

Marc-André SELOSSE

Muséum national d'Histoire naturelle Institut Universitaire de France Univ. de Gdansk (Pologne) & de Kunming (Chine)

... il était une fois, au XIXème siècle ...

PREMIERE DEFINITION

"das Zusammenleben ungleichnamiger Organismen" (De Bary, "De la Symbiose", 1879) :

- une définition conforme à l'étymologie
- ne préjuge pas des échanges (inclut certains parasites)
- avec un terme sans doute subtilisé à Frank ("Symbiotismus", 1877)

SECONDE DEFINITION

"On voit des animaux qui se rendent mutuellement des services. Il serait peu flatteur de les qualifier tous de parasites ou de commensaux. Nous croyons être plus justes à leur égard en les appelant mutualistes" (Van Beneden, 1875)

-> coexistence & mutualisme, une définition plus restrictive

LES AMIS DANGEREUX

TROISIEME DEFINITION

Coexistence & mutualisme, celui-ci étant défini comme une amélioration réciproque du succès évolutif des deux partenaires en présence.

... des symbioses partout, pour se nourrir...

MYCORHIZE (ARBRES TEMPERES)

MYCORHIZE (ARBRES TEMPERES)

LA MYCORHIZE = LES LICHENS

Des échanges nutritifs réciproques :

Protection contre les agressions physiques et biologiques

... des symbioses protectrices ...

DES ACARIENS POUR LES ARBRES

DES ACARIENS POUR LES ARBRES

Les domacies à acariens protecteurs des arbres

DES ACARIENS POUR LES ARBRES

Les domacies à acariens protecteurs des arbres

Nbr. de capsules de coton

Témoin + domatie

Anurag *et al*., Nature, 387, 562

Protection foliaire

Non mycorhizé

Mycorhizé

Protection foliaire contre Botrytis cinerea

Non mycorhizé

Mycorhizé

Protection foliaire contre Botrytis cinerea

Non mycorhizé

Mycorhizé

Dégâts (% surface feuille morte)

Protection foliaire contre Botrytis cinerea

Non mycorhizé

Mycorhizé

Accumulation des composés de défense

Mycorhizé

Non mycorhizé

Petits peptides sécrétés modificateurs

Petits peptides sécrétés modificateurs

Petits peptides sécrétés modificateurs

Boque le récepteur nucléaire de l'acide jasmonique (hormone d'alerte en cas d'attaque parasitaire)

> Plett et al. (2011) Current Biology 21, 1197-1203

... en nous, profondément...

Les mitochondries, centrales énergétiques, lieu de la respiration

PAUL PORTIER

Maître de Conférences à là Faculté des Sciences de Paris. Professeur à l'Institut océanographique.

LES SYMBIOTES

Toute synthèse biologique est L'œuvre d'un symbiote VIVANT.

AVEC 63 FIGURES DANS LE TEXTE ET 1 PLANCHE

FIG. 10. — CHONDRIOSOMES EN VOIE DE DIVISION DU Spirostomum ambiguum. (D'après Fauré-Frémlet.)

Les mitochondries, centrales énergétiques, lieu de la respiration

Mitochondrial branch. The portion for *Rickettsiales* is shown for the most likely tree found by Bayesian analysis of the concatenation of masked alignments for 16 selected protein families (4,830 characters), in which each node received 100% Bayesian support, except those indicated with underlined values. Identical topologies for bacterial strains arose as the ML bootstrap consensus, from which all nodes received 100% support, except those indicated in parentheses. The inset shows the topology for the mitochondrial branch from the ML bootstrap consensus, collapsing nodes with <50% support. The outgroup and alphaproteobacterial portions of the tree that are collapsed in this depiction had the same topology as those shown in Fig. 3.

Les mitochondries, centrales énergétiques, lieu de la respiration

Les mitochondries, centrales énergétiques, lieu de la respiration

Mitochondries et chloroplastes

Chimère, à tête de lion, corps de chèvre et queue de serpent, est la fille du géant Typhon et d'Echidné, la femme-serpent.

Elle est la sœur de Cerbère, le gardien des Enfers, de l'Hydre à neuf têtes et d'Orthrus, un chien multicéphale

a10 c10 70 E10 a)11 m9 48 28 <u>k</u>8 18 m8 /k7 ai ·m7 146 a6% k6 -m5 a5: d5 13 1/13 2/m2 82 az

Darwin, 1859 On the origin of species

... en nous et sur nos surfaces...

Notre microbiote

10 000 milliards de bactéries dans l'intestin

1 000 milliards sur la peau

100 milliards ailleurs

... contre 10 000 milliards de cellules humaines

Souris axéniques

INRA Jouy

Aliments complexes

Aliments assimilables

Aliments complexes

Aliments assimilables

Aliments complexes

Aliments assimilables

Déchets de fermentation : butyrate, acétate...

Aliments complexes

Aliments assimilables

Déchets de fermentation : butyrate, acétate...

Aliments complexes

Aliments assimilables

Déchets de fermentation : butyrate, acétate...

Cell. mortes

EPITHELIUM INTESTINAL

Aliments assimilables

Déchets de fermentation : butyrate, acétate...

Cell. mortes

Aliments assimilables

Déchets de fermentation : butyrate, acétate...

sucres

vitamines

Aliments assimilables

sucres

Déchets de fermentation : butyrate, acétate...

Cell. mortes

vitamines 5-10% des besoins

Staphylocoque doré...

Staphylocoque doré...

... & Staphylocoque de Lyon

Staphylocoque doré...

... & protéases des Malassezia

MICROBIOTE ANIMAL

Leishmania major

IOTE ANIMAL

Leishmania major

Contrôle

LICE ANIMAL

Contrôle Axénique

trôle nique

Contrôle Axénique Axé. + S. epidermidis

Diaz Heijtz *et al.*, 2011. *PNAS*

Diaz Heijtz *et al.*, 2011. *PNAS*

Diaz Heijtz *et al.*, 2011. *PNAS*

Essai de 5 minutes sur des souris normales (= symbiotiques) ou axéniques

Expression génétique cérébrale normale *ou* axénique

Nerve growth factor-inducible clone A, marqueur de l'anxiété

Brain-derived neurotrophic factor, marqueur de plasticité synaptique

MICROBIOTE HUMAIN

D'après J.-F. Bach

MICROBIOTE HUMAIN

D'après J.-F. Bach

MICROBIOTE HUMAIN

D'après J.-F. Bach
MICROBIOTE ET IMMUNITE

Maladies :

- du métabolisme (diabètes, obésité...)
- du système immunitaire (asthme, allergie, maladies auto-immunes...)
- du système nerveux
 (autisme, Parkinson,
 Alzheimer...)

MICROBIOTE ET IMMUNITE

WHAT'S IN HUMAN MILK

WHAT'S IN HUMAN MILK

Human Milk Oligosaccharides (HMOs)

WHAT'S IN HUMAN MILK

Human Milk Oligosaccharides (HMOs)

... en une voie vers l'interdépedance...

10 000 milliards de bactéries dans l'intestin

1 000 milliards sur la peau

100 milliards ailleurs

... contre 10 000 milliards de cellules humaines

La symbiose comme une complexification

La symbiose comme une complexification

Pas de sélection

Contingence neutre

Contingence neutre, souvent irréversible

La coexistence comme une dépendance

La coexistence comme une dépendance

Effet de l'interaction sur :

	Espèce A	Espèce B
Compétition	-	-
Mutualisme, symbiose	+	+
Prédation, parasitisme	+	-
Commensalisme	+	0
Amensalisme	-	0
Neutre	0	0

