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Continuations

One of the best and oldest ideas in Computer Science: 60 
years old, with many many applications

Logic

Distributed 
systems

Programming 
Language Design

Compilers

Semantics

User interface 
modelling

Concurrency

Web programming

𝑖𝑛𝑡 = (ℤ → 𝑅) → 𝑅¬¬𝜓

60



“Thinking continuations”: try-catch
Q: What’s wrong with OCaml’s
try-with construct?

A: Sometimes it’s clumsy to use 
(see paper), but hard to put 
your finger on why, or what 
would work better.

Solution: “think continuations”. A better-behaved construct has both 
failure and success continuations (cf “double-barrelled CPS”). Perhaps, a 
generalized let:

let x = e unless E -> handler in e’

Failure

Success

Or, as introduced in OCaml ten years ago, generalized match:

match e with p1 -> e1 | … | pn -> en | exception E -> handler

FailureSuccesses



“Thinking continuations”: Hoare logic

Traditionally, Hoare “triples” have been used to reason 
formally about imperative programs

{P} C {Q} 

Precondition Postcondition
Code

Rough meaning (for partial correctness): if program state 
satisfies P at entry to C, then it will satisfy Q at exit

This can be broken down using more primitive notion of 
“safe to run from L under P”. Write Safe(L,P). Then say

Safe(exit,Q) => Safe(entry, P)

“Continuation-passing” 
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Compiler Intermediate 
Representations (IR)

Functional languages
Desugared abstract syntax

Core lambda-calculus-like 
language, no restrictions

ANF: Administrative Normal 
Form (canonical form 
lambda-calculus)

Monadic intermediate 
language

Continuation-passing style

Imperative languages
Desugared abstract syntax

Flow-graph with local 
variables

SSA (Static Single 
Assignment)

Gated SSA

Continuation-passing style

Close to 
source

Far from 
source



Compiler Intermediate 
Representations (IR)

Functional languages
Desugared abstract syntax

Core lambda-calculus-like 
language, no restrictions

ANF: Administrative Normal 
Form (canonical form 
lambda-calculus)

Monadic intermediate 
language

Continuation-passing style

Imperative languages
• Desugared abstract syntax

• Flow-graph with local 
variables

• SSA (Static Single 
Assignment)

• Gated SSA

• Continuation-passing style

Close to 
source

Far from 
source

Let’s start by thinking about 
functional languages



ANF: administrative normal form

Every intermediate computation is named. Example (using 
OCaml syntax):

let rec map f xs = 
  match xs with
  | [] => []
  | x::xs’ => f x :: map f xs’

let rec map f xs = 
  match xs with
  | [] => []
  | x::xs’ => 
    let y = f x in
    let ys = map f xs’ in
    y::ys

Monadic intermediate language is similar, except that lets can be 
“nested”. Monads also provide a place to “hang” effects.

Common feature: order of evaluation is made explicit.



Continuation-passing style

Every function takes an additional “continuation” function 
that gets passed the result on return.

let rec map f xs = 
  match xs with
  | [] => []
  | x::xs’ => f x :: map f xs’

let rec map f xs k = 
  match xs with
  | [] => k []
  | x::xs’ => 
    f x (fun y ->
    map f xs’ (fun ys ->
    k (y::ys))

The transformation is easy to write down, but

It “explodes” the code with a lot of new functions

It messes with your head to think about!

As with ANF/monads, it makes order of evaluation explicit.

“CPS-convert”



Why compile using CPS?

For languages that support first-class control (e.g. 
Scheme, Typed Racket) there is an easy CPS 
implementation of call-with-current-continuation 
(call/CC) and related features

Every function call becomes a tail-call => we don’t need a 
“call stack” => all functions are closures and so instead of 
stack frames we have “environments” allocated on the 
heap. (But worry about performance!)

CPS-translation makes for a uniform, simple intermediate 
language in which we can give names to every 
intermediate value and control point. Static analyses 
become simpler. Some optimizations fall out really easily. 



ANF is not closed under inlining

Problem with ANF and monadic languages: they’re not 
closed under ordinary β reduction, and terms must be “re-
normalized”

let x = (λy. let z = a b in c) d in e

let x = (let z = a b in c) in e

let z = a b in (let x = c in e)

Beta reduce (inline function)

Re-normalize
Not in ANF (no 

nested lets)



Worse: conditionals

When renormalizing conditionals in ANF or monadic form, 
we must duplicate the term, or introduce a lambda to 
represent a “join point”:

let z = (λx. If x then a else b) c in M

let z = (if c then a else b) in M

Beta reduce (inline function)

Not in ANF (no let-
binding of conditionals)

if c 
then let z = a in M 
else let z = b in M

let k = λz.M in
if c 
then let z = a in k z 
else let z = b in k z

Re-normalize 
(duplicate)

OR: re-normalize 
(share)



“Second-class” continuations

let rec map f xs = 
  match xs with
  | [] => []
  | x::xs’ => f x :: map f xs’

let rec map f xs k = 
  match xs with
  | [] => k []
  | x::xs’ => 
    let cont k1(y) = 
      let cont k2(ys) =
        let r = y::ys in k(r)
      in map f xs’ k2
  in f x k1

Continuations are distinguished from ordinary functions (in 
OCaml-like syntax):

Continuation 
application

Function 
application

Local continuation 
definition



Theory and Practice

ICFP’07

OCaml’23 

Jane Street’s development of IR for 
OCaml (“Flambda 2”), is based on 

language described here



Example 2nd-class CPS-based IR

V, W ::= 
( x , y ) 

| ini x
| λ k x. M

M, N ::= 
| let x = V in M
| let cont k x = M in N
| k x
| f k x
| let (x,y) = z in M
| match x with k1 | k2

All values are named

Local continuation 
definition

Continuation application

All function 
applications take a 

continuation argument

Branches are named
(design choice)

Explicit return



Features of the CPS language

All intermediate values are named; all control points are named
Consequence 1: only ever substitute variables for variables

Consequence 2: “join points” are present from the start.

Continuations are second-class: they can be passed to 
functions, but not returned, or stored in data structures, or 
accessed from outer function scopes

Consequence 1: local continuation definition can be implemented by a 
code block

Consequence 2: continuation application can be implemented by a jump 
or return

Open question: how should continuation definitions be nested? 
Outermost (closed with respect to free variables)? Or 
innermost (minimal parameters)?



CPS is closed under inlining

(λy k. a b (λz k. c)) d (λx.e) 

a b (λz. (λx. e) c)

Beta reduce (argument and continuation)

let f = λk x. if x then k a else k b in
let j z = M in
f j c

Beta reduce (argument and continuation)

let j z = M in
if c then j a else j bWe already have a join point 

because every continuation is 
named



Data structures for CPS IR

CPS IR can be implemented in functional style: algebraic 
data type + copy-with-delta transformations

For large programs, this is expensive

Alternative: graph representation + update-in-place
Adaptation of idea of Andrew Appel & Trevor Jim
Substitution (variable for variable) is constant-time
Exhaustive “shrinking” reductions take time linear in size of term

Three ingredients
Doubly-linked tree for basic structure
Pointer from bound variable to first free occurrence + doubly-linked 
circular list between occurrences
Union-find data structure to associate occurrences with bound 
variable



Graph representation
Links from bound to free

let p = ( x

in

p

, y )

p

λ k x ->

let z = fst p

in

z z

… …

…

… …



Graph representation
Links from free to bound

let p = ( x

in

p

, y )

p

λ k x ->

let z = fst p

in

z z

… …

…

… …
z

Root of union-find tree



Compiler pipeline

Source e.g. OCaml
 (direct style)

Target e.g. assembler
(direct style)

CPS IR

CPS transform

Inverse CPS transform

Optimising 
transformations



Contification

Function f always returns to the “same place”
It can therefore be contified: compiled as a code block, with 
calls compiled as jumps, very efficiently (Fluet & Weeks, 
2001) 

Here, it is obvious from the source code
For more complex examples, it’s not so clear
But in CPS IR, it’s easy to detect, and to transform general 
functions into (second-class) continuations

let f = fun x -> …
in 
  g (match z with C c -> f y | D d -> f d) 



let f = λ k x. … k … in
let cont k’ w = g r w in
match d with C c -> f k’ y | D d -> f k’ d

Contification

CPS transform

contify

Common 
continuation

Hoist k’ to bring it 
into scope

Replace f by 
continuation j

Substitute actual 
continuation arg 

for formal

let cont k’ w = g r w in
let cont j x = … k’ … in
match d with C c -> j y | D d -> j d

let f = fun x -> …
in g (match z with C c -> f y | D d -> f d) 



Contification

Generalizes to mutually recursive functions

Really just common-argument elimination

Iterating this reduction gives optimal contification in the 
sense of Fluet & Weeks (inventors of a dominator-based 
approach to contification used in the MLton compiler)

For whole programs, after aggressive optimization (e.g. 
defunctionalization) a surprising number of functions can 
be transformed into continuations



Compiler Intermediate 
Representations (IR)

Functional languages
• Desugared abstract syntax

• Core lambda-calculus-like 
language, no restrictions

• ANF: Administrative Normal 
Form (canonical form 
lambda-calculus)

• Monadic intermediate 
language

• Continuation-passing style

Imperative languages
Desugared abstract syntax

Flow-graph with local 
variables

SSA (Static Single 
Assignment)

Continuation-passing style?

Close to 
source

Far from 
source

Now let’s move onto 
imperative languages



Static Single Assignment form

Very popular for compiling imperative languages e.g. LLVM

Every variable is defined before it is used, and assigned 
exactly once

At flow-graph “join points”, use 𝜙 pseudo-function to bind 
variables to values dependent on in-arc to node

i2 := j1 + 5 i3 := j1 + 21

i1 := 𝜙(i2,i3)
…



“SSA is functional programming”

There’s something odd and upside-down about 𝜙 nodes. 
It’s hard to give them clean semantics (though see Damange et al)

After function inlining, the “SSA-form” must be recomputed

Andrew Appel observed “SSA is functional programming”

i2 := j1 + 5 i3 := j1 + 21

i1 := 𝜙(i2,i3)
…

let cont k(i1) = …
in 
… let i2 = j1+5 in k(i2)
… let i3 = j1+21 in k(i3)

This fits perfectly in the CPS-based language
Function inlining does not destroy well-formedness

The “dominance” invariant of SSA is just scoping

Loop structure can be expressed using let rec

Higher-order code is no problem
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The Hack programming language

• Evolution of PHP at Meta (formerly Facebook)

• It runs on HHVM (bytecode-based, JIT-compiled runtime)

• Programs are checked by Hack’s “whole-program” type-checker 

(incremental, parallel, implemented in OCaml and Rust)

• Millions of lines of PHP have been migrated to Hack, adding 

static types, async, and other features



Types in Hack

• Hack puts static types on PHP code, borrowing ideas from 

Java, C#, Scala:

•OO-style subtyping (classes, interfaces, traits)

•Non-null by default, explicit nullable ?t

• Generics, with variance, lower/upper bounds

• Structural subtyping: function types, shapes, tuples, arrays

• “this” type, abstract type members



Static typing of local variables

• No declaration; no declared type; created on first 

assignment

• Runtime type typically changes during execution

• Runtime types can be tested dynamically

• Statically infer types automatically

• Flow-sensitive

• At join points, find upper bound of types

• Type tests refine types of locals



Examples of flow sensitivity
function f(bool $b): mixed {

  if ($b) {

    $x = ‘b’;

    bar($x);

    $x = 12;

  }

  else {

    $x = ‘a’;

  }

  return $x;

}

int | string is a subtype 
of mixed (Hack’s top type)

Internally, Hack gives $x
the type int | string

function g(int $i):string {

  $s = true;

  do {

    if ($i < 5) break;

    $s = “hey”;

    $i++; 

  } while ($i < 10);

  return $s;

}

Type error here!

function h():void {

  $f = new Foo();

  try {

    bar();

  } catch (Exception $_) {

    $f = new Bar();

  }

  $f->someMethod();

}
What type does $f have here?



Formalizing flow sensitivity

• Key Idea: at any program point, there are a fixed number 

of possible continuations

• The next statement (usual continuation)

• The break continuation (in a loop, or switch)

• The continue continuation (in a loop)

• The catch continuation (in a try block)

• The finally continuation (in a try-finally block)



Toy subset of Hack

𝜏 ∷= 𝑏𝑜𝑜𝑙 𝑖𝑛𝑡 𝑚𝑖𝑥𝑒𝑑 | …

𝑒 ∷= $𝑥 𝑒1𝑜𝑝 𝑒2 …

𝑠 ∷= $𝑥 = 𝑒; | 𝑠 Ԧ𝑠 𝑖𝑓 𝑒 𝑠1𝑒𝑙𝑠𝑒 𝑠2;

𝑏𝑟𝑒𝑎𝑘; 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒; | 𝑤ℎ𝑖𝑙𝑒 𝑒 𝑠; | …

Assume a subtyping relation: 𝜏1 <: 𝜏2



Typing expressions

• Define a context for locals

Γ ∷= 𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛

• For example

Γ = {𝑥: 𝑖𝑛𝑡, 𝑦: 𝑏𝑜𝑜𝑙|𝑠𝑡𝑟𝑖𝑛𝑔}

• Define typing judgment for expressions

Γ ⊢ 𝑒 ∶ 𝜏



Typing statements

• Now define a context for continuations,

Δ ∷= 𝑘1: Γ1, … , 𝑘𝑛: Γ𝑛

• For example: 

Δ = {𝑛𝑒𝑥𝑡: 𝑥: 𝑖𝑛𝑡 , 𝑏𝑟𝑒𝑎𝑘: 𝑥: 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑦: 𝑏𝑜𝑜𝑙 }

• Then define a judgment for statements

Γ; Δ ⊢ 𝑠

meaning “it’s safe to execute s under locals Γ and 

continuations Δ”.



Sequencing

Γ; 𝑛𝑒𝑥𝑡: Γ ⊢  

Γ; Δ[𝑛𝑒𝑥𝑡: Γ′] ⊢ 𝑠 Γ′; Δ ⊢ {Ԧ𝑠}

Γ; Δ ⊢ {𝑠; Ԧ𝑠}

Γ; Δ ⊢ 𝑠 𝑛𝑒𝑥𝑡 ∉ 𝑑𝑜𝑚(Δ)

Γ; Δ ⊢ {𝑠; Ԧ𝑠}
Unreachable: might warn 

or error



Assignment

Γ; 𝑛𝑒𝑥𝑡: Γ 𝑥: 𝜏 ⊢ $𝑥 = 𝑒

Γ ⊢ 𝑒: 𝜏



Conditionals

Γ ⊢ 𝑒: 𝑏𝑜𝑜𝑙 Γ; Δ ⊢ 𝑠1 Γ; Δ ⊢ 𝑠2

Γ; Δ ⊢ 𝑖𝑓 𝑒  𝑠1 𝑒𝑙𝑠𝑒 𝑠2



Loops

Γ; Δ 𝑏𝑟𝑒𝑎𝑘: Γ′, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒: Γ , 𝑛𝑒𝑥𝑡: Γ ⊢ 𝑠 𝑜𝑘

Γ; Δ, 𝑛𝑒𝑥𝑡: Γ′ ⊢ 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠

Γ; 𝑏𝑟𝑒𝑎𝑘: Γ ⊢ 𝑏𝑟𝑒𝑎𝑘 Γ; 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒: Γ ⊢ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

𝑤ℎ𝑖𝑙𝑒 𝑒 𝑠 ≡ 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 { 𝑖𝑓 ! 𝑒 𝑏𝑟𝑒𝑎𝑘; 𝑠 }

𝑑𝑜 𝑠 𝑤ℎ𝑖𝑙𝑒 𝑒 ≡ 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 { 𝑠; 𝑖𝑓 ! 𝑒 𝑏𝑟𝑒𝑎𝑘; }



Weakening

Γ1; Δ1 ⊢ 𝑠 Γ2 <: Γ1 Δ2 <: Δ1

Γ2; Δ2 ⊢ 𝑠

Γ1 <: Γ2

Δ, 𝑘: Γ2 <: Δ, 𝑘: Γ1 Δ, 𝑘: Γ <: Δ

𝜏1 <: 𝜏2

Γ, 𝑥: 𝜏1 <: Γ, 𝑥: 𝜏2 Γ, 𝑥: 𝜏 <: Γ



Implementing flow typing

• Define inference function 𝐼𝑛𝑓 so that

𝐼𝑛𝑓 Γ, 𝑠 = Δ

produces the weakest Δ such that Γ; Δ ⊢ 𝑠 holds (cf

strongest post-condition in Hoare logic).  



Inference (conditional)

𝐼𝑛𝑓 Γ, 𝑖𝑓 𝑒  𝑠1 𝑒𝑙𝑠𝑒 𝑠2 =

 𝑐ℎ𝑒𝑐𝑘(𝐼𝑛𝑓 Γ, 𝑒 <: 𝑏𝑜𝑜𝑙)

  𝑙𝑒𝑡 Δ1 = 𝐼𝑛𝑓 Γ, 𝑠1 𝑖𝑛

 𝑙𝑒𝑡 Δ2 = 𝐼𝑛𝑓 Γ, 𝑠2 𝑖𝑛

 Δ1 ⊓ Δ2

Join of environments e.g. 
union types of locals



Inference (sequencing, assignment)

𝐼𝑛𝑓 Γ, $𝑥 = 𝑒 = 𝑙𝑒𝑡 𝜏 = 𝐼𝑛𝑓 Γ, 𝑒 𝑖𝑛 𝑛𝑒𝑥𝑡: Γ 𝑥: 𝜏

𝐼𝑛𝑓 Γ, { } = {𝑛𝑒𝑥𝑡: Γ}

𝐼𝑛𝑓 Γ, 𝑠; Ԧ𝑠 =

𝑙𝑒𝑡 Δ1 = 𝐼𝑛𝑓 Γ, 𝑠 𝑖𝑛

𝑙𝑒𝑡 Δ2 = 𝐼𝑛𝑓 Δ1 𝑛𝑒𝑥𝑡 , Ԧ𝑠 𝑖𝑛

(Δ1 \𝑛𝑒𝑥𝑡) ⊓ Δ2



Operations on contexts

Δ1 ⊓ Δ2 = 𝑘: Γ1 ⊔ Γ2 Δ1 𝑘 = Γ1, Δ2 𝑘 = Γ2} ∪

𝑘: Γ Δ1 𝑘 = Γ, 𝑘 ∉ 𝑑𝑜𝑚 Δ2 ∪

{ 𝑘: Γ ∣ Δ2 𝑘 = Γ, 𝑘 ∉ 𝑑𝑜𝑚 Δ1 }

Γ1 ⊔ Γ2 = 𝑥: 𝜏1 ⊔ 𝜏2 𝑥: 𝜏1 ∈ Γ1, 𝑥: 𝜏2 ∈ Γ2}

Choose how to interpret ⊔ on types e.g.

• Find named upper bound (e.g. mixed)

• Union types in language (this is what we do in Hack)



In practice

• Hack type inference: three techniques

• Continuations for flow typing

• Constraint solving for generics and subtyping

• Some bidirectional type checking for lambdas

• Incremental, parallel, and distributed checking for tens of 

millions of lines of Hack code, integrated into the IDE
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