
Compiling and Typing
with Continuations

Andrew Kennedy
Meta London

Continuations

One of the best and oldest ideas in Computer Science: 60
years old, with many many applications

Logic

Distributed
systems

Programming
Language Design

Compilers

Semantics

User interface
modelling

Concurrency

Web programming

𝑖𝑛𝑡 = (ℤ → 𝑅) → 𝑅¬¬𝜓

60

“Thinking continuations”: try-catch
Q: What’s wrong with OCaml’s
try-with construct?

A: Sometimes it’s clumsy to use
(see paper), but hard to put
your finger on why, or what
would work better.

Solution: “think continuations”. A better-behaved construct has both
failure and success continuations (cf “double-barrelled CPS”). Perhaps, a
generalized let:

let x = e unless E -> handler in e’

Failure

Success

Or, as introduced in OCaml ten years ago, generalized match:

match e with p1 -> e1 | … | pn -> en | exception E -> handler

FailureSuccesses

“Thinking continuations”: Hoare logic

Traditionally, Hoare “triples” have been used to reason
formally about imperative programs

{P} C {Q}

Precondition Postcondition
Code

Rough meaning (for partial correctness): if program state
satisfies P at entry to C, then it will satisfy Q at exit

This can be broken down using more primitive notion of
“safe to run from L under P”. Write Safe(L,P). Then say

Safe(exit,Q) => Safe(entry, P)

“Continuation-passing”

Compiling and Typing
with Continuations

Andrew Kennedy
Meta London

Compiler Intermediate
Representations (IR)

Functional languages
Desugared abstract syntax

Core lambda-calculus-like
language, no restrictions

ANF: Administrative Normal
Form (canonical form
lambda-calculus)

Monadic intermediate
language

Continuation-passing style

Imperative languages
Desugared abstract syntax

Flow-graph with local
variables

SSA (Static Single
Assignment)

Gated SSA

Continuation-passing style

Close to
source

Far from
source

Compiler Intermediate
Representations (IR)

Functional languages
Desugared abstract syntax

Core lambda-calculus-like
language, no restrictions

ANF: Administrative Normal
Form (canonical form
lambda-calculus)

Monadic intermediate
language

Continuation-passing style

Imperative languages
• Desugared abstract syntax

• Flow-graph with local
variables

• SSA (Static Single
Assignment)

• Gated SSA

• Continuation-passing style

Close to
source

Far from
source

Let’s start by thinking about
functional languages

ANF: administrative normal form

Every intermediate computation is named. Example (using
OCaml syntax):

let rec map f xs =
 match xs with
 | [] => []
 | x::xs’ => f x :: map f xs’

let rec map f xs =
 match xs with
 | [] => []
 | x::xs’ =>
 let y = f x in
 let ys = map f xs’ in
 y::ys

Monadic intermediate language is similar, except that lets can be
“nested”. Monads also provide a place to “hang” effects.

Common feature: order of evaluation is made explicit.

Continuation-passing style

Every function takes an additional “continuation” function
that gets passed the result on return.

let rec map f xs =
 match xs with
 | [] => []
 | x::xs’ => f x :: map f xs’

let rec map f xs k =
 match xs with
 | [] => k []
 | x::xs’ =>
 f x (fun y ->
 map f xs’ (fun ys ->
 k (y::ys))

The transformation is easy to write down, but

It “explodes” the code with a lot of new functions

It messes with your head to think about!

As with ANF/monads, it makes order of evaluation explicit.

“CPS-convert”

Why compile using CPS?

For languages that support first-class control (e.g.
Scheme, Typed Racket) there is an easy CPS
implementation of call-with-current-continuation
(call/CC) and related features

Every function call becomes a tail-call => we don’t need a
“call stack” => all functions are closures and so instead of
stack frames we have “environments” allocated on the
heap. (But worry about performance!)

CPS-translation makes for a uniform, simple intermediate
language in which we can give names to every
intermediate value and control point. Static analyses
become simpler. Some optimizations fall out really easily.

ANF is not closed under inlining

Problem with ANF and monadic languages: they’re not
closed under ordinary β reduction, and terms must be “re-
normalized”

let x = (λy. let z = a b in c) d in e

let x = (let z = a b in c) in e

let z = a b in (let x = c in e)

Beta reduce (inline function)

Re-normalize
Not in ANF (no

nested lets)

Worse: conditionals

When renormalizing conditionals in ANF or monadic form,
we must duplicate the term, or introduce a lambda to
represent a “join point”:

let z = (λx. If x then a else b) c in M

let z = (if c then a else b) in M

Beta reduce (inline function)

Not in ANF (no let-
binding of conditionals)

if c
then let z = a in M
else let z = b in M

let k = λz.M in
if c
then let z = a in k z
else let z = b in k z

Re-normalize
(duplicate)

OR: re-normalize
(share)

“Second-class” continuations

let rec map f xs =
 match xs with
 | [] => []
 | x::xs’ => f x :: map f xs’

let rec map f xs k =
 match xs with
 | [] => k []
 | x::xs’ =>
 let cont k1(y) =
 let cont k2(ys) =
 let r = y::ys in k(r)
 in map f xs’ k2
 in f x k1

Continuations are distinguished from ordinary functions (in
OCaml-like syntax):

Continuation
application

Function
application

Local continuation
definition

Theory and Practice

ICFP’07

OCaml’23

Jane Street’s development of IR for
OCaml (“Flambda 2”), is based on

language described here

Example 2nd-class CPS-based IR

V, W ::=
(x , y)

| ini x
| λ k x. M

M, N ::=
| let x = V in M
| let cont k x = M in N
| k x
| f k x
| let (x,y) = z in M
| match x with k1 | k2

All values are named

Local continuation
definition

Continuation application

All function
applications take a

continuation argument

Branches are named
(design choice)

Explicit return

Features of the CPS language

All intermediate values are named; all control points are named
Consequence 1: only ever substitute variables for variables

Consequence 2: “join points” are present from the start.

Continuations are second-class: they can be passed to
functions, but not returned, or stored in data structures, or
accessed from outer function scopes

Consequence 1: local continuation definition can be implemented by a
code block

Consequence 2: continuation application can be implemented by a jump
or return

Open question: how should continuation definitions be nested?
Outermost (closed with respect to free variables)? Or
innermost (minimal parameters)?

CPS is closed under inlining

(λy k. a b (λz k. c)) d (λx.e)

a b (λz. (λx. e) c)

Beta reduce (argument and continuation)

let f = λk x. if x then k a else k b in
let j z = M in
f j c

Beta reduce (argument and continuation)

let j z = M in
if c then j a else j bWe already have a join point

because every continuation is
named

Data structures for CPS IR

CPS IR can be implemented in functional style: algebraic
data type + copy-with-delta transformations

For large programs, this is expensive

Alternative: graph representation + update-in-place
Adaptation of idea of Andrew Appel & Trevor Jim
Substitution (variable for variable) is constant-time
Exhaustive “shrinking” reductions take time linear in size of term

Three ingredients
Doubly-linked tree for basic structure
Pointer from bound variable to first free occurrence + doubly-linked
circular list between occurrences
Union-find data structure to associate occurrences with bound
variable

Graph representation
Links from bound to free

let p = (x

in

p

, y)

p

λ k x ->

let z = fst p

in

z z

… …

…

… …

Graph representation
Links from free to bound

let p = (x

in

p

, y)

p

λ k x ->

let z = fst p

in

z z

… …

…

… …
z

Root of union-find tree

Compiler pipeline

Source e.g. OCaml
 (direct style)

Target e.g. assembler
(direct style)

CPS IR

CPS transform

Inverse CPS transform

Optimising
transformations

Contification

Function f always returns to the “same place”
It can therefore be contified: compiled as a code block, with
calls compiled as jumps, very efficiently (Fluet & Weeks,
2001)

Here, it is obvious from the source code
For more complex examples, it’s not so clear
But in CPS IR, it’s easy to detect, and to transform general
functions into (second-class) continuations

let f = fun x -> …
in
 g (match z with C c -> f y | D d -> f d)

let f = λ k x. … k … in
let cont k’ w = g r w in
match d with C c -> f k’ y | D d -> f k’ d

Contification

CPS transform

contify

Common
continuation

Hoist k’ to bring it
into scope

Replace f by
continuation j

Substitute actual
continuation arg

for formal

let cont k’ w = g r w in
let cont j x = … k’ … in
match d with C c -> j y | D d -> j d

let f = fun x -> …
in g (match z with C c -> f y | D d -> f d)

Contification

Generalizes to mutually recursive functions

Really just common-argument elimination

Iterating this reduction gives optimal contification in the
sense of Fluet & Weeks (inventors of a dominator-based
approach to contification used in the MLton compiler)

For whole programs, after aggressive optimization (e.g.
defunctionalization) a surprising number of functions can
be transformed into continuations

Compiler Intermediate
Representations (IR)

Functional languages
• Desugared abstract syntax

• Core lambda-calculus-like
language, no restrictions

• ANF: Administrative Normal
Form (canonical form
lambda-calculus)

• Monadic intermediate
language

• Continuation-passing style

Imperative languages
Desugared abstract syntax

Flow-graph with local
variables

SSA (Static Single
Assignment)

Continuation-passing style?

Close to
source

Far from
source

Now let’s move onto
imperative languages

Static Single Assignment form

Very popular for compiling imperative languages e.g. LLVM

Every variable is defined before it is used, and assigned
exactly once

At flow-graph “join points”, use 𝜙 pseudo-function to bind
variables to values dependent on in-arc to node

i2 := j1 + 5 i3 := j1 + 21

i1 := 𝜙(i2,i3)
…

“SSA is functional programming”

There’s something odd and upside-down about 𝜙 nodes.
It’s hard to give them clean semantics (though see Damange et al)

After function inlining, the “SSA-form” must be recomputed

Andrew Appel observed “SSA is functional programming”

i2 := j1 + 5 i3 := j1 + 21

i1 := 𝜙(i2,i3)
…

let cont k(i1) = …
in
… let i2 = j1+5 in k(i2)
… let i3 = j1+21 in k(i3)

This fits perfectly in the CPS-based language
Function inlining does not destroy well-formedness

The “dominance” invariant of SSA is just scoping

Loop structure can be expressed using let rec

Higher-order code is no problem

Compiling and Typing
with Continuations

Andrew Kennedy
Meta London

The Hack programming language

• Evolution of PHP at Meta (formerly Facebook)

• It runs on HHVM (bytecode-based, JIT-compiled runtime)

• Programs are checked by Hack’s “whole-program” type-checker

(incremental, parallel, implemented in OCaml and Rust)

• Millions of lines of PHP have been migrated to Hack, adding

static types, async, and other features

Types in Hack

• Hack puts static types on PHP code, borrowing ideas from

Java, C#, Scala:

•OO-style subtyping (classes, interfaces, traits)

•Non-null by default, explicit nullable ?t

• Generics, with variance, lower/upper bounds

• Structural subtyping: function types, shapes, tuples, arrays

• “this” type, abstract type members

Static typing of local variables

• No declaration; no declared type; created on first

assignment

• Runtime type typically changes during execution

• Runtime types can be tested dynamically

• Statically infer types automatically

• Flow-sensitive

• At join points, find upper bound of types

• Type tests refine types of locals

Examples of flow sensitivity
function f(bool $b): mixed {

 if ($b) {

 $x = ‘b’;

 bar($x);

 $x = 12;

 }

 else {

 $x = ‘a’;

 }

 return $x;

}

int | string is a subtype
of mixed (Hack’s top type)

Internally, Hack gives $x
the type int | string

function g(int $i):string {

 $s = true;

 do {

 if ($i < 5) break;

 $s = “hey”;

 $i++;

 } while ($i < 10);

 return $s;

}

Type error here!

function h():void {

 $f = new Foo();

 try {

 bar();

 } catch (Exception $_) {

 $f = new Bar();

 }

 $f->someMethod();

}
What type does $f have here?

Formalizing flow sensitivity

• Key Idea: at any program point, there are a fixed number

of possible continuations

• The next statement (usual continuation)

• The break continuation (in a loop, or switch)

• The continue continuation (in a loop)

• The catch continuation (in a try block)

• The finally continuation (in a try-finally block)

Toy subset of Hack

𝜏 ∷= 𝑏𝑜𝑜𝑙 𝑖𝑛𝑡 𝑚𝑖𝑥𝑒𝑑 | …

𝑒 ∷= $𝑥 𝑒1𝑜𝑝 𝑒2 …

𝑠 ∷= $𝑥 = 𝑒; | 𝑠 Ԧ𝑠 𝑖𝑓 𝑒 𝑠1𝑒𝑙𝑠𝑒 𝑠2;

𝑏𝑟𝑒𝑎𝑘; 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒; | 𝑤ℎ𝑖𝑙𝑒 𝑒 𝑠; | …

Assume a subtyping relation: 𝜏1 <: 𝜏2

Typing expressions

• Define a context for locals

Γ ∷= 𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛

• For example

Γ = {𝑥: 𝑖𝑛𝑡, 𝑦: 𝑏𝑜𝑜𝑙|𝑠𝑡𝑟𝑖𝑛𝑔}

• Define typing judgment for expressions

Γ ⊢ 𝑒 ∶ 𝜏

Typing statements

• Now define a context for continuations,

Δ ∷= 𝑘1: Γ1, … , 𝑘𝑛: Γ𝑛

• For example:

Δ = {𝑛𝑒𝑥𝑡: 𝑥: 𝑖𝑛𝑡 , 𝑏𝑟𝑒𝑎𝑘: 𝑥: 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑦: 𝑏𝑜𝑜𝑙 }

• Then define a judgment for statements

Γ; Δ ⊢ 𝑠

meaning “it’s safe to execute s under locals Γ and

continuations Δ”.

Sequencing

Γ; 𝑛𝑒𝑥𝑡: Γ ⊢

Γ; Δ[𝑛𝑒𝑥𝑡: Γ′] ⊢ 𝑠 Γ′; Δ ⊢ {Ԧ𝑠}

Γ; Δ ⊢ {𝑠; Ԧ𝑠}

Γ; Δ ⊢ 𝑠 𝑛𝑒𝑥𝑡 ∉ 𝑑𝑜𝑚(Δ)

Γ; Δ ⊢ {𝑠; Ԧ𝑠}
Unreachable: might warn

or error

Assignment

Γ; 𝑛𝑒𝑥𝑡: Γ 𝑥: 𝜏 ⊢ $𝑥 = 𝑒

Γ ⊢ 𝑒: 𝜏

Conditionals

Γ ⊢ 𝑒: 𝑏𝑜𝑜𝑙 Γ; Δ ⊢ 𝑠1 Γ; Δ ⊢ 𝑠2

Γ; Δ ⊢ 𝑖𝑓 𝑒 𝑠1 𝑒𝑙𝑠𝑒 𝑠2

Loops

Γ; Δ 𝑏𝑟𝑒𝑎𝑘: Γ′, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒: Γ , 𝑛𝑒𝑥𝑡: Γ ⊢ 𝑠 𝑜𝑘

Γ; Δ, 𝑛𝑒𝑥𝑡: Γ′ ⊢ 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠

Γ; 𝑏𝑟𝑒𝑎𝑘: Γ ⊢ 𝑏𝑟𝑒𝑎𝑘 Γ; 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒: Γ ⊢ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

𝑤ℎ𝑖𝑙𝑒 𝑒 𝑠 ≡ 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 { 𝑖𝑓 ! 𝑒 𝑏𝑟𝑒𝑎𝑘; 𝑠 }

𝑑𝑜 𝑠 𝑤ℎ𝑖𝑙𝑒 𝑒 ≡ 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 { 𝑠; 𝑖𝑓 ! 𝑒 𝑏𝑟𝑒𝑎𝑘; }

Weakening

Γ1; Δ1 ⊢ 𝑠 Γ2 <: Γ1 Δ2 <: Δ1

Γ2; Δ2 ⊢ 𝑠

Γ1 <: Γ2

Δ, 𝑘: Γ2 <: Δ, 𝑘: Γ1 Δ, 𝑘: Γ <: Δ

𝜏1 <: 𝜏2

Γ, 𝑥: 𝜏1 <: Γ, 𝑥: 𝜏2 Γ, 𝑥: 𝜏 <: Γ

Implementing flow typing

• Define inference function 𝐼𝑛𝑓 so that

𝐼𝑛𝑓 Γ, 𝑠 = Δ

produces the weakest Δ such that Γ; Δ ⊢ 𝑠 holds (cf

strongest post-condition in Hoare logic).

Inference (conditional)

𝐼𝑛𝑓 Γ, 𝑖𝑓 𝑒 𝑠1 𝑒𝑙𝑠𝑒 𝑠2 =

 𝑐ℎ𝑒𝑐𝑘(𝐼𝑛𝑓 Γ, 𝑒 <: 𝑏𝑜𝑜𝑙)

 𝑙𝑒𝑡 Δ1 = 𝐼𝑛𝑓 Γ, 𝑠1 𝑖𝑛

 𝑙𝑒𝑡 Δ2 = 𝐼𝑛𝑓 Γ, 𝑠2 𝑖𝑛

 Δ1 ⊓ Δ2

Join of environments e.g.
union types of locals

Inference (sequencing, assignment)

𝐼𝑛𝑓 Γ, $𝑥 = 𝑒 = 𝑙𝑒𝑡 𝜏 = 𝐼𝑛𝑓 Γ, 𝑒 𝑖𝑛 𝑛𝑒𝑥𝑡: Γ 𝑥: 𝜏

𝐼𝑛𝑓 Γ, { } = {𝑛𝑒𝑥𝑡: Γ}

𝐼𝑛𝑓 Γ, 𝑠; Ԧ𝑠 =

𝑙𝑒𝑡 Δ1 = 𝐼𝑛𝑓 Γ, 𝑠 𝑖𝑛

𝑙𝑒𝑡 Δ2 = 𝐼𝑛𝑓 Δ1 𝑛𝑒𝑥𝑡 , Ԧ𝑠 𝑖𝑛

(Δ1 \𝑛𝑒𝑥𝑡) ⊓ Δ2

Operations on contexts

Δ1 ⊓ Δ2 = 𝑘: Γ1 ⊔ Γ2 Δ1 𝑘 = Γ1, Δ2 𝑘 = Γ2} ∪

𝑘: Γ Δ1 𝑘 = Γ, 𝑘 ∉ 𝑑𝑜𝑚 Δ2 ∪

{ 𝑘: Γ ∣ Δ2 𝑘 = Γ, 𝑘 ∉ 𝑑𝑜𝑚 Δ1 }

Γ1 ⊔ Γ2 = 𝑥: 𝜏1 ⊔ 𝜏2 𝑥: 𝜏1 ∈ Γ1, 𝑥: 𝜏2 ∈ Γ2}

Choose how to interpret ⊔ on types e.g.

• Find named upper bound (e.g. mixed)

• Union types in language (this is what we do in Hack)

In practice

• Hack type inference: three techniques

• Continuations for flow typing

• Constraint solving for generics and subtyping

• Some bidirectional type checking for lambdas

• Incremental, parallel, and distributed checking for tens of

millions of lines of Hack code, integrated into the IDE

Bibliography

(Introduces ANF)
The Essence of Compiling with Continuations
Flanagan, Sabry, Duba, Felleisen
In PLDI’93

Compiling with Continuations, Continued
Andrew Kennedy.
In ICFP’07

(For an alternative view!)
Compiling without Continuations
Maurer, Downen, Ariola, Peyton Jones
In PLDI’17
Exceptional Syntax
Nick Benton & Andrew Kennedy.
JFP, vol 11 no 4, 2001
SSA is Functional Programming
Andrew Appel. SIGPLAN Notices, 33(4), 1998
Contification using Dominators
Matthew Fluet and Stephen Weeks. In ICFP’01

	Slide 1: Compiling and Typing with Continuations
	Slide 2: Continuations
	Slide 3: “Thinking continuations”: try-catch
	Slide 4: “Thinking continuations”: Hoare logic
	Slide 5: Compiling and Typing with Continuations
	Slide 6: Compiler Intermediate Representations (IR)
	Slide 7: Compiler Intermediate Representations (IR)
	Slide 8: ANF: administrative normal form
	Slide 9: Continuation-passing style
	Slide 10: Why compile using CPS?
	Slide 11: ANF is not closed under inlining
	Slide 12: Worse: conditionals
	Slide 13: “Second-class” continuations
	Slide 14: Theory and Practice
	Slide 15: Example 2nd-class CPS-based IR
	Slide 16: Features of the CPS language
	Slide 17: CPS is closed under inlining
	Slide 18: Data structures for CPS IR
	Slide 19: Graph representation Links from bound to free
	Slide 20: Graph representation Links from free to bound
	Slide 21: Compiler pipeline
	Slide 22: Contification
	Slide 23: Contification
	Slide 24: Contification
	Slide 25: Compiler Intermediate Representations (IR)
	Slide 26: Static Single Assignment form
	Slide 27: “SSA is functional programming”
	Slide 28: Compiling and Typing with Continuations
	Slide 29: The Hack programming language
	Slide 30: Types in Hack
	Slide 31: Static typing of local variables
	Slide 32: Examples of flow sensitivity
	Slide 33: Formalizing flow sensitivity
	Slide 34: Toy subset of Hack
	Slide 35: Typing expressions
	Slide 36: Typing statements
	Slide 37: Sequencing
	Slide 38: Assignment
	Slide 39: Conditionals
	Slide 40: Loops
	Slide 41: Weakening
	Slide 42: Implementing flow typing
	Slide 43: Inference (conditional)
	Slide 44: Inference (sequencing, assignment)
	Slide 45: Operations on contexts
	Slide 47: In practice
	Slide 48: Bibliography

