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2D crystals — isolated crystallographic planes

A.K. Geim & |.V.Grigorieva, et al. Nature (2013)



Impermeable to all atoms at ambient conditions
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Current (nA)

Graphene is perfectly selective proton conductor out of plane

Excellent out-of-plane proton conductor
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Interpreation: Protons pierce the pristine crystal lattice
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Ion selectivitiy
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Nernst potential — stops current
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Perfect proton selectivity
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Perfect proton selectivity
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Perfect proton selectivity
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Alternative interpretation: transport through small defects
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SECCM of CVD devices: huge currents (nA)
scattered in rare spots

C. Bentley et al. ACS Nano. (2022).



SECCM of CVD devices: huge currents (nA)
scattered in rare spots
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SECCM of mechanically exfoliated graphene
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SECCM of mechanically exfoliated graphene
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Nanoscale non-flatness accelerates proton transport
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Nanoscale non-flatness accelerates proton transport
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Nanoscale non-flatness accelerates proton transport
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Scans of our CVD devices: no large fluxes, no holes.
Enhanced activity in grain boundaries

e SECCM proton current

Synchronous SECCM topography
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Interfacial water dissociation
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Graphene is perfectly selective proton conductor out of plane

Excellent out-of-plane proton conductor
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Graphene is an excellent in plane electron conductor

Gate tuneable Fermi energy provides
Excellent in-plane electron conductor knowledge of interfacial charge density
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Proton permeable graphene electrodes

Graphene
Pt

nanoparticles

Si nitride membrane AgClI reference T

with micrometre .
aperture
counter electrode




Proton permeable graphene electrodes
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Alkaline pH ensures all protons come from water dissociation



Proton permeable graphene electrodes
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Proton permeable graphene electrodes

Graphene Ht E

Si nitride membrane OH AgCl reference T

with micrometre .
counter electrode

Pt
nanoparticles

aperture




Fermi energy and n can be characterised in situ with Raman
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Intrinsic proton currents as a function of pH
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Reference multilayer graphene gave no currents
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Proton permeability is essential to observe the effect
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We can correlate both data sets

Proton conductivity (mS cm™)
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Onsager’s theory combines epsilon with conductivity

Deviations from Ohm’s Law in Weak Electrolytes

Lars OnsAGER,* Sterling Chemisiry Laboratory, Yale University
(Received May 29, 1934)

The effect of an external electric field on the electrolytic
dissociation is computed kinetically from the equations for
Brownian motion in the combined Coulomb and external
fields, The result is an increase of the dissociation constant,
by the factor K(X)/EK(0)=F(h)=1+b+(1/3)b24---,
where the parameter b is proportional to the absolute value
of the field intensity, and inversely proportional to the
dielectric constant, In water at 25°, F(b) = F(1)=2.395 for
a field of 723 kilovolt/cm, while in benzene, the same
increase of the dissociation constant is obtained for a field
of only 21 kilovolt/cm. The theory is quantitatively
confirmed by the deviations from Ohm’s law which have
been observed for solutions of weak electrolytics in water
and in benzene, For solutions of salts in acetone, and for
solid electrolytes such as glass, mica, celluloid, etc., the
observed increments of conductance are smaller than
those expected from the theory, but still of the predicted

type and order of magnitude. The kinetic constants of
dissociation and recombination can be computed separately
on the assumption that the recombination proceeds as
rapidly as the mutual approach of two ions due to the
Coulomb attraction. The derivation is equivalent to that
of Langevin, and leads to the same result. In the Langevin
case, the coefficient of recombination is independent of the
field; that of dissociation is increased by the factor F(b).
Slower reactions may occur when a (chemical) rearrange-
ment of the ion pairs is involved. In the most general case,
it is necessary to consider the successive reversible reactions
tonse—=pairse—molecules, where the former takes place with
the Langevin velocity; only the reaction rate pairs—ions
depends on the field. On the basis of this picture, the
saturation phenomena observed in dielectrics are discussed
in relation to the field effect.




From Onsager theory we can extract epsilon and therefore E
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Water dissociation eventually leads to H2 and O2 gases
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Water dissociation eventually leads to H2 and O2 gases
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Water dissociation eventually leads to H2 and O2 gases

2D proton
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Take home message
Interfacial water dissociation can be strongly accelerated with E

Graphene electrodes are a powerful platform to study interfacial phenomena
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