

Soft nanofluidics

Anne-Laure Biance

Université Claude Bernard

Sub-nanometric transport in water

Anomalous behaviors reported :

- in confined systems (<1nm)
- in the vicinity of van der Waals materials (graphene, hBN)

Friction

Secchi et al. 2016

Electric permittivity

Fumagalli et al. 2018

Effect of the confinement and/or of the material?

Motivations

Limitations of model experimental systems

-Not versatile (one size, one material)

-Difficult to build from a technological point of view

-Far from real systems for applications

Soft films as nanofluidic channels

Benjamin Franklin's experiment (1774)

Clapham pond before a drop of oil is added

Clapham pond after a drop of oil (with contaminants) is added

https://edu.rsc.org/download?ac=11854

Liquid film of molecular thickness!

Soft films as nanofluidic channels

Condensed films

Thickness: 0.2-3 nm Ultimate confinement

Soap films: motivations

Electroosmosis!

Biance, Delbos, Pitois, PRL 2011

Complex boundary condition

Slippage depends on surfactant concentration (MD simulations)

 $b = \frac{1}{3\pi\Gamma a}$

Joly, Detcheverry, Biance, PRL 2014

Surfactant distribution at interface

- SHG \rightarrow surfactant distribution
- Confocal microscopy \rightarrow electroosmosis

No Marangoni stress, no net force on the surfactants Similar to hydrophobic surfaces,

Huang et al., PRL 2007

Soap films and foams

• **Deformable systems** – non-linearities

Bonhomme, Liot, Biance, Bocquet, PRL 2013

• Coupling with thermal effects (liquid foams)

Coupling with electronic transport

Electronic surfactants

Spectrometric ellipsometry

Changwoo Bae, Samuel Albert

Soft films as nanofluidic channels

Soap films

Thickness: 5-100 nm Complex boundary conditions, deformability

Condensed films

Thickness: 0.2-3 nm

Breakdown of continuous description: Conductance measurements

Condensed film on a substrate

Spreading parameter

$$S = \gamma_{SV} - (\gamma_{SL} + \gamma_{LV}) \ge 0$$

Humidity control

3: variation of substrate temperature

$$RH[\%] = \frac{p_{vap}}{p_{sat}(T_{sub})} \times 100$$

Condensed film experiments: set-up

Temperature controller

Thermostated bath

Vacuum pump

Condensed film thickness: ellipsometry

Material = Silica

• Silicon wafer with deposited layer of SiO₂

Cleaning

Substrate -Detergent + ultrasound -3 min UV Ozone plasma

Cell and set-up -Vacuum (10 Pa) during one week to remove dusts

Thickness measurements: Ellispometry

Film thickness

Liquid-substrate interactions

• Film thickness set by the interaction energy (disjoining pressure)

$$\pi(h) = \rho_l kT \log(\text{RH})$$

• Disjoining pressure origins

Wetting: statics and dynamics, P. G. de Gennes, Rev. Mod. Phys. 57, 827, 1985

-Electrostatics (counter-ions only)

D. Andleman, Soft condensed matter physics in molecular and cell biology, 6, 2006

-Adsorption layer model

R. Pashley, Journal of colloids Int. Science, 78, 1980

 $\pi(h) \sim \frac{1}{h}$

-Van der Waals

 $\pi(h) = \frac{A_{slv}}{\epsilon_{\pi k}}$

Film thickness: discussion

Calculated value of the silica/water/air Hamaker constant: 1-5 x 10⁻²⁰ J

J. Visser, Advances in Colloids and Interface Science, 1972, 331-363

Electrical measurements

Side view

Conductance as a function of film thickness

- Generic Features:
 - Non-linear Increase with h
 - Conductance saturation •

Conductance: continuous regime

Hypotheses:

(i) Zero charge at the water/vapor interface(ii) Ionic transport due to counter-ions (H⁺)

 $\rho_{+}(z)?$

$$I = e \times L_{tot} \int_0^h \rho_+(z) u_+(z) dz$$

$$u_{+}(z)?$$

Conductance: continuous regime

$$I = e \times L_{tot} \int_{0}^{h} \rho_{+}(z) u_{+}(z) dz$$
$$u_{+}(z) \simeq e \mu_{+} E$$
$$+$$
Electroneutrality

 $^{h}
ho(z)dz = [\mathrm{SiO}^{-}]_{s}$

$$I \simeq eL_{tot} \times [\mathrm{SiO}^-]_s \times e\mu_+ E$$

(Independent of *h* if [SiO⁻]_s is constant)

D. Stein et al., PRL 2004 among others

 \boldsymbol{Z}

Conductance: continuous regime

constant charge

- constant potential
- charge regulation *Not satisfying*

Increase with *h* in the confined regime?

#Hypothesis: effect of surface friction

$$I = e \times L_{tot} \int_0^h \rho_+(z) u_+(z) dz$$
$$u_+(z) \simeq e \mu_+(z) E$$

Stagnant layer of ions?

Z

Naïve model: chemical layer with immobile ions

Stagnant layer \rightarrow conductance increases with h

Detailed analysis: stagnant layers model $I \simeq E \ eL_{tot} \times [SiO^{-}]_{s} \times \mu_{+} \times \frac{h - \delta}{h}$

$$I = E \frac{4\epsilon K}{2\pi\ell_B \eta} \left(\frac{\ell_B}{3r_h} \tan(K\frac{h-\delta}{2}) + \tan(K\frac{h-\delta}{2}) - \frac{K\delta}{2} \right)$$

 $Kh \times \tan(Kh) = \frac{h}{\ell_{GC}}$

electrophoretic contribution electroosmosis contribution

Bocquet, Charlaix, Chemical Society Reviews, 2011

Back to experiments

Fitting parameters

$$\delta = 0.3$$
nm

Surface charge $20 \ \mu C/m^2$ \rightarrow OK with literature (charge regulation)

Stagnant layer → In contrast with so-called Stern layer → In agreement with statics and hydrodynamics

> Georges, S Millot, J Loubet, A Tonck, 1993. M Cieplak, J Koplik, JR Banavar, Phys. Rev. Lett., 2001.

Allemand, Zhao, Vincent, Fulcrand, Joly, Ybert, Biance, PNAS (in press)

Origins of the stagnant(s) layer?

h=0.284 nm

h=1.73 nm

Fixed ionized groups [SiO⁻]_s=10

MD simulations *dt*=50ps

-Silanol -Silica -Cation -Water

Conductance measurements: MD

$$I \simeq E \ eL_{tot} \times [\mathrm{SiO}^-]_s \times \mu_+ \times \frac{h - \delta}{h}$$

Diffusion coefficient of the ions: MD

$$D_{+}(z) = \mu_{+}(z)kT$$
$$u_{+}(z) = e\mu_{+}(z)E + u_{EO}$$

$$I = e \times L_{tot} \int_0^h \rho_+(z) u_+(z) dz$$

Good agreement

Origins of the hindered diffusion layer

Normalized local time averaged thickness maps (top view on the film)

Si0⁻ group

Dry spots on neutral zones?

Take-home messages

Experiments to measure transport in subnanometric water films.

Break-down of continuous description < 0.3 nm.</p>

→ Effect of the material?
(F. Vialla, M. Zhao)
→ MD with reactive interface

Design of an ionic gate, activated by humidity or temperature.

 \rightarrow Optical activation?

♦ Out-of-equilibrium response for humidity gradients?
 → Macroscopic results

Thanks to my colleagues...

Aymeric Allemand

Menghua Zhao

Remy Fulcrand

Laurent

Joly

Christophe

Ybert

Olivier Vincent

Team Liquid and Interfaces