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Abstract

We develop a growth model where even though ideas eventually become harder
to find on any particular product line and long-run economic growth is constant de-
spite sustained population growth, long-run innovation and growth are responsive
to changes in market incentives, in particular to changes in market size. In the spirit
of Aghion and Howitt (1996), entrants introduce new technologies through research
and incumbents incrementally improve those technologies through development.
Over time, however, it becomes harder to improve upon an existing technology
such that incumbent firms eventually run out of ideas and exit the market. Their
departure paves the way for new entrants that discover new technologies, thereby
“resetting the innovation clock.” It is this innovation reset process that generates
sustained long-run endogenous economic growth. Analysis of the model reveals
that, in a stationary equilibrium, the rate of economic growth is constant and en-
dogenous despite a growing population and declining innovation efficiency at the
firm-level. We present macro- and microlevel evidence that supports the predictions
of our model.
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1 Introduction

In this paper, we develop an endogenous growth model which captures three empirical
facts which the existing theoretical literature typically fails to reconcile. First, despite
sustained population growth and an expanding supply of researchers, economic growth
has not accelerated in recent decades. Second, innovation is responsive to changes in
market incentives, in particular to changes in market size, taxes, and R&D policy. Third,
there are decreasing returns to R&D in any particular product line and ideas eventually
become harder to find.

That economic growth remained steady despite population growth was first noted
by Jones (1995). Examining data from 1953 to 1995, Jones (1995) finds that the nearly
ninefold increase in R&D personnel did not translate into faster economic growth.

On the effects of changes in market size, taxes, and R&D policy on long-run innovation-
led growth: Acemoglu and Linn (2004) document that, in the pharmaceutical industry,
innovators tend to focus on drugs for wealthier consumers; similarly, recent work using
French microdata by Aghion, Bergeaud, Lequien and Melitz (2024) finds that expanding
a firm’s export markets increases its output of pioneering patents. Akcigit, Grigsby and
Nicholas (2017) provides historical evidence showing a positive causal effect of public
investments. And Akcigit and Stantcheva (2020) document a negative effect of corporate
income tax on long-term innovation and productivity growth.

Finally, on ideas becoming harder in particular product lines: Bloom, Jones, Van Reenen
and Webb (2020) document this phenomenon in sectors such as semiconductors, agricul-
ture, and health. For instance, while Moore’s law suggests that the number of transistors
on a chip should double roughly every two years, the number of researchers required
to maintain this pace has increased dramatically—by a factor of eighteen since the
early 1970s. A similar trend is observed in pharmaceuticals, where the number of new
compounds approved by the FDA relative to research effort has fallen even as R&D
employment has grown.

To account for the above empirical facts, in this paper we develop an endogenous
growth model which features declining innovation efficiency at the product line level but
yet sustained endogenous growth at the macro level. In the spirit of Aghion and Howitt
(1996), what sustains economic growth in our model is the endogenous—research-
driven—arrival of technological breakthroughs (i.e., new products, firms, or industries)
that “reset” the research productivity clock continuously over time. Meanwhile, in-
cumbent firms incrementally improve the quality of their products by investing in
development. Over time, however, it becomes increasingly harder to improve product
quality, to such an extent that incumbent firms eventually run out of ideas and exit the
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market. This in turn paves the way for new firms entering the market with new product
lines where development-led quality improvements subsequently occur. This “resetting
of the innovation clock” and the resulting turnover between exiting incumbent firms
and the arrival of new firms with new product lines, gives rise to a continuous stream
of temporary opportunities for product quality improvements that sustain economic
growth.

In a stationary equilibrium, this turnover ensures that the total number of firms grows
in proportion to the population, such that any expansion in the latter is absorbed by the
proliferation of new firms. At the same time, our model displays declining innovation
efficiency at the micro level which takes the form of an idiosyncratic “obsolescence”
shock. Whenever a firm experiences this shock, its capacity to further improve its
product’s quality vanishes so that the firm’s innovation efficiency instantly falls to zero.

Overall, economic growth is sustained by the continuous replacement of obsolete
production lines of firms by new entrants, each bringing new opportunities for quality
improvement. Importantly, at any point in time, a fraction of firms has not yet experi-
enced the obsolescence shock, and their incentives to improve their product’s quality
remain responsive to policy. In fact, we show that, in stationary equilibrium, the growth
rate of per capita consumption remains constant despite population growth, and yet it
responds to changes in market size or innovation policy.

Literature Review

Our analysis in this paper first speaks to the long-standing economic history debate
between those, who, following Gordon (2017), maintain that the era of great innovations
is over and that innovation has entered a phase of sharply decreasing returns, and those
who, following Joel Mokyr (e.g., see Mokyr, 2014), argue that the recent technological
revolutions (IT and more recently AI), combined with the globalization of trade, have
created the conditions for innovation and growth to prosper more than ever before. We
contribute to this debate by developing a new growth model where ideas become harder
to find within each particular line, but not in the economy as a whole as new lines keep
being created.

Secondly, our paper can be seen as an attempt to settle the debate between en-
dogenous growth and semi-endogenous growth advocates. On the one hand, a “first-
generation” of innovation-based endogenous growth models (e.g., see Romer (1990);
Aghion and Howitt (1992); and Aghion, Akcigit and Howitt (2015)) predict that market
incentives—in particular property rights protection, market size, product market compe-
tition, or R&D subsidies—affect the long-run growth rate of the economy. However, in
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these models, population size had to remain constant in order for growth not to explode,
a prediction which fails to withstand empirical scrutiny as many economies experi-
enced roughly constant economic growth despite a growing research workforce. We
depart from this first wave of endogenous growth models by developing a framework
which delivers similar effects of market incentives despite having declining innovation
efficiency at the product line level and without having to assume population growth
away.

In contrast to the first-generation endogenous growth theories, Jones (1995)’s semi-
endogenous growth model delivers constant long-run growth despite population growth.
This in turn is achieved by allowing research productivity to decline with the accumu-
lated stock of knowledge. A downside of that model, however, is that the long-run
growth depends exclusively upon the rate of population growth (and a technology
parameter), and in particular it is unaffected by market incentives or policy. We depart
from the semi-endogenous growth paradigm by proposing a framework that generates
a balanced growth path despite population growth, and yet where market incentives
matter for long-run growth.

Most closely related to our analysis is the so-called “second generation” endogenous
growth models (e.g., see Dinopoulos and Thompson (1998); Peretto (1998); Young (1998);
and Howitt (1999)), which also deliver a constant long-run growth rate that can be
affected by policy despite population growth. This in turn was achieved by allowing the
number of firms to grow in proportion to the population (through free entry), keeping
the ratio of researchers per firm constant so that each firm keeps growing at a constant
rate. However, the assumption that research productivity should remain constant at the
firm level, is directly questioned by the evidence in Bloom et al. (2020) showing that
research productivity is instead declining at the firm–or product line–level. We depart
from this second wave of endogenous growth models by developing a model which
produced the same basic policy predictions as those delivered by the first-generation
endogenous growth models, even though we allow for both, population growth and
declining research productivity at the product line level. What sustains economic
growth in our model is the endogenous arrival of technological breakthroughs (i.e., new
products, firms, or industries) that “reset” the research productivity clock continuously
over time.

The remaining part of the paper is organized as follows. Section 2 lays out our
growth model. Section 3 solves the model. It computes the expression for the balanced
growth rate, then presents a simple calibration of the model. Section 4 discusses the
predictions of the model and compares them to empirical evidence. Section 5 analyzes
the constrained-optimal allocation of the model. Section 6 concludes.
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2 A New Growth Model

In this section, we present a simple model that captures the essence of our argument:
firms invest in the development of existing lines to improve the quality of their products,
but eventually run out of ideas and exit. Simultaneously, investments in research lead to
the entry of new firms with entirely new product lines. As a consequence, opportunities
for quality improvements are continuously replenished in the economy as a whole even
though improvement opportunities are eventually exhausted on any existing lines.

2.1 The Economic Environment

Preferences

Consider a continuous-time economy where time is indexed by t ∈ [0, ∞). This economy
is populated by a representative household of measure Nt evolving according to:

Ṅt = n · Nt, (1)

where n > 0. The household inelastically supplies one unit of labor at every point in
time, and has logarithmic preferences over individual consumption ct such that lifetime
utility is defined as:

U0 =
∫ ∞

0
e−(ρ−n)t ln(ct)dt. (2)

Here, ρ > n denotes the rate of time preference.

Technology

The economy is composed of a final sector producing a final good using a Dixit and
Stiglitz (1977) aggregate of differentiated products indexed by i ∈ It:

Yt =

(∫
i∈It

(qit · yit)
θ−1

θ di
) θ

θ−1
, (3)

where Yt is the quantity of the final good produced at time t, yit is the quantity of
product i supplied at time t, qit > 0 is the quality of that product, θ > 1 is the elasticity of
substitution between products, It is the set of available products, and its (endogenous)
cardinality is denoted by Mt ≡ |It|.

Here, a “product” is best understood as a new technology rather than an incremental
improvement on an existing one. For instance, early film cameras included simple box
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cameras like the Kodak Brownie, which had fixed-focus lenses and limited control over
exposure. Over time, manufacturers introduced more advanced 35 mm and single-
lens reflex (SLR) film cameras–such as the Nikon F or the Canon AE-1–with features
like interchangeable lenses, better metering systems, and more precise shutter controls.
These advancements represented successive improvements of film camera technology.
Eventually, however, those improvement opportunities in film-based imaging were
depleted, paving the way for a fundamentally new product: the digital camera, which
opened up new dimensions of innovation (e.g., image sensors, on-board processing, and
software-driven features).

Each of those products is produced by a single firm using labor according to the
linear technology:

yit = lit, (4)

where yit denotes the quantity of product i supplied at time t and lit denotes the quantity
of labor used in production.

Over time, a firm can incrementally improve the quality of its product by directing
final goods towards development. More precisely, a product’s quality evolves according
to the following controlled process:1

q̇it = γit · qit, (5)

where γit is the proportional drift of the product’s quality. The final good requirement
dit to achieve this quality drift is given by:

dit = QtN
1

θ−1
t · (qit/Qt)

θ−1 ·
cDγ

1+ζ
it

1 + ζ
(6)

where cD > 0 determines the scale of the development cost function, ζ > 0 measures its
elasticity, and Qt is an average quality index defined as:2

Qt ≡
(

M−1
t

∫
i∈It

qθ−1
it di

) 1
θ−1

.

The scaling of the development cost function by QtN
1

θ−1
t is designed to capture the effect

that a larger market leads to faster economic growth. Alternatively, one could move

1Here, we specify a deterministic process for the sake of tractability, but the model could easily be
extended to allow for idiosyncratic quality shocks.

2The development technology depends on a product’s quality relative to the average index qit/Qt
to ensure that product quality grows at the same rate for all firms in equilibrium (Gibrat’s law), which
delivers an analytical solution for the market allocation in this model.
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away from a CES production function—as in Latzer, Matsuyama and Parenti (2019)—to
disentangle the effect of a larger market from that of a larger population.

However, at Poisson rate ϵ > 0, a firm may receive an idiosyncratic “obsolescence”
shock after which it can no longer improve its product’s quality. This is an extreme and
stylized case of “ideas becoming harder to find” (Bloom et al., 2020) in which innovation
efficiency literally falls to zero once the shock hits.3 After being hit by this shock, the
product quality eventually falls below a certain threshold q

t
= q · Qt where q ∈ (0, 1),

the firm exogenously exits the market.4

In every point in time, a unit measure of potential entrants attempt to discover
products that are entirely new to society through research. Specifically, these entrants

can direct cRQtM
1

θ−1
t units of final goods to research in order to invent a unit flow of

these new products. Once a product is discovered, its initial quality is drawn from a
point mass at the lower bound q

t
of the product quality support.5

Resource Constraints

Labor supplied by the household can be allocated to either production, delivering the
labor market clearing condition:

Lt ≡
∫

i∈It
litdi ≤ Nt. (7)

and the final good can be allocated to either consumption, research, or development,
which delivers following resource constraint:

Ct + Rt + Dt ≤ Yt where Dt ≡
∫

i∈It
ditdi and Rt ≡ cRQtM

1
θ−1
t Et. (8)

Here, Et denotes the aggregate flow of new products.

3One could instead consider a more general formulation by which the efficiency of the development
technology gradually decreases as a product’s quality is improved.

4This simple exit rule is chosen for tractability as it delivers an analytic solution to the growth rate
of consumption per capita, but it could easily be extended to an optimal stopping time problem in the
presence of overhead costs.

5One could specify a more general learning process between entrants and incumbents (see Yao (2024)
for a very general and still tractable specification), but we choose to keep the model as simple as possible
to illustrate the driving mechanisms.
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2.2 The Decision Problems

In this section, we define the decision problems of each economic agent. In terms
of market structure, we assume that all agents take part in perfect competition in all
markets besides firms who engage in monopolistic competition.

The Household’s Problem

Taking prices as given, the household’s problem is to choose its consumption to maxi-
mize lifetime utility:

max
{ct}t≥0

∫ ∞

0
e−(ρ−n)t ln(ct)dt

subject to the flow budget constraint:

ȧt + Ptct ≤ (rt − n)at + wt − Tt.

Here, wt is the wage rate, Tt are lump-sum per-capita taxes, at is the value of corporate
assets per capita, and rt is the rate of return on those assets:

atNt =
∫

i∈It
Vitdi where lim

t→∞
e−

∫ t
0 (rt′−n)dt′at = 0,

and where Vit denotes the value of product i at time t. This problem thus delivers the
usual intertemporal Euler equation:

ċt = (rt − ρ)ct.

The Final Sector’s Problem

Taking prices as given, the perfectly competitive final sector’s problem is to choose its
demand for each product to maximize profits:

max
{{cit}i∈It}t≥0

{PtYt −
∫

i∈It
pityitdi} s.t. Yt =

(∫
i∈It

(qityit)
θ−1

θ di
) θ

θ−1

This problem thus delivers the following demand functions:

yit = (Pt/pit)
θqθ−1

it Yt.
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Since aggregate consumption is chosen as the numéraire, the price index Pt is normalized
to one for all t:

Pt ≡
(∫

i∈It
(pit/qit)

1−θdi
) 1

1−θ

= 1.

The Firms’ Problem

Firms engage in monopolistic competition in the product market but perfect competition
in the labor market, taking the wage and the demand for their product as given. A firm
thus chooses the price at which to sell its product and its final goods and labor demands
to maximize the expected present discounted value of its profits.

From this point on, we abandon the i-index notation since a firm is entirely described
by its product’s quality q and its obsolescence status. We denote the latter by S ∈ {O, N}
where O represents an “old” firm that has received the obsolescence shock, and N
represents a “new” firm that has not. The new firm’s value function satisfies a standard
Hamilton-Jacobi-Bellman (HJB) equation:

rtVN
t (q) = max

uN
t (q)≥0

{(1 − τC)[pt(q)yt(q)− wtlt(q)] + (1 − τD)dt(q)

+ γt(q)q∂qVN
t (q)}+ ϵ[VO

t (q)− VN
t (q)] + V̇N

t (q)

where uN
t (q) ≡ {pt(q), lt(q), dt(q)} is the vector of control variables, τC > 0 is the cor-

porate income tax rate, and τD > 0 is a subsidy on the firm’s development expenditures.
Similarly, the “old” firm’s value function satisfies the HJB equation:

rtVO
t (q) = max

uO
t (q)≥0

{(1 − τC)[pt(q)yt(q)− wtlt(q)]}+ V̇O
t (q)

where uO
t (q) ≡ {pt(q), lt(q)}. The profit-maximization problem implies that a firm sets

its price to a constant markup above marginal cost irrespective of its obsolescence status:

pt(q) = µ · wt, ∀q where µ ≡ θ

θ − 1
.

Hence, a firm’s flow profits can be expressed as:

πS
t (q) = (1 − τC)(q/Qt)

θ−1Yt/(θMt)− 1{S=N}(1 − τD)dt(q),
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where the optimal labor allocation to development is given by:

dt(q) =
cDQθ

t N
1

θ−1
t γt(q)1+ζ

(1 + ζ)qθ−1 ,

and the resulting quality drift is:

γt(q) =

 q∂qVN
t (q)

(1 − τD)QtN
1

θ−1
t cD(q/Qt)θ−1

1/ζ

.

The Entrant’s Problem

Entrants engage in perfect competition on the final goods market and, thus, choose their
allocation Rt of final goods to research to maximize future expected profits while taking
the wage rate as given:

VE
t = max

Rt

 VN
t (q

t
)Rt

cRQtM
1

θ−1
t

− (1 − τR)Rt


where τR > 0 is a research subsidy. The first-order condition of the entrant’s problem
delivers what will be referred to as the free-entry condition:

VN
t (q

t
) = (1 − τR)cRQtM

1
θ−1
t .

2.3 The Equilibrium Market Allocation

Having defined the decision problems of each economic agent, we can now define the
concept of an equilibrium market allocation, and lay out the equations that determine
the long-run equilibrium growth rate of the aggregate economy.

Definition 1. Given the initial conditions {N0, Q0, {mN
0 (q), mO

0 (q)
∞
q=q

t
}}, where mT

0 (q) is the
initial measure of type-T firms with product quality q, a market allocation consists of time paths
for quantities, prices, and policy functions such that the following conditions hold:

1. {ct}t≥0 solve the household’s problem.

2. {{pt(q), lt(q), dt(q)}∞
q=q

t
}t≥0 solve the firm’s problem.

3. {Rt}t≥0 solve the entrant’s problem.
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4. {{pt(q)}∞
q=q

t
}t≥0 clear the product markets.

5. {wt}t≥0 clear the labor market.

6. {rt}t≥0 clear the asset market.

7. The government’s budget is balanced.

The market allocation in this model admits a remarkably simple aggregation such
that output per capita is given by:

yt = M
1

θ−1
t Qt.

That is, consumption per capita is increasing in the measure of products (owing to a
taste for variety) and the average quality across those products.

3 Solving the Model

3.1 Equilibrium Balanced Growth Path

In Appendix A.1 we show that on a balanced growth path (BGP), the measure of
products grows at the same rate as the population, the average quality index grows at
a constant rate, and, thus, the growth rate of consumption per capita is constant and
given by:

g =
n

θ − 1
+ gQ. (9)

We can derive an expression for the growth rate of the average quality index:

gQ = γ · n + d
n + ϵ

−
n(1 − qθ−1)

θ − 1
where γ =

[
(θ − 1)(1 − τR)cRM

1
θ−1

(1 − τD)cDqθ−1

]1/ζ

(10)

which is composed of two additive terms. The first term reflects the positive growth
contribution of incremental product quality improvements by incumbent firms. This
term is the product of the common product quality drift γ among firms that haven’t yet
received the obsolescence shock and the fraction of such firms in the economy given
by n+d

n+ϵ . The second term reflects the negative growth contribution of net product entry
occurring at rate n. Indeed, entering firms draw their initial product quality at the lower
bound q ∈ (0, 1) of the quality support, which drags down the average quality index.
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Notice that the quality drift depends on the measure of products per capita (denoted
by Mt ≡ Mt/Nt), which is determined in equilibrium through the free-entry condition
illustrated in Figure 1 using the parameter values detailed in Section 3.2. In Appendix
A, we show that this equilibrium is unique.

Figure 1: The Market Allocation

Note: The root of this equation determines the unique value of M that
satisfies the free-entry condition.

3.2 A Simple Calibration

In this section, we present a straightforward calibration of the parameters of our model
to illustrate its mechanisms. Although this exercise is not meant as a rigorous empirical
quantification for direct comparison with economic data, it provides insight into the
potential magnitude of different forces.

We set the pure rate of time preference, ρ, to 0.04 and assume an annual population
growth rate, n, of 1%. Consistent with Garcia-Macia, Hsieh and Klenow (2019), the
elasticity of substitution across products, θ, is set to 4. We fix ζ, which captures the
degree of decreasing returns to development labor, at 1—aligning with microeconomic
evidence on the tax elasticity of R&D summarized in Acemoglu, Akcigit, Alp, Bloom
and Kerr (2018).

Four additional parameters require calibration: the development cost parameter cD,
the research cost parameter cR, the initial quality of new entrants q, and the obsolescence
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shock ϵ. Since these parameters are less conventional in the literature or not directly
observable, we calibrate them by jointly matching the following four empirical moments:

1. Per capita consumption grows at 2% per year.

2. The firm-level entry rate is 10%.

3. The average firm has 20 employees.

4. New entrants are 95% as large as incumbents.

The first three moments are representative of the U.S. economy, while the fourth reflects
a stylized fact from Einav, Klenow, Murciano-Goroff and Levin (2022), who document
that the average entrant achieves roughly the same sales per customer as the average
incumbent. The calibrated parameter values are reported in Table 1.

Table 1: Calibration

Parameter Value Source
ρ 0.04 Standard
n 0.01 Population growth
θ 4 Garcia-Macia et al. (2019)
ζ 1 Acemoglu et al. (2018)

cD exp(8.48) Consumption per capita growth
cR exp(4.34) Average firm size
q 0.1 Relative size of entrants
ϵ 0.1 Entry rate

While the parameters {cD, cR, q, ϵ} are jointly calibrated to match the aforementioned
moments, we provide some intuition for their identification. The development cost
parameter cD is primarily identified by the growth rate of per capita consumption, as it
governs the pace at which firms improve their product’s quality and, in turn, economic
growth. The research cost parameter cR is determined by the average firm size, since
it influences the cost of entry and thereby the equilibrium number of firms. The initial
quality of new entrants q is directly linked to the relative size of entrants compared to
incumbents. Finally, the obsolescence shock, ϵ, is identified from the firm-level entry rate
because it governs how quickly firms become obsolete and ultimately exit the market.
Under a balanced growth path, the entry rate equals the sum of the exit rate and the
population growth rate.

Under this calibration, Figure 2 illustrates the equilibrium effect of introducing a
100% corporate income subsidy–equivalent to doubling the size of the market. This
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subsidy shifts the free-entry condition to the right, resulting in a higher equilibrium
measure of products per capita and, therefore, increasing the growth rate of consumption
per capita by 45 basis points.

Figure 2: Corporate Income Subsidy (τC)

Note: The green line represents the free-entry condition when introducing
a corporate income subsidy of 100%.

Figure 3 illustrates the equilibrium effects of R&D policy. In Panel 3(a), a 30% subsidy
on incumbent firms’ product development expenditures is implemented. Although this
subsidy raises the per capita consumption growth rate by 71 basis points, it has little
to no effect on the equilibrium value of M. This indicates that the subsidy primarily
affects economic growth through its direct effect on the product quality drift γ, rather
than through the measure of products per capita.

In contrast, Panel 3(b) illustrates that a 30% subsidy on research expenditures for
new entrants substantially increases the equilibrium value of M. This policy has two
opposing effects on economic growth. On one hand, the lower entry cost reduces
the firm’s value through the free-entry condition, thereby dampening development
incentives. On the other hand, the higher measure of products per capita increases the
cost of entry relative to development. Ultimately, the first effect dominates, resulting in
a 36 basis point decline in the growth rate of consumption per capita.
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Figure 3: The Equilibrium Effects of R&D Policy

(a) Development Subsidy (τD) (b) Research Subsidy (τR)

Note: The green lines represent the free-entry condition when introducing subsidies of 30% to
development and research, respectively.

4 Discussion

While partly building on it and sharing an important empirical motivation with it, our
model departs from the canonical semi-endogenous growth framework in ways which
allow us to match additional empirical facts.

First, our model predicts that market size matters for long-run innovation and growth.
In the growth formula (10), the market size effect is captured by the term M

1
θ−1 . In words,

as the market expands—and therefore profits increase—more firms are incentivized
to enter, thereby raising the number of firms per capita. A higher firm density in turn
reduces the relative cost of development compared to research, ultimately accelerating
TFP growth. This market size prediction is borne by several empirical studies show that
larger market size, e.g., driven by an increased market demand, stimulates innovation
and growth in the long run. Thus, at the sectoral level, Acemoglu and Linn (2004) find
that a 1% expansion in a U.S. pharmaceutical market leads to a 4 to 6% rise in new drugs.
Dubois, De Mouzon, Scott-Morton and Seabright (2015), using updated data, report a
smaller elasticity of 0.23, implying that a 10% market increase induces a 2.3% rise in
drug development, with $2.5 billion in additional revenue needed per new molecule.
Blume-Kohout and Sood (2013) show that Medicare Part D in 2006 significantly boosted
pharmaceutical revenues and led to a 50% increase in new clinical trials. In vaccines,
Finkelstein (2004) documents that policy-driven market expansions increased vaccine
trials by 2.5 times, with $0.06 of R&D investment per additional dollar of anticipated
revenue. At the firm level, Aghion et al. (2024) study French manufacturers and find that
the most productive firms increase patenting in response to export demand shocks. They
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interpret this fact using the lens of the Schumpeterian growth model, where enhanced
competition discourages less efficient firms from innovating with a counteracting effect
driven by the positive effect of competition on market size and therefore on innovation.
Similarly, Bustos (2011) finds that Argentinian firms exposed to MERCOSUR tariff
reductions in the 1990s adopted advanced technologies and intensified R&D and Lileeva
and Trefler (2010) show that Canadian manufacturers entering export markets after the
Canada—US Free Trade Agreement experienced productivity gains, product innovation,
and technological upgrades.

Second, our model predicts that tax policy impacts long term innovation and growth.
For example, the growth formula in equation (10) implies that an increase in τD has a
negative effect on long-run innovation and growth. Empirically we know that R&D tax
credits impact long-run innovation (e.g., see (Dechezleprêtre, Einiö, Martin, Nguyen and
Van Reenen, 2023)) even when these are not necessarily the most efficient instruments
to stimulate certain kinds of innovation. Moreover, the same growth formula shows
that an increase in corporate taxation τR leads to a decline in growth and innovation, in
line with Kennedy, Dobridge, Landefeld and Mortenson (2022); Mukherjee, Singh and
Žaldokas (2017).

A third departure from the semi-endogenous growth model, is that in our model
innovation by incumbent firms is an important driver of growth. In fact, Garcia-Macia
et al. (2019) document that over half of U.S. TFP growth between 1983 and 2013 is
attributable to existing product improvements by incumbent firms.

We can modify our model in two ways to recover the canonical semi-endogenous
growth framework. First, we can rule out quality improvements of existing products
(i.e., take cD → ∞). Under this assumption, all products retain a constant quality level,
so growth is driven solely by the entry of new products. In this case, the per capita
consumption growth rate becomes:

g =
n

θ − 1

which is the standard result in the semi-endogenous growth literature. However, this
modification fails to capture the empirical observation that improvements in existing
products are the primary driver of growth in the U.S. economy.

Second, we could assume that new entrants draw their initial product quality from
a fixed distribution that does not scale with the existing average quality index. With
this assumption, new products begin at a given quality level, improve until the ob-
solescence shock occurs, and then stagnate, modification of the model, however, also
contradicts the empirical findings of Garcia-Macia et al. (2019), since it implies that
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product improvements play no role in driving overall economic growth.

5 The constrained-optimal Allocation

In Appendix A.2, we pose the problem of a planner that maximizes social welfare while
taking the incumbent-to-incumbent and incumbent-to-entrant technology spillovers as
given. More precisely, the planner takes Qt and Mt in the research and development
technologies as given. Because the planner does not internalize such spillovers, we refer
to the solution to this problem as constrained-optimal.

To decentralize this constrained-optimal allocation, we show that a government could
implement subsidies to both research and development of τR = τD = 1/θ. That is,
the market allocation features too little research (entry) and development, disregarding
technology spillovers. As in Dhingra and Morrow (2019), there is too little entry because
new entrants do not internalize that they raise demand for existing firms due to the “taste
for variety.” Moreover, there is too little development because firms exert market power.
Indeed, firms produce at levels below what would prevail under perfect competition,
which reduces the “market size” incentive for development. Note, however, that if our
model featured head-to-head creative destruction from research, the market allocation
could feature too much of it.

6 Conclusion

In this paper, we develop a growth model where, even though ideas eventually become
harder to find on any particular product line and long-run economic growth remains
constant despite assuming population growth, long-run innovation and growth are
responsive to changes in market incentives, in particular to changes in market size. In
other words, starting from the same premises as the semi-endogenous growth model,
we end up with a fully-fledged endogenous growth model. What leads to long-run
endogenous economic growth is that whenever existing firms run out of steam in
improving quality on their existing lines, new entrants keep “resetting the innovation
clock” by introducing new technologies, i.e., new lines that are improved upon until
subsequent lines are created. This continuous reset process moves us back from semi-
endogenous growth to endogenous growth.

Our approach in this paper can be extended in several directions. One extension
would be to allow incumbent firms on any existing line to either pursue development
activities on this line or engage again in research to create new lines, thereby introducing
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directed technical change as in Aghion and Howitt (1996). A second extension would
be to allow for creative destruction within and across lines, and more generally to
embed the model in this paper into a fully-fledged Schumpeterian growth model. As
pointed out in the previous section, allowing for creative destruction would affect the
comparison between the laissez-faire equilibrium and the constrained social optimum.
A third extension would be to explore the innovation reset mechanism in particular
sectors or research areas. For example, to what extent can we say that ideas eventually
become harder to find in any particular subfield of economics and yet overall research
productivity in economics never wavers out as new subfields keep being discovered?
This and other extensions of our analysis in this paper are left for future research.
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A Theoretical Appendix

This section of the Appendix provides derivations and proofs for the results presented
in the paper.

A.1 The Market Allocation

Hamilton-Jacobi-Bellman Equations. The old firm’s value function satisfies the HJB
equation:

rtVO
t (q) = (1 − τC)(q/Qt)

θ−1ytNt/(θMt) + V̇O
t (q).

Defining xt ≡ ln(qt/Qt), we can rewrite:

rtVO
t (x) = (1 − τC) exp[(θ − 1)x]ytNt/(θMt)− gQ

t ∂xVO
t (x) + V̇O

t (x)

where gQ
t ≡ Q̇t/Qt denotes the growth rate of the average quality index. Let us guess

that this value function takes the following form:

VO
t (x) = VO

t exp[(θ − 1)x].

Substituting this guess in the HJB equation, we obtain the following ordinary differential
equation (ODE):

V̇O
t = [rt + (θ − 1)gQ

t ]V
O
t − (1 − τC)ytNt/(θMt),

which verifies our guess. The new firm’s value function satisfies the HJB equation:

(rt + ϵ)VN
t (q) = (1 − τC)(q/Qt)

θ−1ytNt/(θMt)− (1 − τD)dt(q)

+ γt(q)q∂qVN
t (q) + ϵVO

t (q) + V̇N
t (q).

Using the change of variable defined above, we can rewrite:

(rt + ϵ)VN
t (x) = (1 − τC) exp[(θ − 1)x]ytNt/(θMt)− (1 − τD)dt(x)

+ [γt(x)− gQ
t ]∂xVN

t (x) + ϵVO
t (x) + V̇N

t (x).

Let us guess that this value function takes the following form:

VN
t (x) = VN

t exp[(θ − 1)x].
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Substituting this guess in the optimal product quality drift, we obtain:

γt =

 (θ − 1)VN
t

(1 − τD)cDQtN
1

θ−1
t

1/ζ

which is independent of a product’s quality. Substituting this result in the HJB equation
of the new firm, we obtain the following ODE, which verifies our guess:

V̇N
t = [rt + ϵ − (θ − 1)(γt − gQ

t )]V
N
t − ϵVO

t − (1 − τC)ytNt

θMt
− (1 − τD)cDQtN

1
θ−1
t γ

1+ζ
t

1 + ζ
.

Fokker-Planck Equations. The Fokker-Planck (FP) equations describing the evolution
of the density of log relative quality among new and old firms are given by:

ṁN
t (x) = −(γt − gQ

t )∂xmN
t (x)− ϵmN

t (x) + δ(x − xt)Rt,

ṁO
t (x) = gQ

t ∂xmO
t (x) + ϵmN

t (x),

where δ(·) denotes the Dirac delta function and xt ≡ ln(q
t
/Qt). Therefore, the law of

motion for the measure of new and old products are given by:

ṀN
t = Rt − ϵMN

t and ṀO
t = ϵMN

t − dtMt

where dt denotes the exit rate at the lower bound of the quality support:

dt ≡ gQ
t lim

x→xt
mO

t (x)/Mt.

Hence, the total measure of products evolves according to:

Ṁt = (et − dt)Mt

where et ≡ Rt/Mt denotes the entry rate.

Equilibrium Conditions. Using our previous results, the free-entry condition can be
rewritten as:

VN
t qθ−1 = (1 − τR)cRQtM

1
θ−1
t
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the labor market clearing condition can be rewritten as:

Nt =
Yt

µwt

and the final good market clearing condition can be rewritten as:

Ct + cRQtM
1

θ−1
t Et +

cDQtN
1

θ−1
t γ

1+ζ
t

1 + ζ
·
∫ ∞

xt

exp[(θ − 1)x]mN
t (x)dx = Yt.

The only endogenous variable for which a corresponding equation is missing is the
growth rate of the average quality index. Using the change of variable defined above,
the expression for this index implies:

M−1
t

∫ ∞

xt

exp[(θ − 1)x]mt(x)dx = 1.

Balanced Growth Path. On a BGP, the growth rate of the average quality index and
the drift of product quality for new firms are both constant. Moreover, the measure of
new and old firms both grow at the same rate as the population. This implies that the
entry and exit rates are constant, and the former is equal to e = n + d. The share of new
and old products are also constant and equal to:

MN
t

Mt
=

n + d
n + ϵ

and
MO

t
Mt

=
ϵ − d
n + ϵ

.

Defining f N
t (x) ≡ mN

t (x)/MN
t , the stationary FP equation for this distribution of log

relative quality among new firms is:

−(γ − gQ)∂x f N(x)− (n + ϵ) f N(x) = −(n + ϵ)δ(x − x).

With parameter values such that γ > gQ, the solution to this ODE is:

f N(x) = λN exp[−λN(x − x)] where λN ≡ n + ϵ

γ − gQ .

Similarly, defining f O
t (x) ≡ mO

t (x)/MO
t , the stationary FP equation for this distribution

of log relative quality among old firms is:

gQ∂x f O(x)− n f O(x) = −ϵ(n + d)
ϵ − d

· f N(x).
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Dividing through by gQ, and multiplying by the integration factor exp(−λOx) where
λO ≡ n/gQ, we can rewrite:

∂x[exp(−λOx) f O(x)] = − ϵ(n + d)
(ϵ − d)gQ · exp(−λOx) f N(x).

Integrating this equation and solving for f O(x), we obtain:

f O(x) =
[

C − ϵ(n + d)
(ϵ − d)gQ ·

∫ x

x
f N(x) exp(−λOx)dx

]
exp(λOx)

where C is an integration constant. For f O(x) to be integrable, we must have:

C =
ϵ(n + d)
(ϵ − d)gQ ·

∫ ∞

x
f N(x) exp(−λOx)dx.

Substituting this expression back in the solution for f O(x), we obtain:

f O(x) =
ϵ(n + d) f N(x)

(ϵ − d)(λNgQ + n)
.

For f O(x) to be a probability distribution, we must verify that:

ϵ(n + d) = (ϵ − d)(λNgQ + n).

Using the definition of the exit rate, which delivers d = ϵgQ/γ, it is straightforward to
verify that this condition is satisfied. Therefore, we have that the stationary distribution
of quality among old firms is identical to that of new firms. Let us define normalized
variables, which are constant on a BGP:

VO ≡ VO
t

ct
, VN ≡ VN

t
ct

, M ≡ Mt

Nt
, W ≡ wt

ct
, Y ≡ yt

ct
.

With these definitions, we can express the free-entry condition as:

(1 − τR)cRYq1−θ =
ϵVO + (1 − τC)Y/(θM) + (1 − τD)cDYM

1
1−θ γ1+ζ/(1 + ζ)

ρ + ϵ + (θ − 1)(gQ − γ)
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where we have the following definitions:

VO =
(1 − τC)Y

θM[ρ + (θ − 1)gQ]
,

γ =

[
(θ − 1)(1 − τR)cRM

1
θ−1

(1 − τD)cDqθ−1

]1/ζ

,

Y = 1 + cRY(n + d)M+
cDγ1+ζ

1 + ζ
· n + d

n + ϵ
· YM

θ−2
θ−1 ,

gQ = γ −
(n + ϵ)(1 − qθ−1)

θ − 1
.

To obtain that last expression for the growth rate of the average quality index, we use
the definition of the index itself:

λN · qθ−1

λN + 1 − θ
= 1 ⇔ gQ = γ −

(n + ϵ)(1 − qθ−1)

θ − 1
.

A.2 The Constrained-Optimal Allocation

Notation. We introduce the following notation to define the inner product between
two square-integrable functions f (x), g(x) : Ω → R over their common domain:

⟨ f (x), g(x)⟩x∈Ω ≡
∫

Ω
f (x)g(x)dx.

Second, let us denote the (partial) Gateaux derivative of a functional F with respect to
the function f (x) in direction τ(x) as:

δF[ f (x); τ(x)] ≡ ∂F[ f (x) + ε · τ(x), .]
∂ε

∣∣∣∣
ε=0

where the functional F can take additional arguments through the “dot” notation and the
“test” function τ(x) is assumed to vanish on the boundaries of the relevant integration
domain.

The Planner’s Problem. Consider the problem of a planner seeking to maximize the
following objective:

U0 =
∫ ∞

0
e−(ρ−n)t ln(ct)dt
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subject to the constraints:6

Yt = [∑T∈{N,O}⟨(qyT
t (q))

θ−1
θ , mT

t (q)⟩q∈[q
t
,∞)]

θ
θ−1 ,

Nt ≥ ∑T∈{N,O}⟨yT
t (q), mT

t (q)⟩q∈[q
t
,∞),

Yt ≥ Ct + Rt + ⟨dt(q), mN
t (q)⟩q∈[q

t
,∞),

ṁN
t (q) = −∂q[γt(q)qmN

t (q)]− ϵmN
t (q) + δ(q − q

t
)Rt/(cRQtM

1
θ−1
t ),

ṁO
t (q) = ϵmN

t (q)

by choosing {{{yT
t (q)}T∈{N,O}, dt(q)}∞

q=q
t
, Rt}∞

t=0. The solution to the planner’s problem
is “constrained-optimal” in the sense that the planner takes externalities across firms
(technology spillovers) as given. More precisely, the planner takes Mt and Qt as given
in the research and development technologies. Reformulating this problem using the
current-value Hamiltonian, we obtain:

Ht = ln(ct) + νL
t [Nt − ∑T∈{N,O}⟨yT

t (q), mT
t (q)⟩q∈[q

t
,∞)]

+ νY
t {[∑T∈{N,O}⟨(qyT

t (q))
θ−1

θ , mT
t (q)⟩q∈[q

t
,∞)]

θ
θ−1 − ctNt − Rt − ⟨dt(q), mN

t (q)⟩q∈[q
t
,∞)}

− ⟨νN
t (q), ∂q[γt(q)qmN

t (q)]⟩q∈[q
t
,∞) + ϵ⟨νO

t (q)− νN
t (q), mN

t (q)⟩q∈[q
t
,∞)

+ νN
t (q

t
)Rt/(cRQtM

1
θ−1
t )

where {νL
t , νY

t , {νN
t (q), νO

t (q)}∞
q=q

t
}∞

t=0 are the costate functions. Using integration by
parts, we can rewrite:

Ht = ln(ct) + νL
t [Nt − ∑T∈{N,O}⟨yT

t (q), mT
t (q)⟩q∈[q

t
,∞)]

+ νY
t {[∑T∈{N,O}⟨(qyT

t (q))
θ−1

θ , mT
t (q)⟩q∈[q

t
,∞)]

θ
θ−1 − ctNt − Rt − ⟨dt(q), mN

t (q)⟩q∈[q
t
,∞)}

+ ⟨γt(q)q∂qνN
t (q), mN

t (q)⟩q∈[q
t
,∞) + ϵ⟨νO

t (q)− νN
t (q), mN

t (q)⟩q∈[q
t
,∞)

+ νN
t (q

t
)Rt/(cRQtM

1
θ−1
t ).

The first-order condition with respect to yT
t (q) implies:

νY
t δYt[yT

t (q); ϱ(q)] = νL
t ⟨mT

t (q), ϱ(q)⟩q∈[q
t
,∞)

6Here, we substituted the product resource constraints in the labor resource constraint.
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where δYt[yT
t (q); ϱ(q)] is the Gateaux derivative of Yt with respect to yT

t (q) in direction
ϱ(q), which is an arbitrary function that vanishes on the boundaries of [q

t
, ∞):

δYt[yT
t (q); ϱ(q)] = Y1/θ

t ⟨q θ−1
θ yT

t (q)
−1/θmT

t (q), ϱ(q)⟩q∈[q
t
,∞).

Since that first-order condition must hold for any function ϱ(q), we obtain the relative
demand functions:

yT
t (q)/Yt = qθ−1(νY

t /νL
t )

θ, ∀q ∈ [q
t
, ∞).

Integrating this expression, we find:

νL
t = νY

t M
1

θ−1
t Qt

such that we can rewrite:

yT
t (q) =

νY
t Yt(q/Qt)θ−1

νL
t Mt

, ∀q ∈ [q
t
, ∞).

The first-order condition with respect to dt(q) implies:

⟨γt(q)q∂qνN
t (q)mN

t (q)/dt(q), ϱ(q)⟩q∈[q
t
,∞)/(1 + ζ) = νY

t ⟨mN
t (q), ϱ(q)⟩q∈[q

t
,∞).

Since that first-order condition must hold for any function ϱ(q), we obtain:

γt(q) =

 q∂qνN
t (q)

νY
t cDQtN

1
θ−1
t (q/Qt)θ−1

1/ζ

, ∀q ∈ [q
t
, ∞).

The first-order condition with respect to Rt implies:

νY
t cRQtM

1
θ−1
t = νN

t (q
t
).

The first-order condition with respect to mN
t (q) implies:

⟨(ρ − n)νN
t (q)− ν̇N

t (q), ϱ(q)⟩q∈[q
t
,∞) = ⟨(q/Qt)

θ−1, ϱ(q)⟩q∈[q
t
,∞)ν

Y
t Yt/[(θ − 1)Mt]

+ ⟨γt(q)q∂qνN
t (q)− νY

t dt(q) + ϵ[νO
t (q)− νN

t (q)], ϱ(q)⟩q∈[q
t
,∞).
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Since this condition must hold for any function ϱ(q), we have:

(ρ − n)νN
t (q)− ν̇N

t (q) = (q/Qt)
θ−1νY

t Yt/[(θ − 1)Mt]− νY
t dt(q)

+ γt(q)q∂qνN
t (q) + ϵ[νO

t (q)− νN
t (q)], ∀q ∈ [q

t
, ∞).

Similarly, the first-order condition with respect to mO
t (q) implies:

(ρ − n)νO
t (q)− ν̇O

t (q) = (q/Qt)
θ−1νY

t Yt/[(θ − 1)Mt], ∀q ∈ [q
t
, ∞).

Defining the following functions:

VN∗
t (q) ≡ νN

t (q)/(µνY
t ), VO∗

t (q) ≡ νO
t (q)/(µνY

t ), w∗
t ≡ νL

t /(µνY
t ), r∗t ≡ ċt/ct + ρ,

and substituting them in the new firm’s social HJB equation, we obtain:

r∗t VN∗
t (q)− V̇N∗

t (q) = (q/Qt)
θ−1Yt/(θMt)− dt(q)/µ

+ γt(q)q∂qVN∗
t (q) + ϵ[VO∗

t (q)− VN∗
t (q)]

where γt(q) is given by:

γt(q) =

 µq∂qVN∗
t (q)

cDQtN
1

θ−1
t (q/Qt)θ−1

1/ζ

.

Doing so for the old firm’s social HJB equation, we obtain:

r∗t VO∗
t (q)− V̇O∗

t (q) = (q/Qt)
θ−1Yt/(θMt).

Finally, substituting these functions in the social free-entry condition and the labor
resource constraint, we obtain:

cRQtM
1

θ−1
t

µ
= VN∗

t (q
t
) and Nt =

Yt

µw∗
t

.

This demonstrates that the constrained-optimal allocation can be implemented with
research and development subsidies of τR = τE = 1/θ.
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