Bourgain, Demeter, Germain, Myerson] (${ }^{1}$)
${ }^{1}$ See Germain's survey [arXiv:2306.16981]

Hyperbolic surfaces $\left({ }^{2}\right)$

$X\left\{\begin{array}{l}\text { Riemannian manifold (complete, connected) } \\ \text { dimension } n=2 \\ \text { curvature }-1\end{array}\right.$

[^0]
Hyperbolic surfaces (continued)

Example (universal cover)

Hyperbolic plane $\mathbb{H}=\mathbb{H}^{2}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$
Riemannian metric $d s^{2}=\frac{d|z|^{2}}{(\operatorname{lm} z)^{2}}$
Isometry group Isom $(\mathbb{H})=\underbrace{\operatorname{Isom}^{+}(\mathbb{H})}_{G=\operatorname{PSL}(2, \mathbb{R})=\operatorname{PSL}(2, \mathbb{R}) /\{ \pm \mathbf{I d}\}} \sqcup \operatorname{Isom}^{-}(\mathbb{H})$

Other definition of hyperbolic surfaces
$X=\Gamma \backslash \mathbb{H}$, where Γ is a discrete torsion free subgroup of G

+ finiteness assumption

Further examples

- Parabolic cylinder: $\Gamma=\{z \mapsto z+n b \mid n \in \mathbb{Z}\}$ with $b>0$

- Hyperbolic cylinder: $\Gamma=\left\{z \mapsto a^{n} z \mid n \in \mathbb{Z}\right\}$ with $a>1$

- Modular surface: $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$ not torsion free

Critical exponent

Equivalent definitions of the critical exponent δ of Γ counting function

- $\delta=\lim \sup _{R \rightarrow+\infty} \frac{1}{R} \log \overbrace{|\gamma \in \Gamma| d(x, \gamma \cdot y) \leq R\} \mid}$
- $\delta=\inf \{s>0 \mid \underbrace{\sum_{\gamma \in \Gamma} e^{-s d(x, \gamma \cdot y)}}_{\text {Poincaré series }}<\infty\}$

Remarks

- Both definitions are independent of $x, y \in \mathbb{H}$
- $0 \leq \delta \leq 1$
- $\delta= \begin{cases}0 & \text { for the hyperbolic cylinder } \\ \frac{1}{2} & \text { for the parabolic cylinder } \\ 1 & \text { for the modular surface }\end{cases}$

Results

Proposition [A-Germain-Léger 2023]

If X has cusps, then $\left\|P_{\lambda, \eta}\right\|_{L^{2} \rightarrow L^{p}}=\infty$

Theorem [A-Germain-Léger 2023]

Assume that X has funnels (infinite area) and no cusps

- Optimal upper bound when $0 \leq \delta<\frac{1}{2}$:

$$
\left\|P_{\lambda, \eta}\right\|_{L^{2} \rightarrow L^{p}} \lesssim \lambda^{\gamma(p)} \eta^{\frac{1}{2}}
$$

- Upper bound when $\frac{1}{2} \leq \delta<1$: for every $\varepsilon>0$ and $N>0$,

$$
\left\|P_{\lambda, \eta}\right\|_{L^{2} \rightarrow L^{p}} \lesssim \lambda^{\gamma(p)+\varepsilon} \eta^{\frac{1}{2}-\varepsilon}
$$

under the condition $\eta>\lambda^{-N}$

Remarks

- In dimension $n=2, p_{\mathrm{ST}}=6$ and

$$
\gamma(p)= \begin{cases}\frac{1}{4}-\frac{1}{2 p} & \text { if } 2<p \leq 6 \\ \frac{1}{2}-\frac{2}{p} & \text { if } p \geq 6\end{cases}
$$

- Replace $D=\sqrt{-\Delta}$ by $D=\sqrt{-\Delta-\frac{1}{4}}$
- The first part of the theorem holds true more generally for locally symmetric spaces $\left\{\begin{array}{l}\text { rank } 1 \\ \text { convex cocompact }\end{array}\right.$ and for $0 \leq \delta<\rho$ (\Rightarrow infinite volume).
Moreover, in this case, $\left\|d P_{\lambda}\right\|_{L^{p^{\prime} \rightarrow L^{p}}} \lesssim \lambda^{2 \gamma(p)}$

Basic tool

Spherical Fourier transform on \mathbb{H}

There is a Fourier transform on \mathbb{H} and an inverse transform, which reduce to
and

$$
\mathcal{F} f(\xi)=\int_{\mathbb{H}} f(x) \varphi_{\xi}(x) d x=2 \pi \int_{0}^{\infty} f(r) \varphi_{\xi}(r)(\sinh r) d r
$$

$$
\begin{aligned}
f(r) & =\frac{1}{2 \pi} \int_{0}^{\infty} \mathcal{F} f(\xi) \varphi_{\xi}(r)(\tanh \pi \xi) \xi d \xi \\
& =-\frac{1}{2^{3 / 2} \pi^{2}} \int_{r}^{\infty} \frac{\partial}{\partial s} \widehat{\mathcal{F} f}(s) \frac{d s}{\sqrt{\cosh s-\cosh r}}
\end{aligned}
$$

for radial functions $f(x)=f(r)$, where $r=d(x, i)$. These formulae involve the spherical functions $\varphi_{\xi}(x)=\varphi_{\xi}(r)$, which can be expressed in terms of special functions (Legendre or hypergeometric)

Remark. Analogy with the Fourier transform of radial functions on \mathbb{R}^{n} (Hankel transform), which involves modified Bessel functions

Another helpful tool

Kunze-Stein phenomenon on G [Kunze-Stein 1964]

$$
L^{2}(G) * L^{2-\varepsilon}(G) \subset L^{2}(G) \quad \forall 0<\varepsilon \leq 1
$$

The right convolution by a radial kernel \mathcal{K} on \mathbb{H} satisfies actually
Kunze-Stein phenomenon on \mathbb{H} [Herz/Stein 1970]

$$
\|f * \mathcal{K}\|_{L^{2}} \lesssim\|f\|_{L^{2}} \int_{0}^{\infty}|\mathcal{K}(r)| e^{\frac{r}{2}} r d r
$$

The same operator satisfies
Kunze-Stein phenomenon on X
[Fotiadis-Mandouvalos-Marias 2018/Zhang 2019]
Assume that $0 \leq \delta<\frac{1}{2}$ and let $0<\varepsilon<\frac{1}{2}-\delta$. Then, for every $p>2$,

$$
\|f * \mathcal{K}\|_{L^{p}} \lesssim\|f\|_{L^{p^{\prime}}}\left[\int_{0}^{\infty}\left|\mathcal{K}(r) e^{(\delta+\varepsilon) r}\right|^{\frac{p}{2}} e^{\left(\frac{1}{2}-\delta-\varepsilon\right) r} r d r\right]^{\frac{2}{p}}
$$

Idea of proof when $0 \leq \delta<\frac{1}{2}$

- Use the inverse spherical Fourier transform to express and estimate the kernel on \mathbb{H}

$$
\begin{aligned}
p_{\lambda, \eta}(x, y) & =C \int_{0}^{\infty}\left[\psi\left(\frac{\xi-\lambda}{\eta}\right)+\psi\left(\frac{\xi+\lambda}{\eta}\right)\right] \varphi_{\xi}(r)(\tanh \pi \xi) \xi d \xi \\
& =C \eta \int_{r}^{\infty} \frac{\partial}{\partial s}[\cos (\lambda s) \widehat{\psi}(\eta s)] \frac{d s}{\sqrt{\cosh s-\cosh r}}
\end{aligned}
$$

where $r=d(x, y)$ and ψ is an even Schwartz function whose Fourier transform has compact support

$$
\Longrightarrow \quad\left|p_{\lambda, \eta}(x, y)\right| \lesssim \begin{cases}\lambda \eta & \text { for small } r=d(x, y) \\ \lambda^{\frac{1}{2}} \eta e^{-\frac{r}{2}} & \text { for large } r=d(x, y)\end{cases}
$$

- Estimate the kernel on $X=\Gamma \backslash \mathbb{H}$

$$
p_{\lambda, \eta}^{\Gamma}(x, y)=\sum_{\gamma \in \Gamma} p_{\lambda, \eta}(\gamma \cdot x, y)=\sum_{\gamma \in \Gamma} p_{\lambda, \eta}(x, \gamma \cdot y)
$$

- Estimate related kernels
- Use interpolation and/or the Kunze-Stein phenomenon on X

Idea of proof when $\frac{1}{2} \leq \delta<1$

- Decompositions. Given bump functions $\psi \in C_{c}^{\infty}(\mathbb{R})$ and $\theta \in \mathcal{S}(\mathbb{R})$ such that $\theta>0$ and supp $\hat{\theta}$ is compact, write first

$$
\psi\left(\frac{D-\lambda}{\eta}\right)=\theta(D-\lambda)^{2} \int_{-\infty}^{+\infty} Z(t) e^{i t D^{2}} d t
$$

in terms of the Schrödinger group $e^{i t D^{2}}$, where $Z=Z_{\lambda, \eta}$ denotes the Fourier transform of

$$
\tau \longmapsto\left\{\begin{array}{cl}
\frac{1}{2 \pi} \frac{\psi\left(\frac{\sqrt{\tau}-\lambda}{\eta}\right)}{\theta(\sqrt{\tau}-\lambda)^{2}} & \text { if } \tau>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Given a smooth partition of unity $1=\sum_{j=0}^{m} \chi_{j}$ corresponding to the decomposition $X=X_{0} \cup\left(\bigcup_{j=1}^{m} X_{j}\right)$, split up next

$$
\psi\left(\frac{D-\lambda}{\eta}\right)=\theta(D-\lambda) \sum_{j} \chi_{j} \int_{-\infty}^{+\infty} Z(t) \theta(D-\lambda) e^{i t D^{2}} d t
$$

Idea of proof when $\frac{1}{2} \leq \delta<1$ (continued)

- Estimates in the core. Main tools
- Sogge's theorem
- Resolvent estimates [Bourgain-Dyatlov 2018] in dim n=2

$$
\left\|\chi_{0}\left(D^{2}-\lambda^{2} \pm i 0\right)^{-1} \chi_{0}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-1+2 \varepsilon} \quad \text { for } \lambda \text { large }
$$

- Kato's local L^{2} smoothing theorem yields

$$
\left\|\chi_{0} \theta(D-\lambda) e^{i t D^{2}} f\right\|_{L_{t}^{2} L_{x}^{2}} \lesssim \lambda^{-\frac{1}{2}+\varepsilon}\|f\|_{L^{2}}
$$

- Estimates in the funnels. Tools from the case $0 \leq \delta<\frac{1}{2}$
- improved Strichartz estimates for $\theta(D-\lambda) e^{i t D^{2}}$:

$$
\left\|\theta(D-\lambda) e^{i t D^{2}} f\right\|_{L_{t}^{q}\left(L_{x}^{p}\right)} \lesssim \lambda^{\frac{1}{2}-\frac{1}{p}-\frac{1}{q}}\|f\|_{L^{2}} \quad(p>2, q \geq 2)
$$

- global L^{p} smoothing estimate for $e^{i t D^{2}}$:

$$
\left\|D^{\frac{1}{2}-\gamma(p)} e^{i t D^{2}} f\right\|_{L_{x}^{p}\left(L_{t}^{2}\right)} \lesssim\|f\|_{L^{2}} \quad(p>2)
$$

- commutator estimates
- Piece results together (method goes back to Staffilani-Tataru)

Low frequency estimate

Theorem [A-Germain-Léger 2023]

Assume that

- X has funnels (infinite area) and no cusps
- $0 \leq \delta<\frac{1}{2}$

Then

$$
\left\|P_{\lambda, \eta}\right\|_{L^{2} \rightarrow L^{p}} \lesssim(\lambda+\eta) \eta^{\frac{1}{2}}
$$

for $p>2,0 \leq \lambda<1$ and $0<\eta<1$

Remark

Again this result holds true more generally for locally symmetric spaces $\left\{\begin{array}{l}\text { rank } 1 \\ \text { convex cocompact }\end{array}\right.$ and for $0 \leq \delta<\rho$ (\Rightarrow infinite volume).
Moreover, in this case, $\left\|d P_{\lambda}\right\|_{L^{p^{\prime}} \rightarrow L^{p}} \lesssim \lambda^{2}$

Some references

- J.-Ph. Anker, P. Germain \& T. Léger: Spectral projectors on hyperbolic surfaces, preprint [arXiv:2306.12827]
- D. Borthwick: Spectral theory of infinite-area hyperbolic surfaces, Progress Math. 318, Birkhäuser, 2016
- J. Bourgain \& S. Dyatlov: Spectral gaps without the pressure condition, Ann. Math. (2) 187 (2018), no. 3, 825-867
- P. Germain: L^{2} to L^{p} bounds for spectral projectors on thin intervals in Riemannian manifolds, preprint [arXiv:2306.16981]
- P. Germain \& T. Léger: Spectral projectors, resolvent, and Fourier restriction on the hyperbolic space, J. Funct. Anal. 285 (2023), no. 2, Paper No. 109918

[^0]: ${ }^{2}$ Borthwick's book, 2016

