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Modeling 
geometrical shapes

Part I. Modeling shapes with a language of 
thought.

We will propose a simple language such 
that sequences and shapes with a lower 
minimal description length are precisely 
those that are universal across cultures, are 
judged as simpler, and are easier to 
recognize or to memorize.

Part II. Some challenges

- Can neural networks implement the 
language of thought? How?

- The importance of principal axes and the 
alternative theory of medial axis coding.



Can a “language of thought” 
account for all cross-culturally 
attested geometrical shapes?

Goal: propose a programming language that can 
account for the basic geometrical shapes used in 
human cultures throughout the world.
Test it as a candidate Language of Thought for 
geometrical shapes

The language contains a few key primitives:
- Number: 1, successor, fraction
- Geometry: Move, Turn Trace
- Control: Repeat, Concatenate, Subprogram

For instance, a square is:

Repeat (4)
{ Concatenate ( Trace() , Turn() }

Sablé-Meyer, Ellis, Tenenbaum & Dehaene. A language of thought for 
the mental representation of geometric shapes. 

Cognitive Psychology (2022)



Program :=
Concatenate : run one program and then another| Program ; Program
Repeat a program a certain number of times| Repeat([Int=2]) { Program }
Execute a program, then restore the original state| Subprogram { Program }
Trace a curve by moving according to the parameters| Trace([t=Int=1],

[speed=Num=+1],
[acceleration=Num=+0],
[turningSpeed=Num=+0])

Move a certain distance without tracing anything| Move([t=Num=+1])
Rotate the current heading| Turn(angle=Num)

Int :=
Number 1| one
Successor function| Next(Int)

Num :=
Return a signed number| +Int | -Int
Return the signed fraction of two integers| +Int/Int | -Int/Int

control

drawing

arithmetic

The full instructions set in our “language of geometry”
Sablé-Meyer, Ellis, Tenenbaum & Dehaene. A language of thought for the mental representation of geometric shapes. Cognitive Psychology (2022)



Minimal description length explains which shapes are simple and universal
The language generates all common shapes (e.g. square, spiral) with very short programs.
As programs get longer, more sophisticated shapes are produced.



Shape perception as program induction:
A proof of concept

repeat

3 concat

draw

/

draw

\

Minimum
Description

Length

Ellis, K., Wong, C., Nye, M., Sable-Meyer, M., Cary, L., Morales, L., ... & 
Tenenbaum, J. B. (2020). Dreamcoder: Growing generalizable, interpretable 
knowledge with wake-sleep bayesian program learning. arXiv preprint 
arXiv:2006.08381.

Program inference is, in general, a 
formidable task because the space of 
programs is vast and cannot be efficiently
searched e.g. by gradient descent.
In DreamCoder, three tricks are used:
- programs generate shapes in a top-down manner, but a 
neural network makes suggestions in a bottom-up manner.
- a « dream » stage is used to train this neural network, both
with (program, picture) pairs drawn either from random
programs or from past pictures and their solutions.
- another « sleep » stage discovers a libary of subprograms
that can efficiently compress previously found programs, and 
therefore reduce the search space.



Explaining cultural universals as well as diversity

The language generates all common 
shapes (e.g. square, spiral) with very 
short programs.

As programs get longer, more 
sophisticated shapes are produced.

The language can adapt to a specific 
“culture”, e.g. the grammar can be 
biased to produce more right-angles 
or, on the contrary, more curves.

“Greek” “Celtic”
A. Training set

B. Samples (dreams)



Testing the specific language proposed

Experiment 1. Does program length predict psychological complexity?

Task = 
1. Encode a shape in memory
2. After a delay, select it amongst 

distractors, chosen to be similar in 
both gray level and IT encoding. 

Sablé-Meyer, Ellis, Tenenbaum & Dehaene. A language of thought for the mental representation of geometric shapes. 
Cognitive Psychology (2022)

= Minimal description length (MDL)
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Experiment 2. Testing a generic prediction about shape complexity

ConcatenateRepeat Embed

Prediction: Shape complexity should be determined by the length of the shortest program capable of reproducing it.

Perceptually rich drawings can be generated by a single instruction:  repeat, concat, or embed.

Complexity should follow additive rules:
Complexity ( Repeat(x) )     = Complexity ( x )  + constant
Complexity ( Concat(x,y) ) = Complexity ( x ) + Complexity ( y ) + constant’
Complexity ( Embed(x,y) )  = Complexity ( x ) + Complexity ( y ) + constant’’We selected 5 base shapes with 

increasing complexities

… and used them into programs:

Sablé-Meyer, Ellis, Tenenbaum & Dehaene. A language of thought for the mental representation of geometric shapes. Cognitive Psychology (2022)



Two behavioral measures of shape complexity in humans

Phase 1 : Encoding

Subjects press a bar, then lift it 
when they feel they remember the pattern

measure = encoding time

Phase 2: Multiple choice

Subjects select the previous pattern 
among many mutants 

measure = choice time (and errors)

2s

Blank screen

Sablé-Meyer, Ellis, Tenenbaum & Dehaene. A language of thought for the mental representation of geometric shapes. Cognitive Psychology (2022)



Testing the predicted additive 
relationships 

There is an effect of shape complexity even for 
individual shapes  different “programs”

This effect predicts what happens in other conditions:

• Repetition of a shape n times
= addition of a term roughly proportional to log(n) 

• Concatenation of two shapes
= addition of the two complexities 

no interaction term, once we remove the special case 
of two identical shapes 

• Embedding of two shapes (e.g. a circle of squares)
= addition of the two complexities, with steeper 

slopes
Again, no interaction term, but a special savings when 
the same program is used twice (e.g. a circle of circles)

R² = 0.9 ; p < 0.0001
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Image: Paul Valcke

Beyond geometry:
Is recursive symbolic compositionality unique to humans?

I speculate that only the human species possesses compositional languages 
that can produce an infinity of new expressions or « mental programs », based 
on the same small repertoire of basic concepts.

We probably possess the same core knowledge as other animals
(objects, people, colors, numbers, probabilities, etc), but we 
recombine these concepts using « languages of thought », 
which allows us to form an infinite pyramid or coral of nested thoughts.

Those languages are universal – all humans can think the same thoughts. 

However, the space of mental expressions is so vast that different cultures may 
not make the same choices – linguistic communication and education orient 
attention to the branches that a given culture judges as most relevant.



1. There is a universal set of shapes, patterns, expressions and 
concepts that all humans find simple

 cross-cultural convergence towards the same ideas

Consequences (1)



Consequences (2)
2. The space of possible concepts is exponentially large
 human capacity to generate infinitely many concepts
 Extraordinary expansion of representational abilities
“infinite use of finite means” : chimeras, imaginary ideas…



Chimeras 
as the reflections of 
human singularity

Chimera of Arezzo (Etruscan)

The Lascaux “unicorn” The feathered snake (Quetzalcoatl)

The Dragon



Find most distant 
vector

= outlier
6 activation vectors

Compute the distance 
of each vector to the 
mean of the others
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compute error rate
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Challenge 1. How is the language of thought implemented at the neural level?
Current convolutional neural networks are very poor models of geometry
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Deep convolutional neural networks fall short of explaining human vision
Jacob, G., Pramod, R. T., Katti, H., & Arun, S. P. (2021). Qualitative similarities and differences in visual object representations between brains and deep 
networks. Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-021-22078-3
Ullman, S., Assif, L., Fetaya, E., & Harari, D. (2016). Atoms of recognition in human and computer vision. Proceedings of the National Academy of Sciences, 
113(10), 2744-2749. https://doi.org/10.1073/pnas.1513198113
Bowers, J. S., Malhotra, G., Dujmović, M., Montero, M. L., Tsvetkov, C., Biscione, V., Puebla, G., Adolfi, F., Hummel, J. E., Heaton, R. F., Evans, B. D., Mitchell, 
J., & Blything, R. (2022). Deep Problems with Neural Network Models of Human Vision. Behavioral and Brain Sciences, 1-74. 
https://doi.org/10.1017/S0140525X22002813

Many examples:

Jacob et al. 2021: “phenomena were absent in trained 
networks, such as 3D shape processing, surface invariance, 
occlusion, natural parts and the global advantage”

Ullman et al. 2016 show a non-linear collapse in human image 
recognition that does not exist in machines.

Bowers et al. 2022 go as far as to claim that “DNNs account 
for almost no results from psychological research” in shape 
representation.



Convolutional neural networks are severely limited
in accounting for geometric shape perception

Heinke, D., Wachman, P., Van Zoest, W., & Leek, E. C. (2021). A failure to learn object shape geometryௗ: 
Implications for convolutional neural networks as plausible models of biological vision. Vision Research, 189, 
81-92. https://doi.org/10.1016/j.visres.2021.09.004

Impossible figures are a class of visual stimuli that can only be recognized at the global level. Thus, they 
offer a nice opportunity to analyze whether CNNs can reconstruct global and not just local features.

Even 4 month-old infants can detect impossible figures, and no training is required. Thus, it seems 
important to compare with both untrained and trained networks.



Convolutional neural networks are severely limited
in accounting for geometric shape perception

Result: all networks, trained or not, perform much worse than human adults.
The best network achieves 67% correct, as compared to 87% for humans.
The confusion matrix is quite different:

Heinke, D., Wachman, P., Van Zoest, W., & Leek, E. C. (2021). A failure to learn object shape geometryௗ: Implications for convolutional neural 
networks as plausible models of biological vision. Vision Research, 189, 81-92. https://doi.org/10.1016/j.visres.2021.09.004



Symmetry : an ecologically valid prior in human object perception

Most biological objects have at least bilateral symmetry, often around the vertical. Some have more symmetries (e.g. rotational symmetry for trees).

Animals, including humans, exhibit a sexual preference for symmetrical bodies and faces.

Symmetry is frequently assumed, for instance when inferring the shape of an occluded object. 

Viewers detect symmetrical objects faster and, in their memory encoding impose more symmetry than was actually present

McBeath, M. K., Schiano, D. J., & Tversky, B. (1997). Three-dimensional bilateral symmetry bias in judgments of figural identity and 
orientation. Psychological Science, 8(3), 217-223.

McBeath et al. (1997) presented 2-D shapes 
that are either random polygons (0%), or 
symmetrical around the vertical axis (100%), or 
in between, and asked for a description.

Results:

- nearly all stimuli (90%) are interpreted as 3D 
symmetrical, regardless of their 2D symmetry

e.g. A typical cartoon dog head, turned to the 
right

- the 3D orientation is systematically 
influenced by the degree of symmetry: 
symmetrical 2D shapes are considered as 
“head on”, and asymmetry is interpreted as an 
indication that the symmetrical object is 
viewed from the side.

- Identifying the rotated objects took more 
time, suggest a stage of mental rotation.



Connectionist models of visual recognition miss a concept of symmetry
Pramod, R., & Arun, SP. (2022). Improving Machine Vision Using Human 
Perceptual Representationsௗ: The Case of Planar Reflection Symmetry for 
Object Classification. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 44(1), 228-241.

Humans estimated the similarity between 
various object pairs, using a visual search 
task.

The data was compared to a variety of 
convolutional neural networks.

For object pairs that share a feature of 
symmetry, dissimilarity is underestimated.

The authors show that neural 
networks can be improved by 
adding extra features of 
symmetry at the input stage.

However, this is just a patch,
because the human system is 
able to detect symmetries at 
various nested levels.

Conclusion: current CNNs vastly 
underestimate the sophistication 
of human vision.  



Can advanced artificial neural networks solve our geometric tasks?
Campbell, D., Kumar, S., Giallanza, T., Griffiths, T. L., & Cohen, J. D. (2024). Human-Like Geometric
Abstraction in Large Pre-trained Neural Networks (arXiv:2402.04203). arXiv. 
https://doi.org/10.48550/arXiv.2402.04203

3 recent AI vision models are challenged with our test : 
- ResNet : a convolutional neural network 
- CLIP : a transformer for vision and language
- DinoV2 : a large, 1-billion parameter vision transformer, trained both to 
identify image similarity up to affine augmentations, and to complete 
image patches.

Like us, they extract the embeddings evoked by each of the six 
shapes (in the last layer?), and define the outlier as the one which is 
maximally different from the mean of the others.

They replicate our findings: ResNet, a simple convolutional network, 
does not predict the human geometrical regularity effect – but only 
the baboon data.

However, they also find that DinoV2 and, to a lesser extent, CLIP can 
predict human behavior relatively well (though not with perfect 
linearity, as the symbolic model does).

Interestingly, CLIP is in between, captures a bit of both human and baboon 
data, and resembles the profile of human preschoolers (it treats squares and 
rectangles as radically different).



Can advanced Large Language models (LLMs) implement a language of geometry?
Campbell, D., Kumar, S., Giallanza, T., Griffiths, T. L., & Cohen, J. D. (2024). Human-Like Geometric
Abstraction in Large Pre-trained Neural Networks (arXiv:2402.04203). arXiv. 
https://doi.org/10.48550/arXiv.2402.04203

The authors identify three signatures of human geometric processing: 
- geometric complexity (captured by minimal description length), 
- geometric regularity (based on parallelism, right angles, symmetries…)
- decomposition into geometric parts and relations when learning new categories.

They test whether those human phenomena emerge with training in 3 current AI models: 
ResNet (a convolutional neural network), CLIP (a transformer for vision and language), and 
DinoV2 (a large, 1-billion parameter vision transformer, trained both to identify image 
similarity up to affine augmentations, and to complete image patches).

For geometric complexity, they show that low vs high MDL shapes tend to be encoded in 
different parts of the embedding space. Thus, they can account for choice time with the 
distance between target and distractors – but not for encoding time (or barely with dinoV2)



The Geoclidean benchmark: more evidence for human geometrical intuitions
Hsu, J., Wu, J., & Goodman, N. (2022). Geoclideanௗ: Few-Shot Generalization in Euclidean Geometry. Advances in Neural Information Processing Systems, 35, 39007-39019.

For decomposition into geometric parts and relations when learning new categories: the Geoclidean benchmark (Hsu et al.) asks subjects to 
learn a new concept (“dork”) from five positive examples, and then distinguish new instances from close and far negative ones.
The items are generated by a domain specific language (DSL) which incorporates Euclid’s axioms for point, line and circle.



Hsu et al. test human adults on 37 concepts
- 17 concepts that are constructed in Euclid’s Elements (e.g. triangle)
- 20 concepts that are pure combinations of primitives (Line, Circle, 
Triangle)

The results show 
- a very high accuracy for human subjects for all concepts, with a 
slight advantage for the regular ones in Euclid’s book
- with slightly better rejection of ‘far’ than of ‘close’ negative 
examples (distance effect)
- Current AI neural networks are unable to match this performance 
(although they are above chance, especially in high-level layers, and 
VisualTransformer fares better).

Campbell et al. replicate those 
findings entirely: neither CLIP
nor DinoV2 do better than ViT,
and the benchmark remains
unsolved by machines.

The Geoclidean benchmark: more evidence 
for human geometrical intuitions

Hsu, J., Wu, J., & Goodman, N. (2022). Geoclideanௗ: Few-Shot Generalization in Euclidean Geometry. 
Advances in Neural Information Processing Systems, 35, 39007-39019.



A challenge for both language-of-thought and connectionist models:
Evidence for a compositional representation of objects, axes, and orientation

Harris, I. M. (2024). Interpreting the orientation of objectsௗ: A cross-disciplinary review. Psychonomic Bulletin & Review.
McCloskey, M., Valtonen, J., & Cohen Sherman, J. (2006). Representing orientationௗ: A coordinate-system hypothesis and evidence from 
developmental deficits. Cognitive Neuropsychology, 23(5), 680-713. https://doi.org/10.1080/02643290500538356

It is essential to represent the object in an invariant, object-centered frame of reference, regardless of its orientation.
The visual system seems to assign a coordinate system of orthogonal axes centered on the object, based on its principal axis.



A compositional representation of objects, axes, and orientation
is needed to explain the errors of many patients

McCloskey, M., Valtonen, J., & Cohen Sherman, J. (2006). Representing orientationௗ: A coordinate-system hypothesis and evidence from 
developmental deficits. Cognitive Neuropsychology, 23(5), 680-713. https://doi.org/10.1080/02643290500538356

Patient B.C.’s orientation errors:
A vast majority of left-right inversion 
along the vertical axis.



A compositional representation of objects, axes, and orientation
is needed to explain the errors of many patients

McCloskey, M., Valtonen, J., & Cohen Sherman, J. (2006). Representing orientationௗ: A coordinate-system hypothesis and evidence from 
developmental deficits. Cognitive Neuropsychology, 23(5), 680-713. https://doi.org/10.1080/02643290500538356

Patient A.H.’s mirror errors in pointing 
to a cross just after it vanished

Patient A.H.’s copying of drawings: A crucial test: Patient A.H.’s copying of 
chiral, tilted figures

Note that such errors are ambiguous: 
They could refer a left-right inversion along the 
vertical axis, but also a polarity inversion around 
one of the object’s axis.

The errors are primarily reflections 
along the object’s own axes, implying 
an impaired object-centered 
representation.



The need for geometrical models of object perception and orientation
Vannuscorps, G., Galaburda, A., & Caramazza, A. (2021). Shape-centered representations of bounded regions of space mediate the perception 
of objects. Cognitive Neuropsychology, 1-50.
Vannuscorps, G., Galaburda, A., Falk, E., & Caramazza, A. (2017). A developmental deficit in seeing the orientation of typical 2D objects. Journal 
of Vision, 17(10), 28-28. https://doi.org/10.1167/17.10.28

Through more than 100 experiments, Patient Davida 
appears to have a very specific deficit of conscious vision : 
she assigns the wrong orientation to objects.
« Davida perceives 2D regions of space bounded by some 
types of edges (sharp luminance and chromatic edges) 
alternating between their correct orientation and all the 
other orientations that would result from their mirroring 
across one or both axes of their own “shape-centered” 
coordinate system, their rotation by 90, 180 or 270 
degrees around their center, or both”.
The axes are perpendicular or symmetrical to the true one, 
which implies that she has extracted it! And also, she 
perceives the correct orientation less often than chance, 
which remains unexplained. 
“all the types of errors she made corresponded to a specific
failure to specify the correct axis correspondence
and axis polarity correspondence necessary to map
ISCRs [intermediate shape-centered 
representations] onto higher frames”

X X X



A challenge for both language-of-thought and connectionist models:
Evidence for a compositional representation of objects, axes, and orientation

Key assumptions of the McCloskey et al. model:
Mental representations of objects and their orientation comprise
1. an object-centered (orientation-invariant) representation 
2. a frame of reference external to the object. 
3. a representation of the axis correspondence, consisting of several independent 

components:
• One component specifies which object axes map onto which external axes.
• A second component specifies, for each object axis, how the poles of that axis 

map onto the poles of the corresponding external axis.
• A third component specifies the tilt of the object reference frame relative to 

the external frame.
• The tilt component separately represents direction and magnitude of tilt.

Object-centered 
representation :

BAR 
LOCATION (0, 0) 
TILT (0°) 

CIRCLE 
LOCATION (-20, – 5) 

SQUARE 
LOCATION ( –20, -10) 
TILT (0°)

Relation to frame of 
reference:

Axis correspondence:
Principal-Vertical
Secondary-Horizontal

Polarity correspondence:
-/+   and +/+

Axis Tilt:
Direction –
Magnitude 30°

Harris, I. M. (2024). Interpreting the orientation of objectsௗ: A cross-disciplinary review. Psychonomic Bulletin & Review.
McCloskey, M., Valtonen, J., & Cohen Sherman, J. (2006). Representing orientationௗ: A coordinate-system hypothesis and evidence from 
developmental deficits. Cognitive Neuropsychology, 23(5), 680-713. https://doi.org/10.1080/02643290500538356

It is essential to represent the object in an invariant, object-centered frame of reference, regardless of its orientation.
The visual system seems to assign a coordinate system of orthogonal axes centered on the object, based on its principal axis.



The shape skeleton: a mathematical representation of the axes of shapes
Blum, H. (1973). Biological shape and visual science (part I). Journal of Theoretical Biology, 38(2), 205-287. https://doi.org/10.1016/0022-5193(73)90175-6

Blum (1973) develops a sophisticated, yet still highly intuitive, 
mathematical description of shapes.
First, he defines the notion of distance from a point to an object (or to 
its boundary) – the shortest Euclidean distance to any point in the object 
(or its boundary). Distance is measured along a normal or radial line.

From this distance, one can define parallels to a given curve.
There are already some interesting observations, for instance non-
commutativity: C’ can be a parallel to C, but C is not a parallel to C’.
Note: a parallel can be defined as the
envelope of circles of a fixed diameter
moving along the curve. 



The shape skeleton: a mathematical representation of biological shapes
Blum, H. (1973). Biological shape and visual science (part I). Journal of Theoretical Biology, 38(2), 205-287. https://doi.org/10.1016/0022-5193(73)90175-6

Moving along a given parallel, sym-points are special points beyond which 
the normal “jumps” discontinuously to another point with minimal distance.
At a Sym-point, one can fit a circle that touches the curve at 2 places.
The symmetric axis or medial axis or skeleton is the set of all sym-points.
The sym-distance is the value of the minimal distance at each point on the 
skeleton.
Fundamental property : the locus of the skeleton + its associated sym-
distance function suffices to fully describe the shape !
The object is the union of disks of sym-distance radius, covering the entire 
symmetric axis (this is called the inverse transform).

Here are some examples 
of shape skeletons.
Symmetric axes can also 
exist outside the object 
(for non-convex shapes).
One gets a feeling that the 
axes defined “what 
happened” (the object 
was squeezed, a 
protuberance grew, etc). 
This view is developed by 
Leyton (1989).

Leyton, M. (1989). Inferring Causal History froms Shape. Cognitive Science, 
13(3), 357-387. https://doi.org/10.1207/s15516709cog1303_2



The shape skeleton: a mathematical representation of biological shapes
Blum, H. (1973). Biological shape and visual science (part I). Journal of Theoretical Biology, 38(2), 205-287. https://doi.org/10.1016/0022-5193(73)90175-6

The theory works best for biological shapes, not so well for purely geometrical ones.

One can now develop a better theory of length and width.
Projected or outer width (the classical definition) is usually defined, in a certain direction, as 
the distance between two parallel lines that touch the object on each side. Projected length 
is then the maximal width.
However, for non-convex shapes, better definitions are obtained from the shape skeleton.
Inner width is the maximal value of 2 x sym-distance along the skeleton – i.e. the diameter 
of the largest circle that fits inside the shape.
Length is the maximal value of the sum of skeleton path lengths + the sym-distance at ends.
These quantities (and the skeleton) are invariant to flexion.



The shape skeleton contributes to the perception of geometric shapes
Firestone, C., & Scholl, B. J. (2014). “Please Tap the Shape, Anywhere You Like”ௗ: Shape Skeletons in Human Vision Revealed by an Exceedingly Simple Measure. 

Psychological Science, 25(2), 377-386. https://doi.org/10.1177/0956797613507584

“The world’s fastest psychology experiment”: a single touch anywhere inside the shape, one per participant (n=1480 pedestrians).

Results: Taps tend to fall on the medial 
axes (the shape skeleton)
with a striking influence of relatively 
minor border perturbations.



The shape skeleton contributes to the perception of geometric shapes
Firestone, C., & Scholl, B. J. (2014). “Please Tap the Shape, Anywhere You Like”ௗ: Shape Skeletons in Human Vision Revealed by an Exceedingly Simple Measure. 

Psychological Science, 25(2), 377-386. https://doi.org/10.1177/0956797613507584

“The world’s fastest psychology experiment”: a single touch anywhere inside the shape, one per participant (n=1480 pedestrians).

Interestingly, the results are counter-
intuitive and not consciously predicted.



A growing set of empirical results in support of the shape skeleton
Lowet, A. S., Firestone, C., & Scholl, B. J. (2018). Seeing structureௗ: Shape skeletons modulate perceived similarity. Attention, Perception, & Psychophysics, 80(5), 

1278-1289. https://doi.org/10.3758/s13414-017-1457-8

Quadratic relationship between the length of verbal descriptions and the complexity of 
the shape skeleton.
 Link to minimal description length

Sun, Z., & Firestone, C. (2021). Seeing and speakingௗ: How verbal 
“description length” encodes visual complexity. Journal of 

Experimental Psychology: General, No Pagination Specified-No 
Pagination Specified. https://doi.org/10.1037/xge0001076

Skeletal changes are better discriminated than other shape changes.

Some infero-temporal neurons seem to encode the shape skeleton, or a part of it :
Hung, C.-C., Carlson, E. T., & Connor, C. E. (2012). Medial Axis Shape Coding in Macaque Inferotemporal Cortex. Neuron, 74(6), 1099-1113. 



The importance of the shape skeleton in object perception

What is the mental representation of object shape in 
infancy?
« Using [habituation / dishabituation], researchers have 
shown that newborns can already discriminate 
between simple 2D shapes (Slater et al., 1983) and 
display shape constancy, such that they recognize a 
shape from a novel orientation (Slater and Morison, 
1985). By 6 months of age, infants’ shape 
representations are also robust to variations among 
category exemplars, such that they can categorize 
objects using only the stimulus’ shape silhouette (Quinn 
et al., 1993; Quinn et al., 2001a), as well as extend 
category membership to objects with varying local 
contours, but the same global shape (Quinn et al., 
2002; Quinn et al., 2001b; Turati et al., 2003).”
Here, 6-12 month-old infants habituated to a given 3-D 
shape, generalized to another shape with the same 
skeleton (but distinct sym-dist function), but 
dishabituated to a shape with a topologically distinct 
skeleton.
Once again, CNN models fail in this task.

Ayzenberg, V., & Lourenco, S. (2022). Perception of an object’s global shape is best described by a model of skeletal 
structure in human infants. eLife, 11, e74943. https://doi.org/10.7554/eLife.74943



A dorsal network for global shape perception?
Ayzenberg, V., & Behrmann, M. (2022). Does the brain’s ventral visual pathway 
compute object shape? Trends in Cognitive Sciences, 26(12), 1119-1132. 
https://doi.org/10.1016/j.tics.2022.09.019

The ventral pathway may be involved in 
encoding local texture elements,, while the 
dorsal pathway (and LOC?) would encode 
the global shape and its skeleton.

Jagadeesh, A. V., & Gardner, J. L. (2022). 
Texture-like representation of objects in 
human visual cortex. PNAS 119(17), 
e2115302119.

Long, B., Yu, C.-P., & Konkle, T. (2018). Mid-level 
visual features underlie the high-level categorical 
organization of the ventral stream. PNAS, 115(38), 
E9015-E9024. 



Some final thoughts :
A complementarity of the shape skeleton and the ”langage of thought” approaches

Current convolutional neural networks are definitely insufficient to account for the human sense of shape, including geometric shapes.
Medial axis theory (skeleton) and language-of-thought theories are likely to be complementary.
The dorsal pathway may implement both (1) a sense of the axes of objects, and (2) a mathematical language for their regularities.
1. There are many visual domains for which our language is not well suited and the skeleton-based approach is clearly superior, for

instance to predict the complexity of natural shapes (animals, trees). 
2. Our proposal, meanwhile, focuses entirely on the specific domain of abstract geometric shapes, and identifies the core tools 

required to account for their perception and production in humans. 
Speculation : skeleton extraction
is evolutionarily ancient visual 
process, deeply entrenched in 
the visual cortex of all primates.
The language-of-geometry, however,
is unique to humans.
Humans found a new way to 
compress the shape skeleton.

• Sablé-Meyer, M., Ellis, K., Tenenbaum, J., & Dehaene, S. (2022). A language of thought for the mental representation of geometric 
shapes. Cognitive Psychology, 139, 101527. https://doi.org/10.1016/j.cogpsych.2022.101527

• Feldman, J., & Singh, M. (2006). Bayesian estimation of the shape skeleton. Proceedings of the National Academy of Sciences, 
103(47), 18014-18019. https://doi.org/10.1073/pnas.0608811103

Math compressor

Same skeletal complexity
for Feldman & Singh

Very different MDL for 
the language-of-thought
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attention!


