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Why interested in Poincaré series ?

Naive misunderstanding : Poincaré series could give crystalline measures.
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What are crystalline measures ?

The Dirac comb.

Sum of exponentials converges in S �(R):

1

2π

�

k∈Z
e iks =

�

k∈Z
δ(s − 2πk).
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The Dirac comb.

Sum of exponentials converges in S �(R):

1

2π

�

k∈Z
e iks =

�

k∈Z
δ(s − 2πk).

In other words, Dirac comb is a periodic measure supported on lattice Za:

µ(x) =
�

k∈Z
δ(x − ka), a > 0.

Fourier transform �µ supported by dual lattice by Poisson summation.
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What are crystalline measures ?

Crystalline measures.

Definition (Y Meyer)

A crystalline measure µ is a complex measure s.t. both µ and �µ are supported on locally finite
sets.
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What are crystalline measures ?

Crystalline measures.

Definition (Y Meyer)

A crystalline measure µ is a complex measure s.t. both µ and �µ are supported on locally finite
sets. A crystalline distribution µ is a tempered distribution s.t. both µ and �µ are supported on
locally finite sets.

µ�(x) =
�

k∈Z δ(1)(x − ka), a > 0 is a crystalline distribution.

Definition (Y Meyer)

A crystalline measure µ is exotic if support(µ) is not a finite union of lattices.

Challenge: find exotic crystalline measures and distributions.

Results by Kahane–Mandelbrojt, Guinand, Lev–Olevskii, Meyer, Sarnak–Kurasov,

Viazovska–Radchenko. Look for crystalline measures carried by length spectras.
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To Poincaré series

Poincaré series for amateurs in pictures.
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To Poincaré series

Poincaré series by and for serious people.

F. Paulin: Regards croisé sur les séries de Poincaré et leurs applications : Group Γ acts
on X , subgroup Γ0 ⊂ Γ, f Γ0-invariant on X :
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To Poincaré series

Poincaré series by and for serious people.

F. Paulin: Regards croisé sur les séries de Poincaré et leurs applications : Group Γ acts
on X , subgroup Γ0 ⊂ Γ, f Γ0-invariant on X :

P(x) =
�

γ∈Γ/Γ0

f (γx).
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To Poincaré series

Spectral interpretation: trace formula

Trace formula principle: relate spectrum to integral geometry.
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To Poincaré series

Spectral interpretation: trace formula

Trace formula principle: relate spectrum to integral geometry. Vector field ∂θ generates
flow e−t∂θ on S1. Spectrum σ(∂θ) = iZ with eigenfunctions (e ikθ)k∈Z.

�

S1

�
et∂θ∗δc1

�
∧ δc2dθ =

�

S1
δ(t + θ − c1)δ(θ − c2)dθ

=
�

n∈Z

� 2π

0

δ(t + θ − c1 + 2πn)δ(θ − c2)dθ

=
�

n∈Z
δ(t + 2πn + c2 − c1)

� �� �
integral geometric side

=
�

Z
e itn

��
δc1 , e

in.
��

δc2 , e
−in.

��

� �� �
spectral side

.
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Surfaces negative curvature

First result.
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Surfaces negative curvature

From spectra to geometry.

Relates length spectrum and topology :
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Surfaces negative curvature

From spectra to geometry.

Relates length spectrum and topology :

Theorem (D.–Rivière 2020)

ζ holomorphic when Re(s) >> 1 has meromorphic extension to C.

ζc1,c2(0) =
1

χ(M)
− δc1,c2 . (1)
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Surfaces negative curvature

About graphs.

Theorem (Dang-Mehmeti)

Schottky group Γ acting on Berkovich line P1,an
k , surface P1,an

k \ limit set/Γ, g number of
generators of Γ genus,

ζc,c(s) =
�

γ∈Γ

e−s�(c,γc), ζc,c(0) =
1

1− g
− 1.

Similar results on graphs by Anantharaman.
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Convex bodies in Torus.

Simpler problem: two convex subsets on torus.
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Convex bodies in Torus.

Convex subsets in torii.

K1,K2 ⊂ Rd convex and ∂K1, ∂K2, analytic, strictly convex hypersurfaces of Rd .
p : Rd �→ Td projects on Td ,

c1 = p (∂K1) , c2 = p (∂K2) .
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Convex bodies in Torus.

Convex subsets in torii.

K1,K2 ⊂ Rd convex and ∂K1, ∂K2, analytic, strictly convex hypersurfaces of Rd .
p : Rd �→ Td projects on Td ,

c1 = p (∂K1) , c2 = p (∂K2) .

Consider

ζ(c1, c2, s) =
�

γ

e−s�(γ)

holomorphic on Re(s) > 0.
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Convex bodies in Torus.

Work in progress

Theorem (Bonthonneau-D-Léautaud-Rivière, in progress)

Define Λ = {±i |ξ|; ξ ∈ Zd}, near i |ξ| ∈ Λ \ {0} :
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Convex bodies in Torus.

Work in progress

Theorem (Bonthonneau-D-Léautaud-Rivière, in progress)

Define Λ = {±i |ξ|; ξ ∈ Zd}, near i |ξ| ∈ Λ \ {0} :

ζ(s) =
1

(s − i |ξ|) d+1
2

(a0 + (s − i |ξ|)a1 + . . . ) + log(s − i |ξ|) (b0 + (s − i |ξ|)b1 + . . . )� �� �
if n odd

. . . + (b0 + (s − i |ξ|)b1 + . . . )� �� �
if n even

where (ai , bi )
∞
i=0 depend on K1,K2, ξ.
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Work in progress

Theorem (Bonthonneau-D-Léautaud-Rivière, in progress)

Define Λ = {±i |ξ|; ξ ∈ Zd}, near i |ξ| ∈ Λ \ {0} :

ζ(s) =
1

(s − i |ξ|) d+1
2

(a0 + (s − i |ξ|)a1 + . . . ) + log(s − i |ξ|) (b0 + (s − i |ξ|)b1 + . . . )� �� �
if n odd

. . . + (b0 + (s − i |ξ|)b1 + . . . )� �� �
if n even

where (ai , bi )
∞
i=0 depend on K1,K2, ξ.

ζc1,c2(s) has multivalued analytic continuation on strip in picture.
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Convex bodies in Torus.

Nilsson class
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Convex bodies in Torus.

Nilsson class

Definition

f Nilsson near z = 0 if moderate growth + finite determinations:

f =
�

finite

ai (z) log(z)
vi zµi ,

vi ∈ N, µi ∈ C, ai holomorphic.

Multivariate version has nice functorial properties, applications in PDE, oscillatory
integrals, Feynman integrals by Boutet de Monvel, Leray, Malgrange, Pham . . .
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Convex bodies in Torus.

Transport by the geodesic flow.

M = S∗Td contact manifold. Coordinates (x ; θ) ∈ Td × Sd−1.

etV (x ; θ) = (x + tθ; θ) ∈ Td × Sd−1

Geodesic flow generator V = θ.∂x : (etV f )(x ; θ) = f (x + tθ; θ) :

Given a distribution ω ∈ D�(STd):

e−tVω(x ; θ) = ω(x − tθ; θ).

f = e−tVω solves transport equation:

∂t f + θ.∂x f = 0, f (0, .) = ω.
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Convex bodies in Torus.

Transporting currents.

Σi = {(x ; θ), x ∈ ci , θ ⊥ Txci} unit normal to ci ,
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Convex bodies in Torus.

Transporting currents.

Σi = {(x ; θ), x ∈ ci , θ ⊥ Txci} unit normal to ci , de Rham current of integration [Σi ].
Geometrically, submanifold e [0,T ]V (Σ1) emanating from Σ1 and counting:

Number of arcs length � T = |e [0,T ]V (Σ1) ∩ Σ2|.
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Convex bodies in Torus.

Transporting currents.

Σi = {(x ; θ), x ∈ ci , θ ⊥ Txci} unit normal to ci , de Rham current of integration [Σi ].
Geometrically, submanifold e [0,T ]V (Σ1) emanating from Σ1 and counting:

Number of arcs length � T = |e [0,T ]V (Σ1) ∩ Σ2|.

Proposition (Representation of e [0,T ]V (Σ1) as current)

Currents [Σi ] in STd , V generates geodesic flow.

[e [0,T ]V (Σ1)] = −
� T

0

ιV e
−tV [Σ1]dt

� �� �
Integration current
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Convex bodies in Torus.

Intersection formula.

Proof.

∂
� T

0
−ιV e

−tV [Σ1]dt
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Convex bodies in Torus.

Intersection formula.

Proof.

∂
� T

0
−ιV e

−tV [Σ1]dt= −
� T

0
dιV e

−tV [Σ1]dt −
� T

0

ιV de
−tV [Σ1]dt

� �� �
=0
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Convex bodies in Torus.

Intersection formula.

Proof.

∂
� T

0
−ιV e

−tV [Σ1]dt= −
� T

0
dιV e

−tV [Σ1]dt −
� T

0

ιV de
−tV [Σ1]dt

� �� �
=0

= −
� T

0
LV e

−tV [Σ1]dt

= e−TV [Σ1]− [Σ1].
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Convex bodies in Torus.

Intersection formula.

Proof.

∂
� T

0
−ιV e

−tV [Σ1]dt= −
� T

0
dιV e

−tV [Σ1]dt −
� T

0

ιV de
−tV [Σ1]dt

� �� �
=0

= −
� T

0
LV e

−tV [Σ1]dt

= e−TV [Σ1]− [Σ1].

Assume all intersections transverse, weight intersections:

ζ(s) =
�

γ

e−s�(γ) = −
� ∞

0

�
[Σ2], ιV e

−tV [Σ1]
�
e−tsdt (2)
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Convex bodies in Torus.

Intersection formula.

Proof.

∂
� T

0
−ιV e

−tV [Σ1]dt= −
� T

0
dιV e

−tV [Σ1]dt −
� T

0

ιV de
−tV [Σ1]dt

� �� �
=0

= −
� T

0
LV e

−tV [Σ1]dt

= e−TV [Σ1]− [Σ1].

Assume all intersections transverse, weight intersections:

ζ(s) =
�

γ

e−s�(γ) = −
� ∞

0

�
[Σ2], ιV e

−tV [Σ1]
�
e−tsdt (2)

Key observation, the resolvent appears:

ζc1,c2(s) = −
�
[Σ2], ιV (V + s)−1[Σ1]

�
(3)
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Convex bodies in Torus.

Nguyen Viet Dang (Sorbonne Université) Poincaré Series and Convex Bodies on Flat Tori. 20 / 23



Convex bodies in Torus.

Idea from kinetic theory, Degond (1985).

Fourier transform in x , keep dependence in θ, for currents U1 = ιV [Σ1],U2 = [Σ2] :

�
U2, (V + s)−1U1

�
S∗Td

=
1

(2π)d

�

ξ∈Zd

�

Sd−1

(i �ξ, θ�+ s)−1

� �� �
�U1(ξ, θ)�U2(−ξ, θ)dd−1θ.
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�
U2, (V + s)−1U1

�
S∗Td

=
1

(2π)d

�

ξ∈Zd

�

Sd−1

(i �ξ, θ�+ s)−1

� �� �
�U1(ξ, θ)�U2(−ξ, θ)dd−1θ.

Each ξ, multiplication operator by height function:

mξ : f ∈ L2(Sd−1) �−→ �ξ, .� f ∈ L2(Sd−1).
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Fourier transform in x , keep dependence in θ, for currents U1 = ιV [Σ1],U2 = [Σ2] :

�
U2, (V + s)−1U1

�
S∗Td

=
1

(2π)d

�

ξ∈Zd

�

Sd−1

(i �ξ, θ�+ s)−1

� �� �
�U1(ξ, θ)�U2(−ξ, θ)dd−1θ.

Each ξ, multiplication operator by height function:

mξ : f ∈ L2(Sd−1) �−→ �ξ, .� f ∈ L2(Sd−1).

Sums over resolvent of m :

1

(2π)d

�

ξ∈Zd

�

Sd−1

(imξ + s)−1 �U1(ξ, θ)�U2(−ξ, θ)dd−1θ
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Convex bodies in Torus.

Spectral theory of multiplication operator mf .

f analytic Morse on Sd−1, spectrum of mf : L
2(Sd−1) �→ L2(Sd−1) is [inf(f ), sup(f )].
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Convex bodies in Torus.

Spectral theory of multiplication operator mf .

f analytic Morse on Sd−1, spectrum of mf : L
2(Sd−1) �→ L2(Sd−1) is [inf(f ), sup(f )]. But

if U1,U2, f analytic on Sd−1, Ũ1, Ũ2, f̃ holomorphic extension on Sd−1
C :

�

Sd−1

U1U2

f − s
dd−1θ
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Convex bodies in Torus.

Spectral theory of multiplication operator mf .

f analytic Morse on Sd−1, spectrum of mf : L
2(Sd−1) �→ L2(Sd−1) is [inf(f ), sup(f )]. But

if U1,U2, f analytic on Sd−1, Ũ1, Ũ2, f̃ holomorphic extension on Sd−1
C :

�

Sd−1

U1U2

f − s
dd−1θ =

�

Sd−1⊂Sd−1
C

Ũ1, Ũ2

f̃ − s
dd−1θ =

�

Sd−1⊂Sd−1
C

1

(f̃ − s)
Ω

hol.∈Λtop
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Convex bodies in Torus.

Spectral theory of multiplication operator mf .

f analytic Morse on Sd−1, spectrum of mf : L
2(Sd−1) �→ L2(Sd−1) is [inf(f ), sup(f )]. But

if U1,U2, f analytic on Sd−1, Ũ1, Ũ2, f̃ holomorphic extension on Sd−1
C :

�

Sd−1

U1U2

f − s
dd−1θ =

�

Sd−1⊂Sd−1
C

Ũ1, Ũ2

f̃ − s
dd−1θ =

�

Sd−1⊂Sd−1
C

1

(f̃ − s)
Ω

hol.∈Λtop

=

�

et∇Im(f )Sd−1

1

(f̃ − s)
Ω

hol.∈Λtop

Stokes allows cycle deformation.
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Convex bodies in Torus.

Thank you again for the invitation and for your attention.

Nguyen Viet Dang (Sorbonne Université) Poincaré Series and Convex Bodies on Flat Tori. 23 / 23
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