(this slide left blank)

Close Enough

How Humans Develop a Simplified Model of **Objects & Their Physics**

HARVARD Mind Brain Behavior Tomer Ullman, Harvard University

Collège de France, 2024

Overview

"What's Your Deal?"

Approximate Bodies Partial Simulation

Imagery & Imagination

? Non-Commitment

🥪 Visual Pretense

My Background

(b)

-

(Vb)

b

Commonsense Reasoning / Intuitive Theories

Intuitive Physics

Feature F2: "/a.

Heuristics: H(F,), H(F2)

Decision Rule: 0[H(F₁), H(F₂)]

a→ b → (Ua) (Ub) (g) e m ma

(Va)

(define puck (make-dynamic-entity pos shape mass vel ...)) (1) -dynamics entities force init-cond steps dt) (if (= steps 0) '() ((m (get-mass entities) forces forces entities) a (/ F m))

Intuitive Psychology

Adults and Children

Computational Models and AI

Ullman, T. D., & Tenenbaum, J. B. (2020). Bayesian models of conceptual development: Learning as building models of the world. Annual Review of Developmental Psychology, 2, 533-558

Overview

"What's Your Deal?"

Approximate Bodies Partial Simulation

Imagery & Imagination

🥪 Visual Pretense

Core knowledge

Early developing or innate

Shared with other animals

General principles, limited domains

Core Physics Knowledge

Infants have expectations about objects

Permanence

Cohesive

Solid

Smooth paths

Contact causality

Video by Kristina Pattison University of Kentucky

Adults and Intuitive Physics

Game Engines

Mental Game Engines

More examples (partial)

Collisions and noise e.g. Smith & Vul (2013)

Liquids e.g. Bates et al. (2015)

Counterfactual / causal e.g. Gerstenberg et al. (2017)

Theory search e.g. Ullman et al. (2018)

Active learning e.g. Bramley et al. (2018)

Alternatives in ML/AI (partial)

Alternative Models of Core Physics

Alternative Models of Core Physics II

Probing Physics Knowledge Using Tools from Developmental Psychology

Alternative Models of Core Physics III

IntPhys: A Benchmark for Visual Intuitive Physics Reasoning

emmanuel.dupoux@gmail.com

A Minimal Game Engine

Full mental game engine as adult state

Minimal game engine with:

Approximate Objects

Dynamics (+ noise + collision detection)

Priors and re-sampling

Memory/tracking

ADEPT

<u>Approximate De-renderer, Extended Physics, and Tracking</u>

Kevin Smith

Lingjie (Jerry) Mei

Shunyu Yao

Jiajun Wu

Liz Spelke

Josh Tenenbaum

Smith, K.*, Mei, L.*, Yao, S., Wu, J., Spelke, E., Tenenbaum, J.B., Ullman, T.D., (2019), Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations, Advances in Neural Information Processing Systems

ADEPT Overview

x⁽¹⁾(surprising)

 $x^{(2)}$ (not surprising)

 $c(\mathbf{x}^{(1)}) > c(\mathbf{x}^{(2)})$ is expected to hold, where c() is level of surprise **Violation types**

- 1. Create
- 2. Vanish
- 3. Overturn (short)
- 4. Overturn (long)

- 5. Discontinuous (invisible)
- 6. Discontinuous (visible)
- 7. Delay
- 8. Block

ADEPT Train and Test

ADEPT Train and Test

ADEPT Comparisons

Relative accuracy

$$\frac{1}{n_{+}n_{-}}\sum_{i,j} \mathbb{1}[c(x_{i}^{+}) > c(x_{j}^{-})]$$

~1,500 videos (8 scenario

x shapes types) Baselines

Encoder-decoder, GAN (Riochet 2018); LSTM

Encoder-decoder	GAN	LSTM	ADEPT

Average

Human Studies

Compare model & human by stimuli type

ADEPT closest by a factor of 2, above chance on all scenarios \checkmark Other models <= chance for half of scenarios X

Overview

Approximate Bodies Partial Simulation

Imagery & Imagination

- **?** Non-Commitment
- 🥪 Visual Pretense

Approximations in Game Engines

Kevin Smith

Sam Gershman

Li, Y., Wang, Y., Boger, T., Smith, K., Gershman, S. J., & Ullman, T. D. (in press). JEP: General, An Approximate Representation of Objects Underlies Physical Reasoning

Tracking / collisions Rough form Elasticity, mass

Tasks that dissociate body from shape

Greater body approximation —

Causality & Approximate Bodies

Overview

Partial Simulation

Imagery & Imagination

- Magic
- **?** Non-Commitment
 - 🥑 Visual Pretense

Partial Simulation

Bass, I., Smith, K., Bonawitz, E., & Ullman, T. D. (2021). Partial Simulation Explains Fallacies in Physical Reasoning.

The Problem

Physics Engines... ...Should obey probability $P(A) \ge P(A \& B)$

Ludwin-Peery, E., Bramley, N. R., Davis, E., & Gureckis, T. M. (2020). Broken physics: A conjunction-fallacy effect in intuitive physical reasoning. *Psychological Science*, *31*(12), 1602-1611.

The Physical Conjunction Fallacy

G: Sphere on Grass H: Cannonball Hit

P(G) < P(H&G)

Ludwin-Peery, E., Bramley, N. R., Davis, E., & Gureckis, T. M. (2020). Broken physics: A conjunction-fallacy effect in intuitive physical reasoning. *Psychological Science*, *31*(12), 1602-1611.

Partial simulation model

p(G): "How likely is it that the pink sphere will end up on the grass?"

Model Predictions

Direct-hits CF goes up

Sphere starting further from hole center CF goes down

Together: Inverse-U with position of sphere Moved up/down by P(collision)

Empirical Results

A

CF Magnitude

Conjunction Fallacy

> Does *not* negate Ludwin-Peery et al. Partial simulation not fallacy per se; is useful

Overview

Approximate Bodies Partial Simulation

Imagery & Imagination

Eric Bigelow

John McCoy

"A Person Walks into a Room and Knocks a Ball off a Table"

Bigelow, E. J., McCoy, J., & Ullman, T. (2023). Non-Commitment in Mental Imagery. *Cognition*

Ayer (1940), Shorter (1952), Block (1983), Dennett (1986, 1993), Pylyshyn (1978, 2002), Kosslyn et al. (2006)

Also see: Nanay (2015, 2016), Kind (2017)

Scene: "A person walks into a room

For every property, some people didn't commit to it

Some properties more than others

For every property, some people didn't commit to it

Some properties more than others

Non-Commitment and Vividness

Non-commitment only weakly related to "vividness" (VVIQ)

Confabulation(?)

Non-Commitment in the Imagination

Hierarchical scene construction

+ simulation != rendering

+ lazy evaluation

Trends in Cognitive Sciences

Overview

Approximate Bodies Partial Simulation

Imagery & Imagination

Visual Pretense and Physical Properties

Peng Qian

Qian, P. and Ullman, T.D. Shape Guides Visual Pretense (*psyArxiv*, 2024)

Building Intuition

Puzzles / Questions

Q1: <u>Is</u> there a preference in pretense?

Cf. Currie and Ravenscroft, 2002; Mollerup, 2019

Q2: What determines that preference?

e.g. Harris, 2000; Byrne, 2007; Nichols, 2006, McCoy & Ullman, 2019

Hypotheses

- H1: Some visual pretenses systematically preferred
- H2: Pretense preferences determined by hierarchy of features
- H3: In hierarchy ^, physical/spatial features > surface features
- H4: Current ML models do not capture human hierarchy

Empirical Studies

Study 3: Freeform Pretense

Study 4: Sub-part Alignment

Suppose is elephant, where is its trunk?

Experiments – Study 1

DALMATIAN

DRAGONFLY

٠

Α

It makes more sense to pretend the bowtie is [a *Dalmatian /* a *dragonfly*]

Study 3: "Freeform"

Suppose you pretend the **spoon** is something else.

What would it make sense to pretend the spoon is?

(I) PROMPT

1

Study 4: Alignment and Filling in

Suppose the mug is an elephant, where is the elephant's **trunk**?

Alignment and Filling in

Alignment and Filling in

Alignment in Metamorphoses

Overview

"What's Your Deal?"

Approximate Bodies Partial Simulation

Imagery & Imagination

- **?** Non-Commitment
- 🥪 Visual Pretense

Summary

Non-Commitment

...Lazy evaluation in hierarchical scene construction?

Visual Pretense preferences

