EFFECT HANDLERS

 \&
MATHEMATICALLY INSPIRED LANGUAGE CONSTRUCTS

Q

SÉMINAIRE

Structures de contrôle : de « goto » aux effets algébriques

Du jeudi 8 février au jeudi 14 mars 2024

Voir aussi :

- Cours associé
- Xavier Leroy

Structures de contrôle : des effets algébriques au «???»

Du jeudi 5 février au jeudi 12 mars 2099

Voir aussi :

- Cours associé
- Xavier Leroy

HANDLERS

HANDLERS

HANDLERS

Moggi recognised monads in the semantics of effectful computations

Computational lambda-calculus and monads

Eugenio Moggi* Lab. for Found. of Comp. Sc
University of University of Edinburgh
EH9 3.JZ Edinburs EH9 3JZ Edinburgh, UK
On leave from Univ, di Pis

Abstract

The λ-calculus is considered an useful mathematical
tool in the study of proger tool in the study of programming languages. Howatical grams, then a grosss simplificatove equavivalence of prosive a calculus based on a cate ${ }^{1}$ is introduced. We procomputations, which provides a correct semantics for
ing equivale, ing equivalence of programs, independent from prov-
specific computat cific computational model

Introduction

This paper is about logics for
grams, in particular for proving equaningleabout pro
grams. Following res icams. Following a consolidated equivalence of pro-
ical computer science we closed λ-terms, pcience we identify programs with the
correspenty corresponding to somsibly containing extra constants,
language und language under consideration. There programming
proaches to
proaches to proving equivalence of programs:

- The operational ap
ational semantics, e.g. a partial function oper-
ping every prog ping every program (i.e. closed term) to its restrolation on open terms called induces a congruence re lence (see e.g. [10]). Then the prational equiva that two terms are operationally equival to prove
- The denotational
tion of the (programming) lanes an interpretaematical structure, the intended model math-
the problem in a math the problem is to prove that two terms denote then
same object in the inten same object in the intended model.
Research partially supported by ${ }^{1}{ }^{1}$ rograms are identified with $\stackrel{{ }^{1} \mathrm{Pr}}{{ }^{2}}$

The logical approach gives a class of possible
models for models for the language. Then the of pobssiblem is to
prove that two terms denotes the all possible models.
a theory (the operational and denotational approaches give only of formulas valid in the intended ence \approx and the set $T h$ and they (especially the operationalel respectively),
with with programming languages on a rather approach) deal
basis. On basis. On the other hand, the logical approach ch-case
a consequence a consequence relation $\vdash(A x \vdash-A$ iff the formula gives
true in all models of the can deal with difls of the set of formulas formula $A x$) $\begin{aligned} & \text { is } \\ & \text { functional }\end{aligned}$, which functional, imperative, non-determing languages (e.g. uniform way, by sive, non-deterministic) in a rather
$A x$, and $A x$, and possibly extending the language withioms
constants. Moreover cidable, so it is posssible the relation \vdash is often semideformal system for it, while $T h$ and ound and complete only in oversimplified chises. $T h$ and \approx are semidecidable
We do not take as aster idenctifies of the denotation theory of $\beta \eta$-conversion, whiv type $A \rightarrow B$ dinotation of a program (procedure) which
this identifith a total function from this identification wipes out completelly behavion B, since
non-termination non-termination, non-determinism or sidely behaviours like
can be exhibited by real ceed as follows:

1. We take cata
functions and develop on as a general theory of mantics of computations based egorical se-
2. We consider how the etions based on monads.
be extended to interpret λ-calculusuantics should
At the end we tet interpret λ-calculus.
lambda-calculue a t a formal system, the computational
equivalealculus for short)
encer equivalence of programs, which is sound and for proving
plete w.r.t. the categ
plete w.r.t. the categorical semantics of whand and com-

Example 1.3 Non-deterministic computations:

- $T(-)$ is the covariant powerset functor, i.e. $T(A)=$ $\mathcal{P}(A)$ and $T(f)(X)$ is the image of X along f
- $\eta_{A}(a)$ is the singleton $\{a\}$
- $\mu_{A}(X)$ is the big union $\cup X$

Example 1.3 Non-deterministic computations:

- $T(-)$ is the covariant powerset functor, i.e. $T(A)=$ $\mathcal{P}(A)$ and $T(f)(X)$ is the image of X along f
- $\eta_{A}(a)$ is the singleton $\{a\}$
- $\mu_{A}(X)$ is the big union $\cup X$

Example 1.3 Non-deterministic computations:

- $\left.T()_{-}\right)$is th There is an alternative description of a monad (see $\mathcal{P}(A)$ an $[7]$), which is easier to justify computationally.
- $\eta_{A}(a)$ is Definition 1.2 A Kleisli triple over \mathcal{C} is a triple
- $\mu_{A}(X)$ is $\left(T, \eta,-_{-}^{*}\right)$, where $T: \operatorname{Obj}(\mathcal{C}) \rightarrow \operatorname{Obj}(\mathcal{C}), \eta_{A}: A \rightarrow T A$, $f^{*}: T A \rightarrow T B$ for $f: A \rightarrow T B$ and the following equations hold:
- $\eta_{A}^{*}=\mathrm{id}_{T A}$
- $\eta_{A} ; f^{*}=f$
- $f^{*} ; g^{*}=\left(f ; g^{*}\right)^{*}$

$$
\begin{aligned}
& S_{\text {is }} \text { a } \\
& \text { omputa- }^{\text {ogether }} \\
& \text { og }
\end{aligned}
$$

Every Kleisli triple $\left(T, \eta,-^{*}\right)$ corresponds to a monad (T, η, μ) where $T(f: A \rightarrow B)=\left(f ; \eta_{B}\right)^{*}$ and $\mu_{A}=$ $\mathrm{id}_{T A}^{*}$.

In his subsequent work, a computationally natural approach was taken

NFORMATION and COMPUTATION 93, 55-92 (19991)

Notions of Computation and Monads

\section*{Eugenio MogGi*}
 Department of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, UK

The i-calculus is considered a useful mathematical ming languages, since programs can be idenitified with λ-terms. However if tong uses $\beta \eta$-conversion Curther and uses $\beta \eta$-conversion to prove equited with λ-derrms. However, if one goes
simplification is introduced programs, then a simplification is introduced (programs are idenventifed of with tograms, then a gros
values to values) that may jeopardise the andions paper we introduce calculi. based on a categoricalitity of theoretical resulfts. In this provide a correct basis for proving equivalencical semantics for compuicalions, that nations of computation. Fis94 Acaderic Press, Inc.

Introduction

This paper is about logics for
for proving equivalence of pror reasoning about programs, in particular possibly computer science we identify prowing a consolidated tradition in possibly containing extra constants, programming language under consideresponding to some features tef the based approaches to proving consideration. There are three semartics - The operational apprivalence of programs
e.g., a partial function mapping every progrom an operational semantics resulting value (if any), which induces a crogram (i.e., closed term) to its prove that two divalence (see e.g. Plotkin (1975)) Tition on open terms - The - The denotational approach equivalen

Then the prob) language in a mathematical an interpretation of the intended model is to prove that two terms structure, the intended model. nded model.

- The logical approach gives
(programming) langue. Then a class of possible denote the same object in Then the problem is to prove models for the The operation object in all possible models. perational and denotational appro
model, respectively Once \approx or the set $T h$ of formulas only a theory: the model, respectively. On the other hand, the logical approad in the intended
* Research partially supported by EEC hand, the logical approach gives a conse-

55 Collaboration Contract ST2J-0374-C(EDB).

> - $\eta_{A}^{*}=$ id $_{T_{1}} A \rightarrow T B$ and the follow $(\mathscr{C}), \eta_{A}: A \rightarrow T A$ for $A \in \mathrm{Obj}(\mathscr{C})$,
> - $\eta_{A} ; f^{*}=f$ for $f: A \rightarrow T B$
> - $f^{*} ; g^{*}=\left(f ; g^{*}\right)^{*}$ for $f: A \rightarrow T B$ and $g: B \rightarrow T C$.

Example 1.4. We go through the notions of computation given in Example 1.1 and show that they are indeed part of suitable Kleisli triples.

- partiality $T A=A_{\perp}(=A+\{\perp\})$
η_{A} is the inclusion of A into A_{\perp}
if $f: A \rightarrow T B$, then $f^{*}(\perp)=\perp$ and $f^{*}(a)=f(a)$ (when $a \in A$)
- nondeterminism $T A=\mathscr{P}_{\text {in }}(A)$
η_{A} is the singleton map $a \mapsto\{a\}$
if $f: A \rightarrow T B$ and $c \in T A$, then $f^{*}(c)=\bigcup_{x \in c} f(x)$
- side-effects $T A=(A \times S)^{S}$
η_{A} is the map $a \mapsto(\lambda s: S .\langle a, s\rangle)$
if $f: A \rightarrow T B$ and $c \in T A$, then $f^{*}(c)=\lambda s: S .\left(\right.$ let $\left\langle a, s^{\prime}\right\rangle=c(s)$ in $\left.f(a)\left(s^{\prime}\right)\right)$

Wadler transformed the semantic notion into a programming construct

Comprehending Monads

Philip Wadler
University of Glasgow

Category theorists in

$$
\begin{aligned}
& \text { aspects of universists algvented monads in the } 1960 \text { 's } \\
& \text { in the 1970's. Functional proorammos }
\end{aligned}
$$

in the 1970's to concisely express certain programmers invented list express certain how list comprehensions may be generalised to involving lists. This paperensions resulting programming feature can concisely to an arbitrary monad, and how wh
some programs some programs that manipulate state, handle excest in a pure functional language
tinuations. A new sond and presented. No knowledge of to the old problem of destructive text, or invoke con-

1 Introduction

Is there a way to combine the indulgences of impurity with the blessings of purity?
Impure, strict functional languages such as Stand
IRC86] [RC86] support a wide variety of features Miranda ${ }^{1}$ [Tur85] ${ }^{\text {a }}$ eschations. Pure, lazy functional langing to state, handling excent Scheme tages of lazy evaluation such features, because they are such as Haskell [HPW91] or at length elsewhere [Hen and equational reasoning advan incompatible with the advan Purity has its regrets, and a8]. some moment when an impure feature hamers in pure functional languag all required to generate unique names, then an tempted them. For instance, if a will recall such cases it is always possible to mimic the requignable variable instance, if a counter is
though tedious must the ticket. In though tedious means. For instance, a counter can bed impure feature by straightforward
functions to functions to accept an additional parameter (the be simulated by modifying the relevard additional result (the counter's updated value).
${ }^{1}$ Miranda is a trader
uthrs Lefleare Limited
tronic mail: wadler@cs.glasgow.ac.uk.
This paper appeared in Mathe.
earlier version appeared in ACM Confererces on corrects a few small errors in the pp. 461-493, 1992; copy.

1

Wadler transformed the semantic notion into a programming construct

Comprehending Monads

Philip Wadler
University of Glasgow
ategory the Abstract
aspects of universal algebra. Functiads in the 1960's
in the 1970's to concisely express certain programmers invented list copress certain how list comprehensions may be cereneralised to
resulting involving lists. This papens shons resulting programming feature can concisely expa arbitrary monad, and how the
some programs then some programs that manipulate state, handle excest in a pure functional language
tinuations. A new sond and presented. No knowledge of to the old problem of destructive text, or invoke con-

1 Introduction
Is there a way to combine the ind ${ }^{\prime}$. [RC\&6]
4.1 State transformers

Fix a type S of states. The monad of state transformers $S T$ is defined by

$$
\begin{aligned}
\text { type } S T x & =S \rightarrow(x, S) \\
\text { map }^{S T} f \bar{x} & =\lambda s \rightarrow\left[\left(f x, s^{\prime}\right) \mid\left(x, s^{\prime}\right) \leftarrow \bar{x} s\right]^{I d} \\
\text { unit }^{S T} x & =\lambda s \rightarrow(x, s) \\
\text { join }^{S T} \overline{\bar{x}} & =\lambda s \rightarrow\left[\left(x, s^{\prime \prime}\right) \mid\left(\bar{x}, s^{\prime}\right) \leftarrow \overline{\bar{x}} s,\left(x, s^{\prime \prime}\right) \leftarrow \bar{x} s^{\prime}\right]^{I d}
\end{aligned}
$$

Wadler transformed the semantic notion into a programming construct

Comprehending Monads

Philip Wadler
University of Glasgow
ategory ther Abstract
aspects of universal algebra. Functions in the 1960's
in the
in the 1970's to concisely express certain programmers invented list copress certain how list comprehensions may be cereneralised to
resulting involving lists. This papens shons resulting programming feature can concisely expa arbitrary monad, and how the
some programs then some programs that manipulate state, handle excest in a pure functional language
tinuations. A new sond and presented. No knowledge of to the old problem of destructive text, or invoke con-

1 Introduction
Is there a way to combine the ind ${ }^{\prime}$. Impure, strict finn
4.1 State transformers

Fix a type S of states. The monad of state transformers $S T$ is defined by

$$
\begin{aligned}
\text { type } S T x & =S \rightarrow(x, S) \\
\text { map }^{S T} f \bar{x} & =\lambda s \rightarrow\left[\left(f x, s^{\prime}\right) \mid\left(x, s^{\prime}\right) \leftarrow \bar{x} s\right]^{I d} \\
\text { unit }^{S T} x & =\lambda s \rightarrow(x, s) \\
\text { join }^{S T} \overline{\bar{x}} & =\lambda s \rightarrow\left[\left(x, s^{\prime \prime}\right) \mid\left(\bar{x}, s^{\prime}\right) \leftarrow \overline{\bar{x}} s,\left(x, s^{\prime \prime}\right) \leftarrow \bar{x} s^{\prime}\right]^{I d}
\end{aligned}
$$

Wadler transformed the semantic notion into a programming construct

$$
\begin{aligned}
& 7.1 \\
& \text { The } \text { mar }_{\text {mand }_{\text {ad }}} \mathrm{er}_{\mathrm{S}} \\
& \text { type parsers is given by } \\
& \text { mapparse }
\end{aligned}
$$

4.1 State transformers

Fix a type S of states. The monad of state transformers $S T$ is

$$
\begin{aligned}
\text { type } S T x & =S \rightarrow(x, S) \\
\operatorname{map}^{S T} f \bar{x} & =\lambda s \rightarrow\left[\left(f x, s^{\prime}\right) \mid\left(x, s^{\prime}\right) \leftarrow \bar{x} s\right]^{I d} \\
\text { unit }^{S T} x & =\lambda s \rightarrow(x, s) \\
\text { join }^{S T} \overline{\bar{x}} & =\lambda s \rightarrow\left[\left(x, s^{\prime \prime}\right) \mid\left(\bar{x}, s^{\prime}\right) \leftarrow \overline{\bar{x}} s,\left(x, s^{\prime \prime}\right) \leftarrow \bar{x} s^{\prime}\right]^{I d}
\end{aligned}
$$

monad

$$
\begin{aligned}
T X & =\mathscr{P} X \\
\eta(x) & =\{x\} \\
c \gg k & =\bigcup_{x \in c} k(c)
\end{aligned}
$$

monad

$$
\begin{aligned}
T X & =\mathscr{P} X \\
\eta(x) & =\{x\} \\
c \gg k & =\bigcup_{x \in c} k(c)
\end{aligned}
$$

effect-specific operations

$$
\begin{gathered}
\text { fail : TX } \\
\text { fail }=\{ \} \\
\text { choose }: T X \times T X \rightarrow T X \\
\operatorname{choose}\left(c_{1}, c_{2}\right)=c_{1} \cup c_{2}
\end{gathered}
$$

Gordon Plotkin and John Power *
Division of Informatics, University of Edinburgh, King's Buildings,
Edinburgh EH99 3JZ, Scotland

Abstract. M He also presented the comped a monadic account of computational effects.
functional programming lantional λ-calculus, adding appropriate operations. The effectsts; the effectsts are obtainedred by
can give can give a corresponding treatment of of operation arises as sto whether by
this in the the case of algebraic ene a single-sorted algebraic signaturects where the operational semantics. We do
the me me the monad, in ag aerraic signature, and theire semantations are given by
and without-recursin sense. We consider cor coll supported by and without-recursion, an exse. We consider call-by-value splerported by
general adequacy theorems and illon of λ_{c} with arithmetic. seneral adequacy theorems, and illustrate of these with arithmetic. We wh h, prove
determinisism and probabilistic nondetermines.

Introduction

Moggi introducel

Moggi introduced the idea of a general account ing encapsulating then
ng encapsulating them via monard $T: \mathbf{C} \rightarrow \mathbf{C}$, the mputational effects, propos-
the type of computations of elements of x. He els is that $T(x)$ is
λ-calculus λ. λ-calculus computations of elements of x. $x \rightarrow \mathbf{H}$. also the main idearea is that $T(x)$ is
fects $[21]$. The effects theall-by-value functional the computat programming
 specified by a signature Σ. Mogges obtained by adding appropriate operation
tions in the context of his motuced the consid tions in the context of his metalanguage $\operatorname{ML}(\Sigma)$ whsideration of these opera as a programming language languages [22, 23], but which is purpose is to give the In our view any complete
not itself thought of
progress, one has to deal with the the has been lacking for the monarate a treat-
In this
o this paper we give such a treatment in the case of are the sou
operations are given
an n-ary operation f is a single-sorted algebraic signatueb
$f_{x}: T(x)^{n} \longrightarrow T(x)$
parametrically natural with respect to morphisms
T is then said to support the family to morphisms in f_{x}. (In $[22]$ onl
to morphisms in C is considered; we use the
This work has been done withed; we use the stronge
ture of Programming Languages Support of EPSRC gra.

An effect is specified with operations and equations

An effect is specified with operations and equations

operations

fail: 0
choose:2

An effect is specified with operations and equations

operations

fail: 0
 choose:2

choose (choose $M N$) $P=$ choose $M($ choose $N P)$ choose $M N=$ choose $N M$ choose $M M=M$ choosefail $M=M=$ choose M fail

An effect is specified with operations and equations

operations

$$
\begin{aligned}
& \text { fail: 0 } \\
& \text { choose:2 } \\
& \text { choose (choose } M N \text {) } P=\text { choose } M(\text { choose } N P) \\
& \text { choose } M N=\text { choose } N M \\
& \text { choose } M M=M \\
& \text { choose fail } M=M=\text { choose } M \text { fail }
\end{aligned}
$$

$\operatorname{chs} B(\operatorname{chs}(\operatorname{chs} A C)(\operatorname{chs} B f a i l))$

An effect is specified with operations and equations

operations

$$
\begin{aligned}
& \text { fail: 0 } \\
& \text { choose:2 } \\
& \text { choose (choose } M N \text {) } P=\text { choose } M(\text { choose } N P) \\
& \text { choose } M N=\text { choose } N M \\
& \text { choose } M M=M \\
& \text { choose fail } M=M=\text { choose } M \text { fail }
\end{aligned}
$$

$\operatorname{chs} B(\operatorname{chs}(\operatorname{chs} A C)(\operatorname{chs} B f a i l))$
$=\operatorname{chs} B(\operatorname{chs} A(\operatorname{chs} C(\operatorname{chs} B$ fail $)))$

An effect is specified with operations and equations

operations

$$
\begin{aligned}
& \text { fail: 0 } \\
& \text { choose: } 2 \\
& \text { choose (choose } M N \text {) } P=\text { choose } M(\text { choose } N P) \\
& \text { choose } M N=\text { choose } N M \\
& \text { choose } M M=M \\
& \text { choose fail } M=M=\text { choose } M \text { fail }
\end{aligned}
$$

$\operatorname{chs} B(\operatorname{chs}(\operatorname{chs} A C)(\operatorname{chs} B f a i l))$
$=\operatorname{chs} B(\operatorname{chs} A(\operatorname{chs} C(\operatorname{chs} B f a i l)))$
$=\operatorname{chsfail}(\operatorname{chs} A(\operatorname{chs} B(\operatorname{chs} B C)))$

An effect is specified with operations and equations

operations

fail: 0

choose: 2
choose $($ choose $M N) P=$ choose $M($ choose $N P)$
choose $M N=$ choose $N M$
choose $M M=M$
choosefail $M=M=$ choose M fail
$\operatorname{chs} B(\operatorname{chs}(\operatorname{chs} A C)(\operatorname{chs} B f a i l))$
$=\operatorname{chs} B(\operatorname{chs} A(\operatorname{chs} C(\operatorname{chs} B f a i l)))$
$=\operatorname{chsfail}(\operatorname{chs} A(\operatorname{chs} B(\operatorname{chs} B C)))$
$=\operatorname{chs} A(\operatorname{chs} B C) \approx\{A, B, C\}$

operations
 exceptions state choice I/O probability
 read write flip

Why handling is not an algebraic operation?

Why handling is not an algebraic operation?

handling
$\operatorname{try}(f a i l, M)=M$
$\operatorname{try}(\operatorname{val} V, M)=\operatorname{val} V$

Why handling is not an algebraic operation?

handling
$\operatorname{try}($ fail,$M)=M$
$\operatorname{try}(\operatorname{val} V, M)=\operatorname{val} V$

algebraicity

do $x \Leftarrow \operatorname{try}\left(M_{1}, M_{2}\right)$ in N
$=\operatorname{try}\left(\right.$ do $x \Leftarrow M_{1}$ in N, do $x \Leftarrow M_{2}$ in $\left.N\right)$

Why handling is not an algebraic operation?

handling $\operatorname{try}(f a i l, M)=M$ $\operatorname{try}(\operatorname{val} V, M)=\operatorname{val} V$

algebraicity

$$
\begin{aligned}
& \text { do } x \Leftarrow \operatorname{try}\left(M_{1}, M_{2}\right) \text { in } N \\
& =\operatorname{try}\left(\operatorname{do} x \Leftarrow M_{1} \text { in } N \text {, do } x \Leftarrow M_{2} \text { in } N\right)
\end{aligned}
$$

$$
\text { do } x \Leftarrow \operatorname{val} 0 \text { in } N
$$

Why handling is not an algebraic operation?

handling

 $\operatorname{try}(f a i l, M)=M$ $\operatorname{try}(\operatorname{val} V, M)=\operatorname{val} V$
algebraicity

$$
\operatorname{do} x \Leftarrow \operatorname{try}\left(M_{1}, M_{2}\right) \text { in } N
$$

$=\operatorname{try}\left(\right.$ do $x \Leftarrow M_{1}$ in N, do $x \Leftarrow M_{2}$ in $\left.N\right)$

$$
\text { do } x \Leftarrow \operatorname{val} 0 \text { in } N
$$

$$
=\operatorname{do} x \Leftarrow \operatorname{try}(v a l ~ 0, \text { val 1) in } N
$$

Why handling is not an algebraic operation?

handling

 $\operatorname{try}(f a i l, M)=M$$\operatorname{try}(\operatorname{val} V, M)=\operatorname{val} V$
algebraicity
do $x \Leftarrow \operatorname{try}\left(M_{1}, M_{2}\right)$ in N
$=\operatorname{try}\left(\right.$ do $x \Leftarrow M_{1}$ in N, do $x \Leftarrow M_{2}$ in $\left.N\right)$
do $x \Leftarrow \operatorname{val} 0$ in N
$=\operatorname{do} x \Leftarrow \operatorname{try}(v a l 0$,val 1$)$ in N
$=\operatorname{try}($ do $x \Leftarrow \operatorname{val} 0$ in N, do $x \Leftarrow \operatorname{val} 1$ in N)

Why handling is not an algebraic operation?

handling $\operatorname{try}(\mathrm{fail}, M)=M$
$\operatorname{try}(\operatorname{val} V, M)=\operatorname{val} V$
algebraicity
do $x \Leftarrow \operatorname{try}\left(M_{1}, M_{2}\right)$ in N
$=\operatorname{try}\left(\right.$ do $x \Leftarrow M_{1}$ in N, do $x \Leftarrow M_{2}$ in $\left.N\right)$
do $x \Leftarrow \operatorname{val} 0$ in N
$=$ do $x \Leftarrow \operatorname{try}($ val 0 ,val 1$)$ in N
$=\operatorname{try}($ do $x \Leftarrow \operatorname{val} 0$ in N, do $x \Leftarrow \operatorname{val} 1$ in N)

Why handling is not an algebraic operation?

handling $\operatorname{try}(f a i l, M)=M$
$\operatorname{try}(\operatorname{val} V, M)=\operatorname{val} V$
algebraicity
do $x \Leftarrow \operatorname{try}\left(M_{1}, M_{2}\right)$ in N
$=\operatorname{try}\left(\right.$ do $x \Leftarrow M_{1}$ in N, do $x \Leftarrow M_{2}$ in $\left.N\right)$
do $x \Leftarrow \operatorname{val} 0$ in N
$=$ do $x \Leftarrow \operatorname{try}($ val 0 ,val 1$)$ in N
$=\operatorname{try}($ do $x \Leftarrow \operatorname{val} 0$ in N, do $x \Leftarrow \operatorname{val} 1$ in N)
$=$ do $x \Leftarrow$ val 1 in N

Exception handling indicated a different nature

Exception handling indicated a different nature

On the other hand, for example, the exceptions monad does not support its exception handling operation: only the weaker naturality holds there. This monad is a free algebra functor for an equational theory, viz the one that has a constant for each exception and no equations; however the exception handling operation is not definable: only the exception raising operations are. Other standard monads present further difficulties. So while our account of operational semantics is quite general, it certainly does not cover all cases; it remains to be seen if it can be further extended.

Exception handling indicated a different nature

On the other hand, for example, the exceptions monad does not support its exception handling operation: only the weaker naturality holds there. This monad is a free algebra functor for an equational theory, viz the one that has a constant for each exception and no equations; however the exception handling operation is not definable: only the exception raising operations are. Other standard monads present further difficulties. So while our account of operational semantics is quite general, it certainly does not cover all cases; it remains to be seen if it can be further extended.

On the other hand, for example, the exceptions monad does not support its exception handling operation: only the weaker naturality holds there. This monad is a free algebra functor for an equational theory, viz the one that has a constant for each exception and no equations; however the exception handling operation is not definable: only the exception raising operations are. Other standard monads present further difficulties. So while our account of operational semantics is quite general, it certainly does not cover all cases; it remains to be seen if it can be further extended.

Of the various operations, handle is of a different computational character and, although natural, it is not algebraic. Andrzej Filinski (personal communication) describes handle as a deconstructor, whereas the other operations are constructors (of effects). In this paper, we make the notion of constructor precise by identifying it with the notion of algebraic operation.

constructors deconstructors

exceptions state get set choice choose
 I/O read write
 probability flip

constructors deconstructors

exceptions state get set choice choose
 I/O read write
 probability flip
 try

Exception handlers are homomorphisms and they generalise to other effects

The next step was implementing handlers in practice

The Programming Languages Zoo

A potpourri of programming languages
$>$ home

```
About the zoo
The Programming Languages Zoo is a collection of miniature programming languages which demonstrates various concepts and techniques used in programming language design and implementation. It is a good starting point for those who would like to implement their own programming language, or just learn how it is done.
The following features are demonstrated:
>> functional, declarative, object-oriented, and procedural languages
>> source code parsing with a parser generator
>> keep track of source code positions
>> pretty-printing of values
>> interactive shell (REPL) and non-interactive file processing
>> untyped, statically and dynamically typed languages
>> type checking and type inference
>> subtyping, parametric polymorphism, and other kinds of type systems
>> eager and lazy evaluation strategies
>> recursive definitions
>> exceptions
>> interpreters and compilers
>> abstract machine
```

Installation

Initial version of Eff had a Python-like syntax and was untyped

Mathematics and Computation

A blog about mathematics for computers
Posts Talks Publications Software About
\leftarrow How eff handles built-in effects
Programming with effects I: Theory \rightarrow

Programming with effects II: Introducing eff

(1) 27 September 2010
- Matija Pretnar
Computation, Eff, Guest post, Programming, Software, Tutorial

[UPDATE 2012-03-08: since this post was written eff has changed considerably. For updated information, please visit the eff page.]
**This is a second post about the programming language eff. We covered the theory behind it in a previous post. Now we turn to the programming language itself.

Please bear in mind that eff is an academic experiment. It is not meant to take over the world. Yet. We just wanted to show that the theoretical ideas about the algebraic nature of computational effects can be put into practice. Eff has many superficial similarities with Haskell. This is no surprise because there is a precise connection between algebras and monads. The main advantage of eff over Haskell is supposed to be the ease with which computational effects can be combined.

Installation

If you have Mercurial installed (type hg at command prompt to find out) you can get eff like this:

```
$ hg clone http://hg.andrej.com/eff/ eff
```

Otherwise, you may also download the latest source as a .zip or .tar.gz, or visit the repository with your browser for other versions. Eff is

Mathematics and Computation

A bus
effect state x : operation get ():
(lambda s: yield ss) operation set sinew:
(lambda s: Yield return y : s : Yield () s_new)
(lambda s:
finally f: $f x(s, y))$

Installation

If you have Mercurial installed (type hg at command prompt to find out) you can get eff like this:

Next version added types and moved much closer to OCaml

Mathematics and Computation

A blog about mathematics for computers
Posts Talks Publications Software About
\leftarrow The topology of the set of all types
Programming with Algebraic Effects an... \rightarrow

Eff 3.0

(c) 08 March 2012

- Andrej Bauer

Eff, News

Matija and I are pleased to announce a new major release of the eff programminglanguage.
In the last year or so eff has matured considerably:

- It now looks and feels like OCaml, so you won't have to learn yet another syntax.
- It has static typing with parametric polymorphism and type inference.
- Eff now clearly separates three basic concepts: effect types, effect instances, and handlers.
- How eff works is explained in our paper on Programming with Algebraic Effects and Handlers.
- We moved the source code to GitHub, so go ahead and fork it!

Comments

Dan Doel
02 April 2012 at 22:05

Next version added types and moved much closer to OCaml

M fanatics and Computation

A bl type 'a ref = effect operation get: unit \rightarrow 'a operation set: 'a \rightarrow unit
let state
r\#get $r x=$ handler
r\#set s' $k \rightarrow$ (fun $s \rightarrow k$ s \rightarrow)
val $y \rightarrow$ fun $_{s \rightarrow->}\left(f u n \rightarrow() s^{\prime}\right)$ finally $\left.f_{\rightarrow x^{->}}(y, s)\right)$ end

$$
\text { a } \rightarrow \text { unit }
$$

Posts

$$
(y, s))
$$

- Eff now cleanly supp un
- How eff works is explained in our paperone so form to

Comments

Dan Doe
02 April 2012 at 22:05

Moggi
Computational
lambda-calculus
and monads

Plotkin \& P.
 Handlers of alaebrnir -ce

 the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of progra connoisseurs will recognize the connections with the underlying mathest Section 2 informally introduces constructs specific The paper is organized as follows. Section 1 describes the syntax o domain-theoretic semantics of Eff, and in Section 5 we to Eff, Section 3 is devoted to type checking, in Section 4 we g Section 6 demonstrate how effects and handlers can be briefly discuss our prototype implementation. The examples in Set.................................
Moggi
Computational
lambda-calculus
and monads

Plotkin \& P.
 Handlers of alaebrnir -ce

Philip Wadler once opined [21] that monads as a programming concept would not have been discovered without their the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of progranmers, trusting that connoisseurs will recognize the connections with the underlying mathenat $\operatorname{section} 2$ informally introduces constructs specific The paper is organized as follows. Section 1 describes the syntax o domain-theoretic semantics of Eff, and in Section 5 we to Eff, Section 3 is devoted to type checking, in Section 4 we gin Section 6 demonstrate how effects and handlers can be

Moggi
Computational
lambda-calculus
and monads

Plotkin \& P.
 Handlers of alaebrnir -ce

Philip Wadler once opined [21] that monads as a programming concept would not have been discovered without their category-theoretic counterparts, but once they were, programmers could live in blissful ignorance of traners. trust the same holds for algebraic effects and handlers, we streamlined the paper for the benefit of programmers, trusting that connoisseurs will recognize the connections with the underlying max eff, Section 2 informally introduces constructs specific The paper is organized as follows. Section 1 describes the syntax a domain-theoretic semantics of Eff, and in Section 5 we to Eff, Section 3 is devoted to type checking, in Section 4 ,

Moving from mathematics to programming gave extra flexibility

Plotkin \& P.

Bauer \& P.

Moving from mathematics to programming gave extra flexibility

Plotkin \& P.

$$
\begin{aligned}
& \frac{x_{p}: \sigma, x: \beta ; z_{p}: \chi,\left(z_{i}:\left(\alpha_{i}\right) \rightarrow \chi\right)_{i=1}^{n} \vdash h_{\mathrm{op}}: \chi \quad\left(\mathrm{op}: \boldsymbol{\beta} ; \boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{n} \in \Sigma_{\mathrm{eff}}\right)}{\vdash\left(x_{p}: \sigma ; z_{p}: \chi\right) \cdot\left\{\mathrm{op}_{x}(z) \mapsto h_{\mathrm{op}}\right\} \text { op } \in \Sigma_{\mathrm{eff}}:(\sigma ; \chi) \rightarrow \chi \text { handler }}
\end{aligned}
$$

Bauer \& P.

Moving from mathematics to programming gave extra flexibility

Plotkin \& P.

$$
\frac{x_{p}: \sigma, \boldsymbol{x}: \boldsymbol{\beta} ; z_{\mathrm{p}}: \chi,\left(z_{i}:\left(\boldsymbol{\alpha}_{i}\right) \rightarrow \chi\right)_{i=1}^{n} \vdash h_{\mathrm{op}}: \chi \quad\left(\mathrm{op}: \boldsymbol{\beta} ; \boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{n} \in \Sigma_{\mathrm{eff}}\right)}{\vdash\left(\boldsymbol{x}_{\mathrm{p}}: \sigma ; z_{p}: \chi\right) \cdot\left\{\mathrm{op}_{\boldsymbol{x}}(\boldsymbol{z}) \mapsto h_{\mathrm{op}}\right\} \mathrm{op} \in \Sigma_{\mathrm{eff}}:(\sigma ; \mathbf{\chi}) \rightarrow \chi \text { handler }}
$$

$$
e::=\begin{gathered}
x|n| b \mid \text { true } \mid \text { Ealse }|()|\left(e_{1}, e_{2}\right) \mid \\
\text { Lefte } \mid \text { Righte } \mid \text { Eunx:A }|\mathrm{c}| e \# o p \mid h
\end{gathered}
$$

Bauer \& P.

Notion of models got absorbed in homomorphisms

Plotkin \& P.

Bauer \& P.

Notion of models got absorbed in homomorphisms

Plotkin \& P.

A handler

$$
h=\text { handler }\left(e_{i} \# \mathrm{op}_{i} x k \mapsto c_{i}\right)_{i}\left|\operatorname{val} x \mapsto c_{v}\right| \text { finally } x \mapsto c_{f}
$$

may be applied to a computation c with the handling construct

$$
\text { with } h \text { handle } c,
$$

Bauer \& P.

Notion of models got absorbed in homomorphisms

Plotkin \& P.

 when used for programming [13]. It is not obvious that t is handled whereas t^{\prime} is not, especially when t^{\prime} is large and $\left.t_{1}|\ldots| e_{n} \Rightarrow t_{n}\right\}$ in t^{\prime} but th alternative they propose is try $x \Leftarrow t$ unless $\left\{e_{1} \Rightarrow t_{1}\right\}$ in the handler. The syntax obvious that x is bound in t^{\prime}, but struct try twith $\mathrm{H}(\boldsymbol{u} ; \boldsymbol{t})$ as x in t^{\prime} addresses evaluation: after t is handled with H, its results aA handler

$$
h=\text { handler }\left(e_{i} \# \operatorname{op}_{i} x k \mapsto c_{i}\right)_{i} \mid \text { val } x \mapsto c_{v} \mid \text { finally } x \mapsto c_{f}
$$

may be applied to a computation c with the handling construct

$$
\text { with } h \text { handle } c,
$$

Bauer \& P.

Notion of models got absorbed in homomorphisms

Plotkin \& P.

Benton and Kennedy noted a few issues about the syntax of their construct when used for programming [13]. It is not obvious that t is handler is obscured. An whereas t^{\prime} they propose is try $x \Leftarrow t$ unless $\left\{e_{1} \Rightarrow t 1\right.$ in the handler. The syntax en used for programmen t^{\prime} is large and $\left.t_{1}|\ldots| e_{n} \Rightarrow t_{n}\right\}$. The syntax of order of
not, especially whe $\left\{e_{1} \Rightarrow t\right.$ unless $\left\{t_{1}\right.$, hot in the handler.

A handler

$$
h=\text { handler }\left(e_{i} \# \operatorname{op}_{i} x k \mapsto c_{i}\right)_{i} \mid \text { val } x \mapsto c_{v} \mid \text { finally } x \mapsto c_{f}
$$

may be applied to a computation c with the handling construct

$$
\text { with } h \text { handle } c,
$$

Bauer \& P.

Equations disappeared

Plotkin \& P.

Bauer \& P.

Equations disappeared

Plotkin \& P.

framework $[15,11]$. Section 3, describes (base) values and the algebraic theory of effects. A natural need for two languages arises: one to desputations, given given in Section 4, and one where they are used give the relevant denotational in Section 5. The second parts of these sect and continue with Section 6, where semantics; readers may wish to omit these and contine , Bauer \& P.

Equations disappeared

Plotkin \& P.

framework $[15,11]$. Section 3, describes (base) values and the algebraic theory of effects. A natural need for two languages arises: one to descitations, given given in Section 4, and one where they are sections give the relevant denotational in Section 5. The second parts of these sectiond continue with Section 6, where semantics; readers may wish to omit these and cone

Bauer \& P.

Equations disappeared

Plotkin \& P.

framework $[15,11]$. Section 3, describes (base) values and the algebraic theory of effects. A natural need for two languages arises: one to demputations, given given in Section 4, and one where they are used give the relevant denotational in Section 5. The second parts of these section ection 6, where semantics; readers may wish to
operations

handlers

or: 2
ensuring correctness
$H_{\max }=\left\{\operatorname{or}\left(x_{1}, x_{2}\right) \rightarrow \max \left(x_{1}, x_{2}\right)\right\}$
try $\operatorname{or}(\operatorname{or}(3,2), 5)$ with $H_{\text {max }}=5$
$H_{\text {sum }}=\left\{\operatorname{or}\left(x_{1}, x_{2}\right) \rightarrow x_{1}+x_{2}\right\}$
language designer
programmet
writesand uses writes handlers handlers

```
programmer
uses them
```


Equations disappeared

Plotkin \& P.

framework $[15,11]$. Section 3, describes (base) values and the algebraic theory of effects. A natural need for two languages arises: one to descitations, given given in Section 4, and one where they are used give the relevant denotational given in Section 4, and one where the parts of these sections qive the relevant maximum result
in Section 5 . The second pare where semantics; readers may wish to

ensuring correctness writes handlers

$$
\begin{aligned}
& \text { programmer } \\
& \text { uses them }
\end{aligned}
$$

handlers

$$
H_{\text {max }}=\left\{\operatorname{or}\left(x_{1}, x_{2}\right) \rightarrow \max \left(x_{1}, x_{2}\right)\right\}
$$

$$
\text { try or }(\operatorname{Or}(3,2), 5) \text { with } H_{\max }=5
$$

$$
\begin{aligned}
& H_{\text {sum }}=\left\{\operatorname{or}\left(x_{1}, x_{2}\right) \rightarrow x_{1}+x_{2}\right\} \\
& \text { trv or }(3-3) \text { with } H_{\text {sum }}=6
\end{aligned}
$$

try or $(3,-3)$ with $H_{\text {sum }}=6$

Another possible behaviour is for the continuation to return an unhandled computation, which must then be handled explicitly. We call such handlers shallow handlers because each handler only handles one step of a computation, in contrast to Plotkin and Pretnar's deep handlers. Shallow handlers are to deep handlers as case anal-

Another possible behaviour is for the continuation to return an unhandled computation, which must then be handled explicitly. We call such handlers shallow handlers because each handler only handles one step of a computation, in contrast to Plotkin and Pretnar's deep handlers. Shallow handlers are to deep handlers as case analysis is to a fold on an algebraic data type.

Equations not only describe effects, but entail additional laws

Algebraic Foundations for Effect-Dependent Optimisations

> Ohad Kammar
> Gordon D. Plotkin
> School of Intormatics, Univiversity of Edintuter Science
> $\begin{gathered}\text { ohad. kammar@ed.ac. uk } \\ \text { gdp@ed. ac. uk }\end{gathered}$

Abstract

 tional theory. The keys obsesving the e effects at hand anfects theat em-
identified with operation We develop an anation symbolsts
langured version of ter anotation effects can be anguage with a kind of comprsion of Levy's Call-by-Push-Value
be thought of as a sequentions for every effect set We develop of as a sequential, anions tore ivery effect set, it can can
generalising ange of validated ontimimisat intermediate language
 optime opitiminations as structurala aladading new ones. We classify
theory
thions at atways hold; algebraic or abstract: structural
 their validity). (we give modularly-checkable sufficient conditions of for crs: Optimizand S_{1}

 Lational semanticss, Program analal approaches to semantics, Deno-
Constructst: Type stricts General Terms Languages, Theory
Keywords Call-by-Puses, heor
honstormations, compilier optuimisisations, alsact compory of effects, code and affine monanads, sum and that thery, inequational logieffects, deversal algebra.

1. Introduction

In Gifforoduc
gramming languape is ansigigect analysis 5 [27], each term of a pro-
describes the values and an effect see. The tyo describes the values she term may evand and effect set. The type
scribes the effects the term may to the effect as memory assisgment ext may cause during its is computect set de-
For example coption raising or or $/ /$ O For example, consider the following term M :
if true
if true then $\mathrm{x}:=1$ else $\mathrm{x}:=\operatorname{deref}(\mathrm{y})$
It has unit type 1 as its sole purpose is to cause side effects
it has effect set $\{$ update, 1 lookup $\}$ as it updates or look \{ups. Type, lookup), as it miangt cause ememects,
this information vyid effect systems commonly conve ins information via a type and effect fyustement: commonly convey $x:$ Loc, y. Lec and effect judgeme
The information gathered by such effect
to guarantee 1 lookup \} to guarantee implemenentation such erfectect analyses can be used
properties 115$]$, to aid resorrce
code usiness, code using transformatid resource management to prove authenticity
example focus example, purely functional. We focus on the cole cant of the the opte. As This reordering $M_{2} ; N=y \leftarrow M_{2} ; x \leftarrow M_{1}$

 In a sequence of papers, Benton met otal. $14-8$

 same. Thus, this arpproche validitity of the optimisisteven though the
cause global theory changes. not robust, as smal languan the A possible way thanges.
in general.
 isolate those parts of the theory that modualar approach, seeking to to
changes and then
Sucha a theory may mecombining them wien wider small language Such a theory may rocombinining them with the unchanging iaguage
in big. stable languages. It important for compiler onging ants.

 $\Gamma+p$ at
form $\Gamma^{\prime}+$
fatter calce

 ader of effect sests and in

fail: 0
 choose: 2
 $$
\begin{aligned} \text { choose }(\text { choose } M N) P & =\text { choose } M(\text { choose } N P) \\ \text { choose } M N & =\text { choose } N M \\ \text { choose } M M & =M \\ \text { choose fail } M & =M=\text { choose } M \text { fail } \end{aligned}
$$

 choose (choose $M N$) $P=$ choose $M($ choose $N P)$

 choose (choose $M N$) $P=$ choose $M($ choose $N P)$ choose $M N=$ choose $N M$ choose $M N=$ choose $N M$ choose $M M=M$ choose $M M=M$

 choose fail $M=M=$ choose M fail

 choose fail $M=M=$ choose M fail}

algebraicity

do $x \Leftarrow(\operatorname{choose} M N)$ in $P=\operatorname{choose}($ do $x \Leftarrow M$ in $P)($ do $x \Leftarrow N$ in $P)$

Dropping equations due to handlers weakens the results of the logic

operations
equations

$$
\begin{array}{rlrl}
\text { fai] } & : 0 & \text { choose }(\text { choose } M N) P & =\operatorname{choose} M(\operatorname{choose} N P) \\
\text { ChOOSE } & \text { choose } M N & =\text { choose } N M \\
\text { choose } M M & =M
\end{array}
$$

algebraicity

do $x \Leftarrow(\operatorname{choose} M N)$ in $P=\operatorname{choose}($ do $x \Leftarrow M$ in $P)($ do $x \Leftarrow N$ in $P)$

nondeterministic laws

$\operatorname{choose}(\operatorname{do} x \Leftarrow M \operatorname{in} N)(\operatorname{do} x \Leftarrow M \operatorname{in} P)=\operatorname{do} x \Leftarrow M$ in $($ choose $N P)$

$$
\operatorname{do} x \Leftarrow M \operatorname{in}(\operatorname{do} y \Leftarrow N \operatorname{in} P)=\operatorname{do} y \Leftarrow N \operatorname{in}(\operatorname{do} x \Leftarrow M \operatorname{in} P)
$$

Dropping equations due to handlers weakens the results of the logic

operations

fail: 0
 choose: 2

algebraicity

do $x \Leftarrow(\operatorname{choose} M N)$ in $P=\operatorname{choose}($ do $x \Leftarrow M$ in $P)($ do $x \Leftarrow N$ in $P)$

nondeterministic laws

Choose (do $x \Leftarrow M$ in N) (do $x \Leftarrow M$ in $P)=$ do $x \Leftarrow M$ in (choose $N P$)

$$
\text { do } x \Leftarrow M \text { in }(\text { do } y \Leftarrow N \text { in } P)=\text { do } y \Leftarrow N \text { in }(\text { do } x \Leftarrow M \text { in } P)
$$

Dropping equations due to handlers weakens the results of the logic

operations

fail: 0
 choose: 2

algebraicity

do $x \Leftarrow(\operatorname{choose} M N)$ in $P=\operatorname{choose}($ do $x \Leftarrow M$ in $P)($ do $x \Leftarrow N$ in $P)$

Certain laws can be reconstructed under a particular handler

AN EFFECT SYSTEM FOR ALGEBRAIC Effects and HANDLERS
Faculty of Mathematics ANDREJ BAUER AND MATIJA PRETNAR
e-mail address: Andrej: Bauer@andrej conversity of Ljubljana, Sloven
Faculty of Mathematics and Pus
${ }^{\text {e-mail address: }}$ matija.pretnar@fifmf.uni-l.j.si
ABSTract. We present and
an ML-style we prosesent an effect system for core Eff, a simplified variant of Eff
fine an expressive effect

 We have formalized the effect system, for computations using nonitions for mutable state
in Twelf.

1. Introduction

An effect system supple
ode is executout which computational effectorn a programming lang for understand source code designed and solidly implemented may, will or will not happen when a piece of code $[11,8]$. As many before mistakes, as well as safely red rearrect system helps programmere balance between simplicity and expressiven] we take on the task of strize, and parallelize ML-style programming language with first-cle by devising an effect systemg just the right Our effect system is descriptive in the sense algebraic effects [17, 15] and hardf [2], an prescribe the possible effects but it does not prescribe that provides information aboun [19]. mentation we envision effect by wrapping types into computationtrast, Haskell's monads uninformative. Of course tynference which never fails, althational monads. In the imple An important feauture, typing errors are still errors. handler removes some effects effect system is non-
determined to actually be pure when wrance, a piece of code which uses
updates pdates.
1998 ACM Subject Classification: D3.3. F3.2, F3.3
Key words and phrasess: algebraic effer
preliminary version of algebraic effects, effect h

OOGIOAL MEEHOOS
NOMUUTERSCIENCE
Dol:0.2.2168LMcs. 222

Certain laws can be reconstructed under a particular handler

We demonstrate the technique for mutable state. Let $h=$ state $_{\iota}$ and abbreviate

$$
\text { let } f=(\text { with } h \text { handle } c) \text { in } f e
$$

as $\mathcal{H}[c, e]$. Straightforward calculations give us the equivalences

$$
\begin{aligned}
\mathcal{H}[(\iota \# l o o k u p ~()(y . c)), e] & \equiv \mathcal{H}[c[e / y], e] \\
\mathcal{H}\left[\left(\iota \# \text { update } e^{\prime}(-. c)\right), e\right] & \equiv \mathcal{H}\left[c, e^{\prime}\right] \\
\mathcal{H}\left[\operatorname{val} e^{\prime}, e\right] & \equiv \operatorname{val} e^{\prime}
\end{aligned}
$$

An effect system supplements a tradintroduction
code is executed. A well designed andional effects may, will, or will not hot haming language with understand source code, find mistakes solidly implemented effect system happen when a piece of code [11, 8]. As many before mistakes, as well as safenty rearfect system helps programmers balance between simplicity and expressiv, 7$]$ we take on the task of strize, and parallelize
ML-style ML-style programming language with fiveness by devising an effect striking just the right Our effect system is descriptive in the sense algebraic effects [17, 15] and hard [2], an prescribe the posal effects but it does not sense that it provides information handlers [19]. mentation we envision effect by wrapping types into computationtrast, Haskell's monads uninformative. Of course, tinference which never fails, An important feature, typing errors are still errors.
a handler removes feature of our effect system is errors
determined to actually be pure when instance, a piece of code which it detects the fact that updates
rapped by a handler that handles away loble state is
Key words subject Classification: D3.3, F3.2, F3.3.
A preliminary version of this work was presented at CALCO 2013, see [33 .

Certain laws can be reconstructed under a particular handler

We demonstrate the technique for mutable state. Let $h=$ state $_{\iota}$ and abbreviate

$$
\text { let } f=(\text { with } h \text { handle } c) \text { in } f e
$$

as $\mathcal{H}[c, e]$. Straightforward calculations give us the equivalences

$$
\begin{aligned}
\mathcal{H}[(\iota \# l o o k u p ~()(y . c)), e] & \equiv \mathcal{H}[c[e / y], e] \\
\mathcal{H}\left[\left(\not \text { \#update } e^{\prime}(-. c)\right), e\right] & \equiv \mathcal{H}\left[c, e^{\prime}\right] \\
\mathcal{H}\left[\operatorname{val} e^{\prime}, e\right] & \equiv \operatorname{val} e^{\prime},
\end{aligned}
$$

$\mathcal{H}\left[\iota \#\right.$ lookup () (y.ı\#update $\left.\left.y\left(_. c\right)\right), e\right] \equiv \mathcal{H}[c, e]$
$\mathcal{H}[\iota \#$ lookup () (y.ı\#lookup () $(z . c)), e] \equiv \mathcal{H}[\iota \# 1$ lookup () $(y . c[y / z]), e]$
$\mathcal{H}\left[\iota \#\right.$ update $e\left(_. \iota \#\right.$ update $\left.\left.e^{\prime}\left(_. c\right)\right), e\right] \equiv \mathcal{H}\left[\iota \#\right.$ update $\left.e^{\prime}\left(_. c\right), e\right]$
$\mathcal{H}\left[\iota \#\right.$ update $e\left(_. \iota \#\right.$ lookup () $\left.\left.(y . c)\right), e\right] \equiv \mathcal{H}\left[\iota \#\right.$ update $\left.e\left(_. c[e / y]\right), e\right]$
uninformative. Of ension effect inference which types into computational monads. Haskell's monads
An important fearse, typing errors are still errors fails, although in monads. In the imple-
handler removes feature of our effect system
etermined to actually be pure when instance, a piece of code whicity: it detects the fact that clates.

Wapped by a handler that handles away lookle state is
Key words and phacet Classification: D3.3, F3.2, F3.3.
A preliminary phes: algebraic effects, efs
preiliminary version of this work was presented at CALCO 2013, seet

$$
\begin{aligned}
\mathscr{H}_{\text {max }}[M] & =\text { with } H_{\text {max }} \text { handle } M \\
\mathscr{H}_{\text {max }}[\text { choose }(\text { do } x \Leftarrow M \text { in } N)(\text { do } x \Leftarrow M \text { in } P)] & =\mathscr{H}_{\text {max }}[\text { do } x \Leftarrow M \text { in }(\text { choose } N P)] \\
\mathscr{H}_{\text {max }}[\text { do } x \Leftarrow M \text { in }(\text { do } y \Leftarrow N \text { in } P)] & =\mathscr{H}_{\text {max }}[\text { do } y \Leftarrow N \text { in }(\text { do } x \Leftarrow M \text { in } P)]
\end{aligned}
$$

The technique can and has to be repeated for any concrete handler

$$
\begin{aligned}
\mathscr{H}_{\max }[M] & =\text { with } H_{\text {max }} \text { handle } M \\
\mathscr{H}_{\text {max }}[\text { choose }(\text { do } x \Leftarrow M \text { in } N)(\text { do } x \Leftarrow M \text { in } P)] & =\mathscr{H}_{\text {max }}[\text { do } x \Leftarrow M \text { in }(\text { choose } N P)] \\
\mathscr{H}_{\text {max }}[\text { do } x \Leftarrow M \text { in }(\text { do } y \Leftarrow N \text { in } P)] & =\mathscr{H}_{\max }[\text { do } y \Leftarrow N \text { in }(\text { do } x \Leftarrow M \text { in } P)]
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{H}_{\text {sum }}[M] & =\text { with } H_{\text {sum }} \text { handle } M \\
\mathscr{H}_{\text {sum }}[\text { choose }(\mathrm{do} x \Leftarrow M \text { in } N)(\mathrm{do} x \Leftarrow M \text { in } P)] & =\mathscr{H}_{\text {sum }}[\mathrm{do} x \Leftarrow M \text { in }(\text { choose } N P)] \\
\mathscr{H}_{\text {sum }}[\mathrm{do} x \Leftarrow M \text { in }(\mathrm{do} y \Leftarrow N \text { in } P)] & =\mathscr{H}_{\text {sum }}[\mathrm{do} y \Leftarrow N \text { in }(\operatorname{do} x \Leftarrow M \text { in } P)]
\end{aligned}
$$

The technique can and has to be repeated for any concrete handler

$$
\begin{aligned}
\mathscr{H}_{\max }[M] & =\text { with } H_{\text {max }} \text { handle } M \\
\mathscr{H}_{\text {max }}[\text { choose }(\text { do } x \Leftarrow M \text { in } N)(\text { do } x \Leftarrow M \text { in } P)] & \left.=\mathscr{H}_{\max } \text { do } x \Leftarrow M \text { in }(\text { choose } N P)\right] \\
\mathscr{H}_{\text {max }}[\text { do } x \Leftarrow M \text { in }(\text { do } y \Leftarrow N \text { in } P)] & =\mathscr{H}_{\max }[\text { do } y \Leftarrow N \text { in }(\text { do } x \Leftarrow M \text { in } P)]
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{H}_{\text {sum }}[M] & =\text { with } H_{\text {sum }} \text { handle } M \\
\mathscr{H}_{\text {sum }}[\text { choose }(\mathrm{do} x \Leftarrow M \text { in } N)(\mathrm{do} x \Leftarrow M \text { in } P)] & =\mathscr{H}_{\text {sum }}[\mathrm{do} x \Leftarrow M \text { in }(\text { choose } N P)] \\
\mathscr{H}_{\text {sum }}[\mathrm{do} x \Leftarrow M \text { in }(\mathrm{do} y \Leftarrow N \text { in } P)] & =\mathscr{H}_{\text {sum }}[\mathrm{do} y \Leftarrow N \text { in }(\text { do } x \Leftarrow M \text { in } P)]
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{H}_{\text {list }}[M] & =\text { with } H_{\text {list }} \text { handle } M \\
\mathscr{H}_{\text {list }}[\text { choose }(\text { do } x \Leftarrow M \text { in } N)(\text { do } x \Leftarrow M \text { in } P)] & =\mathscr{H}_{\text {list }}[\text { do } x \Leftarrow M \text { in }(\text { choose } N P)] \\
\mathscr{H}_{\text {list }}[\text { do } x \Leftarrow M \text { in }(\operatorname{do~} y \Leftarrow N \text { in } P)] & \neq \mathscr{H}_{\text {list }}[\text { do } y \Leftarrow N \text { in }(\operatorname{do~} x \Leftarrow M \text { in } P)]
\end{aligned}
$$

Different handlers satisfy varying equations

left

 max sum list right swap assOc \checkmark

\checkmark
\checkmark

comm

\checkmark
\checkmark
x
N
0
$\because 0$ •日
0
N
x
\checkmark
0

unit

\checkmark
v
\checkmark
x
\checkmark

Could equations be tracked with an effect system?

Could equations be tracked with an effect system?

$$
\begin{aligned}
\llbracket \sigma!\varphi \rrbracket & =T_{\varphi} \llbracket \sigma \rrbracket \\
\llbracket \sigma!\varphi / \mathscr{E} \rrbracket & =T_{\varphi} \llbracket \sigma \rrbracket / \sim_{\mathscr{E}}
\end{aligned}
$$

Could equations be tracked with an effect system?

$$
\begin{gathered}
\llbracket \sigma!\varphi \rrbracket=T_{\varphi \phi} \llbracket \sigma \rrbracket \\
\llbracket \sigma!\varphi / \mathscr{E} \rrbracket=T_{\varphi} \llbracket \sigma \rrbracket / \sim_{\mathscr{E}}
\end{gathered}
$$

Could equations be tracked with an effect system?

$$
\llbracket \sigma!\varphi \rrbracket \rrbracket T_{\varphi} \llbracket \sigma \rrbracket
$$
 equivalence relation
 (absolutely) free model
 $\llbracket \sigma!\varphi / \mathscr{E} \rrbracket=T_{\varphi} \llbracket \sigma \rrbracket /\left(\sim_{\mathscr{E}}^{\bullet}\right)$

Could equations be tracked with an effect system?

$\llbracket \sigma!\varphi \rrbracket=T_{\varphi p} \llbracket \sigma \rrbracket$
 equivalence relation
 (absolutely) free model
 $\llbracket \sigma!\varphi / \mathscr{E} \rrbracket=T_{\varphi} \llbracket \sigma \rrbracket / \sim_{\mathscr{E}}^{+}$

Could equations be tracked with an effect system?

$\llbracket \sigma!\varphi \rrbracket=T_{\varphi p} \llbracket \sigma \rrbracket$
 equivalence relation
 (absolutely) free model
 $\llbracket \sigma!\varphi / \mathscr{E} \rrbracket=T_{\varphi} \llbracket \sigma \rrbracket / \sim_{\mathscr{E}}^{+}$

Could equations be tracked with an effect system?

$\llbracket \sigma!\varphi \rrbracket=T_{\varphi} \llbracket \sigma \rrbracket$
 equivalence relation
 (absolutely) free model
 $\llbracket \sigma!\varphi / \mathscr{E} \rrbracket=T_{\varphi} \llbracket \sigma \rrbracket / \sim_{\mathscr{E}}^{+}$

Could equations be tracked with an effect system?

$\left.\llbracket \sigma!\varphi \rrbracket \equiv T_{\varphi} \llbracket \sigma\right]$
 equivalence relation (absolutely) free model $\llbracket \sigma!\varphi / \mathscr{E} \rrbracket=T_{\varphi} \llbracket \sigma \rrbracket /\left(\sim_{\mathscr{E}}\right)$

Previous reasoning can be factored into two parts

Previous reasoning can be factored into two parts

handlers respect equations

$$
\begin{aligned}
H_{\text {max }} & : \text { int }!\{\text { choose, fail }\} /\{\text { assoc, comm, idem, unit }\} \\
H_{\text {sum }} & : \text { int }!\{\text { choose, fail }\} / \mathscr{E} \Rightarrow \text { int }!\varnothing / \varnothing \\
H_{\text {list }} & : \text { int! } \varnothing \text { choose, fail }\} /\{\text { assoc, unit }\} \Rightarrow \text { int list }!\varnothing / \varnothing \\
H_{\text {left }} & : \tau!\{\text { choose, fail }\} /\{\text { assoc, idem, unit }\} \Rightarrow \tau!\{\text { fail }\} / \varnothing \\
H_{\text {swap }} & : \tau!\{\text { choose, fail }\} /\{\text { assoc, unit }\} \Rightarrow \tau!\{c h o o s e, f a i l\} /\{\text { assoc, unit }\} \\
H_{\text {swap }} & : \tau!\{\text { choose,fail }\} / \mathscr{E} \Rightarrow \tau!\{\text { choose, fail }\} / \mathscr{E}
\end{aligned}
$$

Previous reasoning can be factored into two parts

handlers respect equations

$$
\begin{aligned}
H_{\text {max }} & : \text { int }!\{\text { choose, fail }\} /\{\text { assoc, comm, idem, unit }\} \\
H_{\text {sum }} & : \text { int!\{choose, fail }\} / \mathscr{E} \Rightarrow \text { int }!\varnothing / \varnothing \\
H_{\text {list }} & : \text { int }!\{\text { choose, fail }\} /\{\text { assoc, unit }\} \Rightarrow \text { int list }!\varnothing / \varnothing \\
H_{\text {left }} & : \tau!\{\text { choose, fail }\} /\{\text { assoc, idem, unit }\} \Rightarrow \tau!\{\text { fail }\} / \varnothing \\
H_{\text {swap }} & : \tau!\{\text { choose, fail }\} /\{\text { assoc, unit }\} \Rightarrow \tau!\{c h o o s e, f a i l\} /\{\text { assoc, unit }\} \\
H_{\text {swap }} & : \tau!\{\text { choose,fail }\} / \mathscr{E} \Rightarrow \tau!\{\text { choose, fail }\} / \mathscr{E}
\end{aligned}
$$

Previous reasoning can be factored into two parts

handlers respect equations

$$
\begin{aligned}
H_{\text {max }} & : \text { int }!\{\text { choose, fail }\} /\{\text { assoc, comm, idem, unit }\} \\
H_{\text {sum }} & : \text { int }!\{\text { choose, fail }\} / \mathscr{E} \Rightarrow \text { int }!\varnothing / \varnothing \\
H_{\text {list }} & : \text { int }!\{c h o o s e, f a i l\} /\{\text { assoc, unit }\} \Rightarrow \text { intlist }!\varnothing / \varnothing \\
H_{\text {left }} & : \tau!\{\text { choose,fail }\} /\{\text { assoc, idem, unit }\} \Rightarrow \tau!\{\text { fail }\} / \varnothing \\
H_{\text {swap }} & : \tau!\{\text { choose,fail }\} /\{\text { assoc, unit }\} \Rightarrow \tau!\{c h o o s e, f a i l\} /\{a s s o c, u n i t\} \\
H_{\text {swap }} & : \tau!\{\text { choose,fail }\} / \mathscr{E} \Rightarrow \tau!\{c h o o s e, f a i l\} / \mathscr{E}
\end{aligned}
$$

equations imply properties

choose $($ do $x \Leftarrow M$ in $N)($ do $x \Leftarrow M$ in $P)={ }_{\mathscr{C}}$ do $x \Leftarrow M$ in $($ choose $N P)$

$$
\text { do } x \Leftarrow M \text { in }(\text { do } y \Leftarrow N \text { in } P)=_{\mathscr{G}} \text { do } y \Leftarrow N \text { in }(\text { do } x \Leftarrow M \text { in } P)
$$

$$
\frac{\Gamma \vdash V: \sigma}{\Gamma \vdash \operatorname{val} V: \sigma!\varphi / \mathscr{E}}
$$

$$
\frac{\Gamma \vdash M: \sigma!\varphi / \mathscr{E} \quad \Gamma, x: \sigma \vdash N: \tau!\varphi / \mathscr{E}}{\Gamma \vdash \operatorname{do} x \Leftarrow M \operatorname{in} P: \tau!\varphi / \mathscr{E}}
$$

$\frac{\Gamma \vdash V: \sigma \quad(F: \sigma \rightarrow \tau) \in \varphi}{\Gamma \vdash \operatorname{perform} F V: \tau!\varphi / \mathscr{E}}$

$$
\begin{aligned}
& \frac{\Gamma \vdash H: \sigma!\varphi / \mathscr{E} \Rightarrow \tau!\varphi^{\prime} / \mathscr{E}^{\prime} \quad \Gamma \vdash M: \sigma!\varphi / \mathscr{E}}{\Gamma \vdash \text { with } H \text { handle } M: \tau!\varphi^{\prime} / \mathscr{E}^{\prime}} \\
& \frac{\Gamma \vdash M: \sigma!\varphi / \mathscr{E} \quad \sigma<: \sigma^{\prime} \quad \varphi \subseteq \varphi^{\prime} \quad \mathscr{E}^{\prime} \vDash \mathscr{E}}{\Gamma \vdash M: \sigma^{\prime}!\varphi^{\prime} / \mathscr{E}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Gamma \vdash H: \sigma!\varphi / \mathscr{E} \Rightarrow \tau!\varphi^{\prime} / \mathscr{E}^{\prime} \quad \Gamma \vdash M: \sigma!\varphi / \mathscr{E}}{\Gamma \vdash \text { with } H \text { handle } M: \tau!\varphi^{\prime} / \mathscr{E}^{\prime}} \\
& \frac{\Gamma \vdash M: \sigma!\varphi / \mathscr{E} \quad \sigma<: \sigma^{\prime} \quad \varphi \subseteq \varphi^{\prime} \quad \mathscr{E}^{\prime} \vDash \mathscr{E}}{\Gamma \vdash M: \sigma^{\prime}!\varphi^{\prime} / \mathscr{E}^{\prime}}
\end{aligned}
$$

Handler typing rule and instantiation of theory equations

$$
\begin{gathered}
\Gamma \vdash H: \sigma!\varphi \rightsquigarrow \tau!\varphi^{\prime} / \mathscr{E}^{\prime} \\
\frac{\left[\Gamma \vdash H\left[T_{1}\right]=H\left[T_{2}\right]: \tau!\varphi^{\prime} / \mathscr{E}^{\prime}\right]_{\left(T_{1}=T_{2}\right) \in \mathscr{E}}}{} \\
\frac{\left(T_{1}=T_{2}\right) \in \mathscr{E} \quad\left[\Gamma \vdash \varphi / \mathscr{E} \Rightarrow \tau!\varphi^{\prime} / \mathscr{E}^{\prime}\right.}{\left.\Gamma \vdash T_{1}\left(M_{1}, \ldots, M_{n}\right)=T_{2}\left(M_{1}, \ldots, M_{n}\right): \sigma!\varphi / \mathscr{E}\right]_{i}}
\end{gathered}
$$

Handler typing rule and instantiation of theory equations

$$
\begin{aligned}
\begin{array}{c}
\text { well-typed } \\
\text { handling } \\
\text { clauses }
\end{array} & \left.\xrightarrow\left[\Gamma \vdash H: \sigma!\varphi \leadsto \tau!\varphi^{\prime} / \mathscr{C}\right)\right]{ } \\
& \frac{\left[\Gamma \vdash H\left[T_{1}\right]=H\left[T_{2}\right]: \tau!\varphi^{\prime} / \mathscr{E}^{\prime}\right]_{\left(T_{1}=T_{2}\right) \in \mathscr{E}}}{\Gamma \vdash H: \sigma!\varphi / \mathscr{E} \Rightarrow \tau!\varphi^{\prime} / \mathscr{E}^{\prime}} \\
& \frac{\left(T_{1}=\right.}{\left.\Gamma \vdash T_{2}\right) \in \mathscr{E} \quad\left[\Gamma \vdash M_{i}: \sigma!\varphi / \mathscr{E}\right]_{i}}
\end{aligned}
$$

Handler typing rule and instantiation of theory equations

$$
\begin{aligned}
& \begin{array}{c}
\text { well-typed } \\
\text { handling } \\
\text { clauses }
\end{array} \\
& \qquad \begin{array}{c}
\left.\Gamma \Gamma \vdash H\left[T_{1}\right]=H\left[T_{2}\right]: \tau!\varphi^{\prime} / \mathscr{C}^{\prime}\right]_{\left(T_{1}=T_{2}\right) \in \mathscr{E}}
\end{array} \\
& \frac{\left(T_{1}\right.}{\Gamma \vdash H: \sigma!\varphi / \mathscr{E} \Rightarrow \tau!\varphi^{\prime} / \mathscr{E}^{\prime}} \begin{array}{r}
\text { respecting } \\
\text { equations }
\end{array} \\
& \left.\Gamma \vdash T_{2}\right) \in \mathscr{E} \quad\left[\Gamma \vdash M_{i}: \sigma!\varphi / \mathscr{E}\right]_{i} \\
& \Gamma T_{1}\left(M_{1}, \ldots, M_{n}\right)=T_{2}\left(M_{1}, \ldots, M_{n}\right): \sigma!\varphi / \mathscr{E}
\end{aligned}
$$

This work has only partly been put into practice

Local Algebraic Effect Theories

Žiga Lukšič and Matija Pretnar*
(e-mail: ziga.luksic@fmf.uni-1j.si, mathatics and Physics, Slovenia
mail: ziga. 1 uksic@fmf.uni-lj.si, matija. pretnar@fmf.uni-lj.si)

Ald Abstract

equations between them. As many intereststhat can be described with a set of b
approaches assume a trivial theory interesting effect handlers do not a sest of basic operations and We present an alternative approach sificing both reasoning power and sect these equations, most in subparts of the program, yielding where the type system track safety.
optimizations and reasoning tools.
or practical
operations and a collection Power, 2003), whilection of equations between them (Plotkin to arbitrary algebraic effects effect handlers are a generalization Power, 2001; Plotkin \& though the early work effects (Plotkin \& Pretnar, 2009; Plotkin \& Pexception handlers considerable amount of useful hod only handlers that respect equations Pretnar, 2013). Even though not all (Ahman, 2018) - of thers did not, and the restriction was dre effect theory, a \& Pretnar, 2015; Leijen, 2017. Bie the later work on handlers (Kammar dropped in most and imprecise specifications, Biernacki et al., 2018), resulting in ar et al., 2013; Bauer Our aim is to rectify
uations observed this by reintroducing effect
rewrite computations into equival program. On one hand, the induced system, tracking other hand thputations into equivalent ones with one hand, the induced logic allows us to their behaviour type system enforces that handlers prect to the effect theory, while on to

- The syntax of an informal overview in Section 1, we proceed as folther specifying

The syntax of the working langa
are given in Section 2
, and the typing rules
\& Pretnar, 2013), so there is no canonical theory is in general undecidable (Plotkin ore, the typing rules are given parametric way of defining such a judgement Tik
present some of the more interesting choice a reasoning logic, and in Secti. ThereSince the definition of typing judgen
we first introdul when defining the denotation of types with a reasoning logic, wo we first introduce a set-based denotational semantics and terms. Thus, in Section 4 , and prove the expected meta-theoretic properties.

* This material is base
award number FA9550-17-1-0326.

This work has only partly been put into practice

Under consideration for publication in J. Functional Programming
Local A
theory eqn assoc for $\{$ Choice $\}$ is if b then 21
else Choice

Choice(() ; b.
if b then Choice ((); b^{\prime}. if b^{\prime} then $z 1$ () else $z 2$ ()) else z^{3} ()) \}
let to_list : int!eqn_assoc \Rightarrow int list = handler $\left\lvert\, \begin{aligned} & \text { effect Choice } \\ & \text { val } x \rightarrow[x]\end{aligned}\right.$ $l^{2} \rightarrow k$ true @ k false

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { c } z 1 \text { : unit } \rightarrow \text { (} \rightarrow \text {. } \\
\text { choice (}) \text { i }
\end{array}\right. \\
& \text { Choice (()i b. }
\end{aligned}
$$

The simplest way of efficiently executing Eff was through OCaml

efficient
execution

free monad

```
type 'a comp =
    Return of 'a
    Get of unit * (int -> 'a comp)
    Set of int * (unit -> 'a comp)
type ('a, 'b) handler = { (* handler clauses *) }
```


free monad

```
type 'a comp =
    Return of 'a
    Get of unit * (int -> 'a comp)
    Set of int * (unit -> 'a comp)
```

type ('a, 'b) handler $=\{(*$ handler clauses *) \}

operations

```
val return : ‘a -> ‘a comp
val (>>=) : 'a comp -> ('a -> 'b comp) -> ‘b comp
val map : ('a -> ‘b) -> ‘a comp -> ‘b comp
val get : unit -> int comp
val set : int -> unit comp
val handle : ('a, ‘b) handler -> 'a comp -> `b comp
```


free monad

```
type 'a comp =
    Return of 'a
    Get of unit * (int -> 'a comp)
    Set of int * (unit -> 'a comp)
```

type ('a, 'b) handler $=\{(*$ handler clauses *) \}

operations

```
val return : ‘a -> ‘a comp
val (>>=) : 'a comp -> ('a -> ‘b comp) -> ‘b comp
val map : (‘a -> ‘b) -> ‘a comp -> ‘b comp
val get : unit -> int comp
val set : int -> unit comp
val handle : ('a, ‘b) handler -> ‘a comp -> `b comp
```


First component was a purity-aware translation

source Eff

let $y=$ perform Get in perform (Set (y + 1));
loop (n - 1)

First component was a purity-aware translation

source Eff

let $y=$ perform Get in perform (Set (y + 1));
loop (n - 1)

desired OCaml

$$
\begin{aligned}
& \text { get }() \gg=\text { fun } y ~-> \\
& \text { set }(y+1) \text { >>= fun }-> \\
& \text { loop }(n-1)
\end{aligned}
$$

First component was a purity-aware translation

source Eff

let $y=$ perform Get in perform (Set (y + 1)); loop (n - 1)

generated OCaml

$$
\begin{aligned}
& \text { get () >>= fun y -> } \\
& (+) \mathrm{y} \gg=\text { fun f -> } \\
& \text { f } 1 \quad \gg=\mathrm{z} \text {-> } \\
& \text { set y >>= fun }-> \\
& (-) \mathrm{n} \gg=\text { fun } \mathrm{g}-> \\
& \text { g } 1 \gg=\mathrm{m} \\
& \text { loop m }
\end{aligned}
$$

desired OCaml

$$
\begin{aligned}
& \text { get }() \gg=\text { fun y -> } \\
& \text { set }(y+1) \gg=\text { fun }-> \\
& \text { loop }(n-1)
\end{aligned}
$$

First component was a purity-aware translation

source Eff

let $y=$ perform Get in perform (Set (y + 1)); loop (n - 1)

generated OCaml

$$
\begin{aligned}
& \text { get () >>= fun y -> } \\
& \text { (+) y >>= fun f -> } \\
& \text { f } 1 \text { >>= z -> } \\
& \text { set } y \gg=\text { fun _ -> } \\
& \text { (-) } \mathrm{n} \gg=\text { fun } g \text {-> } \\
& \text { g } 1 \gg=m \\
& \text { loop m }
\end{aligned}
$$

desired OCaml

$$
\begin{aligned}
& \text { get }() \gg=\text { fun y -> } \\
& \text { set }(y+1) \gg=\text { fun }-> \\
& \text { loop }(n-1)
\end{aligned}
$$

First component was a purity-aware translation

source Eff

let $y=$ perform Get in perform (Set (y + 1)); loop (n - 1)

purity-aware translation

get () >>= fun y ->
let $f=(+) y$ in
let $z=f 1$ in
set $y \gg=$ fun _- $^{->}$
let $g=(-) n$ in
let $m=g 1$ in
loop m

generated OCaml

$$
\begin{aligned}
& \text { get }() \quad \gg=\text { fun } y-> \\
& (+) y \gg=\text { fun } f-> \\
& f 1 \gg=z-> \\
& \text { set y >>= fun }-> \\
& (-) n \gg=\text { fun } \bar{g}-> \\
& \text { g } 1 \gg=m \\
& \text { loop } m
\end{aligned}
$$

desired OCaml

$$
\begin{aligned}
& \text { get }() \gg=\text { fun y -> } \\
& \text { set }(y+1) \gg=\text { fun }-> \\
& \text { loop }(n-1)
\end{aligned}
$$

First component was a purity-aware translation

source Eff

generated OCaml

let $y=$ perform Get in perform (Set (y + 1)); l(1 • 1)
get () >>= fun y->
(+) y >>= fun f ->
f 1 >>= z ->
.. ゝ= fun ->
let $z=f 1$ in
set $y \gg=$ fun in $^{->}$ let $g=(-) \mathrm{n}$ in
let $m=g 1$ in
loop m m
destreu camb
get () >>= fun y ->
set $(y+1) \gg=$ fun _ ->
loop (n - 1)

Second component was inlining handler definitions

Second component was inlining handler definitions

stateful function

```
let rec loop n =
    if n = O then () else
    let y = perform Get () in
    perform (Set (y + 1));
    loop (n - 1)
```


Second component was inlining handler definitions

stateful function

let rec loop $\mathrm{n}=$
if $\mathrm{n}=0$ then () else
let $y=$ perform Get () in
perform (Set (y + 1));
loop (n - 1)

handler for state

let state_handler = handler
effect (Get ()) k -> (fun s -> k s s)
effect (Set s') k -> (fun _ -> k () s')
_ -> (fun s -> s)

```
with state_handler handle
    if n = O then () else
    let y = perform Get () in
    perform (Set (y + 1));
    loop (n - 1)
```

with state_handler handle
if $\mathrm{n}=0$ then () else
let $y=$ perform Get () in
perform (Set (y + 1));
loop (n - 1)
with state_handler handle
if $\mathrm{n}=0$ then () else
let $y=$ perform Get () in
perform (Set (y + 1));
loop (n - 1)
if $\mathrm{n}=0$ then
with state_handler handle ()
else
with state_handler handle
let $y=$ perform Get () in perform (Set (y + 1)); loop (n - 1)
if $\mathrm{n}=0$ then
with state_handler handle ()
else
with state_handler handle
let $y=$ perform Get () in
perform (Set (y + 1));
loop (n - 1)
if $\mathrm{n}=0$ then
with state_handler handle ()
else
with state_handler handle
let $y=$ perform Get () in
perform (Set (y + 1));
loop (n - 1)

We unfold the handler once encountering a value or operation

if $n=0$ then
with state_handler handle ()
else
with state_handler handle
let $y=$ perform Get () in
perform (Set (y + 1));
loop (n - 1)
if $n=0$ then (fun $s->$ s) else fun s -> with state_handler handle loop (n - 1)
) $(s+1)$

We unfold the handler once encountering a value or operation

if $n=0$ then
with state_handler handle ()
else
with state_handler handle
let $y=$ perform Get () in
perform (Set (y + 1));
loop (n - 1)
if $n=0$ then (fun $s->$ s) else fun s -> with state_handler handle loop (n - 1)
) $(s+1)$
let rec loop' $\mathrm{n}=$ with state_handler handle loop n

For functions, we use function specialisation \& fusion

```
let rec loop' \(\mathrm{n}=\)
with state_handler handle loop n
```

let rec loop' $\mathrm{n}=$ with state_handler handle (* ...loop body... *)

For functions, we use function specialisation \& fusion

```
let rec loop' \(\mathrm{n}=\)
with state_handler handle loop n
```

let rec loop' $\mathrm{n}=$ with state_handler handle (* ...loop body... *)
let rec loop' n s =
if $\mathrm{n}=0$ then s else
(with state_handler handle loop (n - 1))
($\mathrm{s}+1$)

For functions, we use function specialisation \& fusion

```
let rec loop' \(\mathrm{n}=\)
with state_handler handle loop n
```

let rec loop' $\mathrm{n}=$ with state_handler handle (* ...loop body... *)
let rec loop' n s =
if $\mathrm{n}=0$ then s else
(with state_handler handle loop (n - 1)) ($\mathrm{s}+1$)

For functions, we use function specialisation \& fusion

let rec loop' $\mathrm{n}=$ with state_handler handle loop n
let rec loop' $\mathrm{n}=$ with state_handler handle (* ...loop body... *)
let rec loop' n s =
if $\mathrm{n}=0$ then s else
(with state_handler handle loop (n - 1))
($\mathrm{s}+1$)
let rec loop' n s =
if $\mathrm{n}=0$ then s else loop' $(\mathrm{n}-1)(\mathrm{s}+1)$

Purity-aware translation proved tricky due to implicit typing information

Purity-aware translation proved tricky due to implicit typing information

One thing removed for simplicity were effect instances

type 'a ref = effect
operation get: unit $->$ 'a
Eff end operation set: 'a $->$ unit
let
state $r x=$ handler

finally $\left.f_{\rightarrow X_{x}}(y, s)\right)$
operation get: unit $->$ int operation set: int \rightarrow unit
let state $r x=$ handler

$$
\left\lvert\, \begin{aligned}
& \text { \#get () } k \rightarrow \text { handler } \\
& \text { \#set } s^{\prime} k->\text { (fun } s \rightarrow k \text { (fun } s \rightarrow k \text { s) } \\
& \text { val y } \rightarrow \text { (fun } s \rightarrow(y, s)) \\
& \text { finally } \left.f \rightarrow \mathrm{~s}^{\prime}\right)
\end{aligned}\right.
$$

The main step was adding coercions as witnesses of subtyping

OCaml

The main step was adding coercions as witnesses of subtyping

The main step was adding coercions as witnesses of subtyping

The main step was adding coercions as witnesses of subtyping

The syntax of types and well-formedness rules for coercions
types

$$
\sigma::=b|\alpha| \sigma \rightarrow \underline{\tau} \quad \underline{\tau}::=\sigma!\varphi
$$

coercions

$$
\begin{aligned}
\overline{\Xi \vdash\langle\sigma\rangle:(\sigma<: \sigma)} & \frac{\omega:\left(\sigma<: \sigma^{\prime}\right) \in \Xi}{\Xi \vdash \omega:\left(\sigma<: \sigma^{\prime}\right)} \\
& \frac{\Xi \vdash \omega_{v}:\left(\sigma^{\prime}<: \sigma\right) \quad \Xi \vdash \omega_{c}:\left(\underline{\tau}<: \underline{\tau^{\prime}}\right)}{\Xi \vdash \omega_{v} \rightarrow \omega_{c}:\left((\sigma \rightarrow \underline{\tau})<:\left(\sigma \rightarrow \underline{\tau^{\prime}}\right)\right)}
\end{aligned}
$$

$$
\frac{\Xi \vdash \omega_{v}:\left(\sigma<: \sigma^{\prime}\right) \quad \Xi \vdash \varpi:\left(\varphi<: \varphi^{\prime}\right)}{\Xi \vdash \omega_{v}!\varpi:\left(\sigma!\varphi<: \sigma^{\prime}!\varphi^{\prime}\right)}
$$

When compiling to OCaml, coercions are mapped into functions

$$
\begin{aligned}
\mathscr{C}(\langle\sigma\rangle) & =\text { id } \\
\mathscr{C}\left(\omega_{i}\right) & =\text { w_i } \\
\mathscr{C}\left(\omega_{v} \rightarrow \omega_{c}\right) & =\operatorname{fun} f \mapsto x \mapsto\left(f\left(x \triangleright \mathscr{C}\left(\omega_{v}\right)\right) \triangleright \mathscr{C}\left(\omega_{c}\right)\right.
\end{aligned}
$$

$$
\mathscr{C}\left(\omega_{v}!\varpi\right)= \begin{cases}\mathscr{C}\left(\omega_{v}\right) & \varpi: \varnothing \subseteq \varnothing \\ \operatorname{return} \circ \mathscr{C}\left(\omega_{v}\right) & \varpi: \varnothing \subseteq \varphi \\ \operatorname{map} \mathscr{C}\left(\omega_{v}\right) & \varpi: \varphi \subseteq \varphi^{\prime}\end{cases}
$$

When compiling to OCaml, coercions are mapped into functions

$$
\begin{aligned}
\mathscr{C}(\langle\sigma\rangle) & =\text { id } \\
\mathscr{C}\left(\omega_{i}\right) & =\text { w_i } \\
\mathscr{C}\left(\omega_{v} \rightarrow \omega_{c}\right) & =\operatorname{fun} f \mapsto x \mapsto\left(f\left(x \triangleright \mathscr{C}\left(\omega_{v}\right)\right) \triangleright \mathscr{C}\left(\omega_{c}\right)\right.
\end{aligned}
$$

$$
\mathscr{C}\left(\omega_{v}!\varpi\right)= \begin{cases}\mathscr{C}\left(\omega_{v}\right) & \varpi: \varnothing \subseteq \varnothing \\ \operatorname{return} \circ \mathscr{C}\left(\omega_{v}\right) & \varpi: \varnothing \subseteq \varphi \\ \operatorname{map} \mathscr{C}\left(\omega_{v}\right) & \varpi: \varphi \subseteq \varphi^{\prime}\end{cases}
$$

Translating a polymorphic function incurs additional parameters

Translating a polymorphic function incurs additional parameters

Eff source

let apply_zero f = f 0 in
apply_zero cos

Eff source

let apply_zero f = f 0 in apply_zero cos

Internal representation

let $\operatorname{applyZero}_{\alpha, \beta,(\omega: \text { int }<: \alpha)}(f: \alpha \rightarrow \beta)=f(0 \triangleright \omega)$ in $\operatorname{applyZero}_{\text {float,float,int2float }} \operatorname{Cos}$

Eff source

let apply_zero f = f 0 in apply_zero cos

Internal representation

let $\operatorname{applyZero}_{\alpha, \beta,(\omega: \text { int }<: \alpha)}(f: \alpha \rightarrow \beta)=f(0 \triangleright \omega)$ in $\operatorname{applyZero}_{\text {float,float,int2float }} \cos$

OCaml translation

let apply_zero w f = f (w 0) in apply_zero float_of_int cos

Eff source

let apply_zero f = f 0 in apply_zero cos

Internal representation

let $\operatorname{applyZero}_{\alpha, \beta,(\omega: \text { int }<: \alpha)}(f: \alpha \rightarrow \beta)=f(0 \triangleright \omega)$ in $\operatorname{applyZero}_{\text {float,float,int2float }} \cos$

OCaml translation

let apply_zero w f = f (w 0) in apply_zero float_of_int cos

Eff source

let apply_zero $f=f 0$ in apply_zero cos

Internal representation

let applyZero ${ }_{\alpha, \beta,(\omega: \text { int }<: \alpha)}(f: \alpha \rightarrow \beta)=f(0 \triangleright \omega)$ in applyZero $_{\text {float,float,int2float }} \mathrm{COS}$

OCaml translation

let apply_zero w f = f (w 0) in apply_zero float_of_int cos

Eff standard library ~450 coercion parameters quicksort ~200 coercion parameters

Eff source

let apply_zero $f=f 0$ in apply_zero cos

Internal representation

let applyZero ${ }_{\alpha, \beta,(\omega: \text { int }<: \alpha)}(f: \alpha \rightarrow \beta)=f(0 \triangleright \omega)$ in applyZero $_{\text {float,float,int2float }} \mathrm{COS}$

OCaml translation

let apply_zero w f = f (w 0) in apply_zero float_of_int cos

Eff standard library ~450 coercion parameters quicksort ~200 coercion parameters

Coercions can be replaced without impacting the semantics

Coercions can be replaced without impacting the semantics

Corollary 5.4. Let $\Xi ; \vdash v: A$ be a well-typed closed value, Φ a complete phase such that $\Phi(\Xi, \operatorname{fp}(A))=\left(\Xi^{\prime}, \sigma\right)$. Then, for any instantiation $\vdash_{\text {subst }} \eta: \Xi$, there exists an instantiation $\vdash_{\text {subst }} \eta^{\prime}: \Xi^{\prime}$ and a coercion $\vdash \gamma_{\mathrm{v}}: \eta^{\prime}(\sigma(A)) \leq \eta(A)$ such that

$$
\begin{aligned}
& \text { ion } \vdash \gamma_{\mathrm{v}}: \eta^{\prime}(\sigma(A)) \leq \eta \vdash \eta(v): \eta(A) \rrbracket=\llbracket \vdash \eta^{\prime}(\sigma(v)) \triangleright \gamma_{\mathrm{v}}: \eta(A) \rrbracket \\
& \llbracket \vdash \eta
\end{aligned}
$$

Recent years have seen Introduction

Key words and
tational sem
tational semantics.
This mases: Computational effects, Optimizing compilation, Polymorphis is
number FA $9550-17-1-0326$ and $F A 9550-21-1-0024$.

Coercions can be replaced without impacting the semantics

Corollary 5.4. Let $\Xi ; \vdash v: A$ be a well-typed closed value, Φ a complete phase such that $\Phi(\Xi, \operatorname{fp}(A))=\left(\Xi^{\prime}, \sigma\right)$. Then, for any instantiation $\vdash_{\text {subst }} \eta: \Xi$, there exists an instantiation $\vdash_{\text {subst }} \eta^{\prime}: \Xi^{\prime}$ and a coercion $\vdash \gamma_{\mathrm{v}}: \eta^{\prime}(\sigma(A)) \leq \eta(A)$ such that

$$
\begin{aligned}
& \text { ion } \vdash \gamma_{\mathrm{v}}: \eta^{\prime}(\sigma(A)) \leq \eta(A) \rrbracket \\
& \llbracket \vdash \eta(v): \eta(A) \rrbracket=\llbracket \vdash \eta^{\prime}(\sigma(v)) \triangleright \gamma_{\mathrm{v}}: \eta(A) \rrbracket
\end{aligned}
$$

Recent years have seen Introduction

$\overline{\text { Key words and }}$
tational semantics.
This material is
number FA99550-17-1-0326 and FA9550-211-1-0024 by the Air Force Office of Sciention
\qquad

Coercions can be replaced without impacting the semantics

Corollary 5.4. Let $\Xi ; \vdash v: A$ be a well-typed closed value, Φ a complete phase such that $\Phi(\Xi, \mathrm{fp}(A))=\left(\Xi^{\prime}, \sigma\right)$. Then, for any instantiation $\vdash_{\text {subst }} \eta: \Xi$, there exists an instantiation $\vdash_{\text {subst }} \eta^{\prime}: \Xi^{\prime}$ and a coercion $\vdash \gamma_{\mathrm{v}}: \eta^{\prime}(\sigma(A)) \leq \eta(A)$ such that

$$
\begin{aligned}
& \text { ion } \vdash \gamma_{\mathrm{v}}: \eta^{\prime}(\sigma(A)) \leq \eta(A) \\
& \llbracket \vdash \eta(v): \eta(A) \rrbracket=\llbracket \vdash \eta^{\prime}(\sigma(v)) \triangleright \gamma_{\mathrm{v}}: \eta(A) \rrbracket
\end{aligned}
$$

Recent years have seen Introduction
algebraic effect handlers [PP03, PP13]. With a widesprogramming languages that supp
is becoming ever more ind

$\overline{\text { Key words and }}$
tational semantics.
This material is
number FA99550-17-1-0326 and FA95550-211-1-0024 by the Air Force Office of Scien worphic compilation, Deno-
\qquad

| write thanks |
| :--- | :--- |

Constraints can be represented with directed graphs

Constraints can be represented with directed graphs

Constraints can be represented with directed graphs

We can collapse strongly connected components to get a DAG

We can collapse strongly connected components to get a DAG

before
 after

type coercions
447
0
dirt coercions
644
0
return
$\gg=$
78
31

29
17

before
 after

type coercions

447
0
dirt coercions
644
0
return
$\gg=$
78
31

29
17

Symmetry is present, but not used in programming/proving

Symmetry is present, but not used in programming/proving

Symmetry is present, but not used in programming/proving

QUESTIONS?

THANK YOU!

