Genomic basis of repeated adaptation varies with divergence in Arabidopsis (and other species)!

Magdalena Bohutínská

Is adaptive evolution predictable?

- Determinism or historical contingency?

Is adaptive evolution predictable?

- Determinism or historical contingency?
- Predictive evolution of pathogens/pests/in polluted environment?

Predictable adaptation?

Repeated adaptation in nature - model system to test it

Repeated freshwater adaptation art

Genetic basis of repeated adaptation

Manceau et al. 2010

Genetic basis of repeated adaptation

ADAPTATION

Freshwater adaptation 1 Freshwater adaptation 2

also EDA gene

Manceau et al. 2010

Predictable genetic basis of repeated adaptation?

Variation in the degree of gene reuse!

Arctic adaptation Draba and Cochlearia species Low gene reuse Birkeland et al., 2020

Serpentine soil adaptation Arabidopsis populations High gene reuse Konecna et al., 2021

Predictable genetic basis of repeated adaptation?

Variation in the degree of gene reuse!

Divergence time?

Variation in the degree of gene reuse!

Arctic adaptation Draba and Cochlearia species Low gene reuse Birkeland et al., 2020

Serpentine soil adaptation Arabidopsis populations High gene reuse Konecna et al., 2021

Hypothesis Divergence time-driven probability of repeated adaptation

Hypothesis

Divergence time-driven probability of repeated adaptation

Phenotypic convergence:

Repeated genetic basis of traits

Ord & Sommers, 2015

Conte et al, 2012

- Empirical support in nature?
- If yes, what are the underlying mechanisms?

- Empirical support in nature?
- If yes, what are the underlying mechanisms?

- Empirical support in nature?
- If yes, what are the underlying mechanisms?

- Empirical support in nature?
- If yes, what are the underlying mechanisms?

Methods

Desired case study design

Methods

Results

Bohutínská et al. 2021, PNAS

1. Recent divergences

7 alpine lineages

Arabidopsis arenosa and A. halleri

1. Recent divergences

7 independent alpine lineages

Arabidopsis arenosa and A. halleri

Bohutínská et al. 2021, PNAS

7 lineages = 21 parallel pairs

Bohutínská et al. 2021, PNAS

1. Recent divergences

Significant **gene reuse** ↑ genetic divergence ↓ convergent genome evolution

Bohutínská et al. 2021, PNAS

Bohutínská et al. 2021, PNAS

1. Recent divergences

Bohutínská et al. 2021, PNAS

WRAP-UP 1: alpine adaptation over recent divergences

Questions

- Empirical support in nature?
- If yes, what are the underlying mechanisms?

Reduction in allele sharing

WRAP-UP 1: alpine adaptation over recent divergences

Methods

Desired case study design

degr

Arabidopsis lyrata

Arabidopsis arenosa

Cardamine amara

divergence time

expectation

- Diploid and tetraploid populations
- Similar distribution range

Bohutínská et al. 2021, MBE Marburger et al, 2019, Nature Comm

intermediate

GENE FLOW -> alleles shared

Absence of shared alleles -> functional repeatability?

2. Internediate divergences: adaptation to whole genome duplication Absence of shared alleles -> functional repeatability!

- Empirical support in nature?
- If yes, what are the underlying mechanisms?

Reduction in allele sharing + functional repeatability

- Empirical support in nature?
- If yes, what are the underlying mechanisms?

Bohutinska & Peichel, in prep.

3. All divergences: expectation

Bohutinska & Peichel, in prep.

3. All divergences: expectation

3. All divergences: data

WRAP-UP 3, all divergences: clear mechanisms, unclear data

Conclusions & future directions?

- 1. Divergence matters! Sometimes...
 - a. Adaptation more repeateble among more closely related lineages
- 2. More empirical research across wide scales
 - a. What are suitable selection pressures?
- 3. Better knowledge & timing of mechanisms

THANK YOU FOR ATTENTION!

And many thanks to:

Katie Peichel (Bern) Filip Kolář (Prague) Levi Yant (Nottingham) Tanja Slotte (Stockholm) Graham Coop (Davis) Rosi Schmickl (Prague)

Alžběta Poštulková Jakub Vlček Veronika Konečná Sivan Yair Sian Bray And many others!

Evolutionary ecology (Bern)

Plant ecolgen (Prague)

- Protein-protein interaction prediction:

CS4: Bohutínská et al. 2021, MBE **CS5**: Bohutínská et al. 2021, MBE

Number of interactions when candidate lists sampled randomly

2. Deeper divergence levels

229 C. amara WGD adaptation candidates:

- 90 interact with WGD adaptation candidate in A. arenosa

CS4: Bohutínská et al. 2021, MBE **CS5**: Bohutínská et al. 2021, MBE

~ 10 kva

2. Deeper divergence levels

229 C. amara WGD adaptation candidate genes:

- 90 interact with a WGD genes in A. arenosa

CS4: Bohutínská et al. 2021, MBE **CS5**: Bohutínská et al. 2021, MBE

2. Deeper divergence levels

Adaptation to WGD

Cochlearia & Cardamine amara & A. arenosa Deepest divergence covered - ~ 25 Mya

- Limited gene reuse
- Function reuse

2. The phenotypic and fitness effect of convergent alpine genes

Bohutínská et al. 2021, PNAS

- 2. The phenotypic and fitness effect of convergent alpine genes
- 1. Crossing

2. The phenotypic and fitness effect of convergent alpine genes

 Crossing -> contrasting allele and genome background

- 2. Transplant + common garden experiment
 - a. The fitness gain under alpine conditions
 - b. Fitness loss under foothill conditions negative side-effects?

Q*

Following

 \square

Further research directions?

The effect of constraints? Pop-gen analyses & experimental validation

Follow up - what determines the probability of gene reuse?

- Testing for effect of:
- Availability of shared variation (DMC)
- Pleiotropy (~ network connectivity, Josephs, 2017, regulatory/coding variation)
- Selective constraints (~ nonsyn/syn diversity, conservation of protein sequence across plant genomes)
- Mutational target size (~ gene length, pocet intronu/exonu - velky vyznam v regulaci napr. Alternativnim splicingem - cim vic, tim vetsi variabilita v alternativnim splicingu - uplatitelne v evoluci?)
- Protein co-evolution (~ correlation in allele frequencies, selection sweep ages)
- Position in the pathway zacatek/uplne konce/misto, kde se rozbiha vice downstream drah
- Compensatory mutations (???)

Bohutínská, ... , Kolář, submitted

Shallow divergence levels

