

Leçon N. 4 - 26 fevrier 2024

Alessandro MORBIDELLI

Chaire Formation planétaire: de la Terre aux exoplanètes

La formation planétaire

COLLÈGE DE FRANCI 1530 —

Un disque, ou un anneau, de planétésimaux

Les orbites elliptiques

COLLÈGE DE FRANCE

Excitation de l'excentricité des planétesimaux

Excitation de l'excentricité lors de la première rencontre

Animation de la rencontre proche entre deux planétésimaux de 100km, initialement sur orbites circulaires, dans un repère en corotation avec le barycentre des deux corps

2ea Direction azimutale 2ea **Direction radiale**

COLLÈGE De france

1530 -

Excitation de l'excentricité des planétesimaux

Augmentation statistique de l'excentricité lors des rencontres successifs

Excitation de l'excentricité des planétesimaux

Le forces d'amortissement, comme le frottement gazeux (de/dt ~-e^2), ou le collisions mutuelles (de/dt ~-e), finissent par saturer la croissance de l'excentricité et de l'inclinaison

Collisions entre planétesimaux

Energie par unité de masse pour fragmentation catastrophique^{*} de la "cible", en fonction de la taille de celle-ci (Benz et Asphaug, Icarus, 1999)

*Le fragment majeur issu de la fragmentation a une masse inférieure à la moitié de la masse originelle de la cible

Pour collisions entre planétésimaux de tailles comparables on considère comme "cible" un objet fictif dont m=m +m

 $m = m_1 + m_2$ R = [R₁³+R₂³]^{1/3}

COLLÈGE DE FRANCE 1530 —

Pour m1=m2 on a donc:

Taux de collisions

Taux de collision: $n \times \sigma \times v$ (t⁻¹)

n : Nombre de particules par unité de volume (l^{-3}) v : vitesse relative moyenne : ev_{K} (l/t) σ : Section collisionnelle (l^{2})

COLLÈGE DE FRANCE 1530 -----

Section collisionnelle en présence de gravité

Section collisionnelle = π (paramètre d'impact)²

$$F_g = 1 + V_{esc}^2 / V_{rel}^2$$
 Facteur de focalisation gravitationnelle

$$V_{esc} = \sqrt{2\frac{GM}{R}} \propto M^{1/3}$$

COLLÈGE DE FRANCE 1530 —

F**RANCE** 1530 ——

Croissance accélérée (Runaway growth)

Taux de croissance d'un objet:

$$\frac{\mathrm{d}M}{\mathrm{d}t} \propto R^2 F_g \propto M^{2/3} F_g$$

Si $V_{esc} >> V_{rel} \implies F_g \sim V_{esc}^2 / V_{rel}^2$
 $V_{esc} = \sqrt{2\frac{GM}{R}} \propto M^{1/3}$

Par substitution:

Kokubo and Ida, 2000: Condition initiale:

3,000 planétésimaux de 10²³g chacun

Resultat:

temps

1,322 planétésimaux + protoplanète de 2x10²⁵g

La croissance relative est fonction croissante de la masse

Croissance accélérée (Runaway growth)

Kokubo and Ida, 2000:

Condition initiale: 3,000 planétésimaux de 10²³g chacun

Resultat: 1,322 planétésimaux + protoplanète de 2x10²⁵g

COLLÈGE DE FRANCE 1530 —

ANCE

Fin de la croissance accélérée

La protoplanète perturbe les orbites des planétésimaux et augmente la dispersion de leurs vitesses relatives, ce qui réduit le facteur de focalisation gravitationnel.

Amortissement des excentricités par friction gazeuse:
$$rac{{
m d}e}{{
m d}t}\propto -e^2$$
 (a-a_p)/ $e_{equil}\propto M^{1/3}$

$$V_{rel} \propto e_{equil} v_K \propto M^{1/3}$$
$$V_{esc} = \sqrt{2 \frac{GM}{R}} \propto M^{1/3}$$

 $F_g = O(1)$ (indépendant de *M*)

Croissance oligarchique

Taux de croissance:

$$\frac{\mathrm{d}M}{\mathrm{d}t} \propto R^2 F_g \propto M^{2/3} F_g$$

$$F_g = O(1)$$

$$\frac{\mathrm{d}M}{\mathrm{d}t} \propto M^{2/3}$$

$$\frac{1}{M} \frac{\mathrm{d}M}{\mathrm{d}t} \propto M^{-1/3}$$

La croissance relative est fonction décroissante de la masse.

On pourrait imaginer que, grâce à la dépendance en *M*^{-1/3} du taux de croissance relative, les planétésimaux croissent très vite et attrapent en masse les protoplanètes.

Mais en réalité, à cause de l'excitation des excentricités, les vitesses d'impact deviennent disruptives pour les planétésimaux (Q>Q^{*}_D). Seules les protoplanètes peuvent continuer à croître, au détriment des planétésimaux

COLLÈGE DE FRANCE ------ 1530 -----

Toutes les protoplanètes tendent à avoir une masse comparable. Comme des oligarques, elles détiennent la plupart de la masse collective.

Croissance oligarchique

Encore depuis Kokubo and Ida, 2000 Taille de la zone étudiée auparavant

Points noirs: masse > 2x10²⁵g

Lignes horizontales: 5 R_H

Pour être stables, les protoplanètes doivent être séparées de ~ 5 R_H

Puisque R_H augmente avec la masse, cette distance ne peut pas être maintenue. Certaines protoplanètes doivent fusionner par un impact géant et ainsi réduire leur nombre total.

Fin de la croissance oligarchique

La croissance oligarchique s'arrête quand chaque oligarque a accrété tous les objets qui croisent son anneau d'influence, de largeur ~ 5 R_{H} .

```
M^{\sim} 2\pi r \, 10 \, R_H \Sigma_p with R_H = r \, (M/3M_*)^{1/3}
```

 $M^{\sim} [60 r^2 \Sigma_p / (3M_*)^{1/3}]^{3/2}$

Pour $\Sigma_p \sim 6g/cm^2/r$ (Chambers et Wetherill, Icarus, 1998)

La réalité est beaucoup plus complexe. Ça prend du temps pour croître les oligarques et ce temps augmente avec la distance

Fin de la croissance oligarchique

Accrétion vs. éjection

L'excitation par période orbitale de l'excentricité des planétésimaux qui rencontrent une protoplanète dépend de la masse de celle-ci mais pas de sa distance à l'étoile: $\frac{1}{\Omega} \frac{\mathrm{d}e}{\mathrm{d}t} \propto \frac{M_p^{5/3}}{e^3}$

Ça se comprend facilement en renormalisant la distance étoile - protoplanète

Cependant, la taille physique d'une planète ne se renormalise pas. Une planète loin de l'étoile est beaucoup plus petite par rapport à son rayon de Hill que la même planète plus proche.

Par conséquent:

- 1) Les collisions se font moins fréquentes
- 2) Les déflections lors des rencontres noncollisionnels les plus proches, de l'ordre de $GM_p/[R_p (e v_k)^2]$, deviennent plus fortes, en facilitant les éjections

COLLÈGE DE FRANCE ------ 1530 ------

Nombre de Safronov

Défini comme:

$$\Theta = \sqrt{\frac{GM_p}{R_p}} \frac{r}{GM_*}$$

Traduit la capacité de la planète à pousser vers l'éjection les orbites déjà fortement excentriques

Pas de valeur de seuil. Cependant pour $\Theta > 1$ l'éjection est favorisée; pour $\Theta < 1$ l'accrétion est favorisée.

Puisque $\Theta \sim \sqrt{r}$ l'accrétion des planétésimaux est peu efficace loin de l'étoile

1530

Excitation orbitale et frottement gazeux

On pourrait penser que, en présence d'un fort frottement gazeux, l'éjection soit empêchée et la protoplanète puisse accréter tous les objets disponibles.

Mais la combinaison entre excitation orbitale et amortissement par la friction, place les planétésimaux hors de portée des protoplanètes

Excitation orbitale et frottement gazeux

On pourrait penser que, en présence d'un fort frottement gazeux, l'éjection soit empêchée et la protoplanète puisse accréter tous les objets disponibles.

Mais la combinaison entre excitation orbitale et amortissement par la friction, place les planétésimaux hors de portée des protoplanètes

COLLÈGE DE FRANCE

Croissance par accrétion de poussières (pebble accretion)

Quand les planétésimaux se forment, ils sont immergés dans un disque de gaz et poussières

Ils peuvent donc continuer à croître en accrétant des poussières

C'est le processus dit de *"pebble accretion"* (Johansen and lacerda, 2010; Ormel and Klahr, 2010; Murray-Clay et al., 2011; Lambrechts and Johansen, 2012)

Estimations analytiques

Le modèle:

La protoplanète est immergée dans un disque de gaz, en rotation sous-Keplerienne, dont le flux n'est pas significativement perturbé par celle-ci.

Dans un répère tournant avec la protoplanète, les équations pour la poussière sont donc:

$$v_x = -\frac{GM_p x}{r^3} t_f$$
$$v_y = -\frac{GM_p y}{r^3} t_f - \delta v$$

Où x est la direction radiale, y celle azimutale, et δv est la vitesse du gaz par rapport à la protoplanète

Paramètre d'impact

Estimations analytiques

En imposant $\delta v = \eta v_K$

$$b = 2\sqrt{\frac{GMt_f}{\eta v_K}} = 2\sqrt{\frac{t_f}{t_B}}R_B$$

où
$$~R_B=rac{GM}{(\eta v_K)^2}$$
 (rayon de Bondi) et $~t_B=rac{R_B}{\eta v_K}$

Cependant, dans un disque en cisaillement Keplerien, la vitesse du gaz par rapport à la planète est:

$$\delta v = \eta v_K + \frac{3}{2}\Omega b$$

Dans la limite $\delta v \sim (3/2)b\Omega$ on trouve:

$$b = 2\sqrt{GMt_f/\delta v} = 2\tau_f^{1/3}R_H$$

x : direction radiale

Estimations analytiques

COLLÈGE DE FRANCE 1530 -

En 3D (*b*<<*H*_p)

$$\dot{M}_{3D} = \pi b^2 \frac{\Sigma_p}{\sqrt{2\pi}H_p} \delta v$$

En 2D (*b>>H*_p)

$$\dot{M}_{2D} = 2b\Sigma_p \delta v$$

où
$$\delta v = \eta v_K + rac{3}{2}\Omega b$$

À noter:
$$\dot{M}_{3D}$$
 << \dot{M}_{2D}

FRANCE

Vérifications numériques

Si *b* est grand, et donc la planète massive, celle-ci affecte aussi la dynamique du gaz, en invalidant les hypothèses utilisées dans les estimations analytiques

Dynamique du gaz en présence d'une planète de 1 masse terrestre (Popovas et al., MNRAS, 2018)

Vérifications numériques

Distribution des particules sur le plan médian du disque, perturbées par une planète de 1 masse terrestre (Popovas et al., MNRAS, 2018)

COLLÈGE DE FRANCE 1530 ------

Vérifications numériques

On vérifie bien la dépendance linéaire en taille des particules (i.e en τ_f) de l'accrétion 3D, ainsi que celle en R_H^3 (ici en R_H^2 , car H_p est assumée être proportionnelle à R_H). A un facteur numérique près proche de 1, les simulations confirment les estimations analytiques.

COLLÈGE DE FRANCE

La croissance par accrétion de poussières est toujours en mode oligarchique

Limite de Bondi, 3D:
$$\frac{\mathrm{d}M_{pl}}{\mathrm{d}t} \propto \frac{\tau_f}{t_B} R_B^2 \frac{\Sigma_p}{H_p} \eta v_K \propto M_{pl} \frac{\tau_f \Sigma_p}{\eta v_K H_p}$$
Limite de Bondi, 2D:
$$\frac{\mathrm{d}M_{pl}}{\mathrm{d}t} \propto \sqrt{\frac{\tau_f}{t_B}} R_B \Sigma_p \eta v_K \propto M_{pl}^{1/2} \sqrt{\tau_f} \Sigma_p$$
Limite de Hill, 3D:
$$\frac{\mathrm{d}M_{pl}}{\mathrm{d}t} \propto \tau_f R_H^3 \frac{\Sigma_p}{H_p} \propto M_{pl} \tau_f \frac{\Sigma_p}{H_p}$$
Limite de Hill, 2D:
$$\frac{\mathrm{d}M_{pl}}{\mathrm{d}t} \propto \tau_f^{2/3} R_H^2 \Sigma_p \propto M_{pl}^{2/3} \tau_f^{2/3} \Sigma_p$$

<u>Le taux d'accrétion dépend de</u> au_f , H_p , Σ_p

Considérations sur τ_f et H_p

Si la taille des poussières est limitée par la fragmentation:

(Batygin and Morbidelli, 2022, A&A)

La croissance par accrétion de poussières est plus faborable dans le disque externe, à l'inverse de la croissance par accrétion de planétésimaux

Cette différence en modes d'accrétion peut expliquer le contraste entre planètes géantes et planètes telluriques

1530 -

FRANCE

Considérations sur Σ_p

 $\Sigma_{\rm p}$ est supposé être maintenu par le flux radial continu des poussières

Croissance par accrétion de poussières piégées dans un anneau

Possible, mais le taux d'accrétion dépend de:

- La densité de poussières dans l'anneau
- La position de la planète par rapport au centre de l'anneau
- La vitesse de redistribution des poussières dans l'anneau par diffusion, pour ré-alimenter la zone d'accrétion (2b) de la planètes

COLLÈGE DE FRANCE ______1530 _____

La formation des planètes géantes

Jupiter Saturn La présence d'un noyau (plus ou moins dilué) Stability Terr d'éléments lourds au centre des planètes géantes suggère que celles-ci se soient formées par capture du H et He du disque autour d'une protoplanète solide massive. Uranus leavy elements Hydrogen and helium Differentially rotating region A Total mass of nearly . Convective region lonic water? Helium rainout region Superionic Helium abundance gradient water? Rocks? Heavy element abundance gradient

COLLÈGE FRANCE

1530 -

Structure de l'atmosphère en équilibre hydrostatique

Un système d'équations:

$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{GM(r)\rho}{r^2}$	(1) Équilibre hydrostatique: force de gravité=gradient d	e pression
$\frac{\mathrm{d}M(r)}{\mathrm{d}r} = 4\pi r^2 \rho$	(2) Relation masse-densité – dans le noyau (r <r<sub>c) ρ=ρ_c</r<sub>	
$\frac{\mathrm{d}T}{\mathrm{d}r} = -\frac{3}{64\pi\sigma} \frac{\kappa L\rho}{r^2 T^3}$	(3) Gradient de température dans le cas radiatif	
	$L(r) \approx \frac{GM_{c}\dot{M}}{r_{c}} - \frac{GM_{c}\dot{M}}{r}$ Luminosité due à la libération d'énergie matière solide sur la planète	ootentielle pe
	K opacité	
$P = \frac{k_{\rm B}}{\mu} \rho T$	(4) Équation d'état	

a libération d'énergie potentielle pendant l'accrétion de la planète

μ

Ce système se réduit à une seule équation (compliquée) $\rho(r)$, qui est résolue numériquement en imposant les conditions limites ρ_0 , T_0 (valeurs du disque) au bord externe de l'atmosphère r_{bd} , qui est le minimum entre $R_{H} = (M/3M_{*})^{1/3}$ and $R_{B} = 2GM/c_{s}^{2}$

Si $r_{bd} < r_c$ il n'y a pas d'atmosphère possible.

Structure de l'atmosphère en équilibre hydrostatique

Exemple de solution numérique

Condition d'existence d'un équilibre hydrostatique

La solution du système hydrostatique existe seulement si $M_c < M_{crit}$ with $M_{crit}(L,k)$

COLLÈGE DE FRANCE

Fin de l'équilibre hydrostatique: croissance exponentielle de l'atmosphère

L'atmosphère se contracte sous l'effet de sa propre gravité, permettant l'accrétion de nouveau gaz

Quelques équations:

 $\frac{d \log(r_p)}{dt} = -\frac{1}{\tau_{KH}}$ (1) contraction de l'atmosphère

 $au_{KH} \sim \frac{GM_cM_{atm}}{r_pL}$ (2) Temps de Kelvin-Helmholts pour contraction de l'atmosphère

 $L \approx -\frac{d(E_{\text{th}} + E_{\text{grav}})}{dt}$ (3) Luminosité due à la libération d'énergie potentielle E_{grav} pendant la contraction de l'atmosphère et à l'énergie thermique stockée E_{th}

 $\frac{dM_{atm}}{dt} = -4\pi r_{bd}\rho_0 \frac{dr_p}{dt}$ (4) Accrétion de nouveau gaz avec densité ρ_0 dans la partie supérieure de l'atmosphère contractée

L'augmentation dM_{atm} de la masse de l'atmosphère a un effet de rétroaction sur r_{bd} , M_{atm} and $E_{grav}=G(M_c+M_{atm}) dM_{atm}/r_p$ et donc sur τ_{KH}

COLLÈGE DE FRANCE

1530

Fin de l'équilibre hydrostatique: croissance exponentielle de l'atmosphère

Pollack et al., Icarus, 1998

Simulations hydrodynamiques de l'accrétion d'une atmosphère

Les calculs analytiques négligent les mouvements du gaz par rapport à la planète

Lambrechts and Lega, 2017

Simulations hydrodynamiques de l'accrétion d'une atmosphère

Lambrechts et al., 2019

COLLÈGE DE FRANCE 1530 ------

Simulations hydrodynamiques de l'accrétion d'une atmosphère

COLLÈGE DE FRANCE 1530 ------

Formation de planètes géantes par instabilité gravitationnelle

Sans formation préalable d'un noyau solide, le gaz du disque peut former une "bulle" autogravitante si:

$$\begin{array}{c} c_{s} \, \Omega^{\sim} \, 1/r^{12/7} \\ \text{Si H} \sim r^{9/7} - & \Sigma \sim 1/r^{15/14} \\ Q \sim 1/r^{9/14} \end{array}$$

 $\overline{}$

La condition Q<1 peut être satisfaite plus facilement dans le disque distant

Le taux de refroidissement dans le disque distant est aussi très court, ce qui permet la contraction des bulles autogravitantes de gaz avant leur déchirement

Simulation numérique de l'instabilité gravitationnelle

COLLÈGE DE FRANCE 1530 ------

Mayer et Quinn, 2016

Formation des planètes géantes distantes par instabilité gravitationnelle?

COLLÈGE DE FRANCE 1530 —

A retenir

- Dans un disque de planétésimaux, les excentricités orbitales, initialement nulles, augmentent
- Les orbites se croisent, les planétésimaux peuvent rentrer en collisions mutuelles
- Si à faible vitesses ces collisions donnent lieu à une accrétion
- Les objets les plus massifs croissent exponentiellement, grâce à leur facteur de focalisation gravitationnelle
- Une protoplanète dominante se dégage dans chaque anneau d'une largeur comparable au rayon de Hill
- Ces protoplanètes grandissent en suite en mode oligarchique, avec masses comparables
- Des collisions géantes entre protoplanètes ont lieu quand leur espacement devient insuffisant
- Le temps de formation des protoplanètes augmente avec la distance de l'étoile. Difficile de former le noyau d'une planète géante à ~5 ua avant la disparition du disque
- L'accrétion de poussières est un deuxième mode de croissance planétaire
- Elle est efficace quand les poussières ont τ_f grand et elles sont bien sédimentées sur le plan médian du disque
- Ceci a lieu typiquement au-delà de la ligne des glaces
- Le piégeage des poussières dans des anneaux n'est pas forcément un obstacle à ce mode de croissance
- Quand la planète est suffisamment massive, elle commence à former une atmosphère de H, He en équilibre hydrostatique par capture du gaz du disque.
- Quand la masse de l'atmosphère dépasse celle de la planète solide, le processus s'emballe exponentiellement.
 On a ainsi la formation d'une planète géante
- Les planètes géantes peuvent se former aussi par instabilité gravitationnelle du disque du gaz, suffisamment loin de l'étoile

COLLÈGE DE FRANCE 1530 -----