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Introduction

Can the thermodynamic equilibrium of a sample of matter be controlled
by a well-chosen electromagnetic radiation? Since the seminal papers by
Einstein in 1917 and Kastler in 1950, this question has accompanied the
development of atomic physics and quantum optics. From the 1970s on-
wards, the development of tunable laser sources has renewed the subject,
with proposals to cool gases of neutral atoms or ions (Hansch & Schawlow
1975; Wineland & Dehmelt 1975). The development of this research field
have gone far beyond the most optimistic initial predictions. Laser cool-
ing of atomic particles enables the temperature of a gas to be lowered
from room temperature (300 K) to a range between millikekelvin and mi-
crokelvin, or even below in certain special cases (figure 1).

Cold atoms are ubiquitous in time and frequency metrology experi-
ments, as well as in most high-precision measurements in atomic physics.
Radjiative cooling has also paved the way for the production of quantum
gases such as Bose-Einstein condensates, in which large numbers of par-
ticles accumulate in a single microscopic state. It allows us to approach
the limit where the thermal wavelength of the gas particles, Ay ~ h/Muv,
where h is Planck’s constant, M the mass of an atom and v the average
velocity at thermal equilibrium, becomes comparable to the distance be-
tween particles. It should be noted, however, that radiative cooling does
not generally lead directly to the condensation threshold. It is followed by
a phase of evaporative cooling, which lowers the temperature by one or
two orders of magnitude (figure 1).

Radjiative cooling has been applied to many atomic species, more than
thirty to date (see figure 2). The only determining factor is the availabil-
ity of sufficiently reliable, intense (and relatively inexpensive) continuous
laser sources to resonantly excite an atomic transition. The aim of this
course is to present the evolution of the main ideas behind radiative cool-
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Figure 1. Temperature scale showing the gain resulting from laser cooling of
atomic gases and the additional gain from evaporative cooling.

ing, and to discuss their performance and limitations. We will not attempt
to describe here all the methods that have been proposed, but will concen-
trate on a few important principles:

¢ The Doppler effect, which provides an atomic response to the light
wave that depends on the atomic velocity.

¢ The Sisyphus mechanism, which forces the atom to climb more poten-
tial hills than it descends.

® The use of dark states, which involves hiding atoms in the shadow,
i.e. accumulating them in states where they are effectively decoupled
from light.

As a preliminary, it is probably worth clarifying what we mean by cool-
ing, a sometimes subtle notion that may concern filtering, temperature low-
ering or even an increase in phase-space density.
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Figure 2. Atomic species that have been laser cooled [periodic table from
wikipedia].
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Figure 3. Velocity selection of an atomic or molecular beam by means of a rotating
wheel. There is no increase in the density of a given velocity class.

Let us look at two examples. Starting from an atomic beam with a wide
velocity distribution Av, we can filter a slice of width Jv < Av by a rotat-
ing wheel (figure 3). The gas is not cooled, but separated into two parts,
one consisting of the desired velocity range, which is transmitted by the
wheel, and the other, which sticks to the walls of the wheel. This filtering
is very different from accumulating all the atoms of the beam in the slice
dv, as is done when slowing down an atomic beam using the radiation
pressure force. The gain in brightness can be several orders of magnitude
in the latter case.

A second example will enable us to distinguish between lowering tem-
perature and increasing phase-space density. Let us consider an assembly of
particles of mass M in a 1D harmonic trap of frequency w, at thermody-
namic equilibrium at temperature 7"

1 oa2 1 2 1
2Mw Ax® = 2MA7) = 2kBT, (1)

where Az and Av = w Az are the standard deviations of the position and
velocity distributions. Let us suppose we open this trap by modifying its
frequency. This opening, if sufficiently slow, maintains thermal equilib-
rium with a temperature 7" which can be deduced from 7’ via the adiabatic
theorem:

!/

!/
T - 7=7% < )
w

w/
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Figure 4. Adiabatic opening of a harmonic trap, the frequency changing from w to
W < w.

So we do have cooling. The new widths in position and velocity are:

/

1/2 1/2
At = Az (3,) . AV =Av (“’) 3)
w

w

We therefore divided the width of the velocity distribution by the factor
(w/w')'/?, and multiplied the width of the position distribution by the
same factor. The phase space density, proportional to (AzAv)~!, is un-
changed in this process: we have simply exchanged a good knowledge of
position and a bad knowledge of velocity by its inverse.

In this second example, we can see that cooling does not necessarily
lead to an increase in phase-space density, nor — to put it in quantum terms
— to an increase in the population of an individual quantum state. Yet this
increase is essential for many laser-cooling experiments on atoms, since
one of the aims of these experiments is to approach, or even reach, the
quantum degeneracy threshold and Bose-Einstein condensation.

In fact, for a system of N independent particles (i.e. an ideal gas), we
can easily show that this increase can never be obtained in a Hamiltonian
evolution of the gas. The reasoning is simple : let us start with the one-
body density operator / characterizing the state of the gas. This operator
can be diagonalized and its eigenvalues 7y, 79, . . ., all real positive or zero
with } . 7; = 1, give us the occupation probabilities of the different quan-
tum states. Suppose the evolution of the gas of particles between ¢; and ¢

is governed by the Hamiltonian
A N A
H(t) = H™ @), )
n=1

where H(™ is the Hamiltonian of the n-th particle. At time ¢, the single-
particle density operator will simply be

ptr) = Ut = ty) pt:) U (6 — 1), 5)

where the single-particle evolution operator U (t; — ty) is calculated from
H™). We do not need an explicit expression for U here. The only important
point is that this operator is unitary: the eigenvalues of j(¢;) are always
identical to the eigenvalues of j(¢;). We cannot therefore hope to accumu-
late particles in a given state via a purely Hamiltonian process (such as the
opening of the trap in figure 4) when these particles are independent.

Examination of the assumptions required to arrive at this somewhat
negative conclusion gives us the approach we need to take to move for-
ward:

(i) We have considered a Hamiltonian process. The system considered
above was not necessarily isolated since H can be time-dependent, but
we have made the assumption that our assembly of N particles is not
coupled to another quantum system that could act as a reservoir. This
is precisely what will happen in laser cooling. Each atom is coupled to
all modes of the electromagnetic field, notably via spontaneous emission
processes: the evolution of the atom’s reduced density matrix is therefore
non-Hamiltonian, and we may well increase one of its eigenvalues to the
detriment of the others.

(ii) We have considered a system of independent particles. If the particles
interact with each other, then it is possible to change the occupation of the
single-particle energy levels by an appropriate variation of the Hamilto-
nian H (t). In particular, it is possible to produce a Bose-Einstein conden-
sate by modifying only the potential confining the IV particles, without in-
troducing any coupling with an external quantum system, or evaporating
any particles. The total entropy of the gas is unchanged (or even increased
if the process is irreversible), but the number of particles occupying the
ground level of the trap can nevertheless increase dramatically during this
transformation. We will see an example of this below.



The course will run as follows.

e Chapter 1 will be devoted to the seminal approach of Einstein (1916)
and FEinstein (1917). Einstein showed how the motion of atoms cou-
pled to electromagnetic radiation is analogous to Brownian motion,
and why the Doppler effect leads to the thermalization of an atom
coupled to blackbody radiation.

* The second chapter will also be devoted to Doppler cooling, now
with lasers; we will also describe its equivalent in position space, the
magneto-optical trap, and encounter the first signature of an effective
atom-atom interaction created by light.

* In the third chapter, we will look at the possibility of manipulating
narrow-line atoms, and we will discuss the possibility of accumulating
atoms in velocity classes that are weakly coupled to light.

¢ This notion of atoms accumulating in darkness will be explored fur-
ther in Chapter 4, with the use of dark states and discussion of the
very special statistical laws (Lévy’s laws) that can arise.

¢ Chapter 5 will focus on the Sisyphus effect, which is at work in most
cooling experiments and leads very simply to velocity distributions
limited only by the recoil associated with a single photon. We will
focus in particular on recent developments in grey molasses, which
extend the concept of Sisyphus cooling.

¢ Finally, Chapter 6 will be devoted to sideband cooling, and will give
us the opportunity to review the maximum phase-space density that
can be expected in this type of radiative cooling experiment.

Let us stress once again that our aim is not to make an exhaustive review
of all the devices that have been proposed or studied since the initial ar-
ticles by Hédnsch & Schawlow (1975) and by Wineland & Dehmelt (1975).
Rather, it is to outline the principles of the mechanisms currently in use,
and to illustrate them with recent experiments, in the hope of stimulating
the exploration of new avenues.



Chapter I

Atoms and light in thermal equilibrium

The starting point for this course is blackbody radiation, i.e. the electro-
magnetic radiation emitted by a material body in thermodynamic equilib-
rium with its environment. The spectral distribution of this radiation is a
universal law that depends only on the body’s temperature. It is given by
Planck’s law, proposed in 1900:

hw? 1
plw,T) = 12¢3 ohw/keT _ 1’

(L1)

where p(w) dw represents the electromagnetic energy per unit volume cor-
responding to radiation with a frequency between w and w + dw.

A modern version (and completely equivalent as we will see in what
follows) of this law consists in giving ourselves a quantization volume of
finite size and positing that the average number of photons in a mode of
frequency w is given by the Bose-Einstein law with a zero chemical poten-

tial
1

n(w,T) = ehw/ksT _ 1"

(L2)

Starting from Planck’s law (I.1), Einstein (1917) studied how radiation
with this spectral energy density would impose its temperature on a col-
lection of atoms. To do this, he introduced the notion of the friction force
caused by light on a moving atom, a friction force identical in every respect
to that proposed almost 60 years later by Hansch & Schawlow (1975) and
at work in the Doppler molasses used in today’s laboratories. Einstein’s
reasoning is identical to the one we will be using to deal with the motion
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of atoms in laser beams, with arguments based on the notion of Brownian
motion, which we will also review in this chapter.

1 Einstein 1916: absorption and emission

In 1916, having just published his theory of General Relativity, Einstein re-
turned to the study of energy and momentum exchange between atoms
and radiation. To pursue this theme, which he had already addressed in
1905 in his study of the photo-electric effect, he took as his guiding princi-
ple the achievement of thermodynamic equilibrium.

Einstein considered a collection of atoms illuminated by black-body ra-
diation at temperature T' (figure 1.1). His aim was to model the way in
which the atom and the radiation can exchange energy. The only constraint
Einstein imposes is statistical physics consistency: the average population
distribution of the atom’s different energy levels must be a Boltzmann dis-
tribution with the same temperature 7'. In a two-level model of the atom,
with a ground state g and an excited state e separated by an energy fiwa
(figure 1.2, left), the ratio of populations P, . must be such that:

Pe o h(UA
Fg = exp < kBT> . (1.3)
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§ 1. Einstein 1916: absorption and emission

Figure 1.1. The problem considered by Einstein: an assembly of independent atoms
is illuminated by radiation from a black body at temperature T. Will this assembly
of atoms thermalize with the black-body radiation, in terms of both its internal and
external degrees of freedom?

1-1 Elementary processes and steady state

To explain how such a state of equilibrium can be achieved, Einstein stud-
ies the competition between photon absorption processes’ and emission
processes:

e If the atom is in its ground state, it can absorb a photon and reach
its excited state (figure 1.3). Einstein postulated that the probability of
this process occurring over an infinitesimal time interval d¢ is propor-
tional to d¢ and to the energy density of the radiation p, taken at the
frequency? for the atomic resonance w:

dPy_e = B p(wa) dt, (L4)

IEinstein does not use the term photon, which will not be introduced until much later
(1926) by Lewis.

2We will frequently use the usual denomination frequency for the quantity w, although it is
in fact an angular frequency, the frequency being w/27.
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Figure 1.2. The two atomic transition models considered in this chapter. On the
left, a two-level atom; on the right, a J, = 0 <+ J. = 1 transition that correctly
takes into account phenomena linked to the polarization of light. We will choose
as a basis of the excited level the states |e;) whose angular momentum projection
on the j axis is zero (j = x, vy, z).

—_—
— ﬁ
—_—

Figure 1.3. Absorption process.

where B is an undetermined coefficient at this stage.

¢ If the atom is in the excited state, it can fall back to the ground state by
emitting a photon. The probability of this emission occurring during
dt is the sum of two terms. On the one hand, even if no photon is
initially present, the atom can go from e to g by spontaneous emission
of a photon (figure 1.4) with probability:

dP._,,| — Adt, (L5)

spont.

i.e. a law which, as Einstein points out, is identical to that of radioac-
tive decay. On the other hand, emission can be stimulated by the radi-
ation already present at atomic frequency, with probability

dP._ | = B’ p(wa) dt. (L.6)

stim.
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§ 1. Einstein 1916: absorption and emission

Figure 1.4. Spontaneous emission process: the photon is emitted in a random
direction.

@ ¢

e
—> _»
— —> .
dPe—>g| =B plwa) dt —_—

stim. . g

Figure 1.5. Stimulated emission process.

The evolution of probabilities P, . is then given by a rate equation:

dP,
d—tg = —B p(wa) Py + [A+ B p(wa)] Pe, P,+P. =1, (L7)
which implies that these probabilities tend towards the stationary state
A+ B B
+ B’ p(wa) p(wa) 18)

ST AT B+ B)pwa) ¢ A+ (B+B)plwa)

with characteristic time
Tint. = [A+ (B+ B') p(wa)] " (L9)

The subscript “int.” means that this is the equilibration time of the inter-
nal variables, which is different from the equilibration time of the atom’s
center of mass that we will calculate later.
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1-2 Constraints on Einstein coefficients

Comparing the stationary state found in (I.8) with the expected result for
thermodynamic equilibrium (I1.3) leads to the following constraint

B p(wa)

A58 plwy) DA/,

(L10)
which must be satisfied at any temperature T, the coefficients A, B, B’ be-
ing independent of temperature.

Let us first take the high-temperature limit, for which p(w) — 4o00: we
immediately deduce:

B'=B. (L11)

The processes of absorption and stimulated emission are therefore inti-

mately linked.
More generally, the constraint (I.10) can be satisfied if the energy den-

sity p(wa) of the radiation is equal to:
A/B’
exp(hwa /kpT) — 1

plwn) = (L12)
This relationship is compatible with Planck’s law given in (I.1) provided
that the ratio A/ B’ is equal to

A

B w23

(1.13)

With the constraints (I.11) and (1.13), Einstein’s hypotheses concerning
the absorption and emission of light by the atom do indeed lead to ther-
modynamic equilibration of the populations of atomic energy levels with
blackbody radiation. Einstein concludes his 1916 paper by noting that, al-
though the fact that thermal equilibrium is reached does not constitutea
rigorous proof of the validity of the hypotheses (1.4-1.5-1.6), there is a strong
chance that these processes will indeed form the basis of a future theoreti-
cal construct. Furthermore, he notes that the coefficients A, B and B’ could
be calculated ab initio, and thus the relations (I.11,1.13) tested, if one had "a
modified version of electrodynamics and mechanics compatible with the
quantum hypothesis". This is precisely what we will be doing in the next
section.
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§2. The quantum approach

Note: the case of degenerate levels In his study, Einstein also considers
the case where energy levels can be degenerate. Noting d. and d, for these
degeneracies, a line of reasoning similar to the previous one leads to

A hw}
B w23

dyB=d.B', (I1.14)
Further on we encounter the case of a J, = 0 <+ J. = 1 transition (see
figure 1.2, right), for which d;, = 1 and d. = 3 and for which the popula-
tion evolution equation P, of level g, given in (1.7) for a two-level system,
becomes using B = 3B":

!

dP, B’ B
—2 = A -3—p(wa)P, + Z [1 + Ap(wA)} P.; o,

r T (1.15)

where the subscript j denotes the three sublevels forming the excited level
e. We will see later [eq. (1.33)] a more compact way of writing this relation-
ship in terms of the number of photons per mode.

2 The quantum approach

In this paragraph, we will reformulate Einstein’s treatment of the absorp-
tion and emission of light by an atom in an isotropic, incoherent light field,
based on the quantum formalism. We will use the notion of average num-
ber of photons per mode 7, slightly easier to manipulate than the energy
density p, and we will consider a realistic atomic transition for which we
will be able to treat the atom-field interaction from Fermi’s golden rule.

2-1 Energy density and number of photons per mode

To translate the coefficients A and B introduced by Einstein into modern
quantum language, let us start by relating the energy density p(w) to the
average number of photons per mode 7 for an electromagnetic field con-
fined in a box of volume L3. We consider periodic boundary conditions in
this box, so that the modes of the field are identified by their wave vector

14

k and their polarization €, with

2
k=g,

. (1.16)

n; € Z, j=u,y,2
and e L k. The total energy of the field is written as a function of p(w) in the
form

+oo
E=1I° / p(w) dw (1.17)
0
and is expressed in terms of mode occupancy
E=) hwige w=ck. (1.18)

k,e

Let us replace the discrete sum by an integral in this last expression, and
assume that the population 7,  of a mode depends only on the frequency
w of this mode, and is independent of polarization. We then have

L3 +oo

E=2x—
8773 0

fiw n(w) 4rk? dk, (1.19)

where the factor 2 corresponds to the sum over the two independent po-
larizations associated with a given wave vector k. Comparing (1.17) and
(L.19) gives:

3
plw) = 22 a(w), (1.20)

w2c3
as could be seen directly by comparing (I.1) and (I1.2).
If we go back to Einstein’s reasoning in terms of the number of photons

per mode 7 rather than the energy density p, we are then led to replace the
coefficient B by the coefficient B such that

hw}

thatis B=1DB e

Bp(wa) = B(wa),

(1.21)

and ditto for B’. The constraints (I.14) to reach thermodynamic equilib-
rium then boil down to:

dyB=d,B'" and A=H. (1.22)
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2-2 Model for an atomic transition

To satisfactorily account for the vector nature of the electromagnetic field,
it is best to consider a slightly more complicated level structure than the
two-level atom of the previous section. Here, we will look at a transition
between a ground level with zero angular momentum, i.e. non-degenerate,
and an excited level with unit angular momentum, i.e. triple degenerate
(figure 1.2, right). A possible basis for this excited level is obtained by
choosing a reference trihedron u;, j = x,y, 2, and considering the three
orthogonal Zeeman states |e;) each having a zero angular momentum pro-

jection along the j axis: (:I . uj) le;) = 0.

The atom-radiation coupling is written in the electric dipole approxi-
mation and in the rotating field approximation

)

+He (1.23)

N ~ (—
V=d|Y ulg)el] - E
J
where d is the reduced atomic dipole characterizing the atomic transition.

The electric field operator is written in terms of the creation (a};‘e) and de-
struction (ax,c) operators of a photon in a given mode:

. (— . A (N T hw
BT =S ) e BT = (E( )) &=
k,e

e lT (1.24)

2-3 Using Fermi’s golden rule

We are now going to fully determine the Einstein coefficients using quan-
tum electrodynamics. We will use Fermi’s golden rule, which gives, to the
lowest non-zero order, the probability per unit time of going from a given
initial state to a continuum of states.

Let us take the example of a spontaneous or stimulated emission pro-
cess. The initial state corresponds to the atom placed in one of its excited
states |e;) in the presence of a given state of the electromagnetic field. This
state is characterized by the set of occupancy numbers {ny ¢} of the radia-
tion modes:

) = |ej, {nk.e})- (1.25)
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The final state corresponds to the atom in its ground state, in the presence
of the field state {nj, . }:

W) =g, {nk.e}) (L26)

where all nj, . are equal to ng, ¢, except one which is increased by one, cor-
responding to the emission of a photon in this particular mode:

Ny eg = Mkoseo + 1, Nge = Nke  if (k,€) # (Ko, €). (1.27)

The transition probability per unit time from the state ¥; to the contin-
uum of states ¥ is given by Fermi’s golden rule:

2

5(Ef — E;). (1.28)

27 ~
Pemission - f Z ’<\I/f|V|\I/1>
f

which is explicitly calculated in terms of a sum on the mode kg, €y whose
population has been increased by one unit:

2w
Pcmission — ﬁ Z d2gl§0 (60 : uj)2 (nko,so + 1) 5("‘)0 - OJA), (129)
ko,eo0
where we used
({nk.eHaky e {nke}) = V/ikgeo + 1. (1.30)

The calculation of the sum (I.29), which we replace by an integral as in
(L.19), is detailed in quantum optics courses. As before, we will assume that
the average population of a mode (k, €) depends only on the frequency of
that mode: this is the assumption of an isotropic state for the field. Let us
just give the result, averaged over the initial state ¥;:

2,3
d w3y,

Pcmission - [T_L(WA) + 1] Fa
where the quantity I" is the natural width of the excited state, i.e. the prob-
ability per unit time that the atom will de-excite if the radiation field is
initially empty.

3We are only interested here in the lowest order, given by Fermi’s golden rule. Higher-
order processes would correspond to multiple photon scattering by the atom, with several
ny, . different from 7y, ¢.
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A similar calculation gives the probability per unit time that an atom
initially in its ground state will absorb a photon and reach one of the three
excited states:

= 3 A(wa)T. (L32)

Pabsorption
The evolution equation for one of the populations, P, for example, is
then given by

Py=-3aT Pj+» (n+1)T P.,

J

(1.33)

where we have posed 7 = f(wa ). This equation is formally identical to the
one we wrote in (I.15) based on Einstein’s reasoning, but it is much more
compact thanks to the use of the variable 72 instead of the energy density p.
The stationary state

n+1 n
P =T P, = , 134
9 4a+1° I 4R+ 1 (134)
is reached in a time of the order of
F—l
int = T - 1.35
Tt = n 1 (1:35)

The structure of the result, with terms for absorption, stimulated emission
and spontaneous emission, corresponds well to the result predicted by Ein-
stein with

A=T. (1.36)

In particular, at equilibrium, the ratio between the population of an excited
state and that of the ground state:

P, n
il A 1.37
P, n+1 (1.37)
is equal to the expected result
P, € _ hwa
if we inject the blackbody law given in (1.2):
1
(1.39)

@) = e heT) =1
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The treatment we have just given fulfills Einstein’s wish when he wrote
the sentence quoted above: the coefficients A and B can indeed be calcu-
lated ab initio, and thus the relation (I.13) tested. In other words, we have
checked the proportionality relation between A and B, as well as the rela-
tion B = 3B/, from the first principles of quantum electrodynamics. The
coherence of matter-radiation interaction and thermodynamics is thus well
assured, at least as far as internal atomic dynamics is concerned.

3 Brownian motion

In the previous paragraph, we looked at how the internal atomic variables,
i.e. the populations of the states g and e, reach a thermal equilibrium com-
patible with the temperature imposed by blackbody radiation. In the re-
mainder of this chapter, we will consider the motion of the atom’s center
of mass and verify that the stationary state of this motion is also compati-
ble with thermal equilibrium at temperature 7. More specifically, we want
to verify that the stationary probability distribution for the atom’s momen-
tum is the Gaussian

'Pstati(p) X e_p2/2p(2) (140)
with
2
1
2177\04 = Sknl. (L41)

The thermalization of the atom in black-body radiation results from the
succession of photon absorption and emission processes by the atom. As
each process is accompanied by a change in the momentum of the atomic
center of mass, the situation is similar to that of Brownian motion: the
atom plays the role of the Brownian particle, and the photons of blackbody
radiation play the role of the fluid molecules. The tools developed for the
study of Brownian motion are therefore perfectly suited to the problem we
are interested in here, and we will briefly summarize them in the following
paragraphs [for more information, see Van Kampen (1992)]. We will then
return to the problem of atomic thermalization in black-body radiation.
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3-1 The Langevin equation approach

This approach assumes that the equation of motion of the Brownian parti-
cle has two components:

d
P _ —ap + F(t).

57 (1.42)

The first, deterministic force corresponds to fluid friction, which damps the
momentum over a characteristic time a~!. The second force F(t), called
Langevin force, is random and characterized by its statistical properties. The
equation (1.42) is therefore a stochastic differential equation.

In practice, we impose the first two moments of the random force F(¢):

<Fl(t)Fj(t/)> = 2Dp 675,]' 6(t_t/)7 Zm] =T,Y,%, (143)
where the averages are taken over different realizations of the disorder
associated with the positions and velocities of the fluid molecules. The
coefficient D, is called momentum diffusion coefficient, for a reason that will

become clear later.

We now show that the two coefficients o and D,, entering (1.42-1.43) are
related if we impose that the stationary state of the particle’s momentum
distribution corresponds to thermal equilibrium, i.e..:

( p?
oM

1
)= §kBT, 1=1T,Y, 2. (1.44)

To find this relationship, let us integrate the equation of motion (1.42) be-
tween the initial time ¢ = 0 and an arbitrary time ¢:

p(t) = p(0) e " + / t e R ar'. (L.45)

0

By averaging this equation over different realizations of disorder, we find:
(L46)

The particle’s mean momentum therefore tends towards 0 with the char-
acteristic time a~!. Let us now consider the evolution of the square of
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one component of the momentum and take the average over the disorder
again:

d{p; (1)

22— a0

dt
= —2a{p2(1)) + 2(p; (1) F (1))

The second term is calculated* by injecting the result (1.45):

(147)

(i) F;(1) = <pj(0)Fj(t)>e’“t+/0 e~ (R () Fy(8))

t
= 0 + 2Dp/e_‘”6(7') dr
0

= D, (for t > 0). (1.48)

The root-mean-square momentum evolves under the effect of two terms:

(P} ()
dt

= —2a(p;(t)) + 2D, (1.49)
The first term corresponds to an exponential decrease due to dissipa-
tion, and the second to a linear growth in time due to fluctuations of the
Langevin force. The slope of this growth is 2D,,, hence the name momen-
tum diffusion coefficient for D,. Equilibrium between dissipation and fluc-
tuations is reached in a characteristic time (2)~! and corresponds to
D

(PDstat. = —2. (1.50)
a
If the bath of molecules in which the Brownian particle is immersed is at
temperature 7', thermodynamic equilibrium (I.44) will be reached if

2
: 1 D
@ = *kBT = —P — kBT.

oM 2 Mo (L51)

In a phenomenological model of Brownian motion, we can estimate the
coefficient of friction o from Stokes’ law, and we impose the value of the
momentum diffusion coefficient so that (I.51) is satisfied. If we have a mi-
croscopic model of the interaction between Brownian particles and fluid

4We use the relationship [° f(z) 6(x) dz = 3 £(0).
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W(qlp)

S, ~

;9 P _I|_ q - momentum

Figure 1.6. Random walk in momentum space (one-dimensional model); the quan-
tity W (q|p) represents the transition probability per unit time for a jump of am-
plitude q starting from momentum p.

molecules, we can calculate « and D, separately: verification of the rela-
tionship (I.51) is then a test of the model’s consistency. This is what we will
be able to do in the next paragraph for the thermalization of atomic motion
in blackbody radiation.

3-2 The Fokker-Planck equation approach

The Langevin equation approach has enabled us to determine the first two
moments of the momentum distribution. We could iterate this approach
to obtain all the moments, thus characterizing the stationary state and ver-
ifying that it is indeed a Gaussian. However, it is quicker to use another
equivalent approach, which consists in establishing the evolution equation
of the momentum distribution P(p, t).

To simplify writing, let us consider a one-dimensional problem so that
the momentum p is now a scalar. We are interested in a class of problems
for which the evolution of P(p, t) is described by a master equation of the

type

JdP(p,1)
ot

S (/W(q|p) dq) P(p,t) + /W(qlp—q)P(p—q,t) dq. (L52)

The meaning of this equation is as follows. Since the Brownian particle is
initially in the state p, it has the probability W (q|p) dt of gaining the mo-
mentum ¢ during the time interval d¢. The quantity W (q|p) is therefore
the transition probability per unit time for a jump of amplitude q starting from p
(figure 1.6). The first term of (1.52) corresponds to the total departure from
momentum class p by momentum gains ¢g. The second term corresponds
to feeding the momentum class p with an amplitude jump ¢ from the ini-
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tial momentum p — ¢q. One can check that the normalization of P(p,t),
[ P(p,t) dp = 1, is well preserved by this evolution.

All the physics of the problem is contained in the choice of the function
W (q|p). For example, for a problem involving fluid friction, this function
should be such that, for p > 0, jumps with ¢ < 0 will be favored over jumps
with ¢ > 0 (and vice versa for an momentum p < 0), so that the particle’s
momentum is on average reduced towards 0.

Let us now assume small jumps in amplitude: more precisely, we will
assume that W (q|p) is peaked around the value ¢ = 0 with a characteristic
width g., while varying smoothly with the momentum p. Let us further
assume that the momentum distribution P is a slowly varying function
of p on the scale of ¢.. In particular, g. must be small compared with the
width /MkgT expected for P(p) at thermodynamic equilibrium. We will
therefore develop the term involved in the second member of (1.52):

Wiqlp) P(p,t) — qa% (W (qlp) P(p,t)]

q2 82
2 Op?

Wiglp—q)P(p—q,t) =

+

(W (qlp) P(p,t)] + ... (1.53)

We can, of course, push this expansion to an arbitrarily high order
(Kramers-Moyal expansion), but order two will suffice for what follows.
Let us inject this expansion into the master equation (1.52). We then obtain
for P(p, t) the partial differential equation (Fokker-Planck equation):

PLY -2 Fo) PO+ 55 DG PGl (S
with )
Flp) = /qW(qlp) dg,  D(p) = 5/612 W (q|p) dg. (L55)

The first term of (1.54) corresponds to the evolution of the probability den-
sity P(p, t) under the effect of the force F(p). To confirm this, we can eval-
uate the evolution of the average momentum (p(t)) = [pP(p,t)dp for a
probability distribution centered around py. After integration by parts, we
find

W~ [ Fo) P.t) av = Fiow). (.56
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The second term in (I.54) corresponds to diffusion in momentum space. To
demonstrate this, let us once again consider a distribution centered around
po and study the evolution of the root-mean-square momentum:

d(p?)
at

= 2/pf(p)7’(p,t) dp+2/D(p)7’(p,t) dp,
(157)
(158)

Q

2poF (po) + 2D (po)-

We find a structure similar to that obtained in (1.49) by the Langevin equa-
tion approach, with the two contributions of mean force and momentum
diffusion.

At this stage, the class of problems described by the Fokker—-Planck
equation is more general than that described by the Langevin equation
(eq:Langevin), since the deterministic force F is not necessarily linear in
momentum and the diffusion coefficient D is not necessarily constant. We
will see in the rest of this course that this generalization can be very use-
ful when modeling certain types of light cooling. For now, we can restrict
ourselves to the simple case of

F(p) = —ap, D(p) = Dy, (I.59)
and model Brownian motion by the linear Fokker—Planck equation:
9Pp,t) _ 9 (@P1) 0*P(p.t)
= D . L
A (160)
A stationary solution of this equation is the Gaussian function
]. 2 2 D
Patar. (p) = —== e P /2P0 with pg = =2, 161
t t(p) po\/ﬂ € pO a ( )

which corresponds to the Maxwell-Boltzmann distribution expected for a
particle in contact with a reservoir at temperature 7', provided that kg7 =
D,/(Ma) [f. (L5)].

3-3 Spatial diffusion

So far we have been interested in the atom’s motion in momentum space.
We have seen that this motion is the resultant of a momentum diffusion
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characterized by D,, and a friction force characterized by «. In the rest of
this course, we will also consider the atom’s motion in position space. We
will see here that this motion is purely diffusive and characterized by the
spatial diffusion coefficient D,, = D,,/(Ma)?.

To calculate this spatial diffusion coefficient, let us start again with
Langevin’s equation

dp
- =— F(t 1.62
- Pt FQ@) (1.62)
and its solution between an initial time ¢; and time ¢.
¢
p(t) = p(t;)e >t=t) 4 / e R(¢yat (1.63)
t;
Let us look at the distance covered by the particle between ¢; and t:
1 t
r(t) =r(t;) + 7/ p(t') dt’. (Lo4)
M J,,

Because of the isotropy of Brownian motion, it is clear that if the particle
is at point r(¢;) at initial time, its mean position will still be 7(¢;) at time ¢.
Now consider the mean square deviation

Ar?(t) = ([r(t) — r(t:)]?) (1.65)
and calculate its time derivative:
2 t
= a0 — ) = 57 [ e0)-pe) a6

We therefore need to evaluate the correlation function of the momentum
at two different time, which is immediately deduced from (1.63): since the
Langevin force at time ¢ is not correlated with the value of the momentum
at an earlier time ¢/, we have:

(p(t)-pt)) = (P*)) e ) for >t

We will assume that at times ¢’ contributing to the integral (1.66), the par-
ticle is in thermal equilibrium, so that (p*(t')) = 3p3 (three-dimensional).
So, for a time interval t — ¢; > a~ !

dAr?  6p?

& - 2o (L.68)

(L67)
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i.e. a constant increase in Ar?, characteristic of diffusion along each com-
ponent of z, y, z space:

dAz? _ oD _ p3 D,
dt *

(L.69)

This spatial diffusion coefficient can be interpreted as the result of a ran-
dom walk in the position space, with the rate o and the step v/, i.e. the
distance covered by a particle of average velocity vy = po/M during the

velocity damping time o~

4 Thermalization in black-body radiation

In his 1917 article, Einstein took up the arguments developed in 1916 to
identify the three elementary processes of atom-radiation interaction: ab-
sorption, stimulated emission and spontaneous emission. He develops a
line of reasoning that reinforces his 1916 conclusions: if we accept that
these three processes are present, then not only do the internal atomic vari-
ables (populations P, .) reach the expected state of thermal equilibrium,
but so does the momentum distribution P(p) of the atom’s center of mass.
To establish this result, Einstein developed a formalism that is the direct
precursor of Doppler cooling as used in modern experiments. The aim
of this paragraph is to present Einstein’s argument, with tools that can be
directly transposed to the study of laser cooling of atoms.

We use a Brownian motion approach here, decomposing the mechanical
action of radiation on the atom into two parts: on the one hand, a friction
force —ap, and on the other, a momentum diffusion characterized by the
coefficient D,,. We will calculate the two coefficients o and D,, separately,
then check that the equilibrium reached corresponds to what is expected,
i.e. that D),/a = MkgT, where T is the blackbody temperature. In practice,
calculating the diffusion coefficient is simpler than calculating the friction
coefficient, so we will start with D,,.
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4-1 Atomic momentum diffusion

Let us consider an atom initially at rest (p = 0). If the image of Brown-
ian motion is correct, the evolution of its mean square momentum under
the effect of the random kicks constituted by the elementary processes of
absorption and emission is given by

d{pj (1))

2
e —2a(p;j(t)) +2D,.

(1.70)
The root-mean-square momentum begins to grow linearly with a slope
2D,, saturating at long time at D, /«.

Let us consider a time interval At short enough for the contribution
of the friction —2a/(p3(t)) to be negligible compared to diffusion, but long
enough for several elementary processes to take place (we will verify a pos-
teriori that such a time interval exists). The rate R at which these processes
occur is:

R=3nT P+ > (A+1)T P, (L.71)
J
Using the stationary population values given in (1.34), we obtain
_n(n+1)
R=¢6I' . (1.72)

During the time interval At, AN = R At elementary processes will oc-
cur, each corresponding to a kick transferring to the atom a momentum of
modulus /& in a random direction. The atom’s momentum thus follows a
random walk of step ik and rate R. At the end of the time interval At, the
atom’s mean momentum remains zero, but the root-mean-square momen-
tum along one of the three directions in space has increased by

(3 (A)) = %h2k2 AN, (1.73)
From this we deduce the momentum diffusion coefficient
1 (p3(At)) (i + 1)
D,=- -1 _"* D, = 2K’ ——. 1.74
P At = b=k 4n+1 (174)
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4-2 Friction force

Let us now consider an atom moving at velocity v = p/M. We will assume
v < cso that the particle is non-relativistic. The origin of the friction force
is the Doppler effect: in the frame of reference R in motion with the atom,
blackbody radiation is not isotropic, unlike in the laboratory frame. Now,
the atom probes the radiation in R at its resonant frequency wy; it will
therefore interact with modes of the field that are not all equally populated.

For example, let us consider two modes in opposite directions, one go-
ing in the same direction as the atom, the other in the opposite direction,
which are likely to interact with the atom. The frequency of the mode
running in the same direction as the atom is wp in the atomic frame of ref-
erence, i.e. wa(l+ v/c) in the laboratory frame. The mode going in the
opposite direction to the atom also has a frequency w, in the atomic frame
of reference, so wa (1 — v/c) in the laboratory frame. The number of pho-
tons per mode 7i(w) is a decreasing function of w for blackbody radiation.
Therefore

Alwa(l —v/c)] > nlwa(l 4+ v/c)]. (L.75)

The moving atom sees more resonant photons coming towards it than go-
ing in the same direction as it: there will therefore be more kicks decreasing
atomic velocity than increasing it: this is the origin of the friction force.

For a quantitative assessment of the coefficient of friction «, let us take
an atom moving in one direction in space, z for example. Let us denote its
velocity v, and assume that the atom is in its electronic ground state g. The
average change in momentum over an infinitesimal time interval A¢ can be
calculated using a formalism very similar to the one we used to evaluate
absorption and emission probabilities based on Fermi’s golden rule. It is
obtained by considering all the momentum gains /ik resulting from the
absorption of a photon in a given mode of the kq, € field, accompanied by
the atom’s passage into the state ¢, j = z,y, 2

Zth

J ko,eo0

(Wo — wat).  (1.76)

~ 2
— a2 (ej: {n,e}H Vg {nw.e})| o

The Dirac distribution 6(wy — wa ) selects the modes with frequency wp in
the atomic frame of reference®, i.e. frequency wa + kv, in the laboratory

5The reasoning can also be done directly in the laboratory reference frame. The Dirac
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reference frame. The population of a mode corresponding to this resonance
is
on

n(wa + k.v,) =~ %

(wa) + k., (1.77)

W=wA
The calculation of the sum over the modes is then similar to that of the
absorption and emission rates. After some rather tedious algebra, we find
for absorption processes:

on

Apz 2
t —hij E*Uz

(1.78)

and an identical result, but of opposite sign, for emission processes after
averaging over the three e; states. Finally, by weighting the momentum
changes between absorption and emission by the stationary populations
(L.34), we arrive at the expression for the friction force:

i hk? T 92
R VAT R

F, = —ap, (1.79)
The friction coefficient is therefore directly proportional to the frequency
derivative of the mode population around the atomic resonance frequency.
This result confirms the intuition based on the Doppler effect discussed
above [cf. (1.75)]: it is the differential between the population of modes
going in the same direction as the atom and those opposing its motion that
creates the friction force.

4-3 Thermal balance ?

We are now in a position to apply the general results of Brownian mo-
tion theory: atomic motion is characterized by a friction coefficient o and a
momentum diffusion coefficient D,, so that the momentum distribution at
equilibrium is a Gaussian to which we can associate an effective tempera-
ture

Dp n(n+1)

kBTCﬂ = Ma |81L

(1.80)

distribution expressing the energy conservation then selects modes of frequency w such that
E; — Ef = [p?/2M + hw] — [(p + hk)?/2M + hwa] = 0, which is equivalent to taking
w = wa + k-2, except for the recoil energy h2k? /2M, which plays a negligible role here.
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If we inject the mode occupancy for blackbody radiation into this relation-
ship:

1
exp(hw/kgT) — 1’

n= (1.81)
we check that the model is thermodynamically consistent, i.e. that the ef-
fective temperature associated with the atom’s momentum distribution co-
incides with the blackbody temperature:

Tog = T. (1.82)
For Einstein, this result was a confirmation of his hypotheses on the na-
ture of exchanges between atoms and radiation. The 1916 argument about
the populations of the atom’s internal states only concerned energy. On
the contrary, for this thermalization problem, it is essential to posit that
the atom’s momentum increases or decreases by ik when the atom ab-
sorbs or emits a photon. Einstein concluded his article with two prescient
remarks. On the one hand, while acknowledging the weaknesses of his
model, in which the instants and directions of elementary processes are
left to chance, he stated that "I have full confidence in the safety of the ap-
proach followed here". He also pointed out that almost all theories of ther-
mal radiation take into account only the exchange of energy between light
and matter, but not the exchange of momenta: "We readily believe that we
are authorized to do so by the fact that the momenta transferred by radia-
tion are small, and therefore in reality almost always negligible compared
with the other causes of motion". He went on to stress the importance of
taking these momentum exchanges into account on a theoretical level for a
justified theory. The cooling of atoms by light shows that it is also essential
to take these exchanges into account on a practical level!

4-4 Orders of magnitude and validity criteria

In the above, we have obtained the value of the friction coefficient for the
motion of an atom in blackbody radiation [eq. (1.79)]. Let us consider a
sodium atom and model it by its resonance line at A = 589 nm. The tem-
perature required to reach kg7’ = fw is considerable, on the order of 25 000
Kelvins. Although this is a rather unrealistic situation (even for our two-
level atom model), we can calculate the corresponding friction coefficient
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and find a time o' of the order of 10 minutes. For a blackbody of more
reasonable temperature, kg1 < fw, the thermalization time diverges ex-
ponentially:

" hk2 BT
A 6000 Kelvin blackbody (an atom close to the sun’s surface) gives 7i(ws ) =
0.017 and a thermalization time of 40 minutes. The thermal velocity
vo = \/ kT /M corresponds in this case to 1500m/s, and the average dis-
tance covered during a thermalization time, i.e. the step of the random
walk in position space, is 3600 km. Even in an astrophysical environment,
it is likely that other thermalization processes, such as collisions with other
atoms or molecules, will limit the mean free path of our sodium atom to
much lower values. The advantage of using laser sources will be to pro-
duce much larger values of ’ % , the thermalization time then being simply
the first factor in (1.83), i.e. M/hk?.

1 M BT hjpar, (1.83)

Finally, it should be noted that our assumption of low-amplitude jumps,
essential for the Brownian motion approach, is well verified in this exam-
ple. The recoil velocity of the sodium atom when it absorbs or emits a
photon is v, = hk/M = 3cm/s, which is very small indeed compared with
the characteristic width of the thermal velocity distribution at 6000 K, of
the order of 1500 m/s.



Chapter I1

Doppler cooling and magneto-optical trap

Sixty years after Einstein’s paper showing how light from a blackbody
could impose a kinetic temperature on an assembly of atoms, two papers
by Héansch & Schawlow (1975) on the one hand and Wineland & Dehmelt
(1975) on the other, came simultaneously to propose exploiting light from
tunable lasers (a novelty in 1975) to create new thermodynamic equilibria.
In the language we developed in the previous chapter, a monochromatic
laser can produce a spectral distribution of light with 9" arbitrarily large: it
is then the natural width I" of the excited level of the atom that will replace
the width of the blackbody distribution. In other words, there is no longer
any temperature imposed on the exterior by incident light, and it is the
parameters of the atomic transition used that determine the equilibrium
temperature.

As in Einstein’s paper, it is the Doppler effect that is at the root of the
friction force that cools the atoms. The approach we are going to follow will
therefore be very similar to what we have seen for blackbody radiation. We
will use Brownian motion theory to determine both a friction coefficient
and a diffusion coefficient, to arrive at the famous Doppler limit:

kBT == 7

Once we have established the principle of these optical molassess, we will
transpose them from velocity space to position space, substituting the Zee-
man effect for the Doppler effect. We will then arrive at the principle of the
magneto-optical trap, which we will describe and illustrate using recent
experiments with both atoms and molecules.

(IL.1)
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1 Radiation pressure force

At the root of Doppler cooling of atoms is the radiation pressure force. The
simplest physical situation in which this force appears is that of an atom
with two relevant electronic levels, g and e, placed in a monochromatic
plane light wave, of wave vector k (figure IL.1). The atom’s internal state
performs absorption — emission cycles, each of which transfers a certain mo-
mentum to the atom. More precisely:

* During a photon absorption process, the atom passes from the g state
to the e state by gaining the momentum #k.

¢ During a photon emission process, the atom passes from the e state to
the g state, and two cases are possible:

1. In the case of stimulated emission, the emitted photon is identical
to the photons of the incident wave; the momentum lost by the
atom is therefore ik, so the momentum change of the absorption—
stimulated emission cycle is zero.

2. In the case of spontaneous emission, the photon is emitted in a
random direction in space. The angular distribution of this emis-
sion is not universal and depends on the nature of the atomic
transition, but it always occurs with equal probability in two op-
posite directions in space. The average momentum carried away
by the spontaneously emitted photon is therefore always zero, so
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A 4

hk

A 4

A 4

Figure I1.1. A two-level atom illuminated by a plane wave; the repetition of
"absorption— spontaneous emission” cycles creates a radiation pressure force on
the atom that can reach the value hkI' /2, where T is the natural width of the ex-
cited state e.

that the balance of the cycle absorption-spontaneous emission is a
gain of fik.

We deduce from this analysis that the radiation pressure force is equal
to

F =k v (I1.2)

where 7 is the rate for the spontaneous emission of photons. Using the
result from the previous chapter, this rate can be written as

v=TF, (H?))
where I is the natural width of the excited state (Einstein’s A coefficient)
and P, is the steady-state population of this excited state. The result will

be the equivalent for a coherent field of the result P, = 7/(2n + 1) found
for a two-level atom in an incoherent, isotropic field.

1-1 Optical Bloch equations

We are interested here in the internal dynamics of an atom coupled both to
a monochromatic (i.e. coherent) light field and to the empty modes of the
electromagnetic field, this second —incoherent- coupling being responsible
for the spontaneous emission phenomenon. If we were dealing solely with
the coherent coupling with the light field, we could describe the atom’s
internal state by a state vector a,(t)|g) + a.(t)|e), and deduce the evolu-
tion of a ¢ (t) from Schrodinger equation to then calculate P. = |a.|?. If
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we were dealing solely with incoherent coupling, we could, as in the pre-
vious chapter, write rate equations for the populations P, . and determine
their stationary state. The simultaneous presence of both types of coupling,
coherent and incoherent, necessitates recourse to the master equation for-
malism. We will briefly summarize this formalism, which leads to the op-
tical Bloch equations [for more details, see for example Cohen-Tannoudji,
Dupont-Rog, et al. (2012)].

We describe the atom’s internal state by its density operator p, i.e. for
the case of the two-level system of interest here, a 2 x 2 matrix:

b= <ng pge)
Peg  Pee
This matrix is Hermitian and its diagonal elements, which are real, give the
populations of the states concerned:

(IL.4)

(IL5)

Pgg :ng Pee = P, pgg+pee:1-

The matrix therefore has trace 1. The non-diagonal elements describe the
quantum coherence between the ¢ state and the e state and the Hermitian
character of the matrix imposes:

Peg = Pye- (IL.6)

In the incoherent field model developed in the previous chapter, these non-
diagonal elements were zero in steady state.

In the master equation description, valid if the laser excitation is not too
intense!, the evolution of p is written as the sum of two terms:

4 _dp|  dp

At dt dt ' ({L.7)

coh. incoh.

The first term describes the coherent evolution under the effect of the
atom’s coupling with the light field. This coupling is characterized by two
parameters, each having the dimension of a frequency:

* The detuning A = wr, — wa between the frequency of the light field wr,
and the resonant frequency of the atom wy.

! The Rabi frequency « and the detuning A must both be small compared to the atomic
frequency wa .
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¢ The Rabi frequency x = dEy ¢'? /h, proportional to the reduced dipole
d associated with the transition g e and to the complex ampli-
tude of the electric field of the light wave: E(t) = Eycos(wit — ¢) =
%Eoei(”Lt’¢) + c.c.. We have assumed here that the atom is located at
the origin of coordinates r = 0.

In the rotating field approximationz, the Hamiltonian characterizing the

coupling is written as a 2 x 2 matrix in the {|g), |e) } basis:

~ h (A k*

H2<K —A)' (I11.8)
In particular, the non-diagonal terms of this Hamiltonian, «|e){g| and
k*|g){e|, describe the photon absorption and emission processes in the
monochromatic laser wave. In the density operator formalism, the atom-
coherent field coupling is then deduced from the Schrodinger equation:

a5
in

| =10 (IL.9)

coh.

Incoherent coupling related to spontaneous emission processes is given
by the simple evolution (Cohen-Tannoudji, Dupont-Rog, et al. 2012):

dP, dP,
£ —TP, = - TP, (I1.10)
incoh. incoh.
dpeg r dpge r
A — ——pge (L1
de incoh. 2 Peo de incoh. 2 & ( )

The first line is identical to what we established in the previous chapter
from Fermi golden rule. The second line shows that the coherence between
g and e decreases with the rate I'/2, i.e. half the population decay rate
P, = Pee-

By adding the two contributions, coherent and incoherent, we arrive at
the equation of motion of the density operator, constituting the set of optical
Bloch equations:

Po = TPt 5 (K peg = Kpye) (IL12)
. . r iK
Peg = <1A - 2) Peg — 9 (Pgg — Pee) » (IL.13)

2This approximation was detailed in the 2013-14 course, chapter 4.

to which we add the two other equations for P, and j,. deduced from
Py + P. =1and pge = p;,-

1-2 Stationary state of optical Bloch equations

The characteristic time to equilibrium for the system of equations (IL.12-
I1.13) is of the order of I'~!. The stationary value of populations and coher-
ences is given by

1 s K 1
i = - 11.14
“T21+s PUT AT 146 (L.14)
where we have introduced the saturation parameter:
2/s?
= —=. 11.15
" T TP 4Ar (1L.15)

Note.  We often introduce the notion of saturation intensity s, for an
atomic line, measured in W-m~2, and characterize the strength of laser ex-
citation by the ratio I /I, where I is the intensity of light at the atomic
location. This ratio is related to the parameters introduced above by:

I 2[kP? I/ Isat

It 2 ST 1iaArTe

(IL.16)

Our saturation parameter therefore coincides with the ratio I/l for a
laser beam in resonance with the atom. The advantage of using s is that
it directly characterizes the atom’s excitation rate:

¢ if s < 1, which can be obtained with low laser intensity or high detun-
ing, the population of the excited state is negligible compared to that
of the ground state:

s 1: P, =1, P~ —. (I1.17)

e if s > 1, the atom occupies the ground state and the excited state with
equal probabilities

s>1: P,~P.~ (IL.18)
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Knowing the stationary population of the excited state, we can now
return to the expression for the radiation pressure force (I1.2-11.3):

I' s T
=—— F = hk—
214+s’

5 .19
v 21+s (IL.19)

The maximum value of this force is reached in the limit of strong satu-
ration, s > 1, for which the atom performs on average I'/2 absorption—
spontaneous emission cycles per second. The corresponding acceleration
is

Frax r
max — = U7 1.2
(e M "9 (I1:20)
where we have introduced the recoil velocity
hk
r = —, I1.21
TN I:21)

i.e. the change in velocity of an atom when it absorbs or emits a photon.
For a sodium atom illuminated on its resonance line, the recoil velocity is
3cm/s and the maximum acceleration is 106 m/s?.

1-3 Using Ehrenfest’s theorem

In the foregoing, we have adopted an intuitive approach (IL.2-11.3) to re-
late the radiation pressure force to the spontaneous emission rate and thus
to the excited state population. This result can be rigorously justified by
starting from the complete Hamiltonian describing the coupling between
the atom and the radiation, i.e. the Hamiltonian taking into account both
the atom’s internal variables and those describing the motion of its center
of mass.

Noting 7 and p as the operators for the position and momentum of the
center of mass, this Hamiltonian can be written as follows

~2 * —ik-T
. D h A K*e
Htot. = m + 5 (K)eik'?‘ _A ) .

The force operator acting on the atom is calculated using the Heisenberg

(I1.22)
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picture(Gordon & Ashkin 1980):

. dp i.x R
F = CTI;:ﬁ[Htot,P]

1 0 ik*e ik T
T2 fik <—ine“"'f' 0 ) :

We take the average of this operator on a wave packet localized in the
vicinity of » = 0 and of small extension in front of the optical wavelength:

(I1.23)
(I1.24)

. . i
(F)=Tr(Fp) = hk 3 (K" peg — KPge) - (I1.25)
In steady state, the term in the right-hand side is none other than I' P, [cf.
(II.12)], hence the announced result (I1.2-11.3).

1-4 Doppler effect and the broad line condition

In the preceding paragraphs, we have outlined the notion of an average ra-
diation pressure force. This average force, applied to the atom, will change
its velocity. Taking this velocity into account in the formalism we have just
established is simple: just use the fact that for a moving atom, the effective
frequency of the laser is not wr, but wy, — k- v due to the Doppler effect. The
saturation parameter is then a function of velocity:

(v) = 2|k[?
T AHA Kk vz DY

(I1.26)

as well as the radiation pressure force F'(v). The evolution of the atom’s
velocity in a light wave is therefore given by the equation of motion

MY _ pw),

7= (11.27)

an expression we will generalize in what follows to the case where several
plane waves simultaneously illuminate the atom.

However, we must first examine the validity of the notion of average
force. We have already used the fact that the average momentum carried
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away by a spontaneously emitted photon is zero. The notion of force can
be deduced from this if the value of this force changes only by a small
amount in an elementary change in velocity v — v & v;. It is this necessary
condition that we now propose to examine.

For low light intensity (s < 1), the width of the resonance curve giving
P, as a function of the detuning A is equal to I" (total width at half-height).
The change in detuning in an elementary absorption or emission process
is equal to kv, = 2w,, where w, = hk?/(2M) is the recoil frequency. We can
therefore distinguish two limiting situations:

e IfI' > w, (broad line), then an elementary absorption or emission pro-
cess hardly changes the saturation parameter s, nor the population of
the excited state. It is only by repeating a large number of such pro-
cesses that s(v) can be modified appreciably. This is the case that will
interest us in the remainder of this chapter. It occurs for the resonance
line of many atomic species, as shown in the table below. For example,
we find I' /w, ~ 400 for the sodium atom.

e If I' < w,, the absorption or emission of a single photon is enough
to change s(v) considerably. The atom may be in resonance with the
laser before a spontaneous absorption-emission cycle, and completely
out of resonance after this cycle?, so that the notion of average force for
a given v velocity loses its meaning. We will explore the possibilities
offered by these narrow lines in the next chapter.

3We can nevertheless recover a broad-line situation even if I" < w;. To do this, we need to
choose a value for the Rabi frequency |«| > T, so that the population of the excited state

5 _ |2

1
P.== =
T 2145 AA—k-v)2+2|k]2+T2

(11.28)

has an broadened resonance:
T — /T2 4 2|k|2 = T\/1 + I /Tsas,

(11.29)

which can be considerably larger than I" for realistic values of I/Isat.

A Al T2n | w/27 | T/we | Tinin Uy Vo | OUres !

nm | kHz kHz uK | em/s | em/s | cm/s pm

He | 4 | 1083 | 1600 423 38 38| 916 | 282 173 3.3
Li 6 671 | 5910 73.5 80 | 142 | 986 | 442 397 43

Na | 23 589 | 9800 249 | 394 | 235 | 293 | 29.1 577 | 185
Mg | 24 285 | 80000 | 101.8 | 786 | 1922 | 580 | 81.3 | 2280 | 17.8
K | 39 770 | 6000 86| 699 | 144 | 132 | 175 462 | 42.8

Ca | 40 | 423 | 34600 27.7 | 1248 | 831 | 235 | 414 | 1464 | 420
Cr | 52 | 426 | 5020 21.1 | 238 | 121 | 179 | 138 214 8.1
Rb | 87 780 | 6100 38| 1627 | 147 | 059 | 11.8 476 | 101.0
Sr | 84 | 461 | 30500 111 | 2743 | 733 | 1.03 | 26.8 | 1406 | 100.6

Cs | 133 | 852 | 5200 21| 2529 | 125 | 0.35 8.8 443 | 1715
Er | 168 | 401 | 27500 7313743 | 661 | 059 | 18.0 | 1103 | 119.4
583 190 35 55 5| 041 1.5 11 2.5

Dy | 170 | 421 | 32000 6.6 | 4857 | 769 | 055 | 19.3 | 1347 | 162.7
626 135 3.0 45 3| 037 1.3 8 2.3

Yb | 174 399 | 29100 7.2 | 4061 699 0.57 18.2 | 1161 | 1289
556 183 37 50 4| 041 14 10 22

Hg | 202 | 254 | 1300 15.2 85 31| 077 3.6 33 1.7
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Table I1.1. Characteristics of some chemical elements with a broad resonance line
(T'/w, > 1) that can be laser-cooled. For certain atoms with two outer electrons,
the main line 1Sy <! P, and the intercombination line 1S, <3P, are indicated.
The minimum temperature shown, and the root-mean-square velocity vy, corre-
spond to the Doppler cooling studied in this chapter. For some of these elements,
Sisyphus-type cooling is also possible, leading to lower temperatures than those
indicated here.
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2 Doppler cooling

We now turn to the description of Doppler cooling with lasers. The mecha-
nism involved is very similar to that seen in the previous chapter for black-
body radiation. The theoretical description will also be very similar, with
a Brownian motion-type approach to evaluating a friction coefficient and
a momentum diffusion coefficient, and finally deducing the cooling limit
temperature.

2-1 Optical molasses and low saturation assumption

We aim to achieve a Doppler cooling situation, in which an atom with a
non-zero initial velocity experiences a friction force that drives its velocity
towards 0. To achieve this, we illuminate the zone of interest with one, two
or three pairs of waves, depending on the number of directions in space
we wish to cool (figure I1.2). As initially proposed by Héansch & Schawlow
(1975), we choose a detuning A < 0, i.e. wr, < wa, so that a moving atom is
closer to resonance with a counter-propagating wave (k - v < 0) than with
a co-propagating wave (k - v > 0). This is the cooling phenomenon we are
looking for. Now let us be more quantitative and calculate the total force
acting on the atom.

To calculate this force, it is tempting to add the radiation pressure forces
created by the 2, 4 or 6 waves illuminating the atom. In the case of the sin-
gle plane wave studied in paragraph 1, the absorption-stimulated emission
cycles played no role, as they were not associated with any momentum
transfer, the atom returning to the wave the momentum it had borrowed
from it during absorption. If several plane waves are simultaneously in-
cident on the atom, the atom can absorb a photon in wave 1, then make
a stimulated emission in wave 2, thus gaining the momentum 7k, — k3).
Of course, the reverse process is also possible, but it is unclear that both
processes occur with the same amplitude, for a given atomic velocity and
position.

There is one situation in which taking the sum of the radiation pressures
is a good approximation: this is the case where the saturation parameter sg
associated with each travelling wave is much smaller than 1, and where we
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X

Figure I1.2. Basic diagram of a three-dimensional optical molasses. The atoms
are illuminated by 3 pairs of monochromatic waves, with negative detuning A =
Wi, — WA.

can therefore neglect the processes of stimulated emission in comparison
with those of spontaneous emission. Note, however, that this approxima-
tion ignores the periodic structure of the standing waves created by the
superposition of traveling waves. The calculated force must therefore be
understood as the spatial average (over one standing-wave period) of the
force F(r,v) calculated by a more sophisticated method, such as numer-
ical resolution of the optical Bloch equations at any point (r,v) in phase
space.

Once this approximation has been made, the force acting on the atom is
easy to calculate:

r
F(v) = > hkjsi(v), (I1.30)
J
where the sum relates to all running plane waves illuminating the atom,
with
[
TN A K w2 T2

To apply the theory of Brownian motion, we consider the case of velocities
small in front of the interval dvys quasi-resonant with a monochromatic
light wave:

|kv| < T =

[v] < dvres =T/, (I1.32)
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which allows us to calculate the force at order 1 in velocity:

2(—A)T

. _ 2
with Ma = hk So m,

F(v)=—-Maw, (IL.33)
where we used ) ; k; = 0 for the geometry considered, which cancels out
the 0-order term in v. We have also used for the term of order 1:

> kj(kjv) =2k (I1.34)
J

in the geometry of figure I1.2. Itis clear from (I1.33) that a negative detuning
A must be chosen to generate friction (o > 0).

If we fix a given value of the saturation parameter sy, chosen in partic-
ular such that sp < 1 so that the approximation consisting in summing the
forces created by the different plane waves is valid, we see that the coeffi-
cient of friction v is maximum when |A|/(A? + I'? /4) is maximum, which
occurs for A = —T'/2:

2

r
azQsoh— forA:—E.

Maximum friction coefficient at fixed s : i

2-2 Momentum diffusion and equilibrium temperature

As in the previous chapter, an analysis in terms of Brownian motion also
requires the knowledge of the momentum diffusion coefficient (Gordon &
Ashkin 1980). The treatment developed for the blackbody radiation can
be directly transposed. We found that this coefficient can be written as
D, = h?k*R/6, where R is the rate of elementary processes, absorption or
emission, for an atom at rest. In this case, the scattering rate for an atom
illuminated by six waves of saturation parameter sy is R = 6 x I's, i.e.
D, = h*k*so T (I1.35)
The final step is to determine the equilibrium temperature of the atoms
illuminated by these light beams:
D, h A% +T2/4

kpT = 2

= 1L
Mo 2 |A] (1136)
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First, we note that this quantity is independent of the power of the light
waves. In fact, the coefficients of friction « and diffusion D, are both linear
in intensity (x so|r|?). We then see that this temperature is minimal for :

r
Amin = 3> kBT min = Ev
2 2

(IL.37)
which constitutes the Doppler limit announced in the introduction to this
chapter. These temperatures are located in the 1 — 1000 pK range. The
values corresponding to certain atomic species commonly used in radiative
cooling experiments are given in table IL1.

As we saw in the previous chapter, a Fokker-Planck equation approach
shows that the stationary velocity distribution is a Gaussian, identical to a
Maxwell-Boltzmann distribution of velocity width v, given by
1 AR’

Muv2 = —kpTin, i vy = S1f

. (IL38)

1
2
2-3 Validity of the Brownian motion approach

Since we have used a Brownian motion approach here, we need to check
that the underlying assumption of small steps is verified. Furthermore, we
have used a linear approximation to calculate the force as a function of the
velocity, and we need to ensure that this approximation is satisfied for the
predicted mean-square velocity vy at equilibrium.

Let us show that the broad-line criterion ensures that these two condi-
tions are met. For our problem, the elementary step of the random walk
in velocity space is the recoil velocity v, = fik/M. This velocity is indeed
small compared to vg:

. hk/M -
v _ DK/ 2,/ <« 1.

w  JabpeM VT

Regarding the validity of the linear approximation, we check that v, is
small compared to the velocity range dvyes :

vo _ /AT2M _ T
’/r .

Svres  DJk

(I1.39)

(IL40)
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We therefore have three velocity scales in the problem:

Uy K Vg K OVres;, (I1.41)

which guarantees the validity of our approach. For the sodium atom, these
three velocities are 3 cm/s, 30 cm/s and 600 cm/s (see table).

Time constants. The model we have just presented can also be used to
estimate the typical cooling time for A = Apjn:

L, M1

T hR2 250

(I.42)

In the limit of low saturation, this time can of course be arbitrarily long. Let
us take sy = 0.1 as a typical upper bound for our perturbative treatment.
We then find o=t ~ 20 us for the sodium atom, which is short: for an initial
velocity v; = dvres = 6 m/s (at the limit of the linearity range), the atom
only travels about a hundred microns before its mean velocity becomes
negligible.

3 Optical molasses in practice

The first optical molasses was produced by Chu, Hollberg, et al. (1985)
shortly after atoms were successfully stopped by radiation pressure (Ert-
mer, Blatt, et al. 1985; Prodan, Migdall, et al. 1985). Figure 11.3 shows an
image of an optical molasses obtained in 1987 in Bill Phillips” group, with
sodium atoms (Lett, Watts, et al. 1988a). The central volume, of the or-
der of a cubic centimetre, contains 10% atoms. We are showing this image
now, but we will see later that another cooling mechanism, based on the
Sisyphus effect, was also at work in this gas of sodium atoms.

3-1 How to take saturation into account?

Our description in the previous paragraph was based on an assumption
of low saturation, allowing the radiation pressure forces created by all the
traveling waves making up the optical molasses to be added together. But
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Figure 11.3. Sodium molasses made in W.D. Phillips” group (NBS-NIST).

in this low-saturation hypothesis, the cooling time varies as 1/s¢ and is
therefore long. In practice, it is tempting to increase the light intensity, but
how can we take into account the phenomena that may then occur?

It should be pointed out at the outset that it is difficult to give an exact
treatment of the problem. It is possible to calculate the force acting on an
atom of velocity v in a standing light wave of arbitrarily high intensity, by
searching for the steady-state regime of the optical Bloch equations (Mino-
gin & Serimaa 1979). Let us briefly outline the principle behind this calcula-
tion: the Rabi frequency associated with a standing wave varies as cos(k-r),
which creates time-modulated terms for a given trajectory r(t) = r¢ +vt of
the atom. The system of optical Bloch equations can then be solved numer-
ically by a Fourier series expansion (via the continued fraction approach).
Going beyond the calculation of the force and evaluating the diffusion coef-
ficient is an tedious task, which does not provide much physical intuition,
especially in the three-dimensional case.

In practice, the optimal regime for optical molasses corresponds to a
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saturation parameter per wave that does not exceed unity. In this case,
we use a ad-hoc procedure, which consists of considering that the atom is
simply saturated by all six incident waves, and using the response of this
saturated system. Two slightly different procedures can be found in Lett,
Phillips, et al. (1989) and Wohlleben, Chevy, et al. (2001). As an example,
let us mention the procedure proposed by Lett, Phillips, et al. (1989), where
one takes as an approximate value the total force acting on the atom:

(11.43)

T I/Isat
F ~ hk;— )
(v) zj: 7214+ 4(A—kj-v)2/T2 4+ NI/I

where N is the total number of traveling plane waves incident on the atom.
We will see later that the results obtained are in reasonable agreement with
experimental observations, in particular the equilibrium temperature:

B _?M +

R T 4A? NI
—+— . 11.44
( F2 I sat ) ( )
Remember, however, that this is just one heuristic solution to a complex
situation.

3-2 Capture of atoms in optical molasses

Optical molasses is formed by centimeter-sized beams intersecting in the
center of a vacuum chamber (figure I1.3). A key practical issue is the load-
ing of this molasses with atoms of any velocity v. Given a finite distance L
to capture an atom, what is the maximum velocity that can be brought to
rest by the friction force?

Let us work with a one-dimensional version of the problem for simplic-
ity. The equation of motion of an atom is

dv
M—=F 114

= F) (11.45)
with

()= ML 1 _ 1
Y Ty T [T+ 4(A —k0)2/T2 11 4(A + kv)2/I2

(11.46)
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We write this equation as
dv

Mvyv— =F 11.47

v = F(v) (1147)
which can be integrated into

v 2 dz =L 11.48

/m Fo) v—/ xz=1L. (I1.48)

We wish to obtain v; ~ 0 and seek to maximize v;, for a fixed L. In practice,
this optimum is obtained by taking the detuning A ~ —kv;/2, so that the
effective detuning is initially on the blue of the atomic resonance A + kv; ~
+kv;/2, and finally on the red of this resonance A + kvy ~ A ~ —kv;/2.
We then find, keeping only the contribution of the resonant wave with the
atom in (I1.46)
1 k%0 0? _ hkI' I
6 2 " 2 2M Iy
As soon as the distance L is large enough, the dominant term in the left-
hand side of (I1.49) is the term in v}, corresponding to the variation F(v) oc

1/v? for |A — kv| 2 T'. We thus obtain the scaling law

kui (gL TN
I 7 \"{ L

where ¢ = MT'/hk? is the relevant length scale for this problem (cf. table
I1.1). The velocity that can be captured in optical molasses therefore varies
only as the power 1/4 of the available distance, which is not very favor-
able. We will see later how the magneto-optical trap leads to a much more
promising situation.

(IL.49)

(IL.50)

An example of a phase portrait, i.e. the variation of velocity as a func-
tion of position, is shown in figure I1.4. The distance L = 400 ¢ corresponds
to about one centimeter for sodium atoms. The maximum velocity that can
be captured in this molasses, obtained for A ~ —3I, is such that kv; /T ~ 5,
in good agreement with (I1.50).

3-3 Spatial diffusion

Optical molasses is a simple way of accumulating a large number of atoms,
in excess of a million, in a given volume of space, on the order of a cubic
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molasses magneto-optical trap
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Figure I1.4. Phase portrait of 1D capture in optical molasses (left) and in a
magneto-optical trap (vight), with two waves of intensity I = I, /2 and effec-
tive length L = 400 ¢, with ¢ = MT /hk3. The total force is taken to be the sum
of the two individual radiation pressure forces (taking saturation into account).
The shaded area represents the phase-space zone resonant with the light wave (to
within £1"/2). The detuning has been optimized to maximize the capture rate, as
well as the magnetic field gradient in the case of the magneto-optical trap. Mo-
lasses: A = —31T'; Magneto-optical trap: A = —6T, ub'¢/hl’ = 0.022. The tra-
jectories correspond to initial velocities k|v|/T' = 2, 4.5, 7, 10, 11. The capture
velocity is of the order of 5T /k for molasses and 10T /k for the magneto-optical
trap.
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centimetre. The reason why this number can be so large lies in the rela-
tively long time it takes for an atom to find the edge of the molasses and
escape. In other words, the spatial diffusion coefficient in molasses is low
(and additional cooling mechanisms, such as Sisyphus cooling, lowers it
further).

In the previous chapter, we obtained the general expression for the spa-
tial diffusion coefficient D, for Brownian motion:

D, =v?/a. (I1.51)
Consider molasses with optimal detuning A = —I'/2:
hI' hk? r
5= =250—— Dy =— —. 11.52
Yo oM’ @ S0 M = T 4)2 50 ( 5 )

For a sodium atom (A = 0.59 um, I'/27 = 10 MHz) and the choice sy = 0.1,
this gives D, ~ 1.4 mm?/s: for a centimetre-sized molasses, it takes more
than ten seconds for an atom starting from the center to reach the edge of
the molasses and escape. Although there is no trapping force as such, the
high viscosity means that atoms accumulate in the molasses. Sub-Doppler
cooling processes further reduce this spatial diffusion coefficient and thus
reinforce the accumulation of atoms, the coefficient D,, in this case being of
the order of tens of h/M.

3-4 Some recent experimental tests at 3D

Testing the theory of broad-line Doppler cooling is not as easy as it sounds,
at least not in three dimensions. Indeed, for many atomic species, the
ground level is degenerate and other cooling mechanisms are also present,
such as the Sisyphus cooling we will see in a later chapter. This is notably
the case for all alkali-metal species, whose ground level is degenerate due
to (i) the spin of the outer electron, (ii) the spin of the nucleus. Good candi-
dates for testing Doppler cooling theory are the bosonic isotopes of atoms
with two outer electrons. Indeed, these atoms have a zero electron spin in
their ground state (singlet state for the two outer electrons) and the nuclear
spin can also be zero for bosonic isotopes (it is necessarily half-integer for
fermionic isotopes).
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Figure 11.5. Temperature of an optical molasses of mercury atoms for different
isotopes. Figure taken from McFerran, Yi, et al. (2010). The Doppler cooling pre-
diction is shown as a solid line, heuristically taking saturation effects into account
[eq. (I1.44)]. Bosonic isotopes, with zero nuclear spin, give results in good agree-
ment with Doppler cooling theory. For fermionic isotopes, sub-Doppler cooling
mechanisms are also present.

In figure IL.5, we have plotted the result of McFerran, Yj, et al. (2010), ob-
tained on isotopes 200 and 202 of the mercury atom (pink and green dots).
Cooling is performed on the 'Sy «++3P; intercombination line (A = 254 nm
and I'/27 = 1.3 MHz). The broad-line condition is well verified in this case,
since the natural width is about 100 times greater than w,. Temperatures
are measured using the time-of-flight technique, from atoms initially cap-
tured in a magneto-optical trap (see below). The measured temperature
variation reproduces well the expected Doppler cooling law, once satura-
tion effects have been taken into account in the heuristic way described in
§3-1 (in this experiment, there was a total intensity at the molasses center
~ 4 Iy, with I, = 10.2mW/cm?). Temperature measurements made on
fermionic isotopes of mercury are also shown on this graph, and clearly
demonstrate the existence of sub-Doppler mechanisms for these isotopes.
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Figure 11.6. Evolution of temperature with detuning in an optical molasses of
metastable helium atoms, for different values of light intensity. The lines represent
the prediction (I1.44). Figure taken from Chang, Hoendervanger, et al. (2014).

Another recent result on the test of Doppler cooling theory is given by
Chang, Hoendervanger, et al. (2014) and is shown in figure I1.6. This time,
the experiment is performed on metastable helium atoms (A = 1083nm,
I'/2r = 1.6 MHz), which has a degenerate ground level. However, the
authors placed themselves in conditions where sub-Doppler mechanisms
play a negligible role. The experiment carried out at low intensity (Isa/10
for total intensity) leads to very good agreement with Doppler theory [min-
imum measured temperature ~ 1.3 Ti,in given in (IL.38)]. At higher inten-
sities, the variation in temperature with detuning is also in good agreement
with the heuristic law (I1.44).

3-5 Laser cooling of macroscopic bodies

Although this course is devoted to the cooling of individual atoms, let us
briefly mention here that the radiation pressure force can also be used to
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cool certain degrees of freedom of macroscopic objects, such as the cen-
ter of mass of a mirror in an optical cavity. The corresponding field of
research, optomechanics, is rapidly expanding and it is beyond the scope
of this lecture series to cover it [see, for example, the recent review arti-
cle by Aspelmeyer, Kippenberg, et al. (2014)]. We will just briefly describe
here the initial experiments carried out some ten years ago, the principle
of which is close to what we have seen so far for individual atoms (Arcizet,
Cohadon, et al. 2006; Gigan, Bohm, et al. 2006; Schliesser, Del'Haye, et al.
2006).

Let us take a look at the experimental diagram shown in figure IL.7,
where a light beam impinges on a Fabry—Perot cavity, the second mirror of
which is mounted on a spring. The light in the cavity creates a radiation
pressure force on this mirror, whose equilibrium position is a certain ab-
scissa L*, for which the radiation pressure force Frp, directed to the right,
exactly compensates for the spring force Fyping, directed to the left:

Mirror at restin L™ : Frp + Fipring = 0. (I1.53)
The radiation pressure force depends on the light power stored in the cav-
ity, which in turn depends on the cavity length L. When L is an integer

multiple of /2, this power is maximum.

Let us assume that the position of the spring is chosen such that L*
is slightly less than n\/2, and let us consider an oscillation of the mirror
around its equilibrium position. When the mirror passes through L* on its
way to the right, the number of photons in the cavity is increasing. Because
of the time constant required for this photon number to reach its stationary
value, it will be lower than it would be if the mirror were stationary at
L*. The radiation pressure force is therefore weaker than it would be for a
stationary mirror, and the force felt by the mirror as it passes the point L*
is therefore directed to the left:

Mirror passing in L* to the right : Frp + Fipring <0, (I1.54)
therefore opposite to the motion of the mirror. Similarly, when the atom
passes through L* coming from the right, the cavity contains a few more
photons than if the mirror were stationary and
(IL55)

Mirror passing in L* to the left : Frp + Fipring > 0.
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Figure 11.7. Fabry—Perot cavity with a moving mirror. For a suitable choice of
equilibrium position L*, the radiation pressure force dampens the motion of the
mirror’s center of mass. The damping comes from the non-zero time it takes for
the intracavity power to adjust to the mirror position as it oscillates around its
equilibrium position.
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Figure I1.8. The effective temperature associated with the motion of the center of
mass of the moving mirror of a Fabry—Perot cavity, as a function of the detuning
of this cavity. The dotted line is the prediction obtained by considering only one
mode of the mechanical micro-resonator, while the solid line takes into account the
contribution of the other modes. Figure taken from Arcizet, Cohadon, et al. (2006).

So, in addition to the static forces acting on the mirror at rest, we find a
velocity-dependent force opposing the motion of the mirror’s center of
mass and cooling this degree of freedom (figure IL.8). This friction force,
analogous to the Doppler friction force for an atom, lowers the tempera-
ture associated with this degree of freedom. Note that friction is obtained
only if L* is chosen slightly to the left of the resonance n\/2 of the Fabry—
Perot cavity. Had we chosen L* slightly to the right of this resonance, we
would have found an accelerating force. The quantity L* — nA/2 (denoted
@ in figure IL.8) therefore plays the role of detuning A = wy, — wx for free
atoms.

4 The magneto-optical trap

Optical molasses based on the Doppler effect provides a simple means
of slowing down atoms and maintaining their velocity around 0, with a
temperature of the order of Al'/kg. In addition to Doppler cooling, the
magneto-optical trap provides a means of confining atoms around a given
point. The only additional ingredient is a magnetic field gradient, which
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Figure 11.9. Basic principle of the magneto-optical trap (one-dimensional version).
The radiation pressure force created by each light wave is position-dependent, due
to the presence of a magnetic field gradient. The resultant of the two radiation
pressure forces is a restoring force towards the origin.

acts differently on the ground and excited levels of the atom, and intro-
duces a spatial dependence of the radiation pressure force. This principle
was first put into practice by Raab, Prentiss, et al. (1987).

4-1 Equilibrium size for small atom numbers

The basic principle of the magneto-optical trap is illustrated in figure I1.9,
in a one-dimensional geometry (generalization to 3D poses no problem
of principle). Consider a transition between a ground level with zero an-
gular momentum and an excited level with angular momentum J, = 1.
A magnetic field gradient lifts the degeneracy between the three Zeeman
states of the excited level. If we take a circular polarization for each of
the beams making up the molasses, we achieve the desired situation: for
a negative detuning (the one required for Doppler cooling), an immobile
atom at z > 0 will feel a greater radiation pressure force from the wave
coming from the right than from the one coming from the left: it will there-
fore be pushed towards the central point. Similarly, an atom at « < 0 will
feel a greater force from the wave propagating to the right, and will also be
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pushed towards the center.

To be more quantitative, we introduce the magnetic moment p associ-
ated with the excited atomic level, so that the Zeeman displacement of a
sublevel m is muB, where B is the amplitude of the magnetic field at the
atom’s location. For the magnetic field gradient shown in figure I1.9, the
field amplitude is written B = V'z, so the force felt by an atom located at
point = with velocity v is written:

mr 1 1
2 Iy L1+ 4(A — kv — pb'x/h)? /T2

F(z,v) =

1

Let us restrict ourselves to Doppler (kv) and Zeeman (b’ /1) shifts that
are small compared to the natural width I'. At lowest non-zero order, we
obtain a force which is linear in position and velocity:

F(z,v) = —Ka — Mav, (11.57)

which gives rise to damped harmonic motion. The coefficient of friction
« is identical to that found for molasses. The stiffness K of the restoring
force is:

2T |A|

K= kublso gy

(IL58)

Let us move on to determining the equilibrium size of the trapped atom
cloud. The momentum diffusion coefficient is unchanged, so the equi-
librium state is always a thermal state, with temperature determined by
ksT = D,/Ma. The equilibrium distribution is a Gaussian in position,
with standard deviation ¢ given by

1 1 1
iKﬁziMﬁzi@ﬂ (11.59)
which gives
N 1/2
= — II.
o (4k’ub’80 > (1L60)

if we choose the detuning A = —TI'/2 providing the minimum temperature
kgT = hI'/2. To obtain an order of magnitude for z, let us take again the
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case of sodium atoms, with s = 1/10 and a typical magnetic field gradient
b = 10G/cm (0.1 Tesla per meter). We find 2o = 40 um for the detuning
A=-T)/2.

In practice, two antagonistic effects modify this prediction:

¢ For a degenerate ground level, the Sisyphus processes that increase the
friction coefficient will also increase the stiffness K of the magneto-
optical trap, thus reducing its size (Cooper, Hillenbrand, et al. 1994;
Townsend, Edwards, et al. 1995).

¢ Collective effects, related to the multiple scattering of photons within
the cloud of atoms, increase the equilibrium size of the trapped gas, as
we will see below (4-3).

The aforementioned article by Chang, Hoendervanger, et al. (2014)
measured this size for helium atoms in a metastable electronic level. The
spatial density in the magneto-optical trap they made was low (limited by
Penning collisions), so the collective effects we will discuss below were
negligible in their case. The measured sizes are in good agreement with
the prediction (I1.60), as shown in figure II.10.

4-2 Capture in a magneto-optical trap

In addition to bringing all atoms to the same point in space, the magneto-
optical trap has the advantage of capturing atoms at a significantly higher
velocity than optical molasses. This point is illustrated in the phase portrait
in figure I1.4. The resonance of an atom with the laser beams occurs for all
"position-velocity" pairs satisfying:

+A = kv + pb'z/h. (IL.e1)
If we have a total distance L to capture the atoms, the optimal configura-
tion is obtained when an atom at rest at the point + = L/2, on the right

edge of the capture zone, is resonant with the beam pushing it towards the

center, i.e.:
ub’ L
Al = — —.

=3 (IL.62)
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Figure 11.10. Equilibrium size of a magneto-optical trap of metastable helium
atoms as a function of the detuning A and the magnetic field gradient b'. The two
sets of points correspond to two different axes of the quadrupole magnetic field.
The solid lines are the predictions of the theory presented in this chapter, taking
saturation effects into account. Figures taken from Chang, Hoendervanger, et al.
(2014).

At the other end of the capture zone (z = —L/2), the same beam is resonant
with atoms of velocity v; satisfying the resonance condition (II.61):

/o —
|A|=k1}i+ﬂ@ =

. = 2|A| = ub'L/h.
P kv |Al = ub'L/R

(IL.63)

It remains to choose the largest possible magnetic field gradient &', com-
patible with the available radiation pressure force. This problem is similar
to that of a "Zeeman slower" for an atomic beam, in which the resonance
condition must be maintained at all points in space, taking into account
the Doppler effect variation. In this case, the points (z, v) in phase space at
which the resonance condition (I1.61) is satisfied must be such that

szzﬂfﬁg—::ﬂlvég < Fax

11.64
dt dx (IL.64)

where Fi ., = hk:gl—fat is the maximum force created by each beam. By

injecting the value ¢ = pub//hk deduced from the resonance condition

and the initial velocity (I1.63) into this relationship, we deduce the capture
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velocity and the corresponding magnetic field gradient:

ki bl (L 1\
r A~ \ /¢ 2L '

We can see that this capture rate varies as L'/? instead of the L'/* law
found for molasses. In practice, for reasonable parameters, this capture
velocity in a magneto-optical trap is two to three times greater than for
optical molasses (see figure I1.4). This translates into a considerable gain in
terms of the number of atoms cooled if one starts with a vapor at thermal
equilibrium at room temperature. In this case, the "low velocity" part of the
thermal distribution is captured and the flux of atoms entering the capture
region with a velocity v < v; varies as v}. A gain of a factor of 2 in the
capture velocity (as shown in figure II.4) translates into a gain of a factor of
16 in the flux of cooled atoms.

(IL65)

4-3 Equilibrium size for large atom numbers

In practice, the sizes measured for clouds of atoms confined in a magneto-
optical trap are generally well above prediction (IL.60), the result shown
in figure I1.10 being an exception. This is due to collective effects between
atoms, specifically the repulsion caused by the radiation pressure from flu-
orescence light (Walker, Sesko, et al. 1990). The situation is similar to that
of a star like the sun, where the force of gravity that tends to contract the
star in on itself is offset by radiation pressure.

In practice, the density within a magneto-optical trap is limited to a
value of the order of 10'° atoms/cm?, and the diameter of the trapped
cloud can reach a value of the order of a cm. To find these orders of mag-
nitude, let us start by evaluating the effective repulsion between atoms.
Consider a pair of atoms separated by a distance r. Atom 1, illuminated by
the six laser beams forming the magneto-optical trap, scatters photons at a
rate v = 6 x (I'sp/2). For simplicity’s sake, we will assume that these pho-
tons are emitted isotropically. Atom 2 will absorb a fraction oaps/(4772) of
these photons, and thus feel a radiation pressure force directed along the
axis joining the two atoms

Tabs
4mr2’

F = ~yhk (IL.66)
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The effective absorption cross-section of scattered photons o,1,s depends
on their wavelength. Let us assume for the moment that these photons are
emitted at the wavelength of the incident lasers (elastic Rayleigh scatter-
ing), and that *:
32 1
Tabs = 2r T AAZTE (I1.67)
The equilibrium of the cloud of atoms under the combined effect of the
trapping force —Kr and the repulsion between atoms boils down to a well-
known problem in physics. For simplicity’s sake, let us assume zero tem-
perature, which is legitimate if the equilibrium size is much larger than the
single-atom prediction given in (I1.60). Let us also make the assumption,
which we will check later, that the atomic density is constant and equal to
n inside a sphere of radius R, and zero outside, with N = %TFRSR. In this
case, the average effect of the repulsive force can be evaluated by Gauss’s
theorem: we have an assembly of particles repelling each other by a force
in 1/r? like Coulomb’s force. In a spherical geometry with uniform density,
we know that the electric field is radial and varies linearly with distance r
from the center inside the sphere. In the case we are interested in here,
the total radiation pressure force due to scattered light can be written as
F = K'r with

1
K = g’yhkaabsn (I1.68)

The desired equilibrium is then obtained at any point in the cloud, pro-
vided K’ = K, which occurs for a density

167w pb' |A|

=3 meTe (I1.69)
The fact that equilibrium is achieved at every point validates the initial
assumption of uniform density. Taking typical magneto-optical trap pa-
rameters for alkali atoms, b’ = 0.1 T/m, |A| = 3T and p equal to the Bohr
magneton, we find an equilibrium density of 1.7x10'? atoms/cm?, leading
to a radius of 2.4 mm for a cloud of one billion atoms.

Note. Our model is in fact a pessimistic version of reality. Indeed, we
have neglected a similar effect, linked to the absorption of laser beams,

“We will come back to the subtleties concerning the effective scattering cross-section of a
photon by an atom when the latter is "dressed" by laser light
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which on the contrary reinforces the trapping effect (Dalibard 1988). To
understand this effect, let us take a 1D model with an atomic cloud cen-
tered at z = 0. For an atom located on one edge of the cloud, for exam-
ple on the right (= > 0), the two trapping waves do not have the same
intensity. Indeed, the wave propagating towards z > 0, which tends to
move the atom further away from the center, has crossed the entire cloud
before reaching the atom; it is therefore significantly attenuated, due to ab-
sorption by the cloud. On the other hand, the wave propagating towards
z < 0, which tends to bring the atom back towards the center, has hardly
been attenuated at all. This absorption effect increases the stiffness of the
magneto-optical trap. It can be shown that if the scattered photons had
exactly the same frequency as the laser photons, the multiple scattering ef-
fect discussed above and this absorption effect would exactly offset each
other. It is because some of the scattered photons are emitted with a fre-
quency close to atomic resonance that the multiple scattering effect (which
tends to explode the cloud) outweighs the absorption effect (which tends
to compress it) (Walker, Sesko, et al. 1990). For a quantitative account of
the competition between these two effects, see for example Townsend, Ed-
wards, et al. (1995).

The magneto-optical trap with a large number of atoms is in fact a very
rich non-linear system, which can lead to bistability effects, parametric
instabilities and chaotic dynamics [see for example Sesko, Walker, et al.
(1991), Wilkowski, Ringot, et al. (2000), Stefano, Fauquembergue, et al.
(2003), Kim, Noh, et al. (2004), and Tergas, Mendonga, et al. (2010) and
refs. in]. In particular, the 1/r? repulsive force between two atoms leads
to effects similar to those seen in charged plasmas, such as the coulombic
explosion (Pruvost, Serre, et al. 2000). We should also mention the dark
magneto-optical trap (dark MOT) technique, in which optical pumping at
the centre of the trap in the center of the trap to reduce the fluorescence
light, thereby increasing the spatial density (Ketterle, Davis, et al. 1992).

4-4 Molecules enter the game

The magneto-optical trap can capture a large number of atomic species,
opening the way to numerous applications ranging from metrology to
quantum gas physics. Extending this technique to molecules is a consid-
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Figure 11.11. Schematic diagram of the SrF molecular levels used for magneto-
optical trapping of this molecule. Four laser sources and several electro-optical
modulators are needed to interact with the molecule for ~ 1s (105 photons ex-
changed). Right, magneto-optical trap with ~ 300 molecules, T ~ 2mK, and
a lifetime of 60ms, limited by the depth of the trap. Figure taken from Barry,
McCarron, et al. (2014).

erable challenge, but one that could lead to even more applications, given
the wealth of observable phenomena, in conjunction with with quantum
chemistry and with the possibility to induce an electric dipole moment in
these molecules.

Very recently, the first 3D magneto-optical trap for molecules was
achieved by Barry, McCarron, et al. (2014). Shortly before, 1D and 2D trap-
ping had been observed by Hummon, Yeo, et al. (2013). These are complex
experiments, as the level structure of a di-atomic molecule makes it impos-
sible to isolate a single transition over which a sufficient number of photons
could be exchanged. The experiment by Barry, McCarron, et al. (2014), car-
ried out on strontium monofluoride (SrF), involves 7 different molecular
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vibrational levels (figure I1.11), each of which is split into sublevels due to
the molecule’s rotation and hyperfine structure (the line representing the
ground level v = 0 corresponds to 12 states). 4 laser sources are required
(the straight lines in figure I1.11), each electro-optically modulated to excite
the different sublevels. Thanks to these multiple lasers, a given molecule
can exchange an average of ~ 105 photons before falling onto a level not
shown in the figure and not excited by one of the light beams. This ex-
change of 10° photons makes it possible to interact with the molecule and
exert a force on it for about one second.

The difficulty of the experiment is further increased by the fact that the
transition considered is not a simple J, = 0 <> J. = 1 transition, but in-
cludes dark states (we will come back to this notion in a later chapter).
Once in a dark state, the molecule ceases to feel a force and risks escaping
the trap. The polarizations of the light beams and the direction of the mag-
netic field must therefore be periodically switched to recycle these dark
states. Once all these precautions have been taken, the trap can be ob-
served! The newborn contains around 300 molecules (still a small number
compared with the billions of atoms a magneto-optical trap can accumu-
late), at a temperature of around 2 millikelvin. This temperature is ten
times higher than the Doppler limit, which the authors interpret as a con-
sequence of the existence of dark states. The trap’s lifetime is 60 ms, which
again is well below the result measured for atoms (which can reach several
minutes). The probable reason for this short lifetime is the limited depth of
the trap, estimated at only 5 kg7". Molecules therefore evaporate from the
trap, limiting their residence time.






Chapter III
The virtues of narrow lines

In the previous chapter, we studied broad-line Doppler cooling, i.e.
cooling that operates on an atomic line with a natural width I' of the ex-
cited level that is large compared with the recoil frequency w, = hk*/2M.
We then found a temperature proportional to the natural width I . It is nat-
ural to wonder what happens to the temperature limit when we try to use
narrower and narrower lines, approaching the I' ~ w;, situation, or even
going beyond it. Does the law T' o« I' remain valid, or is it replaced by
another limit?

This question may have seemed academic some fifteen years ago, but
it is now highly relevant experimentally: there is a great deal of interest
in atoms with two outer electrons, particularly in terms of metrology and
degenerate quantum gases. These atoms naturally have narrow resonance
lines, which couple the sector where the total spin of the two outer elec-
trons is S = 0 (spin singlet) and the sector where S = 1 (spin triplet). For
example, for strontium, the line at 689 nm coupling the ground state 1Sy
and the excited state 3 P, has a width I'/27 = 7.5 kHz, which is comparable
to the recoil frequency w, /27 = 4.7 kHz (see table III.1). The cooling of this
atom is of considerable metrological interest, since it was with it that Jun
Ye’s group in Boulder recently demonstrated the operation of an optical
clock with an accuracy at the record level of 2 x 10~!® (Bloom, Nicholson,
et al. 2014; Nicholson, Campbell, et al. 2015).

As we pointed out in the previous chapter, the absorption or emission
of a single photon is enough in this case to significantly change the atom’s
saturation parameter. We can therefore no longer adopt a Fokker-Planck
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A A | T/2m | w/27 | E./kp Uy
nm | kHz | kHz nK cm/s
Mg | 24 | 457 | 0.031 40 1.9 3.6
Ca | 40 | 657 | 0.40 12 0.55 1.5
Zn | 64 | 309 | 6.0 32 1.6 2.0
Sr | 84 |68 | 7.6 5.0 0.24 0.69
Cd | 114 | 326 70 16 0.79 1.1

Table I11.1. Narrow intercombination lines 'Sy <3 Py for some atomic species
with two outer electrons (data taken from Zeb Barber’s doctoral thesis, Boulder,
and refs. in).

approach, since the small-step approximation is no longer valid. We need
to return to a description of motion in which the discrete nature of each
jump is taken into account. For simplicity’s sake, we will deal with the
one-dimensional case first; the extension to three dimensions will then be
straightforward, via a numerical treatment. Using this approach, we will
show that the stationary distribution has a minimum width given by the
recoil velocity v, = hk/M.

In the second part of this chapter, we describe some recent experi-
ments. We will see that this cooling method makes it possible to reach sub-
microkelvin temperatures, we will tackle the problem of heating linked to
multiple scattering in the sample, and we will discuss the possibility of ob-
taining a degenerate quantum gas from clouds of atoms that are cooled on
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a narrow line. We will conclude with the scheme developed by Stellmer,
Pasquiou, et al. (2013) to obtain a Bose-Einstein condensate without any
evaporation, in a continuous laser-cooled cloud.

1 Single-frequency cooling

In this section, we develop a simple model of narrow-line cooling, adding
one by one the ingredients that will bring us closer to a real-life situation.
First, we will deal with a one-dimensional situation along a given direc-
tion in space (z), assuming that spontaneous photons carry no momentum
along this axis. We will then see how to take this momentum into account,
before moving on to the 3D case.

1-1 A model with no "spontaneous recoil"

We consider here a two-level atom g, e, mobile along the z axis, and we
assume that this atom is illuminated by two waves propagating along the
z axis, of wave vector =ku.. We assume that these waves are of low inten-
sity, so that the probability per unit time that the atom absorbs a photon is,
to a good approximation, given by the sum of the probabilities associated
with each of the two waves. In this first paragraph, we also assume that
spontaneous photons are emitted perpendicular to the axis considered!.

Consider an atom initially in the internal state g with velocity v. This
atom can absorb a photon in the +z direction or in the —z direction, its
velocity increasing or decreasing by v, (figure IIL.1). We saw in previous
chapters that the rates for these two processes are given by I'sy (v)/2 with

2|r[?

s+ (v)

In this equation, the quantity s corresponds to the Rabi frequency of each
wave, characterizing the electric dipolar coupling of the atom with the elec-

1Our model is therefore optimistic, since it completely neglects heating due to recoil dur-
ing spontaneous emission processes. Another version, pessimistic but equally simple to han-
dle analytically, would be to assume that spontaneously emitted photons all propagate along
the z axis.
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Excited state

Ground state

Figure II1.1. Discrete model for narrow-line Doppler cooling. Absorption of a
photon changes the atomic velocity by £v,. Spontaneous emission is assumed to
take place in the plane perpendicular to the cooling axis, so the atomic velocity is
unchanged during this process.

tromagnetic field. The detuning A, is calculated by comparing the energy
E; of the initial state (before absorption, atom in state g in the presence
of N laser photons) and the energy E of the final state (after absorption,
atom in state e in the presence of N — 1 laser photons):

E, = E,+ %Mvz + Nhwr, (I11.2)
Ef = E.+ %M(v +v,.)2 + (N — 1)hwy, (I11.3)

that is, posing A = wr, — wa with fwp = E. — Eg:
A, =ATFEkv—w,. (1I1.4)

Once in the excited state, the atom falls back into the ground state, spon-
taneously emitting a photon. As mentioned above, we first assume that
this photon propagates in the plane orthogonal to the z axis, which does
not modify the velocity v along this axis.

Denoting P(v,t) the velocity distribution at time ¢, we have the evolu-
tion equation:

% S g (54(0) + 5 (v)] P(v) (IIL5)
+ ger(v —v)Pv— ) + gs,(v +v)P(v + vy).
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Excited state
S+(V) S(v+wi)
Y v Ground state‘
\Y V+V,

Figure I11.2. To find the stationary regime of (I11.5), we write the equality of flows
crossing a fictitious boundary located at v + v, /2.

In this model, we couple an infinite, but discrete, chain of velocity
classes:

L v=2, & v—u & e vt & (II1.6)

1-2 Stationary state

To evaluate the stationary state of this 1D narrow-line cooling model, the
simplest way is to consider a virtual boundary located between v and v+,
and to write the equality of flows crossing this boundary from right to left
and from left to right (figure IIL.2):

sy(v) Plv) =s_(v+v) P(v+vy). (IIL.7)
which gives
Po+uv)  (A4w +kv)?+I?/4 (ITL8)
Plv)  (A—w, —kv)2+T12/4 '

Let us start with the special case A = —w, and consider the family

Uy = (n— 3o
L —§vr P —Evr Y 1vr ~ §vr S (II1.9)

2 2 2 2
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The relationship (II1.8) becomes in the limit I' — 0:

(n— 1) . 1 1
soit P — X 5. 11.10

(vn) o (n—%)Q x v2 ( )
This particular case reveals an important point: in the limit of a narrow
line, the velocity distribution is no longer Gaussian, unlike in the case of a
broad line, for which the Fokker-Planck equation was valid. This velocity
distribution decreases as a power law v~¢, in this case oo = 2 for the choice
A= —w,.

P(Un-l-l) _
P(vn) (n+ %)2,

As we shall see in what follows, this power-law decay raises new ques-
tions compared with the Gaussian case: on what condition is the second-
order moment (v?) which enters into the definition of kinetic energy de-
fined [this is clearly not the case for (II.10)]? Is the distribution P(v) al-
ways normalizable?

To answer these questions, let us now take an arbitrary detuning A.
There is no exact solution as for the special case A = —w,, but we can show
that the behavior at high velocities remains a power-law behavior

Pv) o o]~ (IL.11)
To determine o, we use the expansion at high velocities
P(v+ vr) Uy
——— x~l-a—. I1.12
P(v) “% (.12)

An expansion in powers of 1/v of the right-hand side of (IIL.8) gives the
dominant term:

1442 Cp 0B Y (IL.13)
kv Wy U
from which we deduce the exponent of the power law for P.
“o with o =28
P(v) x |v] with a=2—, (IL.14)

Wy

where A is negative. The necessary condition for this treatment to make
sense is that the distribution P is normalizable, i.e.:
(II1.15)

P normalizable: |A| > %wr.
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If we want [v?P(v) dv to converge so that the mean kinetic energy is
finite, the constraint is stronger:

Well defined kinetic energy: |A| > gwr. (II1.16)

The special case A = —w, studied above corresponds to a distribution
varying as 1/v?, i.e. normalizable but with infinite mean kinetic energy.

Before discussing the precise value of the width of the velocity distribu-
tion and the mean kinetic energy, the lesson we can draw is that when the
linewidth I" becomes very small, we cannot expect the broad-line Doppler
limit kgT = hil'/2, obtained for A = —I'/2, to remain valid. The detuning
should be chosen no smaller than the recoil frequency, to within a multi-
plicative factor of the order of unity. The velocity classes v = 0, v = %,
then have comparable populations according to (III.8) and the kinetic en-
ergy obtained is therefore at least of order E..

1-3 Recoil due to spontaneous emission

The 1D model developed earlier, in which we neglected the momentum
carried away by the fluorescence photons, enabled us to solve the evolu-
tion equation (IIL.5) very simply. However, this model is too optimistic,
since it neglects an important heating source. We now propose to go be-
yond this approximation and take into account the random recoil due to
spontaneous emission phenomena. We will do this first in a 1D model,
then generalize our results to 3D.

To begin with, let us consider narrow-line cooling along the z axis. The
projection on this axis of the momentum 2k of a spontaneously emitted
photon is a continuous variable between —#k and /ik (figure I11.3). To take
this variable into account, we modify the population feeding terms for the
velocity class v [second line of (II1.5)] as follows:

— N@)si(v—v+0)Plv—v, +0") dv’

—vy

s+(v—v)P(v —vy)

— r./\/'(v’) s_(v+v+0)Pv+v, +0") do

—vy

s_(v+uv)P(v+wy)
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Excited state

¢ ‘*q Ground state

v+ 2V,

Figure 111.3. Continuous model for narrow-line Doppler cooling. Absorption of a
photon (solid line) changes the atomic velocity by +v,. A spontaneously emitted
photon (dotted line) has a non-zero momentum component along the cooling axis,
with a probability density given by (I11.17).

where N (v') is the probability density for a spontaneously emitted photon
to have an momentum 7k, = Mv' along the z axis. This quantity can be
calculated from classical electromagnetic formulas for the radiation of an
oscillating dipole. Taking (for example) the case of circular polarization

along the z axis:
3 ’0/2
/
= 14+ — ).
N(v') 80, ( + Urg)

Figure IIL.4 shows the result of the evolution found for the evolution of
the distribution P(v), calculated for w, = I'. A few salient facts emerge
from this evolution:

(IIL.17)

* As expected, the final distribution obtained has a width of the order
of the recoil velocity.

¢ This distribution is not a monotonic function of v for v > 0. Holes
appear for the velocities at which resonance occurs with one of the
two laser waves, and for multiples of these velocities.

¢ A detailed examination of the long-time solution shows that the wings
of this distribution vary like a power law, P(v) « |v|™%, as in the dis-
crete model developed earlier.
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Figure I11.4. Evolution of the one-dimensional velocity distribution for Doppler
cooling on a narrow line I' = w,. The detuning is A = —1.5w, and the Rabi
frequency k = wy. The atomic transition is of type J, = 0 < J. = 1 and the
two beams propagating along +z are polarized o .. Figure extracted from Castin,
Wallis, et al. (1989).

1-4 Steady state and scaling laws

Within the framework of the continuous model of the previous paragraph,
we can numerically search for the detuning that minimizes the mean ki-

netic energy

1 1
—M@? ==
2 W) 2
for each value of the ratio I'/w,, and then study how this minimum ef-
fective temperature e min varies with I'/w,. Note that the definition of
a temperature in this situation is debatable, since we have seen that sta-
tionary distributions are not Gaussian, but vary as a power law for high
velocities.

E.= kg Tott (II1.18)

The result for Tegr, min as a function of I' /w, is shown in figure IIL.5, taken
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Figure II1.5. Minimum kinetic energy as a function of the ratio I /w,. Figure
extracted from Castin, Wallis, et al. (1989).

from Castin, Wallis, et al. (1989). For a narrow line, this minimum temper-
ature is obtained for A ~ —3.4w, and leads to E. =~ 0.53 E;, which gives

vV (v?) = 0.73 v,.

(II1.19)
For a broad line, we recover the Doppler limit found in the previous chap-
ter. It reads in the one-dimensional model studied here:

narrow line cooling in 1D: kTet, min ~ 1.06 E,

broad-line cooling in 1D: kgTest, min = 1—70 h% (TI1.20)
The 7/10 coefficient found in this 1D model compared with the 3D result
can be explained simply: the heating associated with the recoil of sponta-
neously emitted photons corresponds to (p?) = 2h?k?. Whereas at 3D, the
momentum diffusion coefficient due to recoil during spontaneous emis-
sion is equal to that arising from the randomness of the direction of ab-
sorbed photons, its contribution is reduced here by a factor of 2/5, result-

ing in an overall reduction in scattering by a factor of

1+
1+

(SN
EN|

- L. (I1.21)

[
—
o

Finally, we can extrapolate these results to three dimensions, by multi-
plying the 1D results by the factor 10/7. We then obtain an estimate of the
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expected minimum temperature:

vV {(v?) = 0.9 v,.

(II1.22)

narrow line cooling in 3D: kgTegt, min = 1.5 Ey,

In conclusion, the minimum temperature obtained by narrow-line
Doppler cooling is limited by the recoil of a single photon. The regime
leading to this minimum temperature is very different from that found for
a broad line: the optimum detuning is of the order of —3 w,, the total exci-
tation rate of an atom

ston(v) = 54.(0) + 5_(v) (111.23)

is weak in the vicinity of v = 0 and only takes on appreciable values for
v ~ £2v,. This gives rise to the idea that atoms are accumulated in a dark
region of velocity space (figure II1.6): when the atom is in this dark region,
it remains at the same velocity for a long time, as the photon scattering
rate I'syo/2 is very low. When photon scattering occurs, the atom may
approach one of the two bright regions v ~ £+2v,. Photon scattering then
occurs at a high rate, and absorption takes place with virtual certainty in
the wave propagating away from the atom: for example, if v =~ +2v,, then
s_(v) > s4(v). This last point is essential to ensure that the atom almost
never crosses the bright wall: if it does, and the atom acquires a velocity
of 3 or 4v;, then it will take a considerable time to return to the vicinity
of zero velocity. This is why we need to choose a detuning A significantly
greater than w,. We will see in the next paragraph how the use of multiple-
frequency beams can relax this constraint.

2 How to structure the resonance line

From the above, narrow-line cooling provides a means of cooling atoms
to a temperature of the order of the recoil associated with a single photon.
But the disadvantage associated with a narrow line is clear from figure
IIL.6: for an atom of any velocity v to be cooled, this velocity must be close
to the resonant velocity class with lasers, kv ~ A to within I". Since I' is
assumed to be small, of the order of the recoil frequency w,, only a narrow
velocity class (of the order of v,) will be concerned. How can we remedy
this inefficiency?
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v/vy

Figure I11.6. Variation of s (v) (blue dashes), s_(v) (red dashes) and sio(v)
(black solid line) for a narrow line, I' = w,, A = —3w, and k = w, /2.

A first solution is to broaden the line by saturation. We have seen that
when the Rabi frequency characterizing the atom-laser coupling becomes
greater than the natural width I, the effective width of the resonance is

increased:
I' — T = \/F2 + 2‘I£|2.

We can therefore choose |x| to be large in front of the recoil frequency w;,
to ensure that the capture range of optical molasses is large in front of v,.
But then we lose the benefit of a narrow line: everything happens as if we
were using a resonance line of width I'eg > w;, and the temperature we
will reach will be given by kgT' ~ Al'eg, which is large compared with the
recoil energy.

(II1.24)

2-1 Line broadening by phase modulation

It makes much more sense to broaden the line using polychromatic ex-
citation, which can be achieved by introducing sidebands through phase
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modulation of the light wave:

elort  ellwrtro()], (I11.25)
Consider, for example, a phase modulation ¢(t) of period T for which the
phase varies locally quadratically with time. Let us assume 7y < 7" and for
the period —Ty/2 <t < T —Tp/2:

alt? = T2/4) if |t < To/2,
o) = —B(t—To/2)(t—-T+1To/2)

which are then reproduced periodically. We impose oIy = (T — Tp) to
ensure the continuity and derivability of ¢(t) in Ty. The frequency of the
wave, equal to the derivative of the phase, then has a sawtooth variation
and covers a frequency interval between wy, — /2 and wy, + /2, with
1 = 2aTy. Fourier analysis shows that the light spectrum is made up of
harmonics separated by the frequency 27 /T, with comparable weights if
the sawtooth is sufficiently asymmetrical (75 close to T'). An example is
shown in figure III.7. Harmonics outside the range [wr, — /2, wy, + ©/2]
have negligible weights compared to those inside.

(II1.26)
if T0/2 <t<T—T0/2,

To obtain a significant, uniform excitation of the atom over a wide range
of velocities, we choose a harmonic spacing 27 /T of the order of the natural
width I'. An example of the profile obtained by independently summing
the contributions of the various Fourier components is shown in figure II1.8
for a very narrow line (I' = 0.2w;).

In the following, we will model this profile using the rectangular shape
shown in figure II1.9. We are discussing the 1D case here, but this model
can be extended to three dimensions without difficulty. Let us divide ve-
locity space into three zones:

¢ The central zone A corresponds to low velocities |v| < vg. These atoms
are almost in the dark, i.e. they have a low probability of absorbing a
photon. We denote +, the probability per unit time for an absorption
process, which proceeds in a random direction.

¢ The intermediate zone B corresponds to vy < |v| < v1. In this zone,
atoms absorb photons at a high ; rate. This absorption is directive: it
takes place in the light beam propagating in the opposite direction to
the atom, and therefore tends to bring the atom back to zero velocity.
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Figure 111.7. Example of spectrum obtained by quadratic phase modulation
(I11.26) with Ty = 0.99T and o = 207 /(T'Ty) (i.e. 20 significantly populated
harmonics).

® The zone C corresponds to atoms with high velocity |v| > v;. These
atoms have a negligible probability of absorbing a photon. The veloc-
ity v1 can in principle be chosen arbitrarily large in front of the recoil
velocity, and these velocity classes |v| > v; will play a negligible role
in the following.

2-2  Scaling laws for a broadened resonance line

Broadening the excitation line by phase modulation can have two bene-
fits. The first is to accelerate the decay of the velocity distribution P(v) at
high velocities. We have seen that for monochromatic excitation, this decay
takes place with a power law |v| ™%, with a = 2|A|/w;,. For the broadened
line we are considering here, the effective detuning corresponds to the cen-
ter of the rectangular excitation profile and can therefore be large compared
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v/vy

Figure II1.8. Saturation parameter s (v) (blue dashed line), s_(v) (red dashed
line) and sqo1(v) (black solid line) as a function of velocity v. Parameters for this
figure: T' = 0.2w,, k = 0.4w,, average A equal to —5w,, 100 significantly
populated harmonics with a harmonic spacing 0.1 w;.

to w;. The exponent of the power law is therefore large in front of 1, ensur-
ing convergence of all relevant moments of this velocity distribution.

The second virtue is to lower the average energy of cooled atoms, at
least in the case of I' < w,. To clarify this point, we will do some simple
statistical reasoning, based on the absorption rate model shown in figure
III1.9. Let us denote P, and P, as the respective populations of zones A and
B, and let us assume that the boundary velocity vy is significantly smaller
than the recoil velocity v,. In steady state, there is equilibrium between the
flows into and out of each zone:

* The outflow from zone A is simply given by

Dy~ Py, (II1.27)
Since v9 < vy, an atom initially located in zone A and which under-
goes photon scattering generally leaves this zone due to the random
recoil associated with spontaneous emission.

¢ The flux entering zone A corresponds to atoms from zone B which
have undergone an absorption — spontaneous emission process, and
which by chance have arrived in a velocity class |v| < vy. Since atoms
in zone B have a velocity of the order of the recoil velocity v,, the flux
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Figure I11.9. Modeling the absorption rate: a central zone with a low rate -y, and
a peripheral zone with a much higher rate ~y,. The width of the central zone vy is
smaller than the recoil velocity.

entering zone A is:

D
U,
®p_a ~ Py (;J) (I11.28)

r

where D is the dimension of the velocity space to be cooled. Note
immediately that the factor (vo/v; )P makes three-dimensional cooling
much trickier than its 1D equivalent, at given vy and v,; this point will
be confirmed later.

The equality of the two flows corresponding to steady-state conditions

therefore leads to:
D
Fo _w (0
P, b Ya (Ur )

It remains to evaluate the ratio 7,/7,. Assuming a resonance line broad-
ened by phase modulation as shown in figure IIL.8, the residual absorption
rate around zero velocity corresponds to the sum of the wings of the dif-
ferent Lorentzians corresponding to each harmonic of the broadened line.
Up to a numerical coefficient, we find:

(II1.29)

where we assume v, & Y (T11.30)

r Tr
S e S—
Ta B |Amin | |Amin ‘

where A, is the detuning value for the harmonic closest to resonance.
This value is directly linked to the boundary velocity vo: kvg = |Amin| SO
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that we arrive at

P, U0D+1
e __90 with v =Tk < ..
Pb UrD 5Ures res / T

(I11.31)

The nature of the possible optimization is then clear: we want to have
at least a fraction of the atoms (those in zone A) as cold as possible, and
therefore a boundary velocity vy as low as possible. At the same time, we
want this fraction to be significant, so that P, is not too small compared
with P, b

For the sake of clarity, let us impose P, = P;. This fixes the value of v:

Vo

1
'\ o+t
v <wr) '

(II1.32)

In one dimension, the gain is significant compared with monochromatic
cooling if I' < w,. We have vy = vv; dvpes < v (Wallis & Ertmer 1989). In
three dimensions, on the other hand, the gain is only marginal compared
to v;, since the I'/w; ratio only comes into play to the power of 1/4. The
main advantage of broadening the line in this case is to increase the optical
molasses capture zone (this is the first argument we mentioned).

3 Experiments on narrow-line cooling

3-1 Temperature measurements

The first narrow-line cooling experiments were carried out on the stron-
tium atom (isotope 88) in H. Katori’s group in Japan (Katori, Ido, et al.
1999; Ido, Isoya, et al. 2000).

The strontium atom has two relevant resonance lines (figure II1.10); the
first, a broad line, corresponds to the 5s* 1S «+ 5s5p ! P; transition, with
wavelength A\; = 461 nm and width I'; /27 = 32 MHz. This line is used to
pre-cool atoms in a magneto-optical trap. The second, narrow line corre-
sponds to the 5s* 1Sy <+ 5s5p ® P; intercombination transition, Ay = 689 nm
and I'y/2r = 7.6kHz. Katori, Ido, et al. (1999) showed that they could
transfer atoms pre-cooled on the broad line into a magneto-optical trap
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Figure I11.10. Relevant energy levels for the strontium atom. The excited state
for the 5s5p 1Py broad line transition can de-excite to the 5s4d 1Dy level. A
repumping scheme may thus be required.

for the narrow line, by broadening this line through phase modulation.
They then switched off this phase modulation to obtain a sample cooled in
monochromatic light. By reducing the laser power as much as possible (to
the threshold at which the radiation pressure force no longer compensates
for gravity), they were able to reach a temperature of 400nK, i.e. 1.7 E, /kp.
The corresponding root-mean-square velocity is

kgT
"B 6.1 mm/s = 0.9 v,.

o7 (IIL.33)

Vo =

Katori, Ido, et al. (1999) also measured the phase-space density of the
cooled cloud, and showed that it could reach 10~2, exceeding by several
orders of magnitude that measured in a broad-line magneto-optical trap
(~ 1075). They attribute the observed limit for this phase-space density
to heating due to multiple photon scattering, to which we will return a
little later. For the geometry of their sample, they observe an increase in
temperature with increasing spatial density:

dr
—— =400nK/(10? cm™3)

= (IT1.34)

over the range n = 0.1-0.510** cm 3. Since phase-space density varies as
n/T?/?, this law favors the low-density and low-temperature regime.

Ido, Isoya, et al. (2000) then improved on this result by applying
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Figure II1.11. Left: Evolution of temperature versus detuning for a cloud of ®8Sr
atoms confined in a dipole trap. The temperatures shown result from extrapolation
to low atom numbers of the temperatures actually measured. Right: influence of
atom number on temperature [figure taken from Chalony, Kastberg, et al. (2011)].

narrow-line cooling to strontium atoms confined in a dipole trap. By re-
ducing the power of the dipole trap, they achieved a phase-space density
of 0.1 (within a factor of 20 of Bose-Einstein condensation). Note that the
equilibrium obtained probably corresponded to a combination of laser and
evaporative cooling.

A detailed study of the temperature obtained by narrow-line cooling
has also been carried out by the Nice group for #Sr (Chalony, Kastberg, et
al. 2011). This study was performed both with atoms confined in a dipole
trap and with free atoms. For trapped atoms, the variation in temperature
with detuning is in good agreement with the theoretical models presented
above (Castin, Wallis, et al. 1989). The minimum temperature measured is
~ 400nK as for Katori, Ido, et al. (1999), and the minimum temperature
deduced from extrapolation to a very low number of atoms is ~ 200nK
(figure II1.11). Here, too, the increase of temperature with the number of
atoms was clearly observed: the temperature is doubled for a number of
atoms corresponding to an optical thickness of the cloud of the order of
unity (in its transverse direction). We will come back to this result in the
next paragraph. For free atoms, the measured velocity profile is in good
agreement with that shown in figure II1.4, with holes corresponding to res-
onant velocity classes and notable non-Gaussian wings.
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3-2 The role of collective effects

In the theory-experiment comparison we have just described, collective ef-
fects play an important role. The theoretical models we presented earlier
focused on the case of a single atom coupled to radiation. In the experi-
ments, a large number of particles are cooled (from 10* to 107), and it is
important to specify the conditions under which we can expect the predic-
tions made for a single atom to be valid.

The most important problem, already encountered in the broad-line
magneto-optical trap, is the multiple scattering of photons. In the case
of the magneto-optical trap, we reported that this multiple scattering was
responsible for a repulsive force between the atoms, which increased the
equilibrium size of the trapped cloud. Multiple scattering also creates heat-
ing, due to the random recoil it causes. In what follows, we estimate the
parameters of the atom cloud at which these effects become significant.

To be cooled to the desired temperature, the atoms are continuously
illuminated by the cooling light beams, and each atom scatters the incident
photons at a rate 7. The emitted photons have approximately the same
wavelength as the incident photons, so they can also be scattered, with an
effective cross-section close to the resonant scattering cross-section.

3
o= —\°. (IT1.35)
2m
Note the very large value of this effective resonant cross-section (a micron-
square), far greater than the geometric dimension of an atom (an angstrom-
square).

The mean free path of a photon in the atomic assembly is given by
1/(no). Reabsorption becomes significant when this mean free path is of
the order of the size L of the cloud, i.e. using o ~ \*:
nA2L > 1.

significant reabsorption if : (I11.36)

This criterion can be recovered by looking for the situation where the scat-
tering rate 7/ due to reabsorption becomes comparable to the scattering
rate v of incident laser photons: there are N+ laser photons scattered per
second, and the probability that a given atom will reabsorb a photon scat-
tered by another atom at an average distance ~ L/2 is ~ o/L?. The rate o/
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is therefore
o

T
so that v/ ~ v when noL ~ 1. Note that when this criterion is met, the ab-
sorption of incident laser beams becomes significant: the atomic medium
is optically thick.

5 Ny (I11.37)

As we wrote above, as soon as 7' becomes of the order of v, the cooling
dynamics is altered: the random recoil that accompanies multiple scatter-
ing phenomena generates additional heating of the trapped atoms, and the
equilibrium temperature rises. In a later chapter, we will discuss some of
the possibilities that have been envisaged to counteract this heating associ-
ated with multiple scattering. In this chapter, we will just mention one that
has been used in the experiments presented here: one takes a cloud of high
anisotropy (cigar or pancake), so that at least one of the cloud’s linear di-
mensions is small, of the order of just a few optical wavelengths. Photons
can then easily escape in this direction, even though the trap may contain
a large number of atoms.

Note. The collective effects that occur when an atomic cloud interacts
with resonant light are not limited to multiple scattering. The atomic den-
sities actually reached correspond to an average distance between atoms of
the order of the optical wavelength. When an excited atom and an atom in
the ground state are separated by such a small distance, the dipole-dipole
interaction between atoms must be taken into account (Julienne, Smith,
et al. 1992). This gives rise to multiple potential curves, attractive or re-
pulsive, and the corresponding acceleration can also contribute very sig-
nificantly to the heating of the gas, or even to atom loss via light-assisted
inelastic collisions [see for example Fuhrmanek, Bourgain, et al. (2012) and
refs. in].

3-3 Narrow line magneto-optical trap

The operation of a narrow-line magneto-optical trap is significantly dif-
ferent from that of the traditional broad-line trap. This operation has
been studied in detail by the Boulder group (Loftus, Ido, et al. 2004),
and we summarize their analysis here. Consider an atomic transition
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Figure I11.12. Basic diagram of the magneto-optical trap. We are interested here
in the case where the radiation pressure force only takes on significant values in
the vicinity of L.

Jy = 0 <+ J. = 1, a magnetic field gradient b’ along the z axis, illumi-
nate the atoms with a pair of counter-propagating monochromatic waves
(figure 111.12), and assume that the following inequalities are satisfied:

2|x[?

wy <TY/1+ 2

< < |Al. (I11.38)

The first inequality allows us to use a semi-classical calculation for the force
acting on an atom at rest:

| [?

F=F +F_
-t (AF pb'x)? +T2 +2|k|?

with  Fi(z) = £hkT | (I11.39)

The second inequality indicates that the force will only take on significant
values in two well-localized regions of the z axis (figure II1.13): I is non-

zero at x = F|A|/ub’. We then realize the equivalent of "walls" for atoms,
with an almost square potential well>. Along the vertical axis, we must

2The notion of potential well is to be taken with care: in one dimension, knowing a force
F(z), we can always define the potential V(z) = — [* F(z/) dz’. In several dimensions, it
is not guaranteed that the radiation pressure force of the magneto-optical trap derives from a
potential (it would require that 9; F;; = 9; F; for the three 4, j components of space).
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Figure I11.13. Magneto-optical trap with a narrow line. Top: radiation pressure
force (in units of Finax = hkL'/2) for highly detuned excitation: A = —40T, k =
5T, as a function of position measured in units of xo = |A|/ub’. Middle: potential
corresponding to this radiation pressure force on a horizontal axis. Bottom: total
light+gravity potential on the vertical axis, calculated for Mg = 0.1 Fiax.
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Figure I11.14. Images in situ of a strontium magneto-optical trap operating in the
narrow-line regime. The dotted lines correspond to the contours along which the
radiation pressure force is maximal (|| ~ 11T ~ 27 x 83kHz, A = 21 x 0).
Figqure taken from Loftus, Ido, et al. (2004).

also take into account gravity, which is not negligible compared to the ra-
diation pressure force for a narrow line: for the strontium atom, the max-
imum radiation pressure force ikI'/2 is only 16 times the atom’s weight.
The combined light+gravity potential is then shaped like a tilted box, and
the atoms accumulate below the zero-magnetic-field point. The images
in figure I11.14, taken from Loftus, Ido, et al. (2004), clearly illustrate the
asymmetry of the trap in this regime.

4 Towards Bose-Einstein condensation

We have just seen that narrow-line cooling experiments can produce very
cold gases (sub-microkelvin), with relatively high spatial densities since
the average distance between particles, nl/3, is only two to three times
greater than the thermal wavelength.

2w

Ap = — VAT
T /MksT

(I11.40)
These gases (made up of zero-spin atoms, i.e. bosons) are at the threshold
of the quantum degeneracy regime and are good candidates for producing
a Bose-Einstein condensate, with a "small" additional step. This step was
taken in the experiment by Stellmer, Pasquiou, et al. (2013), which was in-
spired by a method proposed by Pinkse, Mosk, et al. (1997) and developed
experimentally by Stamper-Kurn, Miesner, et al. (1998).
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Figure I11.15. Left, cubic potential well with side L. Right, single-particle energy
levels €, = p*/2M, where the momentum p is quantized according to (I11.42).
The red line represents the position of the chemical potential p for an ideal gas
contained in this box. For Maxwell-Boltzmann statistic, . can take any value,
but only sufficiently negative values are physically relevant, since they correspond
to occupancy probabilities n(p) < 1 for all p. For Bose-Einstein statistic, the
only mathematically acceptable values of ;i are negative. Bose-Einstein conden-
sation (macroscopic accumulation of atoms in the p = 0 state) occurs when p is
sufficiently close to 0.

The remarkable feature of the Stellmer, Pasquiou, et al. (2013) experi-
ment is that at no point does it require the evaporation or loss of atoms.
Insofar as this condensation without evaporation is based on the particu-
lar properties of Bose-Einstein statistic, we will begin by recalling the main
properties of this statistic, comparing it with Maxwell-Boltzmann statis-
tic. We will not describe here the standard mechanism of Bose-Einstein
condensation at the thermodynamic limit [see for example Huang (1987)],
but we will develop a simplified model of the method of Stamper-Kurn,
Miesner, et al. (1998) and Stellmer, Pasquiou, et al. (2013). We will see how
macroscopic particle accumulation can occur by changing the shape of the
confinement potential, and then present the main features of the experi-
ment of Stellmer, Pasquiou, et al. (2013).
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4-1 Maxwell-Boltzmann statistics

In what follows, we consider a gas of non-interacting particles, confined in
a cubic box of side L (figure II1.15). We assume periodic boundary condi-
tions, so that the eigenstates of the single-particle Hamiltonian are plane
waves

eir-p/h . p2
Yp(r) = T with energy e, = oYY (1I1.41)
with the quantization condition in the box
2rh
pj = %n], j=z9,2, nj €l (T1.42)

In thermodynamics, the state of the gas in the box of volume V = L?
is determined by two independent thermodynamic variables. Knowing
these two variables, we can then deduce the other thermodynamic quanti-
ties, such as pressure (P = NkgT/V), internal energy (2kgT), entropy, and
so on. In what follows, we will take the temperature 7" and the chemical
potential p as a pair of variables, well suited to calculating the occupancy
of single-particle states.

In Maxwell-Boltzmann statistics, the average number of particles occu-
pying an momentum state p is written as

n(Boltz.) (p) _ e(ﬂ_ep)/kBTl (11143)

The total number of particles N is obtained by summing the contribution
of all states, and replacing this discrete sum by an integral in the large-box
limit:

3
N =Y nBol=)(p) = (2L71> / eln=er)/keT @3y, (I11.44)
s
P
which gives
L3
N=7Z7 /\—3 (II1.45)
T
where the fugacity Z of the gas is defined as:
Z = et/keT, (I11.46)
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In Maxwell-Boltzmann statistics, the chemical potential can take on any
value, positive or negative. However, we can see from (II1.43) that for > 0
(or more generally . greater than the energy of the ground level), the oc-
cupation of the lowest energy levels becomes greater than 1. In the case of
indistinguishable particles, using Maxwell-Boltzmann statistic for 1 > 0 is
incorrect, even if it does not lead to a mathematical singularity: the statis-
tical nature of the particles plays an important role when n(p) approaches
unity, and we have to turn to Bose-Einstein or Fermi-Dirac statistics, de-
pending on whether we are dealing with bosons (particles with integer
spin) or fermions (particles with half-integer spin). In what follows, we
will concentrate on Bose-Einstein statistic.

4-2 Bose-Einstein statistics

In Bose-Einstein statistics, the average occupancy of a state is given by

p) = !

Bose)( _
(e —m/RT _ 1"

n( (I11.47)
A remark can immediately be made about this expression. For the pop-
ulation of each state to be defined and positive, the value of the chemical
potential 1 must always be strictly smaller than the energy of the ground
state of the system, in this case zero energy for our particles in a box. Unlike
Maxwell-Boltzmann (and Fermi-Dirac) statistics, there is therefore a math-
ematical constraint on the chemical potential for the Bose-Einstein statistics
(figure II1.15):

p2

i < Eground, 1.e. fore, = w<0.

A second remark concerns the link between Bose-Einstein and
Maxwell-Boltzmann statistics. In the context of Bose-Einstein statistics, let
us consider a sparsely populated state, i.e. n(p) < 1. This means that the
denominator of (II1.47) is much greater than 1, and so eler=m/keT 5, 1. So
for these sparsely populated levels:

n(p) < 1: n(Bo) (p)  n(BoW2) (p) = Ze—cw/kaT (I11.49)

This approximation will be valid for all levels, including the ground level,
if we take Z <« 1, i.e. negative y with |u| > kgT.
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The total number of atoms for Bose-Einstein statistic is obtained as for
Maxwell-Boltzmann statistic by the sum

N => nP)(p). (I11.50)
p

Here too, it is tempting to replace the discrete sum by an integral, which
yields a simple calculation:

3 10 n
N = g3/2(2) % with  g.(Z) = Z — (polylogarithm function).
T n=1

(I11.51)
The similarity with the result for Maxwell-Boltzmann statistic is striking.
In particular, for Z < 1, we have g3/5(Z) ~ Z and the two results are
comparable, as announced above.

However, this similarity is also misleading. For Maxwell-Boltzmann
statistic, the result (II1.45) always provides a value of the fugacity (or of
the chemical potential) that accounts for a given number of N atoms. In
contrast, for Bose-Einstein statistics, we have seen that the values of Z are
limited to the interval [0, 1[; the function g3,,(Z) therefore takes values be-
tween 0 and g3/5(1) =~ 2.612, so that the number of atoms calculated in this
way cannot exceed

3
Nowa = 26122
)\T

(IIL.52)

Why is it that the number of atoms that can be placed in the gas is
bounded? The answer to this question is Bose-Einstein condensation. We
will not go into detail here, but let us recall its origin: the transition from
the discrete sum (II1.50) to the integral (II1.51) is only legitimate if the chem-
ical potential is sufficiently far from its maximum value y = 0. When p
tends towards the ground-state energy (here £ = 0), the population of the
ground level diverges [cf. (II1.47)]. However, this divergence is neglected
in the transition to the integral (II1.51). As Z approaches 1, the population
of this ground level needs to be treated more carefully. We then find that
a macroscopic fraction of particles can accumulate there, via a mechanism
that becomes a phase transition at the thermodynamic limit.

Condensation therefore occurs when the number of atoms N reaches
the value (II1.52), which corresponds to the phase-space density D = nA3.
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with n = N/L3: Dyax = 2.612. This value is reached when the average
distance between particles, n~'/3, is of the order of the thermal wavelength
Ar.

4-3 Condensation in a micro-trapO

Before describing the Stellmer, Pasquiou, et al. (2013) experiment in detail,
we present a simple model for understanding how it is possible to obtain a
degenerate quantum gas, in this case a Bose-Einstein condensate, starting
from a non-degenerate gas and with a simple transformation of the poten-
tial confining the gas.

Let us take our gas of N atoms at temperature 7', confined in a cubic
box of side L, with the occupancy n(p) of each state given by (II1.47). Let
us start by recalling that a trivial deformation of the potential, consisting
in increasing or decreasing the size L of the box, will not produce any-
thing spectacular. If this deformation is carried out very slowly to achieve
an adiabatic transformation, the phase-space density will remain constant;
we demonstrated this point for a harmonic potential in the introductory
chapter. If this deformation is carried out non-adiabatically, the situation
will only get worse, as entropy will increase and phase-space density will
decrease.

In what follows, we will take a look at the following non-trivial defor-
mation: let us assume that we suddenly create a trap described by a very
localized potential V (r) (figure 111.16). The volume ¢3 over which V() is
non-zero is small compared with L3. The exact form of V(r) is unimpor-
tant; the only important assumption for what follows is that there is one
and only one bound state |¢() of energy ¢, < 0 in this well. In the follow-
ing, we will take |ey| ~ kgT'. The eigenstates in the box with this additional
micro-trap are therefore the state |¢y) and the extended states |1,) formed
from plane waves (I11.41), but slightly distorted to ensure their orthogonal-

As the branching of this well is sudden, and the volume involved ¢3
is very small, we can consider to a good approximation that the NV atoms
remain on the extended states |1/,,) at the moment of branching. However,
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Figure II1.16. Micro-trap of size { in the middle of a cubic box of much larger
size L. The micro-trap is assumed to contain only one bound state |¢o), of energy
eo < 0. For a gas described by Bose-Einstein statistic, the chemical potential is
necessarily less than e.

once the branching has been made, collisions between atoms® will lead to
thermalization of the gas.

After a sufficient time, which we will not attempt to characterize, a new
thermodynamic equilibrium is reached thanks to the elastic collisions that
can populate the micro-trap (figure II1.17). This equilibrium is described by
a temperature 7" and a chemical potential 1/, which are the two unknowns
of the problem. This equilibrium corresponds to Ny atoms in the state |¢¢)
and N’ = N — Nj in the states |1p,). Our aim is to show that it is possible to
find situations where Ny is comparable to N: this is the definition of Bose-
Einstein condensation, with an accumulation of a macroscopic number of
atoms in an individual quantum state.

3The existence of these collisions means that the gas is not really ideal, and that there are
deviations from the ideal gas model. But these deviations can be made arbitrarily small, if we
accept that the relaxation time is long.
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Figure 111.17. Micro-trap filling by elastic collision between two particles

The occupancy of the extended states |1),,) is given by Bose law

1

n'(p) = (IT1.53)
e(%*#')/kBT' 1
and the occupancy of the ground state |¢) is
1
NO = m. (11154)
Particle number conservation is written
N =No+ Y _ n'(p), (I11.55)

p

which provides a first constraint on the two unknowns p' and 7”. The
second constraint comes from energy conservation. Once the micro-trap is
switched on, the gas is an isolated system and total energy is conserved.
The initial and final energies are therefore equal

2 2
p p
E;, = E 2771(,9)7 E; = Noeo + E mn'(p). (I11.56)
p p
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This problem with two unknowns can be easily solved using a numerical
program. The input parameters are

e The initial fugacity of the gas Z = e#/ks7. We will assume that the
gas is initially weakly degenerate, and we will take Z = 0.5, for which
Bose and Boltzmann laws give similar results in terms of both atom
number and energy.

¢ The energy of the bound state ¢y, measured in units of k7.

* Theratio L /A7 between box size and initial thermal wavelength. Here
we will take L/\7 = 100.

The conditions given above correspond to a total number of atoms N =
93/2(Z) (L/Ar)? ~ 620 000. The results are shown in figure II1.18. Take, for
example, g = —3kpT; the numerical resolution then indicates that, after
thermalization, 23% of the atoms have accumulated on the microscopic
level, and the gas temperature has become 7" ~ 1.8 T": the gas has warmed
up (as could be anticipated from figure II1.17), but a significant condensed
fraction has appeared.

Note 1. The problem can be solved in an approximate, quasi-analytical
way by noting (i) that in the above example, the occupancies of the ex-
tended states are given to a good approximation by Boltzmann’s law, and
(ii) that the chemical potential 1’ is practically equal to the energy ¢ of the
bound state, since the latter is macroscopically occupied. We find the final
fugacity

T/
with 7= <ol T=—=

et - (IL.57)

7~ eeo/kBT/ — e—n/z

and the conservation laws for the number of particles and energy give:

L3 L3
with N~ Z=, N ~Zz = (IL58)

N = /\3T7 /\/j“s’

No+ N’

3

iNkBT = NQEQ + gN/kBTI. (11159)
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T'/T

Figure I11.18. Evolution of the condensed fraction and final temperature in the
box+micro-trap system as a function of the control parameter n = |eo|/ksT for
a weakly degenerate initial state Z = 0.5. Blue solid line: exact treatment from
(111.53)-(111.56), in the case L = 100 Ap. Red dotted line: approximate treatment
(111.60).

We choose to work with the unknowns 2z = 7”/T and the condensed frac-
tion fo = No/N:

1,3/2 e—’r]/w
1 = fo + T?
2
L= —Sfn+ (- fo)r. (I11.60)

Solving this system gives a result close to that obtained by exact calculation
(figure IIL.18). In this approximation, the result no longer depends on the
ratio L/Ap, but simply on the initial fugacity Z and the choice of ratio
n = leol /keT.

Note 2. The condensate fraction obtained here is of the order of 20% and
varies slowly with the control parameter |¢|/kgT. However, we note that
the condensate formed in the |¢y) state is highly localized in space. We can
then take advantage of a very efficient evaporation, consisting in evacuat-
ing all the atoms outside the £3 volume. Atoms in the state |¢o) will remain
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unaffected, while virtually all non-condensed atoms [N'(1 — f—i)] will be
eliminated. The result is a quasi-pure condensate at a cost of the loss of
around 4/5 of the atoms. This method of taking advantage of the shape of
the confinement potential to localize entropy in particular zones of space
has been proposed in a slightly different context by various authors (see,
for example, Bernier, Kollath, et al. (2009) and refs. in).

Note 3. We have neglected the interactions between atoms here, except
for gas thermalization. In practice, these interactions can play an impor-
tant role, as the Ny atoms are accumulated in a very small region of space,
corresponding to a high spatial density. The mean field energy will there-
fore shift the position of the level ¢, and inelastic collisions, via three-
body recombination leading to molecule formation, can play an important
role. Our limiting case of an extremely narrow well should therefore be
regarded as a simple model to analyze, but not necessarily an optimal sit-
uation in practical terms.

4-4 The Innsbruck experience (2013)

In their experiment, Stellmer, Pasquiou, et al. (2013) started with a gas of
N =~ 107 atoms of 84Sr, cooled to T = 0.9 uK thanks to the narrow line
at 689 nm we have already mentioned. This gas is confined in an optical
tweezer (dipole trap) formed by a strongly focused Gaussian beam with
wavelength A\ = 1065 nm. The beam is elliptical with radii at 1/e? (waists)
wy = 300 pm and w, = 17 um. Oscillation frequencies in the trap are 6, 35
and 600 Hz along the three axes of space x,y, z. The depth of the trap is
9 uK, well above atomic temperature, so evaporation losses are negligible.
This optical tweezer plays the role of the L? volume box in our model.

To create the micro-well that will induce condensation, Stellmer et al.
superimpose a second optical tweezer (dimple), much more focused than
the first (figure I11.19ab). This second tweezer propagates almost vertically,
creating a potential trough in the horizontal plane with radius ~ 20 ym,
characterized by oscillation frequencies of 250 Hz. To help the atoms ac-
cumulate in this dimple, Stellmer et al. add an additional beam, similar
in size and direction to the micro-tweezer, to make the atoms transparent
to the cooling lasers. This beam, with a wavelength of 688 nm, creates a
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Figure 111.19. Experiment by Stellmer, Pasquiou, et al. (2013) at Innsbruck. (a)
84Gr atoms are Doppler-cooled to a narrow line in a large optical tweezer acting
as a reservoir. An optical micro-trap (dimple) is superimposed, in which about
10% of the atoms will accumulate. (b) The atoms in the micro-trap are made
transparent to the cooling light by an auxiliary beam which strongly displaces
the excited level. Conditions are such that a condensate appears in this micro-
trap. (c-d) The condensate is observed by eliminating the atoms outside the micro-
trap. After time of flight, the usual bi-modal distribution is observed, revealing
the condensate (narrow central component) and the non-condensed fraction (wider
pedestal). The condensed fraction is of the order of 1%.
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significant light-shift of the ? P excited level (more than 1000T).

The experiment leads to the formation of a Bose-Einstein condensate
inside the dimple. The condensed fraction is small (~ 1%), making the
condensate difficult to detect amid the 99% of remaining atoms, essentially
confined within the first large optical tweezer. But one can take advan-
tage of the fact that the atoms in the dimple have become transparent to
the cooling light to observe this condensate: the radiation pressure of an
intense flash of light can push out of the detection zone all atoms except
those confined in the dimple. After a time of flight, a bimodal velocity dis-
tribution is revealed, the usual signature of a condensate in an anisotropic
harmonic trap (figure II1.19cd). This formation is reversible, as the dimple
can be switched on and off many times, allowing the condensate to form
and then disappear.

Although the absolute performance of this experiment in terms of the
number of atoms condensed remains below that obtained by evaporation,
it represents an important step towards the realization of dissipative quan-
tum systems with cold atomic gases. The condensate is continuously fed
by a reservoir of laser-cooled atoms, which can itself be continuously re-
filled from atomic vapor at room temperature. Transposing this experi-
ment to gases of fermionic atoms would enable one to achieve a situation
similar to that of electrons in a metal (normal or superconducting): we
would then have a dissipative quantum system, in contact with a thermo-
stat permanently imposing its temperature on the system.



Chapter IV

Hiding in the shadow

The previous chapters were devoted to Doppler cooling, first with a
broad line such that the width I of the excited level is large in front of the
recoil frequency w, = hk?/2M, then with a narrow line.

In the first case, we found that the optimum detuning was A = —T'/2,
leading to the well-known Doppler limit, kgT" = AI'/2. The variation of the
photon scattering rate with atomic velocity is shown in figure IV.1 (left). It
is roughly constant throughout the interval from v = —I'/k to I'/k, and the
root-mean-square velocity at equilibrium is large compared with the recoil
velocity v, = hk/M.

In the second case, we found that the optimum detuning is A ~ —3w;,
leading to a root-mean-square velocity at equilibrium of the order of v,.
The variation of the photon scattering rate with velocity is then very dif-
ferent from the case of a broad line (see figure IV.1 right): this rate passes
through a pronounced minimum around v = 0, with atoms accumulating
in velocity classes where they scatter very few photons.

The aim of this chapter is to generalize the notion of optical pumping
in velocity space that occurs in narrow-line Doppler cooling. We will ex-
ploit the idea of interference between quantum paths to cancel the atom’s
excitation probability when it has reached the desired velocity class. We
will discuss two different schemes, leading to the same statistical laws: co-
herent population trapping and Raman cooling, which uses light pulses
of optimized shape to transfer an atom from a given state of the ground
electronic level to another, in a velocity-selective manner.
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What these two schemes have in common is the use of a A configura-
tion of internal levels, with two ground states g; and g, coupled to a single
excited state e (figure IV.2). Despite its apparent simplicity, this is a very
rich system, giving rise to many counter-intuitive phenomena. We will
start by outlining a number of its properties; we refer the interested reader
to the review articles of Arimondo (1996), Harris (1997), and Fleischhauer,
Imamoglu, et al. (2005) for a more in-depth study, particularly with regard
to its applications concerning electromagnetically induced transparency
and quantum information.

1 The A system and its dark state

The aim of this first section is to describe some remarkable properties of the
A system, composed of two states |g1) and |g2) of infinite lifetime and an
excited state |e). In this section, we will concentrate on the atom’s internal
dynamics. The study of the atomic center-of-mass motion will be carried
outin § 2.

1-1 Reminder of two-level system

Before tackling the A system, let us briefly review a few elements we have
already encountered for a two-level system, composed of a stable ground



CHAPITRE IV. HIDING IN THE SHADOW

§1. The A system and its dark state

[t
ot

taux de diffusion (unit. arb.)

kv/F 'U/Ur

Figure 1V1. Excitation rate v of an atom cooled by one-dimensional Doppler
effect. Left: broad line case, with T’ > w, and A = —T'/2. Right: narrow line case
withT' = w, and A = —3.4w,. The value of ~y is proportional to the light power
and its unit here is arbitrary. The dotted curves represent the rates induced by the
two running waves creating the cooling, and the solid curve represents the sum of
these two rates.

state g of energy F, and an excited state e of energy E. and lifetime I'"'.

First of all, let us remember that in many calculations we can simply
take into account the finite lifetime of the excited state e by adding to its
energy the imaginary term —ihl'/2. Indeed, the exponential decay law
P.(t) = e is obtained from the evolution of the state vector

[(t)) = e Bet/h T 2)e) 4 Iv.1)
which is exactly what one would expect for an energy
E.=E. — ih%. (Iv.2)

Let us assume now (as in previous chapters) that the levels g and e
are coupled by a monochromatic excitation of frequency wi, detuned by A
from the atomic resonance wa = (E.—E,)/h. The coupling is characterized
by the Rabi frequency ~, which we will assume here to be small compared
withI"and/or A. After switching to the rotating frame or the dressed atom
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Figure IV.2. Three-level system, illuminated by two coherent light waves. The
spontaneous emission rates from the excited level |e) are assumed to be T'q =
Iy, =T/2.

lg, N + 1)

Figure IV.3. A two-level atom dressed by the photons of a monochromatic light
wave. The three frequencies characterizing the problem are the natural width I" of
the excited state, the detuning A = wr, — wa and the Rabi frequency k.

formalism (figure IV.3), the eigenenergies in the presence of coupling are
the eigenvalues of the non-Hermitian matrix describing the Hamiltonian
in the {|g), |e)} basis:

0 K* /2
H=h (IV.3)

k)2 —A—il/2

One of its eigenvalues remains close to —7(A + iI'/2) and corresponds to
the state €, dressed by the coupling with the laser. Since the product of the
eigenvalues (matrix determinant) is —(h|x|/2)?, the other eigenvalue is

g |K[?/4

~ bR (IV.4)
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Figure IV.4. Three-level system of figure IV.2, in dressed-atom representation.

This gives the complex energy of the state g, also dressed by the coupling
with the laser. The real part of this energy represents the light shift 6 F(g)
of g with respect to g, and the imaginary part can be written —ifiy/2, where
v~ is the finite lifetime of § corresponding to photon scattering with rate
~. Explicit calculation of these two terms from (IV.4) gives
hA r |K|?/2

0E(g) = — s, T=gs with s =

5 = AT (IV:5)

The expression for v corresponds to what we found in Chapter 2 using
the optical Bloch equations in the low-saturation limit. The expression for
dE(g) represents the dipole potential we used in previous lecture series
when describing the trapping of atoms by light. We will use it again in the
chapter on the Sisyphus effect.

1-2 The A system without spontaneous emission

We now switch to the three-level A system. We assume that the atoms
modelled by this three-level system are illuminated by two monochromatic
waves, each driving a |g;) > |e) transition. We note «; the Rabi frequen-
cies and A; the corresponding detunings (figure IV.2). In a dressed-atom
representation (figure IV.4), the state |e, N1, N2) is coupled to the two states
lg1, N1 + 1, Na) and |g2, N1, N2 + 1) by atom-laser coupling:

hﬂl

N hK
Var = 216} (ga] + 52 e} (ga] + He. ve)

By choosing the origin of the energies in the middle of the two states
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lg1, N1 + 1, N3) and |ga, N1, N2 + 1), the Hamiltonian of this three-level
system is written in the basis {|g1, N1 + 1, N2), |g2, N1, N2 + 1), |e, N1, N2) }:

A 0 K]
0 —-A K5
k1 Ky —(A1+Ay)

- h
H==-

9 with AZAl —AQ.

IV.7)

The quantity A represents the detuning of the pair of light beams from the
Raman resonance between |g1) and |g2)-

We will not give the full expression of the eigenstates and associated
energies for this Hamiltonian here, but we note a point that will play a
crucial role in what follows. The state

K2
[¥ne) o K2lgr) — kilg2) = | =1 (IV.8)
0
is not coupled to light: R
VaLlYne) =0 (Iv.9)

(the subscript "NC" means "not coupled"). If the Raman resonance is sat-
isfied, A = 0, then this state is also an eigenstate of the Hamiltonian H:
the atom prepared in this state will not evolve. The fact that this state is
not coupled to light results from an interference phenomenon: to go from
|Yne) to |e), two paths are possible: |g1) — |e) and |g2) — |e); however,
these two paths have opposite amplitudes and interfere destructively: the
total probability amplitude to go from |¢)nc) to |e) is zero.

In what follows, we will also use the combination state of |g1) and |g2)
orthogonal to |¢nc) which we will call "coupled state":

[Ye) o< KTlg1) + K3lga)- (IV.10)

1-3 Accounting for spontaneous emission

When we take into account the fact that the excited state has a finite lifetime
I'~!, the study of the system’s dynamics must pass through the master
equation formalism [or through another formalism that allows dissipative
processes to be taken into account, such as the Monte Carlo wave function
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method (Melmer, Castin, et al. 1993)]. The master equation is written in a
similar way to what we saw in Lecture 2 for the two-level atom:

p 1. .. - dp
— == [H,pl + —

dt ik dt (IV-11)

spont. em.

The incoherent evolution due to spontaneous emission phenomena gener-
alizes what we have encountered for a two-level system:

d ee d .
P = _(Fl + FQ)peey Pa,9; = +Fjpee (IVlZ)
de spont. em. de spont. em.
for the populations of the three levels (j = 1, 2),
dpegj Fj
BT = — 5 Peg;> (IV13)
dt spont. em. 2 ’
for optical coherences and
d
Porg2 =0 (IV.14)
dt spont. em.

for the coherence between the two ground levels.

For this three-level system, it is possible to give an analytical expres-
sion for the steady state of the master equation (Janik, Nagourney, et al.
1985; Lounis & Cohen-Tannoudji 1992). As this analytical treatment is
fairly lengthy (without posing any difficulties of principle), we will con-
fine ourselves here to discussing a few physical points that will be useful
for what follows.

1-4 Some important results for the A system

We consider here the observable corresponding to the stationary popula-
tion of the excited state P.. We note immediately that when the Raman
resonance condition is satisfied, the uncoupled state (IV.8) proposed above
remains a stable state of the system:

dpnc

=0. vi1
dt 0 (v.15)

pne = [Yne) (Unel ==
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In fact, pnc commutes with the Hamiltonian since |nc) is an eigenstate
of this Hamiltonian. Moreover, this state does not evolve by spontaneous
emission, since the entire population is concentrated in the ground states.
This is an example of a state protected from dissipation (caused here by
spontaneous emission processes).

When the Raman resonance condition is not verified, the stationary
population of the excited state is non-zero. In figure IV.5, we have plot-
ted the variation of this population with the detuning of one of the light
beams (A,) for different parameter regimes.

* When the Rabi frequencies x; and kg are equal, the cancellation of
P, for the Raman resonance A; = Ay occurs in a regular manner,
with an approximately symmetrical curve in the vicinity of the point
where P, vanishes (figures IV.5 A and B). This strict cancellation of the
atom’s excitation rate when the Raman resonance is reached will play
a key role in the cooling mechanism based on coherent population
trapping. Velocity selectivity will be ensured by the dependence of
A; 2 on atomic velocity via the Doppler effect. We will come back to
the typical width of the hole around the Raman resonance when we
study this cooling mechanism.

* On the other hand, if the Rabi frequencies are very different (figures
IV.5 C and D), the profile around the cancellation point is strongly
asymmetrical and takes on the appearance of a line shape of the type
predicted by Fano (1961). This type of profile is encountered when
interference occurs between a resonant scattering process and a much
flatter scattering process. Lounis & Cohen-Tannoudji (1992) proved
that Fano’s model was indeed realized for the A system when x; <
Ko < |A1 2] To recover this result, we start by treating the interaction
of beam 2 with the atom exactly. In the case where ko < |As|, the
"dressing" of the level g» induces the light shift found in (IV.5):

hAg

E(2) = E(g2) +0E(g2) 0E(go) = - s (IV.16)

|92) = 192),
Starting with the atom in the state |g1), a photon from the weak laser
beam (beam 1) can be scattered either non-resonantly through |e) (fig-
ure IV.6, left), or resonantly via a Raman transition that leads the atom
transiently into |g2) (figure IV.6, right). The narrow maximum of the
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Figure IV.5. Variation of excited population P, with detuning A1, measured in
units of I'. The other parameters are (in units of I'): (A) solid line:k; = ko = 0.5,
AQ :O;dottedline: K1 = Ko = 1,A2 :0,(B)H1 = Ko = 1,A2 22,(C)
K1 :0.1,#&2 :1,A2 :2,(D)I€1 :0.01,K)2 = ].,AQ = 2.
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Figure IV.6. The two scattering processes for a photon from laser 1, leading to the
Fano profile of figure IV.5 C and D.

curve for P, is obtained when Raman resonance with respect to the
dressed state |g2) occurs:

hAy = hAy + 0E(ga). (IV.17)

We thus obtain a remarkable situation where P, vanishes for the "bare"
Raman resonance A; = A,, then passes through a maximum for the
"dressed" Raman resonance (IV.17). The width of the resonance is
given by the width of the state g, , i.e. 72 = I's3/2 [IV.5]. We will come
back to this Fano excitation profile when we study the reabsorption of
scattered photons within a cloud of atoms.

1-5 Beyond the A system

The notion of dark state is not limited to a three-level system. Consider a
resonance transition from a ground level g with angular momentum J, to
an excited level e with angular momentum J.. For a dipole transition to
be allowed, one must have J. = J;, = 1 or J. = J,. We will assume here
that a transition of this type is illuminated with monochromatic light. The
atom-laser coupling can be written in the general form

. I ,
Var = 5 > K le;m’)(g,m| + He. (IV.18)

m,m’
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Figure IV.7. Atom with resonance transition J, = 3/2 <> J. = 1/2 illuminated
by circularly (left) and linearly (right) polarized light. Dark states are indicated
by red disks.

where the Rabi frequencies ki, ., are non-zero only if m' = m,m £ 1
due to the selection rules for electric dipole interaction. These involve
the different polarization components of the elerctromagnetic field (o
and 7) and the Clebsh-Gordan coefficients associated with the transitions
lg,m) <« [e,m’).

Let us start by noting that there are no dark states in the J. = J, +1
case. Whatever the polarization of the laser wave chosen, there is always
a non-zero stationary population for the excited level, unless of course the
light intensity is strictly zero.

Let us now consider the case J, = J;, — 1. In this case, the ground
level has two more Zeeman sublevels than the excited level. Recall that the
number of Zeeman sublevels is 2J, . + 1. The matrix Va1, which describes
the atom-laser coupling therefore couples a space of dimension 2J, + 1 to
a space of smaller dimension 2J, + 1 = (2J, + 1) — 2. Its kernel is therefore
necessarily of dimension greater than or equal to 2, i.e. there is necessarily
a subspace of dimension at least 2 in the space associated with the g level,
formed by uncoupled states such as

VAL‘ga> =0.

These subspaces are shown in figure IV.7 for a transition J, = 3/2 +» J, =
1/2, in both cases of circular polarization and linear polarization parallel
to the quantization axis (7 polarization).

(IV.19)

Finally, let us move on to the case of a J. = J,; resonance transition.
This case is more subtle. The matrix Va1, connects two spaces of the same
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Figure IV.8. Transition J; = 1/2 < J. = 1/2: there is a dark state only if the
polarization is strictly circular.

dimension, so there is no obvious reason why we should expect the exis-
tence of a dark state. In fact, the existence of these states depends on the
integer or half-integer value of J, and J..

¢ In the half-integer case, there is generally no dark state. For example,
for a transition J, = 1/2 <+ J. = 1/2 and linear polarization, we ob-
tain two systems with two independent levels and a non-zero excited
population. Only if the light is circularly polarized do we find a dark
state in this case (figure IV.8).

¢ In the case of integer J,, J., there is always a dark state. This is due to
the particular values of the Clebsh-Gordan coefficients. If the light
is circularly polarized, the dark state is the same as that found for
half-integer J,: |my = £J,). If the light is linearly polarized and
parallel to the quantization axis, the dark state is |g, = 0), due to
the cancellation of the Clebsh—-Gordan coefficient characterizing the
lg,m =0) < |e,m = 0) transition.

Note: the special case J, =1 < J. = 1. Ol’shanii & Minogin (1992)
have obtained in this case a remarkably simple expression of the dark state
for a light field of any polarization. Let us choose a quantization axis and
characterize a ground state by the three-component complex vector g :

+1 ¢g,—1
[g) = D Ygmlgm) & G=| tgo (IV.20)
m=-1 7/’9,—&-1
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J~1 J=1

Figure IV.9. Transition J, = 1 <« J. = 1: there is a dark state whatever the
polarization, although the dimension of the Hilbert space for the excited level is as
large as for the ground level.

and ditto for any excited state, which will be characterized by a vector with
three complex components €. Let us also consider the (complex) polariza-
tion vector € of the laser electric field:

Et) =& ee“rt L cc. (Iv.21)

With these notations, Ol’shanii & Minogin (1992) have shown that the ab-
sorption of a laser photon sends any ground state characterized by g to the
excited state characterized by € such that

€Exe€EXg. (Iv.22)
The expression for the uncoupled state can be deduced immediately:

this is the ground state whose components ), ,,, are such that the three-
component vector g is parallel to the polarization e of the light beam.

2 Dark state cooling

2-1 A simple picture

We have seen above that the A system offers the possibility of obtaining an
internal state decoupled from the light:

[Yne) o K2|g1) — K1lg2)- (Iv.23)
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Figure IV.10. 1D configuration for velocity-selective coherent population trap-
ping.

This state |¢)nc) is an eigenstate of the Hamiltonian provided that the Ra-
man resonance condition is satisfied.

For this effect to be used to cool atoms, it must be made velocity-
dependent. Let us work in one dimension of space (z); velocity depen-
dence will be obtained if the two waves propagate in opposite directions,
since the Raman detuning A; — A, is then a function of v, the velocity com-
ponent along the z axis. Let us assume that the wave driving the g; « e
transition propagates towards negative z, and that the wave driving the
g2 <+ e transition propagates towards positive z (figure IV.10):

Al(’l)) = Al(O) + ]C’U, AQ(’U) = AQ(O) — kv. (IV25)

Suppose we choose a zero Raman detuning for an atom at rest, A;(0) =
A4(0), as shown in figure IV.5A. The Raman detuning A for an atom with
velocity v along Oz will be

A = 2kv. (Iv.26)

We can then propose a simple image for the cooling mechanism exploit-
ing these dark states (figure IV.11). We start with a broad velocity distri-
bution and illuminate the atoms with the two counter-propagating lasers
1 and 2, taking these two lasers to be resonant and with the same cou-
pling x1 = k2. The variation of the excited-state population with velocity,
which also gives the spontaneous emission rate, is shown in figure IV.12.
This population shows a marked hole at v = 0 as expected: this is called
velocity-selective coherent population trapping ("trapping" here refers to
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E
2

Figure IV.11. Brownian motion in velocity space with accumulation around zero
velocity due to velocity-selective coherent population trapping.

accumulation in the uncoupled state). Atoms with initially non-zero ve-
locity will absorb laser photons, emit spontaneous photons and thus per-
form a Brownian motion. When, by chance, they arrive in the vicinity of
zero velocity, the probability per unit time that they will absorb a photon
falls sharply if they are in the |¢nc(v)) state: we therefore expect an ac-
cumulation of atoms around v = 0, as we saw with narrow-line Doppler
cooling. However, there is an important difference between the two types
of cooling: in coherent population trapping as described above, there is
no friction force to bring the velocity back to around 0: the evolution of
velocity here is a purely diffusive phenomenon.

We will see below that this simple reasoning, based on the semi-classical
notion of an atom’s velocity defined independently of its internal state, is
valid, but still needs to be completed. It also raises a number of questions
that need to be addressed to assess cooling performance:

e Since the expected cooling depends on the presence of an excitation
hole in the vicinity of zero velocity, how does the size of this hole vary
with the laser parameters?

¢ If we want to achieve sub-recoil cooling, we cannot just reason about
the atom’s velocity without saying whether it is the velocity before or
after the last photon. How can we reason in quantum terms, taking
into account these elementary changes in velocity?

* The process as we have described it is based on purely diffusive Brow-
nian motion, which from time to time brings the atom’s velocity back
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Figure IV.12. Variation of excited state population P, with atomic velocity, mea-
sured in units of I'/k. Figure made for Ay = Ay = 0. Blue: k1 = k2 = 0.2T,
Red: k1 = ko = 0.4T.

to the vicinity of v = 0. However, the probability of the Brownian mo-
tion returning to the origin depends strongly on the dimensionality of
the problem. How efficient is this process in 2D or 3D?

2-2 The width of the excitation hole

Let us take a look at the width of the hole in the excitation curve around
zero velocity, which will determine the efficiency of the cooling process.
We will discuss the influence of dissipation by successively reviewing the
three internal states (figure IV.13)

1
[ne) = NG (l91) = lg2)) -
For simplicity’s sake, we are interested in the case where both waves have
the same Rabi frequency, and we posit k = k1 = k2, which we will assume
to be very small compared to I'. Our reasoning reproduces that developed
by Aspect, Arimondo, et al. (1989).

le), Ive) = % (lg1) + lg2)) (IV.27)

The state |e) has the width I': the atom prepared in this state sponta-
neously emits a photon after a time ~ 'L

The state |¢c) is resonantly coupled to the state |e) with the Rabi fre-
quency V2 «. This coupling gives the state |1)c) the width [cf. (IV.5)]:

2k2

Yc = T (IV.28)
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Figure IV.13. The three coupled states of the problem and their width. The figure
is made at resonance Ay = Ay = 0, with equal Rabi frequencies k1 = kg = K.

which means that an atom initially placed in the state |i)c) will scatter a
photon after a time of the order 75"

The state |¢)nc) is by construction uncoupled from the excited state. On
the other hand, if the Raman detuning A = A; — A, is non-zero, the states
|Yne) and |¢c) are coupled to each other. Indeed, for x = 0, the initial state

6(0)) = [ine) = % (l91) = l92)) (IV.29)
evolves as )
v(e) = (e‘im/ 2|gy) — e+iAl/ 2|92>) (IV.30)

and thus becomes proportional to |¢)c) at time ¢ = 7/A. The coupling
between |¢nc) and |¢¢) is therefore directly given by A. A non-zero value
of A (or a non-zero velocity in our case) will give to the state |¢)nc) the
width:

A2
INC = (Iv.31)
Yc
which can be rewritten using (IV.28) and A = 2kuv:
kv)?
INC = QF( /@2) . (Iv.32)

This estimate of yn¢ corresponds to the width of the excitation hole in the
vicinity of the Raman resonance. In particular, we note that:

® The variation in excitation rate is quadratic with respect to velocity.

¢ The smaller the Rabi frequency «, the steeper the quadratic variation.
This point is clearly visible in figure IV.12, where we have plotted P,
for two different values of k.
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2-3 Quantum version of the problem

In the foregoing, we have reasoned about the velocity v of the atom with-
out specifying whether this is the velocity before or after the atom has ab-
sorbed a photon. This type of reasoning is legitimate when the change in
Doppler effect due to the recoil of a single photon, kv, = 2w;, is small com-
pared with all the other frequencies in the problem. On the other hand, it
cannot be maintained if we are looking for subrecoil cooling. In this case,
we need to be more precise to determine the state in which the atoms will
accumulate.

To deal with the atom-radiation interaction in this case, we need to take
into account the atom’s recoil in the absorption-emission processes. Let us
start with the case without spontaneous emission. We can then group the
atomic states (internal+external) into families

F)={lgr,v+v), e,v), [g2,0 —vr) }. (IV.33)

Atom-laser coupling leaves these families globally stable. The Raman res-
onance condition in a given family is then written:

M (v + v,)? M (v —v,)?

2 2 '
As above, let us assume Ay = Ay, ie. E(g1) + Awr1 = E(g2) + Awr 2.
The Raman resonance condition (IV.34) is obtained for v = 0; the only

family exhibiting a truly dark state is therefore the family F(v = 0), and
the corresponding dark state is written as

E(g1) + hwr1 + = E(g2) + hwr, 2 + (IV.34)

1
v=0))=— ,4vr) — g2, —ur)) . V.35
fone(v =0)) = == (91, +ve) = g2, —vr)) (IV.35)
A velocity analysis of this state should show two peaks at £+v,, on either
side of zero velocity.

In the presence of spontaneous emission, the family occupied by the
atom will change randomly due to the recoil associated with emission pro-
cesses. Within each family, the longest-lived state is the uncoupled state
[¥nc(v)) and the estimate made in (IV.32) for its lifetime remains valid.

This more precise treatment therefore confirms the image proposed
above for subrecoil cooling, provided that we replace the somewhat vague
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notion of atomic velocity by the notion of F(v) families. The atom’s state
is indeed a random walk, with the atom jumping from one family to an-
other under the effect of spontaneous emission. When this random walk
leads the atom into the uncoupled state |¢)nc(v)) of a family with v very
close to 0, the residence time in this family becomes extremely long. We
can therefore hope to accumulate a large number of atoms in the vicinity

Of W)Nc(’u = 0)>

2-4 Experimental evidence at 1D

The first one-dimensional subrecoil cooling experiment was carried out by
the ENS group using precisely this mechanism (Aspect, Arimondo, et al.
1988). The transition used was the 235, «+ 23P; of helium in its metastable
triplet state, illuminated by two polarized counter-propagating waves o
and o_. After a few optical pumping processes, the atom reaches the A
system (figure IV.14, top):

lg,m =—1) < |le,m=0) < |g,m =+1) (IV.36)
because the |e, m = 0) state has a zero probability of de-exciting to the third
ground sublevel |g, m = 0). The experiment confirmed the expected effect,
and a two-peak velocity distribution was observed (figure IV.14, bottom).
This is indeed a cooling effect (and not a simple filtering), as the number
of atoms in these velocity classes is higher after interaction with light than
before.

3 Scale laws for subrecoil cooling

In this section, we discuss some ideas for assessing the efficiency of sub-
recoil cooling, taking advantage of a zero in the atom’s excitation rate,
as shown in figure IV.12. The same reasoning applies to Raman cooling,
which we will look at in § 4. We want to determine the characteristic width
of the narrow velocity peak generated by cooling, as well as the fraction of
atoms likely to accumulate in this peak. This is a tricky problem, both be-
cause of the multitude of possible situations and because of the complexity
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Figure IV.14. Top: Transition J, = 1 <> J. = 1 composed of a A system and a
V system and illuminated with o and o_ light. After a few spontaneous emis-
sion processes, the atom is optically pumped into the A system, and cooling by
coherent population trapping can begin. Bottom: figure taken from Aspect, Ari-
mondo, et al. (1988), showing the principle of transverse sub-recoil cooling of a
metastable helium atomic beam by coherent population trapping and the observed
collimation. The double-peak structure of the final velocity distribution (solid line)
is characteristic of the dark state (IV.35) (or its immediate neighbors). The dotted
lines represent the initial velocity distribution.



CHAPITRE IV. HIDING IN THE SHADOW

§ 3. Scale laws for subrecoil cooling

Yo

-V, A 0 *V

Figure 1V.15. Excitation rate modeling (here at 1D) according to (IV.38), with
“walls” in velocity space, located here at |v| = vy.

of the mathematical and statistical tools to be used. We shall restrict our-
selves here to describing a representative case, which will enable us to dis-
cuss the influence of two important parameters: (i) the dimensionality of
the space and (ii) the variation of the excitation rate around its zero. We re-
fer the reader interested in these notions to Bardou, Bouchaud, et al. (1994)
as well as the comprehensive work by Bardou, Bouchaud, et al. (2002).

3-1 Excitation rate model
To simplify the discussion, we will model the problem as follows (figure

IV.15): the atom’s state is labelled by its velocity v (1D, 2D or 3D), which is
used to calculate the excitation rate v(v). We describe this rate as follows:

v\* .
Y | — if |v| < v,
vy

= if

v(v)
(IV.37)

|v] > o, (IV.38)

the case of the dark state seen above corresponding to the exponent a = 2
(cf. IV.32).

We will also assume that, in addition to the subrecoil cooling mecha-
nism that creates the hole in the excitation rate near v = 0, there is another
cooling mechanism, which we will not detail here, and which may be of
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Figure IV.16. Random walk in velocity space. When the particle arrives in the
dark zone, the dwell time on a given velocity class is increased compared to the
bright zone.

the Doppler or Sisyphus type. This other mechanism keeps the atoms in
a zone of finite size centered around v = 0. It was not present in our dis-
cussion in the previous paragraph, nor in the experiment shown in figure
IV.14. Insofar as these were one-dimensional situations, this mechanism
was not really necessary, as the Brownian motion of the velocity caused
by the random recoils due to spontaneous emission was sufficient to bring
the atom back to the vicinity of the hole at v = 0 from time to time. But in
three dimensions, this pure Brownian motion cannot be relied upon, and
the atom must be helped to approach v = 0 and find the dark zone in
velocity space.

To model this other cooling mechanism as simply as possible, we will
assume that the modulus of the atom’s velocity cannot exceed the recoil
velocity: |v| < v,. We therefore place "walls" in velocity space that confine
the atom in the central zone. The exact position of these walls is not impor-
tant, as it acts as a simple multiplicative factor in the calculation. We fix it
here at v, to simplify the analysis.

3-2 Residence time in the dark zone and Lévy’s law

We consider the model described above assuming that vy < v, and we take
the walls into account. As long as the particle is not in the dark zone |v| <
vp, it jumps randomly from one velocity to another at a rate -y, each step of
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this random walk being of the order of v, (figure IV.16). At each jump, the
particle has a chance to fall into the dark zone, which is uniformly sprayed.
Once in the dark zone, it takes the particle a time 7 of the order of 1/v(v)
to make another jump.

Let us take a one-dimensional view to evaluate the statistical law P(7)
of the residence time 7, the quantity P(7)dr giving the probability that
the particle falling into the dark zone will remain there for a time between
7 and 7 + d7. We will assume that during its stay in the dark zone, the
particle occupies one and only one velocity v. Indeed, the probability of
the particle leaving v for another velocity v also located in the dark zone
is low if the width of this zone is small compared with the average size of
ajump v;.

We will take the following expression for the probability density P(v)
that a particle entering the dark zone reaches velocity v:

(IV.39)

which means that the dark zone is uniformly "sprayed". Let us assume that
the residence time on the velocity class v is exactly equal® to 1/(v). Since
the velocity classes v and —v correspond to the same residence time, we
then have

P(r)dr = [P(v) + P(—v)] dv  with 7=~ (1")“ (IV.40)
Yo \ v
which leads to 1
P(T) X TlTé. (IV41)

In particular, for the case of coherent population trapping, we have o = 2
and therefore:

1

Dark resonance in 1D :  P(7) =3
T

(IV.42)

The distribution law (IV.42) is the source of some of the problem’s math-
ematical complexity. It is a broad law which, while normalizable, has no

1Tt would be more correct to write that the residence time 7 is itself a random variable with
an exponential distribution whose mean is given by 1/~(v); however, this does not change
the scaling law given in (IV.41) [see Bardou, Bouchaud, et al. (2002), §3.3.1.2].
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Figure IV.17. Example of a trajectory in velocity space obtained by a Monte Carlo
simulation of dark resonance cooling. We can clearly see that these trajectories are
dominated by a few rare events during which the particle velocity reaches a value
close to zero [Figure extracted from Bardou, Bouchaud, et al. (1994)].

well-defined moments of order 1, 2 or 3. This means, for example, that the
central limit theorem does not apply: if we are interested in the total time
spent by the atom in the dark zone after N passages:

TN:Tl+TQ+...—|—TN, (IV43)

we do not find a Gaussian distribution (even though we sum NN indepen-
dent random variables), but a Lévy distribution. More precisely, the usual
central limit theorem would indicate that Ty grows as N(7) plus a cor-
rection in v/N. Here, on the contrary, the sum T’y is dominated by a few
events (cf. figure IV.17) and we find that Ty grows like N? [see for example
Bouchaud & Georges (1990)].

We can generalize the above reasoning to the multi-dimensional case.
In three dimensions, assuming uniform "spraying” of the sphere |p| < po,
we find instead of (IV.39):

2
P(v) = 31; (IV.44)
Vo
which leads to 1
S : (IV.45)
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More generally, in D dimension, we have

(IV.46)

3-3 Width of the velocity distribution

The cooling process we are considering here has no stationary state, unlike
Doppler or Sisyphus cooling. Let us give ourselves an interaction time ¢
long enough for many jumps to have occurred, at least for the particles
that avoided the dark zone:

> 1/%. (IVA7)

Particles that have fallen sufficiently close to v = 0 in the course of their
evolution have then remained in this zone. More precisely, for a given
time ¢, we can define the velocity v; < vg such that

1 Vo
—> V= ———
" (yt)i/e

(IVA8)

which defines the radius of a second sphere (in 3D) inside the dark zone
sphere of radius v, (figure IV.18). In what follows, we will call this second
sphere the "black zone"; indeed, particles that arrived inside this zone be-
tween 0 and ¢ are still there (with a good probability) at time ¢. Assuming
uniform spraying of the dark zone, we expect the density in this zone to be
uniform too.

We therefore expect the velocity distribution P(v) to have three compo-
nents, which we schematize in figure IV.18:

¢ The black zone v < w;: velocity classes in this zone have a popula-
tion that increases with time, since they are continuously fed, without
particles escaping. Note, however, that the size of this zone decreases
with time, as 1/ v/t in the case ao = 2 of dark resonances. The probabil-
ity density is uniform in this zone.

¢ The bright zone v > vy in which particles make frequent jumps in
velocity. The probability density is also roughly uniform in this zone.
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Figure IV.18. Left: excitation rate and "black zone”: for a given interaction time t,
we can define a black zone, such that an atom falling into this zone then remained
there until time t: y(v,)t = 1. Right: Qualitative diagram of the expected velocity
profile; the density inside the black zone increases with time, but the radius v, of
this zone decreases.

¢ The intermediate zone v; < v < vy, located inside the dark zone, but
composed of velocity classes with a relatively high rate v(v), such that
particles have had time to move in and out of these velocity classes
during the time interval ¢.

This qualitative prediction can be confirmed by a more precise analyt-
ical or numerical treatment of the various stochastic processes [Bardou,
Bouchaud, et al. (2002), chapter 6].

3-4 Fraction of cooled atoms

The final step in our analysis is to estimate, for a given interaction time ¢,
the fraction of atoms that have reached the dark zone |v| < v; (figure IV.18).
As the size of this zone decreases with time, it is not obvious how large
this fraction is. Here again, we will use a qualitative reasoning, which can
be confirmed by a much more elaborate quantitative analysis [see Bardou,
Bouchaud, et al. (2002), in particular § 6.3 for the 1D case and § 6.4 for the
3D case].

We will assume that over the time interval of duration ¢, an atom per-
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forms the number of attempts Nat. = 7ot to enter the black zone?. At each
attempt, the atom evolving in dimension D has a probability

D
Ut
Ur

to arrive in the black zone of radius v;. The total probability of an atom
arriving in the black zone during time ¢ is therefore

(IV.49)

Prot = P Nage. < t (vp)P o =, (IV.50)

In this simple model, the determining parameter is 1 — D/a:

e If D/a < 1, then the probability py given in (IV.50) increases indefi-
nitely with time>. This means that a significant fraction of atoms will
accumulate in the central peak. This is the case at 1D for dark reso-
nances (D/a = 1/2).

e If D/a > 1, then the probability of an atom ending up in the central
peak tends towards 0 as ¢ increases. The peak around zero velocity
may be detectable in an experiment of finite duration, but it will con-
tain only a small fraction of the atoms. This is the case with three-
dimensional dark resonances (D/a = 3/2).

¢ The case D = a, corresponding to two-dimensional dark resonances,
is marginal. Determining the precise value of the fraction of atoms
in the dark zone requires a more precise treatment than the simple
scaling laws presented here.

3-5 2D and 3D experiments

Experiments carried out at 1D on the metastable helium atom (§ 2-4) were
generalized a few years later to 2D and 3D by the ENS group (Lawall, Bar-
dou, et al. 1994; Lawall, Kulin, et al. 1994). The starting point for these

There is an important shortcut here, as some atoms may have spent time in the grey zone
vt < |v| < wp, slowing the rate of their random walk without actually placing them in the
desired black zone

30ur simple model of summing probabilities as in (IV.50) of course ceases to be valid when
the probability ptot is no longer small in front of 1.
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Figure IV.19. Left: schematic diagram of a two-dimensional dark-state cooling
experiment. The dark-state momentum distribution is composed of four peaks,
corresponding to the four plane waves illuminating the atoms. This momentum
distribution is measured by time-of-flight. Right: example of a momentum distri-
bution. Each peak has a width significantly less than the recoil velocity v, (v,/4
for the one shown in the figure). The dotted curve represents the uncooled distri-
bution.

experiments was a cloud of metastable helium atoms cooled and confined
in a magneto-optical trap, operating on the 235; «» 23P; transition. Ata
given instant, the magneto-optical trap beams are switched off and the four
(2D) or six (3D) beams creating both Sisyphus cooling and coherent popu-
lation trapping are switched on. The role of Sisyphus cooling is to create
the equivalent of "walls" in velocity space, whose presence is essential in
2D or 3D as we saw above. The width of the velocity distribution obtained
by Sisyphus cooling, before dark-state cooling becomes significant, is of
the order of 1.5 v, (Lawall, Kulin, et al. 1994).

Measurement of the velocity distribution of atoms after cooling by co-
herent population trapping reveals four (at 2D) or six (at 3D) peaks, cor-
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responding to the accumulation of atoms in the desired dark state (figure
IV.19). The fact that the number of peaks is equal to the number of light
beams is a direct consequence of the result of Ol’shanii & Minogin (1992)
presented in (IV.20)-(IV.22): when the motion of the atom’s center of mass is
taken into account, the dark state is a three-component spinor, g(r), which
is proportional to the electric field £(r) of the laser wave (more precisely
to the coefficient of e L’ in the expression of this field). The minimum
widths observed for these peaks are of the order of v, /4 at 2D and v, /6 at
3D.

4 A tailor-made shadow: a Raman transition

We have just seen how the use of a dark resonance allows us to obtain
a velocity-selective excitation profile, with strict cancellation for a given
velocity class. We now explore a second method for obtaining a similar
result: this method, also based on a A system, consists in using light pulses
that transfer atoms between the sublevels |g1) and |g2) (figure IV.20). The
time profile of the pulse is optimized so that the transfer is also velocity-
selective, opening up a second route to cooling well below the recoil veloc-
ity v.

4-1 The principle of Raman cooling
Raman cooling operates by alternating two types of phase:

o At the start of the first phase, the atoms are in the state |g;), with a
velocity distribution that we want to make as narrow as possible (fig-
ure IV.21, top). They are illuminated for a time 7 with a pair of Raman
beams of Rabi frequency «; and detuning A; (j = 1,2). The aim is to
induce the transition from |g;) to |g2) in a velocity-selective manner.
If the detunings A; are large compared with the Rabi frequencies &,
we can perturbatively eliminate the excited state e and define a Rabi
frequency for the Raman transition:

K1K5

K= oA (IV.51)

9; 9,

Figure IV.20. Principle of Raman cooling. Left, first phase: a light pulse transfers
atoms of a given velocity class from the state |g1) to the state |g2). Right, second
phase: a pumping beam send the atoms back to |g1). The momentum balance over
the cycle narrows the width of the velocity distribution.

The corresponding momentum transfer, g = h(k; — k2), can be ad-
justed by modifying the angle between the wave vectors k; and k.
The Raman detuning A = A; — A, and the time variation of the cou-
pling «(t) induced by this pair of beams are chosen so as to excite
atoms whose velocity lies within a class determined by energy conser-
vation* (to within //7):

1 1
E(g1) + hwr,1 + §Mv2 ~ E(g2) + hwr 2 + §M(v +q/M)* (IV.52)

which simplifies to give

2
q
v-g=hA— —. IV.53
q Wi (IV.53)
The momentum transfer g is chosen such that it brings the atom’s ve-
locity down to zero (v - g < 0): in a one-dimensional model, if the tar-
geted velocity class is negative, atoms in this class will with high prob-
ability make a transition that changes their velocity from v to v + 2uv;,

4Strictly speaking, the energy E(g;) of the state g; must include the light shift §E(g;) of
this state due to laser ¢ (Moler, Weiss, et al. 1992). However, the contributions of § E(g1) and
dE(g2) to (IV.52) offset each other if we take k1 = k2 and A1 = Aos.
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accompanied by the transition |g;) — |g2), whereas atoms outside this
class will be unaffected and remain in |g;) (figure IV.21, middle).

* The second phase consists of repumping all atoms from |gz) to [g1). A
repumping beam resonantly couples the state |g2) to the excited state
le) (figure IV.20). Once in the state |e), the atom can fall back to |g1)
or |go). If it falls on |g;), the desired pumping is obtained and the pro-
cess stops. If it falls on |gs), it can reabsorb a photon from the pump-
ing beam, and so on. The momentum transferred during an optical
pumping process is i(krep. — Kfuo.), Where kg, is the wave vector of
the spontaneously emitted photon (figure IV.21, bottom).

We repeat this sequence, varying the class of atoms involved in the Ra-
man pulse (figure IV.22): we can address atoms with positive or negative
velocity along different spatial axes, closer or further from zero velocity.
Ultimately, we hope to accumulate a large number of atoms around v = 0.

4-2  Velocity selectivity

To determine precisely the velocity class affected by a given Raman pulse,
let us consider a one-dimensional model with k; = —ku,, ks = +ku, as
shown in figure IV.10. Let us take an atom with initial velocity v and write
its internal state as

[9(t)) = a1(t)]|g1) + az(t)|g2),

As indicated above, we are neglecting the population of the state |e¢), which
is legitimate if the Rabi frequencies «; are small compared with the de-
tunings A;. The time evolution of the coefficients «; is given by the
Schrodinger equation

A, K*(t) . K(t) A,

al(()) = ]., QQ(O) =0. (IV54)

idél = 70[1 + 9 2, 109 = Tal - 70&2, (IV55)
where the velocity-dependent detuning A, is given by:
Ay = A+ 2k(v—v). (IV.56)

The general solution to this equation requires a numerical treatment, but
an analytical solution can be obtained if we restrict ourselves to the case of
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Figure IV.21. Evolution of the velocity distribution during the two phases of Ra-
man cooling: selective velocity transfer from g, to go, then repumping from g to

g1.
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Figure IV.22. Excitation rates for the different Raman pulses used by Kasevich &
Chu (1992). The zero-velocity class remains “protected”.

a weak excitation |ay| ~ 1, |az| < 1 for any velocity:

: t
o (t) e iAvt/2 ag(t)kﬁf%eﬂvtﬂ / k() e A Y. (IV57)

0

Let us take a pulse of duration 7. At the end of this pulse, the excitation
probability of an atom of velocity v is:

1 2

P(v) = |az(v)|* ~ ;

;i (IV.58)

/ kK (t) e Bt ¢
0

The variation of this probability with velocity is therefore directly linked
to the Fourier transform of the pulse Rabi frequency.

4-3 Which form to choose for the pulse?

The simplest form for the intensity of the Raman pulse is a square function
(figure IV.23)

kK(t)=r if 0<t<m, (IV.59)
whose Fourier transform is a cardinal sine, so that
in?[(A+2 2

P(v) o SNA+ 2kv)7/2] (IV.60)

(A + 2kv)?
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where A = A — 2kv, [cf. (IV.56)]. We will therefore essentially excite atoms
with velocities in the range

A A
7—77<kv<75+*,

IV.61
2 T T (Iv61)

as well as, but to a lesser extent, atoms whose velocity is located in the
lateral lobes of the cardinal sine.

We will see later how to take advantage of the well-marked zeros of
the cardinal sine. However, as there is a risk that the parasitic excitation
created by the side lobes may generate undesirable effects, it is worth ex-
ploring the possibility of using other functions «(t), with a Fourier trans-
form that decreases faster on either side of its maximum. This was done
in the first series of Raman cooling experiments, carried out at Stanford
between 1992 and 1994 (Kasevich & Chu 1992; Davidson, Lee, et al. 1994).
The temporal shape of the Raman pulses was a Blackman profile, i.e. the
apodization function given by:

f(t) =042 4 0.5cos(2nt/7) + 0.08 cos(4dnt/T) for |[t| <7/2, (IV.62)
which has the merit of having a Fourier transform with low-amplitude
wings (cf. figure IV.23): one can thus efficiently excite a velocity class of
adjustable center ¥ and width at half-maximum Awv, which guarantees an
extremely reduced probability (by at least six orders of magnitude) of ex-

citation for any velocity class more than 4 Av away from 2.

This technique led to velocity distributions® much narrower than the
recoil velocity in one dimension, with Av ~ 0.2 v, (Kasevich & Chu 1992).
In two and three dimensions, performance was more modest, with Av ~
1.2v, and Av = 2.3 v,, respectively. Among the reasons given for this drop
in performance, we find the point we studied in § 3: filling the velocity
class around v = 0 is all the slower the higher the dimensionality; a defect
that tends to depopulate this velocity class (during the repumping process,
for example) will therefore have a more sensitive effect at 2 or 3 D than at
1D. Furthermore, implementing the protocol described above requires, in
principle, alternating pairs of Raman beams in all the spatial directions
concerned, which is technically complicated to implement. Davidson, Lee,

5The widths given in the following are widths at 1/+/e, which coincide with the r.m.s.
width for a Gaussian distribution.
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Figure 1V.23. Two possible envelope shapes for Raman pulses, with associated
transition probability (IV.58), in linear and logarithmic scale. Top: square pulse
with a cardinal sine Fourier transform. Bottom: Blackman pulse, with a Fourier
spectrum much tighter than the cardinal sine. Both types of pulses have the same
duration T = 1.3 M /hk?. Figures from Jakob Reichel’s doctoral thesis, Université
Paris 6 (1996).
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et al. (1994) have therefore simplified this procedure by applying several
Raman beams simultaneously. This can give rise to spurious non-linear
phenomena, which also contribute to increasing the departure rate from
the zero-velocity class.

Another way of achieving three-dimensional cooling is to work with
trapped atoms. In this case, one can simply cool one direction of space and
take advantage of the redistribution of energy with the other two directions
due to the ergodicity of the atoms’ motion in the trap. Still using Blackman
pulses, the Stanford group achieved 3D cooling leading to a velocity width
of 0.65 v, (Lee, Adams, et al. 1996; Lee & Chu 1998). A similar experiment
was carried out at ENS by Perrin, Kuhn, et al. (1999), using pulses with a
frequency sweep. In all these studies, the final phase-space density was of
the order of a few 1073, so still quite far from the Bose-Einstein condensa-
tion threshold. However, it should be noted that these experiments were
carried out on atoms prepared in levels that we now know are not favor-
able if we are looking for high spatial densities: sodium in its ground level
F = 2 or cesium in its ground level F' = 4. In addition, it seems that heat-
ing related to multiple scattering of the photon emitted during the optical
pumping process was present in these experiments. This heating could
be reduced by using highly anisotropic geometries, favoring rapid photon
exit.

Finally, let us return to square pulses and the corresponding excitation
law given by a cardinal sine. Since the ultimate goal is to accumulate atoms
in the vicinity of v = 0, the shape of this cardinal sine, with its marked
lobes, is not problematic, provided one takes care to always choose the
pair (A, 7) such that the zero-velocity class coincides with the first zero of
P(v):

|AlT = 27. (IV.63)
This technique has been successfully implemented in both one and two
dimensions. In one dimension, the LKB group at ENS (Reichel, Bardou, et
al. 1995) obtained a velocity distribution with a width of 0.12 (1) v, notably
narrower than that measured with Blackman pulses at Stanford (0.2 (1)v,),
and which is still a record. Thanks to these very narrow distributions, the
ENS group was then able to observe Bloch oscillations in an optical lattice,
a phenomenon we described in the 2012-13 lecture series (Ben Dahan, Peik,
et al. 1996). In two dimensions, the NIST group produced a distribution of
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Figure 1V.24. Experimental result by Reichel, Bardou, et al. (1995), showing
1D Raman cooling of cesium atoms with square pulses, such that an atom of zero
velocity has probability 0 of being excited by the Raman transition. The equivalent
temperature is ~3 nanokelvin.

width 0.39 (5) v. (Boyer, Lising, et al. 2004), which is narrower than the best
performances obtained in 2D or 3D with narrow-line Doppler cooling. To
our knowledge, this Raman cooling experiment with square Raman pulses
has not yet been carried out in three dimensions.
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Chapter V

Sisyphus cooling

The first optical molasses was made in 1985 at Bell Labs with sodium
atoms (Chu, Hollberg, et al. 1985). Precise temperature measurements
were performed at NIST (the National Bureau of Standards -NBS- at the
time) on molasses of the same atomic species by Lett, Watts, et al. (1988b)
and Lett, Phillips, et al. (1989) (figure V.1). The conclusion of these mea-
surements was clear: Doppler cooling alone could not explain the observed
cooling; temperatures were lower than the predicted limit kg7 = hI'/2,
and the variation in temperature with laser detuning was not at all in line
with theory. Several cooling models were then developed (Ungar, Weiss,
et al. 1989; Dalibard & Cohen-Tannoudji 1989), with in common the idea of
taking into account more faithfully the structure of the atomic transition,
going beyond the two-level model.

The key point is that for an atom with several ground sublevels, long
time constants may appear, linked to the optical pumping time between
sublevels. These long time constants can be associated with low ener-
gies. In contrast, in the two-level model underlying Doppler cooling, the
only relevant time constant is I' !, and the associated energy Al gives the
limit of Doppler cooling. Of all the 1D models developed at the time, the
most robust is probably the Sisyphus effect, which generalizes almost un-
changed to three dimensions [for a review, see e.g. Grynberg & Robilliard
(2001)]. It is therefore the one we will discuss now in its initial version, be-
fore moving on to recent developments that generalize this type of cooling
to other atomic transitions.
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1 The standard Sisyphus model

1-1 The 1/2 < 3/2 transition

The simplest model for Sisyphus cooling is that of a transition between
a ground state J, = 1/2 and an excited state J. = 3/2 (figure V.2). The
reason for the choice of this transition is simple: we have seen that the
simplest atomic transition J, = 0 — J. = 1 only gives rise to Doppler
cooling, with a temperature bounded by the Doppler limit (for a broad line)
kgT > hI'/2. The appearance of this lower limit can be linked - although it
is not absolute proof - to the fact that the only time constant then appearing
in the atom’s internal dynamics is the lifetime of the excited state I'~!. By
moving on to a more complicated atomic structure, particularly for the
ground state, the hope is to see the emergence of new, much longer time
constants. These time constants correspond, for example, to the optical
pumping time from one ground Zeeman |g, +1/2) state to the other.

To create a non-trivial dynamic between these two ground states, which
from now on we will call |g+ ), it is necessary to place the atom in a situa-
tion where the polarization of light varies in space. Let us limit ourselves
here to a one-dimensional example, with motion along the z axis. The pro-
totype of such a situation corresponds to the superposition of two running
light waves propagating in opposite directions along the z axis, with or-
thogonal linear polarizations €, and €, (lin_Llin configuration, figure V.2).
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Figure V.1. First precise temperature measurements in optical molasses (sodium
atoms). The dashed curve represents the prediction for Doppler cooling. Figure
taken from Lett, Watts, et al. (1988D).

The two waves are chosen with the same frequency, the same intensity, and
a relative phase such that the resulting polarization €(z) varies in space as
follows:

- ieye*ikz) (e— cos(kz) —iessin(kz)), (V.1)

_ b
V2

where the complex unit vectors 1 = (Fe, — i€,)//2 represent the right
and left circular polarization basis.

The polarization of light therefore evolves continuously and periodi-
cally along the z axis. It is (left-handed) circular (e_) at points z = 0 mod-
ulo A\/2, (right-handed) circular (e) at points z = A/4 modulo /2, and
elliptical between these points. In particular, it is linear at z = A\/8 modulo
A/4, along the bisectors of €, and €,,.
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Figure V.2. Atomic transition J; = 1/2 < J. = 3/2 and 1D laser configuration
lin Llin giving rise to the Sisyphus effect.

1-2 Light shifts and optical pumping

Assuming that the detuning A between the laser beam frequency and the
atomic frequency is large compared to the Rabi frequency « characterizing
the atom-light coupling, we know that the atom will be predominantly in
one of the two states g+, and we can neglect the time spent in the excited
level. The effect of light on the atom is therefore twofold:

¢ Light creates a potential that shifts the energies of g+ by an amount
that depends on the proportion of o light at a given point. The result
is a differential modulation Vi (z) of the energies of g...

¢ Light induces g4 <> g_ transitions by spontaneous Raman processes,
i.e. absorption of a photon from one of the two laser waves and
spontaneous emission of a fluorescence photon. The rate of transition
V+——(z) from g1 to g_ involves the local intensity of o_ light at the
point where the atom is located, and is therefore spatially modulated.
The same applies to the transition rate y__,; (z) from g_ to g..

Sisyphus cooling will result from the correlation between the potentials
Vi (z) and the optical pumping rates v;_,_(z) and v__,;(z). For a more
quantitative description, let us start by calculating the light shifts V. (z).
To do this, we use the intensity factors (squares of the Clebsch-Gordan
coefficients) shown in figure V.2. At a given point z in space, the level g
is displaced by a quantity proportional to I (z) + +1_(z), where I (z) are
the intensities associated with the polarizations o at point z. Similarly, the
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v

Figure V.3. Potentials Vi (z) created by light on the two ground states g+. The
dark disks indicate the stationary populations for an atom at rest resulting from
optical pumping processes.

level g_ is displaced by a quantity proportional to I_(z) + £, (z). With an
additive constant of no importance here, the potentials experienced by g+
can be written as follows (figure V.3)

Vi(z) = Vi cos®(kz), V_(2) = Vysin?(kz), (V.2)
where the energy V; is given by Vo = 2h(—A)sg. We note here s, the
saturation parameter for each of the two running waves:

K22

0T AT

(V:3)
where « is the Rabi frequency associated with each traveling wave, cal-
culated for a Clebsch-Gordan coefficient equal to 1. The quantity V; is
positive for negative detuning, which is the sign considered here (as for
Doppler cooling).

We can similarly calculate the rate y4+_,+(z) at which the atom initially
in g+ will jump to g+. We find

Yoo (2) = 70 cos®(kz), V-4 (2) = o sin?(kz), (V4)

with 79 = 2T'so. The predicted correlation between light shifts and optical
pumping rates is therefore clear.
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The equation giving the time evolution of the population P, at a given
point z is
dP.
= (P + i ()P (V.5)
and ditto for P_. Using P, + P_ = 1, this evolution equation can also be
written as

dP. ta
d7t+ = =0 [Py — P¥(2)], (V.6)
where the stationary populations P5"**(z) for an atom at rest in z are given

by (figure V.3):

Pt (2) = sin®(k2), Pt () = cos? (kz). (V.7)
This result indicates that the most populated level is always the lower of
the two states g, and g_. At z = 0, for example, light is polarized along e_
and the atom is optically pumped into the g_ state for which V_(z) = 0,
whereas V, (z) = V5 > 0.

1-3 The Sisyphus mechanism

For an atom at rest, we have just seen that optical pumping tends to move
the atom from the top of potential hills to the bottom of valleys. It is this
key point that gives the Sisyphus effect its name (figure V.4). It is easy to
understand why this effect gives rise to cooling: if the atom moves with
a low but non-zero velocity v, it will tend to climb more hills than it de-
scends. Energy conservation is ensured by spontaneous emission: when
an atom climbs a hill of potential V. (z), it converts its kinetic energy into
potential energy. This energy is then carried away by the fluorescence pho-
tons emitted spontaneously during optical pumping processes; these pro-
cesses transfer the atom from a peak of V4 to a valley of V4, and the pho-
tons have, on average, an energy greater than the energy of incident light
wave photons.

This picture generalizes without difficulty to three dimensions, with
an intensity and polarization pattern that can be more or less complicated
depending on the number, direction, and relative phases of the light waves
(Grynberg & Robilliard 2001). The essential point is (i) to maintain the fact
that atomic levels are displaced downwards by a space-dependent amount,
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Figure V.4. Typical evolution of an atom in the bi-valued potential Vi (z) for a
velocity of the order of v /k.

and (ii) that optical pumping tends to accumulate the atom in the lowest-
energy sublevel. This result is guaranteed if we use a transition J, +—
Je = Jy+1 and monochromatic light of negative detuning, A = wy, —wa <
0.

2 Sisyphus cooling limit

To determine the limit of Sisyphus cooling, we take a Brownian motion
approach, calculating first the friction force acting on the atom, then the
diffusion coefficient for an atom at rest. We will see in the next section (§
3) how to go beyond this simple linear model.

2-1 Friction force and its linearity range

Our Sisyphus cooling model corresponds to a relatively simple problem
of statistical physics: a particle evolves in the bi-valued potential V. (z) by
randomly jumping between the two values with rates v+ (z). Let us con-
sider an atom of velocity v and determine the force acting on it in steady
state. This force is written as a function of the probability Py (z,v) of find-
ing the atom at point z in state g :

F(z,v) = P1(z,0)F(2) + P_(z,v)F_(z), (V.8)
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where F. (z) are the forces derived from the potentials V. (z):
Fy(z) = £kVysin(2kz). (V.9)

To calculate the occupancy probabilities Py (z,v), let us take the evolution
equation (V.6) and look for its forced regime. The latter is obtained by

replacing (% by ”(;17/ and the solution is written:
1 cos(2kz) + (v/v.) sin(2kz) .
Py(z,v) = 3 (1 F TF 0202 with  2kv. = vo.
) (V.10)

The force (V.8) averaged over a spatial period is therefore:

Y with Ma =2 20,

Flv)= —Ma—2"
©) = Merrars %

(V.11)

This is the friction force we are looking for and we can make three com-
ments about it:

e At low velocities, v < v., we obtain a force linear in velocity F'(v) =
—Mav, as in Brownian motion theory.

¢ The friction coefficient « is proportional to the ratio of the mean light
shift 1, and the pumping rate 7. Both quantities are proportional to
light intensity, so « is independent of intensity. More precisely, we
find:

A

2 2
Vo = §h|A|so, Y = =Tsqg — Ma = 3hk* .

5 = (V.12)

This value is to be compared with that obtained for Doppler cooling
in the optimum case (A = —I'/2):

Mape, = hk? 5o, (V.13)

a result valid only if sg < 1. In practice, the friction coefficient corre-
sponding to the Sisyphus effect can therefore exceed ap,;, by several
orders of magnitude.

* The range over which the force is linear in velocity is given by |v| <
Ve, 1e. kv < %Fso or v/yy < A/4m. For the force to be linear in
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Figure V.5. Force versus velocity for the Sisyphus effect (solid line) and for the
Doppler effect (dashed line), plotted for A = —T" and so < 1.

velocity, the atom’s displacement during the relaxation time 7, ' must
be very small compared to the spatial period of the light potential. In
other words, many optical pumping processes must occur as the atom
travels along a wavelength. This linearity range is proportional to the
saturation parameter sy, i.e. the power of the light waves.

The linearity range for Sisyphus cooling is much smaller than that for
Doppler cooling, where the result is independent of light power (kv < I).
For Doppler cooling, on the other hand, the friction coefficient decreases
with decreasing power (figure V.5), whereas it is constant (and large) for
Sisyphe cooling. In fact, in practice both the Doppler and Sisyphus mech-
anisms operate simultaneously, taking advantage of both the wide capture
range of Doppler cooling and the high friction coefficient of Sisyphus cool-
ing.

The force (V.11) has its maximum F' = kV; /4 for v = v, then decreases
as 1/v at high velocities. The maximum force for v = v, corresponds to the
situation where about one optical pumping process occurs per potential
hill, as shown in figure V.4. This force then corresponds (to within a multi-
plicative coefficient) to the maximum force felt in the potentials V. (z) (we
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A Force

+kVy sin(2kz)

temps

v

—kVy sin(2kz)

Figure V.6. Random evolution of the force felt by a stationary atom at the z point
as it randomly flips between g4 states.

could not hope for better!).

The 1/v behavior of the force at high velocities corresponds to a con-
stant power dissipation P = vF'(v) :

1
P = Voo, (V.14)

i.e. an energy loss of the order of a quarter of the modulation of the poten-
tials V4. for each optical pumping process. Again, this corresponds to the
optimum that could be expected for this mechanism. This high-velocity
regime F(v) & 1/v is found in all variants of the Sisyphus effect, whatever
the details of atomic dynamics.

In the rest of this paragraph, we will assume that at equilibrium, the
atomic velocity distribution is essentially contained in the |v| < v, region,
so that the friction force (V.11) is linear in velocity:

F=—-Mav  with Ma= 3hk2|%|, (V.15)

as in Brownian motion theory. To determine the equilibrium state, we must
also evaluate the momentum diffusion coefficient D), to deduce the equi-
librium temperature kg1 = D,/Ma.



CHAPITRE V. SISYPHUS COOLING

§2. Sisyphus cooling limit

2-2 Momentum diffusion

Recall that the momentum diffusion coefficient D,, gives, to within a factor
of 2, the growth rate of the momentum variance Ap? = (p?) — (p)2. To eval-
uate D), let us take an atom at rest at a point z. Due to optical pumping
processes, the atom jumps randomly between the levels g, and g_, expe-
riencing a fluctuating force F'(t) = +kVjsin(2kz) given by the gradients
of the potentials V4 (z) experienced on each level (figure V.6). This fluctu-
ating force is primarily responsible for the atom’s momentum diffusion in
Sisyphus cooling, and is therefore what we will be focusing on first. As
with Doppler cooling, this contribution is supplemented by heating due to
random momentum changes during spontaneous emission processes. We
will take this into account later.

By decomposing the force felt by the atom into an average force F(z)
and a fluctuating force of zero average, the corresponding diffusion coeffi-
cient is obtained from the expression (cf. chapter 1):

4> _
D, () = / (FEOFGD - F(2)°) d. (V.16)
0
where the average force F'(z) is calculated using stationary populations
(V.7)
_ 1
F(z) = [Py(2) — P_(2)] kVp sin(2kz) = §kV0 sin(4kz). (V.17)
The expression of D, (z) can then be calculated without difficulty [cf. Dal-
ibard & Cohen-Tannoudji (1989)] and its average over a spatial period is
equal to
3 A?
D1 = thk2 S0 T (V.18)
As mentioned above, to this diffusion coefficient D, ; must in principle
be added the contribution D, ¢ due to the random recoils during sponta-
neous emission processes. This contribution is of the same order as that

found for Doppler cooling;:
D, o =~ h*k*s,T. (V.19)

However, in most applications, Sisyphus cooling is used with a detuning
significantly greater (in absolute value) than the natural width I". We can

84

therefore neglect the contribution of D), o and concentrate on D, ;. We will
see D, o reappear when we try to go beyond the linear model for Brownian
motion (§ 3).

2-3 Equilibrium temperature

The equilibrium temperature for Sisyphus cooling is deduced from the fric-
tion and diffusion coefficients found above:

D 1 1 hlﬁ:Q
kpT ~ =2= ~ _h = .
B Ma [Also = a7

A>T : (V.20)

4

At first glance, it seems that we can obtain an arbitrarily low temperature,
by taking the limit of a Rabi frequency x — 0. However, we need to check
that the condition vy < v, holds for the thermal velocity vo = +/kgT/M.
Since vy varies as k while v, varies as 2, this imposes a lower limit on
acceptable Rabi frequencies. For a given detuning A, we find that the min-
imum thermal velocity is

1Al i

Limit of linear model: V0, min ~ Ur with v, = U (V.21)

Residual trapping of atoms. The average force (V.17) felt by an atom at
rest is derived from the potential %2 sin*(2kz). The amplitude of this poten-
tial X = 1h|Alsg is of the same order as the thermal energy kg7 In this
semi-classical model, we therefore expect a slight modulation of atomic
density with periodicity \/4, the density being slightly greater where light

has circular polarization (right- or left-handed).

2-4 First experimental results

The prediction (V.20) corresponds to a very simple scaling law: provided
the detuning is taken (in absolute value) to be greater than the natural
width T, the equilibrium temperature should only depend on the ratio of
intensity to detuning.
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This prediction is remarkably well verified in practice. We have plotted
on figure V.7 the results of measurements made on a 3D cesium optical mo-
lasses by Salomon, Dalibard, et al. (1990). The selected detunings ranged
from A/T = —2 to —28 and the law found for this 3-dimensional situation
can be written:
hk?

Muvi = kgT ~ 0.4 Al

(V.22)

where v represents the mean square velocity of the distribution and where
 denotes the Rabi frequency for each of the 6 travelling waves making
up the optical molasses. A very comparable result was found for the two
rubidium isotopes by Gerz, Hodapp, et al. (1993). The change in coefficient
from § = 0.125 to 0.4 is due both to the shift from 1D to 3D and to the fact
that the atomic transition involved is considerably more complicated than
the 1/2 — 3/2 model. A quantum Monte Carlo simulation taking these two
points into account has made it possible to recover this coefficient with
good accuracy (Castin & Melmer 1995).

On the other hand, for a given detuning A, the limit (V.21) obtained
within the framework of this linear model is not reproduced experimen-
tally. In fact, the experiment gives a more favourable result: effective Sisy-
phus cooling continues to be observed even when the velocity distribu-
tion falls outside the linear range. The temperature limit reached when
the intensity is lowered is in fact the same whatever the detuning chosen:
vg ~ some v, This limit is also verified for sodium ((Lett, Phillips, et al.
1989)) and rubidium (isotopes 85 and 87, Gerz, Hodapp, et al. (1993)). The
explanation for this better-than-expected situation lies in the fact that Sisy-
phus cooling remains effective well beyond the linear regime, as we shall
now see.

3 Beyond the linear model

To go beyond the linear Brownian model, we will use the Liouville equa-
tion formalism, which is well suited to taking into account the bi-valued
potential Vi (z) and the jumps between g1 levels (Castin, Dalibard, et al.
1991).
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Figure V.7. Variation of temperature in 3D cesium molasses as a function of the
light shift. Figure taken from Salomon, Dalibard, et al. (1990).

3-1 Coupled Liouville equations

For a particle with no internal structure moving in a force field F'(z), the
evolution of the distribution P(z, v, t) in phase space is given by Liouville’s
equation:
or | op F)oP _
ot v 0z M ov
This is equivalent to Newton’s equation of motion for a point particle: z =
v, Mv = F(z).

(V.23)

For the problem at hand, we need to introduce two distributions
P, (z,v) and take account of jumps from one level to the other:

oP. P,
ot Tt 0z

and a symmetrical equation for P_(z,v).

Fy(z) 0Py
M Ov

= —74+(2)Py(2,0) +7-(2) P-(z,0)  (V.24)

Let us look at the steady state of these two coupled equations, which
removes the term in %. Let us also consider the total phase space density
and the difference between the densities of g:

P(z,v) = Py(z,v) + P_(z,v), d(z,v) = Py(z,v) — P_(z,v). (V.25)
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Subtracting (V.24) and the equation for P_, we first find, using ;. = —F:
06 F. 0P
U&*‘(’H +7-)6 = —M%+(7— —74)P. (V.26)

By integrating this equation, we can express the difference §(z, v) as a func-
tion of the sum P(z’,v). Let us then assume that P is independent of po-
sition in the steady state: P(z,v) = P(v); we saw earlier (§ 2-3) that this
assumption is reasonable, at least in the linear regime. Solving (V.26) is
then straightforward and yields

0(z,v) AL 5 [ (Sin 2%z + < cos 2kz) P(v)
v

T 1+ (v/ve)

P
—% (cos %z — L sin 2k;z) d—} . (V.27)
Yo v dv

We then inject this result into the equation of motion for P(v), obtained by
summing (V.24) and its equivalent for P_. The result is written:

o d D,(v) dP}

(V.28)

:dv[—F(v)P(v)-i- TS

where the force F'(v) is identical to that already found in (V.11) for a motion
at constant v velocity:

v . Vo
Fw)=-Ma———— h Ma=Fk — .2
(v) aT ey wit a=k "’ (V.29)
and where the velocity-dependent diffusion coefficient D, (v) is:
Dypa - 2,2, A7
Dp('l)) = m with Dp71 = h°k SO?. (VBO)

We recover here the momentum diffusion coefficient D,, ;, associated with
fluctuations in the dipole force when the atom at rest randomly tilts be-
tween g+, which has already been calculated in (V.18)1. Remember that
we have so far neglected the diffusion coefficient linked to the random re-
coil accompanying spontaneous emission processes; this contribution will
soon make its reappearance when we come to the question of the ultimate
limit of Sisyphus cooling.

IThere is a 4/3 factor between the expression found here for D1 and that of (V.18). This
factor is linked to the approximation made here of a strictly uniform density (Castin, Dalibard,
etal. 1991).

86

3-2 Stationary state

Solving (V.28) is straightforward:

P(v) x exp (/0 J‘gi’(g}v)) dv/) .

We note that the 1 + v? /v? denominator that appears in the force F(v) out-
side the linearity range is offset by the same denominator in D(v). The ratio
F(v")/D(v") remains a linear function of v, so the stationary distribution
remains Gaussian:

(V.31)

1
P(v) o exp(—v?/2v3) with  Muv} = §h|A|so. (V.32)
This result explains why we experimentally find low r.m.s. velocities, of
the order of a few recoil velocities, well outside the range of validity (V.21)

initially predicted for large detunings.

So what is the true limit of validity of the result (V.32) for the equilib-
rium temperature of Sisyphus cooling? To determine it, we need to go back
to the two heating sources present in this mechanism. In the foregoing, we
have taken into account momentum diffusion due to dipole force fluctua-
tions. On the other hand, as we have indicated on several occasions, we
have neglected the random kicks of amplitude %k caused by spontaneous
emission processes. If we also take this second process into account, we
have to replace the diffusion coefficient (V.30) by:

Dy
Dp(v) L

= Tw + Dp7() where Dp,O = € thQSQF,
ve/vg

(V.33)

where the value of the multiplicative coefficient ¢, taking into account the
11

various branching factors between Zeeman sublevels, is ¢ = 3.

Solving (V.28) is then a little more complicated, but no great difficulty.
We find

1 . 5(; VO VO
with =60 A—g 0
! ShoR S5

Plo) o Tz o

(V.34)
i.e. the power of a Lorentzian function. The dimensionless numbers &;

and &; are respectively equal to \/% ~ 0.11 and 4; ~ 0.023. The result is

therefore a function of a single physical parameter, the ratio V;/E..
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Figure V.8. Result of a numerical calculation taking into account the quantum
character of atomic motion in the bi-valued potential Vi (z), with jumps between
g+ and g_ caused by spontaneous emission processes. Left: populations of dif-
ferent energy bands as a function of the ratio Vi /E,. Right: Variation in mean
kinetic enerqy M2 /2 in units of E,, with two possible definitions for v: the mean
square velocity +/(v?) and the width at 1/+/e of the velocity distribution. These
two quantities coincide for a Gaussian; here, the second definition gives a lower
energy than the first. Figure taken from Castin & Dalibard (1991).

This power-of-Lorentzian distribution is an interesting generalization
of the Maxwell-Boltzmann Gaussian distribution. When the power A of
the Lorentzian is large in front of 1, i.e. Vj > E,, the significantly popu-
lated velocity classes are small in front of ¥, and we then recover the Gaus-
sian function of (V.32):

(1+0%/92)"* = exp [~ AIn(1 + v /82)] ~ exp [~ Av?/0?] . (V.35)
On the other hand, if we decrease the ratio V;/E,, and therefore the ex-
ponent A, the wings of the distribution become more pronounced and we
finally reach, for A = 3/2, a distribution for which the mean kinetic en-
ergy M (v?)/2 is no longer defined. For A < 1/2, the distribution itself can
no longer be normalized, which means that there is no stationary regime:

particle velocities will increase indefinitely with time, as the Sisyphus mo-
lasses is not strong enough to keep them close to zero velocity.
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3-3 Quantum approach

To go a step further and get away from the various approximations made
above, in particular the assumption of a distribution P(z,v) uniform in z,
it is convenient to run a numerical simulation of classical particle motion
on this bi-valued potential V1 (z). This simulation leads to a minimum
rm.s. velocity of the order of 6v,, in good agreement with the previous
analytical model (Castin, Dalibard, et al. 1991). However, when the r.m.s.
velocity is down to a few recoil velocities, the de Broglie wavelength of
the atoms becomes a significant fraction of the optical wavelength A. This
raises legitimate questions as to the validity of the preceding semi-classical
treatment, which used the concept of the atom’s position z defined to a
precision much better than A.

To go beyond this, a quantum treatment of the atom’s motion is re-
quired, introducing the energy bands corresponding to the eigenstates in
the periodic potential and the transfer rates between bands due to spon-
taneous emission processes. This treatment performed by Castin & Dal-
ibard (1991) confirmed the conclusions reached here on the limits of cool-
ing, while at the same time refining them. The accumulated population in
the ground band is found to be as high as ~ 30% (figure V.8, left). More-
over, this treatment confirmed the non-Gaussian character of the velocity
distribution for relatively low values of V;/E,. The minimum root-mean-
square velocity is of the order of 5.5v,, while the width at 1/y/e, which
should be equal to the previous one for a Gaussian distribution, can be as
low as 2.2 v, (figure V.8, right).

3-4 Experimental results

We have already described the first experimental results obtained on cae-
sium (figure V.7), which confirmed the general law kg7 o Vj. An example
of the velocity distribution obtained for a shallow depth Vj is shown in
figure V.9. We can see that this distribution deviates significantly from a
Gaussian, and that it is very well fitted by a power of Lorentzian, with
A =~ 2 here. The width at 1/,/e of the velocity distribution is very narrow,
of the order of only 2 v;.

One of the major advantages of Sisyphus cooling, in addition to its very
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Figure V.9. Velocity distribution of 8" Rb atoms cooled in 3D optical molasses with
detuning A = —5I". The effective temperature is 1.2 uK, i.e. a half-width at 1/+/e
of only 1.8 v,. Note, however, that the distribution is clearly not Gaussian: the best
fit by a Gaussian is given by the dotted line, while fit by a power of Lorentzian,
in this case with exponent A = 2, gives a result perfectly superimposed on the
experimental curve. Image taken from Sortais, Bize, et al. (2000).

low temperature limit, is its robustness. The only requirement is to pre-
serve the essential ingredient - a different modulation of the Zeeman sub-
levels, with optical pumping preferably towards the lowest level. Sisyphus
cooling therefore continues to work when atoms are placed in a magneto-
optical trap: measurements by Drewsen, Laurent, et al. (1994) and Cooper,
Hillenbrand, et al. (1994) have shown temperatures well below the Doppler
limit, albeit with a rapid increase in this temperature with the number of
atoms trapped.

Sisyphus cooling also remains operational when the atoms are im-
mersed in an additional optical lattice. The combination of Sisyphus cool-
ing and a lattice that is highly detuned from the atomic resonance makes
it possible to create atomic microscopes, i.e. devices that enable the vi-
sualization of atoms localized at lattice sites. Sisyphus cooling fulfils two
functions: (i) cooling the atoms to a temperature well below the energy
barrier between two sites, so that a given atom remains localized at the
same site for the duration of the experiment; (ii) ensuring that the atom
continuously emits light, which can be detected via a microscope objective
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Figure V.10. Sisyphus cooling of cesium atoms trapped in a large-period optical
lattice (4.9 um). Each light point corresponds to a single atom. The estimated
temperature is 10 uK and the lattice depth 165 uK. Image extracted from Nelson,
Li, et al. (2007).

and a CCD camera. In this way, the atoms are individually observed, the
experiment being limited only by the optical resolution of the microscope
objective, which must be able to separate two adjacent sites. An example
is shown in figure V.10, for a relatively large-period lattice ~ 5 um (Nelson,
Li, et al. 2007). This experiment was then repeated and improved to image
atoms in a lattice with a period smaller than 1 um (Bakr, Peng, et al. 2009;
Sherson, Weitenberg, et al. 2010).

Finally, note that we have concentrated on the case of Sisyphus cooling
in a periodic potential. However, this mechanism can also be used as a
single-shot process, as in the inelastic bouncing of atoms in an evanescent
wave on the surface of a prism (Desbiolles, Arndt, et al. 1996; Ovchinnikov,
Manek, et al. 1997). The emission of a single fluorescence photon enables
the dissipation of a significant amount of energy, equal to the difference in
potential energy between the two internal sublevels under consideration.
This type of mechanism has also been used to cool fluoromethane (CH3F)
molecules electrostatically confined by their electric dipole moment (Zep-
penfeld, Englert, et al. 2012).
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Figure V.11. Inelastic rebound of atoms on an evanescent laser wave. The two
ground sublevels g1 and g, experience repulsive potentials of different values. The
atom arrives in the level g, which is strongly repelled by the surface. It then
undergoes an optical pumping process towards the level g, in the vicinity of the
surface, and leave on this level go, which is more weakly repelled than g,. The
total mechanical energy of the atom has therefore decreased in the rebound process
(Desbiolles, Arndt, et al. 1996; Ovchinnikov, Manek, et al. 1997).

4 Gray molasses

The above description of Sisyphus cooling, with a J, = 1/2 <+ J. = 3/2
transition, took advantage of the correlation between optical pumping rate
and light shift. The key point was to accumulate the atomic population
at the bottom of the potential valleys. For the J, = 1/2 < J. = 3/2
transition, this was ensured by taking a negative detuning, i.e. wy, < wa
(laser on the red of the atomic resonance). For this configuration J, < J.,
atoms were accumulated in the levels most coupled to light, leading to
maximum fluorescence photon emission. We will now look at the opposite
situation, J; > J., where optical pumping tends to accumulate atoms in
states weakly coupled to light.

4-1 The transition J, =1/2 < J. =1/2

To begin with, let us consider a J;, = 1/2 <+ J. = 1/2 transition in the same
one-dimensional lin L lin laser configuration as above. Several results will
remain valid; in particular, the light shifts of the two sublevels g, are still
spatially modulated, as are the optical pumping rates (figure V.12). How-
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Figure V.12. Sisyphus cooling for a transition J, = 1/2 <> J. = 1/2. A positive
detuning must be taken and the atoms accumulate in the ground sublevel least
coupled to light.

ever, the modulation of energy levels takes place with an opposite phase
to the previous case: at a point where the light is o polarized, the g, level
is not displaced, whereas the g_ level is. The phase of the modulation of
optical pumping rates is unchanged: o light always tends to accumulate
atoms in the g state.

To achieve Sisyphus cooling, the atoms must accumulate at the bottom
of the valleys. At a point where light is o polarized, the state g, must
therefore have a lower energy than the state g_. However, the level g, is
not displaced by light, whereas g_ is. We deduce that the light shift of g_
must be upwards, which means that the detuning of the laser must now be
positive: wr, > wa.

Once this positive detuning has been chosen, the treatment of Sisyphus
cooling for the J, = 1/2 <+ J. = 1/2 transition is in every respect similar
to what we saw for the J, = 1/2 <+ J. = 3/2 transition, with a bi-valued
potential and optical pumping rates equal (within a numerical factor) to
those given in (V.2) and (V.4). The only difference at this stage is that the
Sisyphus cooling mechanism will oppose the Doppler mechanism (which
is a heating mechanism for A > 0), whereas the Sisyphus and Doppler
mechanisms work together for a transition with J, = J, +1 and a negative
detuning A. However, this point may be negligible if the velocity ranges
associated with the two mechanisms are sufficiently different.
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Figure V.13. A A system that emerges in the dynamics ofa J, =1 < J. =1
transition illuminated by o4 light.

4-2 The transition J, =1+ J. =1

The passage from J, = 1/2 < J. = 1/2to J; = 1 + J. = 1 enriches
the problem considerably. The reason is that this transition allows the con-
struction of internal states not coupled to radiation, at any point in space.

Here, we present the proposal originally made by Shahriar, Hemmer,
et al. (1993) and Weidemiiller, Esslinger, et al. (1994). This is a 1D con-
figuration in which the amplitudes of the o1 polarizations oscillate in
space as before, but not necessarily in phase opposition. This configura-
tion is achieved using two light waves of the same frequency and intensity,
counter-propagating, each linearly polarized and such that their polariza-
tions make an angle ¢ (we took ¢ = 7/2 in §1). We will call this configura-
tion lin V lin.

As we saw in the previous chapter on coherent population trapping, the
fact that light is purely o+ polarized means that internal atomic dynamics
essentially occur in the A system (figure V.13): |[g,m = —1) > |e,m = 0) +
lg,m = +1), with couplings that can be written, for a suitable choice of
z-axis origin:

k1 (z) = Ko cos(kz + ¢/2). (V.36)

Eigenstates and energies for an atom at rest at a point z. We will as-
sume that the A detuning of the light waves is large in front of ¢, so we
can restrict our analysis to the two-dimensional subspace of the ground
level, made up of linear combinations of ¢g1. At any point z in space, we
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Figure V.14. Coupled and uncoupled atomic levels in the lin \/ lin configuration.
Motional coupling allows the transition from the uncoupled to the coupled state,
where the levels are close to each other. A second photon scattering process sends
the atom back to the uncoupled state, with a conversion of atomic potential energy
into photon energy [Physical image proposed by C. Cohen-Tannoudji in his 1995-
96 lecture at the Collége de France].

can identify a coupled state and an uncoupled state in this subspace, with
energies fwc and Awnc respectively:

h
lhe) o< kilgy) +r-lg-), hwe = A (k3 +£K2), (V37)
[Yne) o holgy) — Kilg-), hwne = 0. (V.38)

Using the expression (V.36) for the Rabi frequencies of the o waves, the
energy of the coupled state is written in this large A regime:
hk3

with V= —=

hwe = Vo [1 + cos(¢) cos(2kz)] A

(V.39)
Here we choose a positive A detuning, so that the coupled state is always
energetically above the uncoupled state (figure V.14).

Furthermore, as a result of its interaction with the light field, the atom
prepared in the coupled state can scatter photons, and the corresponding
rate is

2
Ko

A (V.40)

Yo ~ 70 [1 4 cos(¢) cos(2kz)]  with 4o =T
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The photon scattering rate for an atom at rest prepared in the state |¢nc)
is zero by construction, so an atom at rest in z (in a semi-classical approxi-
mation) will eventually fall into this state.

The Sisyphus effect in this context. Consider now an atom in slow mo-
tion, still in the semi-classical approximation and assume that this atom is
initially prepared in the state |¢)xc). Since the expressions of the states
|Yc) and [¢nc) depend on position, motion will create a coupling be-
tween these two states. More precisely, let us take the atom’s initial state
[4(0)) = |[¢nc[z(0)]) and write? its state at time ¢ as

[9()) = a(t) [Pnclz(D]) + B(#) [Yalz(t))), (V41)

with, if the atom moves slowly, |5| < |a| ~ 1. The evolution equation for
B is obtained using the Schrodinger equation:

dyne
dz

if = (wo—i% ) B —ia v (el =22, (V42)
where (i) the complex term ifiyc/2 has been added to the energy fiwc of
the coupled state to account for its finite lifetime under the effect of laser
irradiation, and (ii) we took into account the fact that the basis vectors |¢¢)
and |¢nc) rotate when the position z varies. Assuming that the atom’s
displacement over time 1/v¢ is small compared to the spatial period A/2
of the problem, the steady state of (V.42) reads

k
18] ~ # (V43)
o
with o in()
_ L NC, S
r= kwc‘ dz )= 1 + cos(¢) cos(2kz) (V:ad)

For a moving atom, the contamination of the uncoupled state by the
coupled state has the weight |3|2. It is maximal at points where the gap wc
between these two states is minimal: this is where the rotation frequency
kvp of the vectors |pc) and |[¢nc) is greatest. In particular, it is at these

2To go beyond the semi-quantitative arguments presented here, we refer the reader to C.
Cohen-Tannoudji’s 1995-96 course where the problem is discussed in detail.

points that the atom initially prepared in the state |¢)xc) has the highest
probability of scattering a photon, which (with probability 1/2) can cause
it to switch to the state |¢¢).

Once this process has taken place, the usual Sisyphus effect resumes:
the atom will climb a fraction of the potential hill in the coupled state, then
be optically repumped to the state |1)n¢) after a time 7 ~ 1/v¢ (figure V.14).
In the low-velocity limit, the energy lost in climbing the hill is Fc (24 v7) —
Ec(z). The atom can then start a new cycle: switch from |¢nc) to [¢c) by
photon scattering induced by motional coupling, and back from [¢¢) to
|Yne) by standard optical pumping.

The velocity-dependent force. Due to the z < —z symmetry of the
problem, the velocity-dependent force is necessarily an odd function of
v: F(—v) = —F(v). In the traditional Sisyphus effect leading to the force
(V.11), the lowest-order term is linear in velocity, and the corrections are in
v3, v%, .... In the case we are interested in here, we find from (V.43) a first
factor v? to obtain a non-zero population in the coupled state. The delay
effect in the establishment of the stationary regime, which causes the atom
to climb more hills than it descends, brings in an additional factor v (as in
§1) so that the force in the vicinity of zero velocity varies here as v3. The ex-
act result after spatial averaging over one period is written (Weidemidiller,
Esslinger, et al. 1994) :

F(v) = —€ hk (’“’)3 L (V.45)
V) = — — —, .

Yo po A
with the dimensionless numerical coefficient:

16 ., 2m cos(Z)
£(6) = 5 sin ¢cos¢/o :

——_—dZ V.46
1+ coscos Z)5 (V:46)

We can see that in order to have a non-zero force, it is necessary that

* sin ¢ must be non-zero; indeed, if ¢ = 0, x4 are equal at every point in
space, and coupled and uncoupled states do not depend on position.

® cos ¢ must be non-zero; indeed, if ¢ = 7/2 (linLlin configuration), the
energy of the coupled level hwc does not vary in space and there is no
energy loss in the Sisyphus process of figure V.14.
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Figure V.15. Variation of the force F(v) for a transition J, = 1 <> J. = 1
in a lin V lin configuration. Note the variation in v* of the force near the origin.
Parameters: kg = 04T, A = 4T, ¢ = w/4 [figure taken from Weidemiiller,
Esslinger, et al. (1994)].

We have extracted from Weidemtdiller, Esslinger, et al. (1994) the figure
V.15 showing the variation of F'(v) with velocity v for typical parameters.
It clearly shows the variation in v® in the vicinity of the origin. When the
velocity increases to such an extent that on average one optical pumping
cycle occurs as the atom travels through one period of the potential, then
the force felt is (to within one numerical coefficient) given by the maximum
force ~ £V felt on the |¢pc) level. This maximum force is comparable to
that found for the standard Sisyphus effect. For even higher velocities, the
energy loss due to optical pumping saturates at a fraction of V, and the
force decreases as 1/v, as we have seen for the standard Sisyphus effect.

Performance of grey-molasses cooling. To assess the cooling limit, let us
start with a semi-classical reasoning. The friction force, in v® near the ori-
gin, is weaker than the linear velocity force found for traditional Sisyphus
cooling. But the velocity diffusion coefficient (which we will not calculate
here) is also affected by the same additional v? coefficient, so that the ve-
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locity distribution, evaluated from (V.31)

P(v) x exp < /0 ' J‘gj&”)) dz/)

(VA7)

remains Gaussian, with an average energy kg1’ comparable to the modu-
lation of light shift V), as in the case of the standard Sisyphus effect.

However, this semi-classical reasoning is insufficient for a transition
Jg = 1 < J. = 1, since we saw in the previous chapter that there is al-
ways a dark state for this type of transition. It is expected that a fraction
of the atoms will accumulate in this dark state, which will be composed of
well-defined peaks in velocity in fv,. This dynamics; which has a specif-
ically quantum origin, is much slower than the semi-classical dynamics
(figure V.16): quantum dynamics results from a random walk in which a
given atom must approach the dark state family with a precision much bet-
ter than the recoil velocity, which requires numerous spontaneous emission
processes. Semi-classical dynamics, on the other hand, which brings atoms
to within a few recoil velocities of the center, requires only a few sponta-
neous emission processes if we start from a velocity distribution pre-cooled
by the Doppler effect.

4-3 The first gray molasses

The Sisyphus cooling mechanism we have just discussed in the J, = 1/2 <
Je =1/2and J, = 1 <> J. = 1 cases can be generalized to higher angular
momentum transitions of the J, <+ J. type with J. = J;, — 1 and J, = J,,.
For this type of transition, optical pumping is always towards the ground
sublevel least coupled to light. A positive detuning A must therefore be
chosen so that this least coupled state is also the lowest in energy, a neces-
sary condition for the Sisyphus effect to cause cooling and not heating.

Before going into a little more detail, we can highlight two points of
comparison with bright molasses:

* A clear advantage of gray molasses is that the fluorescence emitted
by the atoms decreases sharply, as the atoms are optically pumped to-
wards the less coupled sublevels, or even a dark state when it exists.
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Figure V.16. Evolution of the atom momentum distribution fora J, =1 < J, =
1 transition in a lin \V lin configuration. Time unit Tn = 2M /hk?* (parameters
for the sodium atom), kg = 02T, A = 4T, ¢ = w/4. We can clearly see the
two time scales for (i) Sisyphus cooling, (ii) subrecoil cooling [Figure taken from
Shahriar, Hemmer, et al. (1993)].

Some of the harmful effects of fluorescent light can therefore be re-
duced: repulsive forces between atoms as in the magneto-optical trap
and light-assisted inelastic collisions.

® One disadvantage of grey molasses is the sign of the detuning at which
it operates; this detuning must be positive, i.e. opposite to that of
Doppler cooling. There is therefore a competition between the cooling
force due to grey molasses, important for velocities such as kv < ¢,
and the heating force due to the Doppler effect with a positive detun-
ing, important for kv ~ I'. If the parameters of the experiment can
be chosen such that the separation between these two velocity scales
is well marked, which in practice imposes kv, < I', then this compe-
tition is not really a problem and Doppler heating can be ignored for
atoms cooled around recoil by grey molasses. This will be the case
for very broad lines, for which I' exceeds the recoil frequency w, by
several orders of magnitude.

The first cooling experiments on a J; <+ J. = J, — 1 transition were
carried out at 1D by Valentin, Gagné, et al. (1992) at the Aimé Cotton lab-
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oratory. This involved the J, = 3 <+ J. = 2 component of the D, cesium
line, which is a closed transition. The extension to 3D was made on the
same atomic line by Boiron, Triché, et al. (1995) and Boiron, Michaud, et
al. (1996) (see also Hemmerich, Weidemtdiller, et al. (1995) for a 2D version
onadJ;, =1 < J. = 1 transition). Boiron, Michaud, et al. (1996) mea-
sured temperatures in the microkelvin range at low atomic density, which
is lower by a factor of two than those measured on the bright transition
Jg =4 < J. =5 for the same atom.

4-4 The grey molasses revival

Since 2012, grey molasses have become very popular for cooling certain
atomic species such as lithium or potassium (Fernandes, Sievers, et al.
2012; Grier, Ferrier-Barbut, et al. 2013; Nath, Easwaran, et al. 2013; Sa-
lomon, Fouché, et al. 2013; Burchianti, Valtolina, et al. 2014; Sievers, Kret-
zschmar, et al. 2015). These are alkaline atoms, for which we recall that
the resonance line, which couples an S state to a P state, is split into two
components due to the fine structure of the excited level. This excited level
therefore has two sublevels, P, /, and P 5, and the two corresponding lines
are called D, and D.

From the D, line to the D; line. For Li or K, the traditional Sisyphus
cooling on the D, line (used successfully for Na, Rb, Cs) works poorly.
This D, line links the two ground hyperfine sublevels, F' and F' — 1, to the
four hyperfine sublevels of the P/, excited state: F'+1, F, F'—1, F—2 (here
F = 1+1/2, where I is the spin of the atomic nucleus). Standard Sisyphus
cooling works on the closed transition J, = F' <+ J. = F + 1, and requires
a negative detuning A (figure V.17, top). An additional repumping beam,
tuned to the J, = F' — 1 + J. = F transition, for example, recycles atoms
that would eventually be pumped to the ground F' — 1 level, but this re-
pump plays only a minor role in the problem. This picture is valid if the
hyperfine structure between the J. = F' + 1 and J. = F sublevels is suf-
ficiently large in front of the natural I width. This condition is very well
met for heavy alkalis such as rubidium and cesium, but not for lithium and
potassium (it is marginal for sodium).

The alternative is to use the D; line, which links the two ground hy-
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Figure V.17. Top: D line of an alkali atom and transitions used for standard Sisy-
phus cooling, with a main laser for cooling and a secondary laser for repumping.
Bottom: Dy line of an alkali atom; the two lasers play comparable roles in cooling.
Note that it is possible for the hyperfine levels to be inverted with respect to this
scheme, with the F level below the F — 1 level (this is the case, for example, for "Li
and *°K). The structure of the Dy line for °Li (I = 1, F = 3/2) is also slightly
different from what is shown here.
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perfine sublevels, F' and F' — 1, to the two hyperfine sublevels of the P, /,
excited state: F'and F' — 1 (figure V.17, bottom). An immediate advantage
of this line is that, for a given isotope, the hyperfine structure of the P, /,
excited level is significantly larger than that of the P;/, level: the various
transitions are therefore better resolved. However, we no longer have a
closed transition between a given pair of sublevels: each excited sublevel
(F or F' — 1) can de-excite towards the two ground sublevels. We are there-
fore obliged to consider the problem of atom-light interaction by simulta-
neously taking into account the two ground levels and the two lasers that
excite them. There is no longer one main cooling laser and one repumping
laser (with a minor role), but two lasers playing equally important roles.

Raman resonance and Fano profile. A point highlighted by Grier,
Ferrier-Barbut, et al. (2013), then by Nath, Easwaran, et al. (2013) and Sa-
lomon, Fouché, et al. (2013), is the importance of Raman resonance be-
tween the two lasers exciting the F' — 1 and F' ground levels respectively.
This point is illustrated on the temperature measurement shown in figure
V.18 extracted from Sievers, Kretzschmar, et al. (2015), obtained with an
intense laser (laser 2) driving the J, = 9/2 < J. = 7/2 transition and a
weaker laser (laser 1) driving the J, = 7/2 <» J. = 7/2 transition. When
the Raman detuning |A| is greater than I', a temperature of the order of
50 K is measured, which can be interpreted as the result of gray molasses
9/2 < 7/2 for the more intense laser, or 7/2 < 7/2 for the other. We
then have black or gray states obtained by superimposing states of a given
ground sublevel (9/2 or 7/2).

When Raman resonance occurs (A = 0), the temperature drops by an
additional factor ranging from 2 to 4, depending on the atomic species.
An unfavorable zone also appears, for a slightly positive Raman detuning.
This result can be compared with the profile found in the previous chapter
for a A system (figure V.19). In the case where the two light waves driv-
ing the atom are such that x; < k2, we found a variation of the excited
level population in the vicinity of the Raman resonance very similar to the
variation found by Sievers, Kretzschmar, et al. (2015) for temperature. Let
us recall here the origin of this asymmetric profile, called Fano profile. This
form of profile is encountered when interference occurs between a reso-
nant scattering process and a much flatter scattering process. Lounis &
Cohen-Tannoudji (1992) proved that the Fano model was indeed realized
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Figure V.18. a) Schematic of “°K levels and lasers used. b) Temperature in “°K
gray molasses, as a function of Raman detuning A = Ay — Ay (I} = 0.46 Iyye,
Iy = 6 Isat, Ag = 3T) [Figure taken from Sievers, Kretzschmar, et al. (2015)].
c) Explanation of the heating observed for a slightly positive Raman detuning A:
a resonant Raman transition leads to the excitation of the 9/2 dressed level by
photons from the most intense laser.

Figure V.19. Top: Model A system. Middle: Variation of excited population P,
with detuning Ay, measured in units of I'. The other parameters are (in units of
I'): k1 = 0.1, ke = 1, Ay = 2. (Bottom) : The two scattering processes for a
photon from laser 1, leading to the Fano profile in the middle figure.
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for the A system when k1 < ko < |A12|. To demonstrate this, we begin by
treating the interaction of beam 2 with the atom exactly. In the case where
Ko < |Ag|, this dressing of the g level induces the light shift:

Blkal?
B(ge) = "

Starting with the atom in the state |g;), scattering of a photon from the
weak laser beam (beam 1) can take place either non-resonantly, passing
only through |e) (figure V.19, bottom left), or resonantly via a Raman tran-
sition that leads the atom transiently into |go) (figure V.19, bottom right).
The narrow maximum of the curve for P, is obtained when Raman reso-
nance with the dressed state |g») occurs:

hAl = hAg + 6E(gg)

E(g2) = E(g2) +0E(g2) (V.48)

lg2) = 192),

(V.49)

We thus obtain a remarkable situation where P, cancels for the "bare" Ra-
man resonance A; = Ay, then passes through a maximum for the "dressed"
Raman resonance (V.49).

This model of a A system is of course a considerable simplification com-
pared with the real case of the D, line of potassium, for which 18 ground
states are coupled to 18 excited states. But it at least qualitatively accounts
for the gain obtained at the bare Raman resonance, which allows robust
dark states to appear, linear combinations of the 18 ground states from the
two hyperfine levels F,, = 7/2 and F, = 9/2. It also helps explain the
significant heating observed for slightly positive Raman detuning (figure
V.18¢).

Conclusion

The Sisyphus mechanism, whether "bright" for a transition such as J; < J.
or "gray" for a J, > J, transition, achieves a temperature essentially lim-
ited by the recoil of a single photon. It is relatively robust, since it de-
pends only slightly on the quality of the light beams used (polarizations,
wavefronts, detuning). The most detailed studies to date of the shape of
velocity distributions have been carried out in the bright case. They have
shown that the narrowest velocity distribution profiles are notably non-
Gaussian, which does not always facilitate comparison between different
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M A T/2r o Wy /27 Thin v v/vy

nm MHz om/s kHz pK om/s
Li 6 671 59 99 735 44  246* 25*
Li 7 671 59 85 63.0 60* 26.6 3.1*

Na 23 589 98 29 249 25 95 32
K 39 770 6 1.32 8.6 3* 25 1.9*
K 40 770 6 1.29 8.4 11* 4.8* 3.7*
Rb 87 780 61 059 3.8 1.2 1.1 1.8
Cs 133 852 52 035 2.1 2.5 125 3.6
Cs 133 852 52 035 2.1 1.1 0.83* 24~

Figure V.20. Minimum temperatures obtained by Sisyphus cooling. Data with
one star correspond to gray molasses, others to bright molasses. Measured rms
velocities v are all between 1.8 and 3.7 recoil velocities.

experiments, as the authors do not systematically use the same convention
for measuring their temperature.

Nevertheless, we have attempted to summarize the limit obtained by
Sisyphus cooling for different species of the alkali-metal family, with either
bright or grey Sisyphus cooling, in the table V.20. The essential point to
note is that, with the variety of mechanism, one can systematically achieve
a rms velocity of the order of a few recoil velocities, typically between 2
and 4 v,. Finally, it should be noted that the temperatures given here are
those measured for very dilute gases, in which collective effects such as
multiple scattering play no role. We will return to these effects in the final
chapter of this course.



Chapter VI

Optical lattices and sideband cooling

In previous chapters, we explored various cooling mechanisms for free
atoms: Doppler cooling, velocity selective coherent population trapping,
Raman and Sisyphus cooling. With the exception of Doppler cooling on a
broad line, all these mechanisms have a limit, the scale of which is given
by the recoil velocity v, = hk/M. Some mechanisms allows one to reach
velocity distributions with a width lower than v,, while others like Sisy-
phus cooling lead to widths of a few v,. These results are obtained for very
dilute gases, in which collective effects play a negligible role.

One of the major challenges of experiments with cold atoms is to reach
the quantum regime for the gas, in which the different wave packets, of a
size given by the thermal wavelength of the gas, overlap. Let us go back
to the conditions we need to achieve for this. Consider a gas with rm.s.
velocity vg = v, i.e. kgT = Mv? = h?k?/M. The thermal wavelength A\p
of the gas is related to the optical wavelength A\ = 27 /k by

Np = V2T A (VL1)
\/MkBT \/27‘(

and the quantum degeneracy threshold of the gas is obtained for a density
n~ S = (2m)3/2 A3 (VL.2)

For an optical wavelength of the order of 0.7 um, this corresponds to n ~
50 atoms/um3.

Achieving such a high density in the presence of laser cooling beams
is a challenge that has never been met for an atomic gas of uniform den-
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sity. The main obstacles are multiple photon scattering in the gas, as well
as inelastic light-assisted collisions between atoms. The only successful
strategy so far is that adopted in Innsbruck by Stellmer, Pasquiou, et al.
(2013) and described in detail in Chapter 3: a small part of the volume oc-
cupied by atoms was confined in a high-stiffness trap and simultaneously
made transparent to cooling light; this yielded a Bose-Einstein condensate
containing around 1 % of the total atom number present in the trap.

The aim of this chapter is first to review the limits imposed by collec-
tive effects induced by light, in particular the multiple scattering of sponta-
neously emitted photons. We will examine some of the remedies that have
been proposed, such as confinement in a trap with a high oscillation fre-
quency. This leads naturally to the last cooling mechanism we will discuss
in this lecture series: sideband cooling, well suited to an assembly of atoms
confined to the sites of an optical lattice. And finally, since the major ob-
stacle to obtaining degenerate gases is the multiple scattering of photons
emitted spontaneously during cooling, we will end this chapter by tack-
ling a recurring question in the field: is spontaneous emission, which is at
the root of the multiple scattering problem, indispensable to laser cooling
of atoms?
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Figure VI.1. An example of the difficulties associated with multiple scattering in
the case of Raman cooling. We start from the situation where an atom B is in
the desired state g, and we wish to pump the atom A as well. Once the pumping
of atom A has taken place, the emitted photon can be absorbed by atom B, thus
cancelling out the gain of the first process and causing further heating due to

. . !
recoil in the scattering process Kscat, — Kgepy-

1 Collective effects and multiple scattering

We have already come across the problem of multiple scattering several
times in the previous chapters. Let us briefly recall its origins by taking the
example of Raman cooling, where atoms have to be optically pumped from
one internal state g to another g; (figure VL1). First, an atom A absorbs a
photon from the laser in charge of this optical pumping and spontaneously
emits a photon through a Raman scattering process:

|A:go) + kL — |A:g1) + kscat, (VL3)

In a second step, the emitted photon with momentum k... propagates
through the gas of atoms and arrives at an atom B in the state |g;). There,
it can be absorbed, giving rise to another scattered photon with momentum
hkgca‘c:

|B:g1) + kscat — |B : ga) + Kbear a=12 (VL4)
and so on until the photon escapes the medium. Note that after scattering
the photon, the atom B may be in the internal state g; or g». In the second
case, the repumping process has contributed nothing: an atom initially in
the internal state g; (atom B) has simply been removed and another atom
(atom A) added.

1-1 The dangers of multiple scattering

Multiple scattering has several effects, all of which are detrimental when
it comes to approaching the quantum degeneracy threshold, i.e. obtaining
low temperatures and high densities :

¢ It creates an effective repulsive force between the atoms, which tends
to destabilize the trapped cloud. We discussed this effect when study-
ing the magneto-optical trap.

¢ It tends to bring atoms out of the dark state in the coherent population
trapping cooling mechanism, by blurring the coherence between the
different internal states that enter the wave function of this dark state.

¢ [t disrupts Raman cooling, and more specifically its repumping phase,
as mentioned above.
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Figure V1.2. Variation of temperature with atomic density in a Sisyphus cooling
experiment with gray molasses. Measurements made on a cloud of cesium atoms
by Boiron, Michaud, et al. (1996).

¢ It reduces the efficiency of Sisyphus cooling, by breaking the correla-
tion between light shift and optical pumping processes.

In addition, multiple scattering causes random recoil of photon-
scattering atoms and creates additional heating. It therefore appears to
be a major obstacle to obtaining quantum degeneracy directly from laser
cooling (Olshanii, Castin, et al. 1996).

In a number of experiments, an approximately linear variation in tem-
perature with sample density (at a fixed geometry) has been demonstrated.
Heating due to multiple scattering is then characterized by the coefficient
4L For example, for the Sisyphus effect (bright or gray molasses) in a
spherical geometry, the typical value for cesium gas is [figure VI.2 and

Townsend, Edwards, et al. (1995) and Boiron, Michaud, et al. (1996)]:

dr ,
—— ~600nK/(10"°cm™3
an nK/(10""cm™?),

(VL5)
which is considerable [100 times greater than the values given in Chapter
3 for narrow-line Doppler cooling (Katori, Ido, et al. 1999)]. In this regime,
starting from a dilute gas that would be cooled at the recoil limit (vy = v,
T = 200 nK), the temperature would double as soon as the density reaches
3% 10% cm ™3, whereas a density 10° to 10* times greater would be required
to reach quantum degeneracy at this temperature.
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Figure VI.3. An attempt to reduce the effect of multiple scattering: detuning of
the repumping laser beam, which also detunes the spontaneously emitted Raman
photons.

In our study of narrow-line Doppler cooling, we pointed out a (partial)
remedy to the problem of multiple scattering: leave the spherical geome-
try and switch to highly elongated clouds, so that spontaneously emitted
photons can rapidly leave the medium by escaping laterally. This remedy
also works, at least in part, for Sisyphus cooling: using grey molasses in a
very elongated geometry (600 x 12 x 12 microns), Boiron, Michaud, et al.
(1998) obtained a temperature of ~ 2 uK for a central density of 10'? cm 3.

1-2 A simple remedy...that does not work

How can we get around the problem of multiple scattering? Consider the
Raman cooling process and its optical pumping phase, which brings the
atom back from g; to g;, shown in figure VL.1. One might naively think
that it would be enough to sufficiently detune the light beam ki, with re-
spect to the resonance g2 ¢+ e to diminish the potential harm of the emitted
fluorescence photon (figure VI.3). Indeed, by conservation of energy, this
photon will also be detuned from the frequency of the g; « e transition.
Unfortunately, this remedy does not work: paradoxically, the effective ab-
sorption cross-section of the emitted photon by atom B remains equal to
the maximum permitted value ~ \?, despite the detuned frequency of this
photon relative to the atomic resonance!

The reason for this is shown in figure V1.4, already encountered in pre-
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b

wr, + (B2 — Eh +0E%)/h

(Ee — E1)/R

9

9

Figure V1.4. Scattering of a photon of frequency w in a A system when a laser
at frequency wr, drives the transition go <> e. The population of the excited state
P, has two maxima as w is varied: the first corresponds to the simple resonance
g1 <> e, the second to resonant Raman scattering involving the state go, i.e. the
state go displaced by the laser.

vious chapters. When a laser beam of frequency wy, "dresses" the atomic
transition g <> e and the transition ¢g; ¢ e is probed with another light
at frequency w of arbitrarily low intensity, the population of the excited
atomic state has two maxima. The first, easy-to-understand maximum cor-
responds to a probe photon in resonance with the transition g; <> e (with a
slight light shift from the bare transition due to the laser at frequency wr, ):

hw~ E, — Ej. (VL6)
The other, more subtle maximum is obtained for (figure VI1.4):
hw = hwy, + Es — B4 + 0F> (VL.7)

where § E is the light shift of the level g, induced by the laser w;. This is
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the condition for Raman resonance between the state |g;) and the state |g>)
, displaced by the laser wy,. This resonance corresponds to a Fano profile al-
ready discussed in Chapter 4 (Lounis & Cohen-Tannoudji 1992). The high
population value of the state e corresponds to a large absorption cross-
section of the photon w. This is exactly the frequency at which the photon
is emitted in the process shown in figure VI.3.

Finally, for a gas of uniform density, the only (partial) remedies to mul-
tiple scattering demonstrated to date are:

* choose a narrow transition and take advantage of the robustness of
Doppler cooling to still achieve appreciable phase-space densities,

¢ take a geometry that limits the mean free path of a photon in the sam-
ple, for example very elongated cigar-shaped geometries so that the
photon can escape laterally.

We will see in the next paragraph that the situation is favorably modified
in a trap.

1-3 The Festina lente regime

The festina lente regime, initially proposed by Cirac, Lewenstein, et al.
(1996) and further developed by Castin, Cirac, et al. (1998), involves plac-
ing atoms in a harmonic trap with a high oscillation frequency 2. More
precisely, we consider the situation where

Q> 7, (VL8)

v being the fluorescence rate caused by the cooling and the repumping
lasers.

For a pair of trapped atoms, heating during multiple scattering mani-
fests itself as follows: atoms a and b are initially on vibrational levels n,
and ny (figure VL.5). After an optical pumping process, the atom a is trans-
ferred to the level n, and a photon is emitted. The atom b can scatter this
photon and move to the level nj. If n), + n;, = ng + ny, the energy of the
pair of atoms is the same as initially, so nothing serious has happened. On



CHAPITRE VI. OPTICAL LATTICES AND SIDEBAND COOLING

§2. Collective effects and multiple scattering

\ Pay //
= i A=
AN = "
N é —
NN B e
v

Figure VI.5. An example of the effect of multiple scattering for trapped atoms. An
atom A goes from n,, to n), during a cooling process involving the spontaneous
emission of a photon. This photon can be scattered by atom B, which passes from
ny, to ng. If nl, + nj > ng + ny, (which is the case in this figure), the energy of the
pair of atoms A—B has increased, which is unfavorable.

the other hand, if n;, + n;, > n, + ny, the energy of the pair of atoms has in-
creased, and this heating, if repeated several times before the photon exits
the sample, will severely degrade cooling performance.

The argument of Cirac, Lewenstein, et al. (1996) is semi-qualitative: the
authors uses a reasoning based on the master equation within the rotating
field approximation to justify the fact that heating terms due to reabsorp-
tion processes must have a reduced contribution when the condition (V1.8)
is realized. More precisely, these terms correspond to a rapid rotation of
the coefficients in the master equation, as they oscillate at the frequency
(nl, +ny — ng — np) while relaxation takes place at a rate . Their contribu-
tion therefore becomes negligible in the limit © > ~, except for the secular
terms n,, + n; = n, + ny, which are energetically painless, as mentioned
above.

Castin, Cirac, et al. (1998) took up the problem in a more quantita-
tive way; they showed that for two particles placed in an isotropic har-
monic trap such as v < w < wy, the probability of reabsorption P was
strongly decreased in the festina lente regime. They considered the case
where the average distance between particles r is large in front of the
wavelength, i.e. kr > 1, and found that the result known for free atoms,
P ~ o/4nr? ~ 1/(kr)?, had to be replaced in the festina lente regime by
P ~ 1/(kr)®. The expected gain for the festina lente regime is therefore
validated by this precise theoretical analysis.
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There have been few experimental studies to test, even qualitatively,
the predictions made for the festina lente regime. We can mention the work
of Perrin, Kuhn, et al. (1999), who explored the influence of the power
of the repumping beam in a Raman cooling experiment. A temperature
reduction of the order of 20% was observed for a variation of -y by a factor
of 20. However in this experiment, the pumping rate v remained higher
than the oscillation frequency € in the trap: the regime festina lente was not
yet reached in this experiment.

1-4 Use of an optical lattice

Since the festina lente regime requires high oscillation frequencies 2, it is
natural to seek to realize it in an optical lattice formed by superimposing
laser standing waves in different directions in space. Depending on the
detuning chosen for these waves, atoms are trapped at the nodes or antin-
odes of the standing waves. The confinement potential of the atoms varies
on the optical wavelength scale, and high oscillation frequencies of up to
MHZz are obtained.

Although the analysis of Castin, Cirac, et al. (1998) does not apply as
such to an optical lattice, the intuitively hoped-for gain is indeed present
in the experiment: Wolf, Oliver, et al. (2000) studied the Sisyphus cooling
of caesium atoms in a deep optical lattice and showed that the heating
associated with multiple scattering was greatly reduced (by a factor 2 3)
compared with a gas of the same density cooled in free space.

The use of an optical lattice, with the high frequencies (2 it allows, opens
the way to the Lamb-Dicke regime, for which

hk?

Q = VI.
> W= oo (V1.9)

This is a different condition from festina lente given in (VL8), both condi-
tions being in practice realized simultaneously in the lattices we will con-
sider from now on.
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2 Sideband cooling

From now on, we consider atoms confined in a harmonic potential
1 MQ22? or a periodic potential V (z) = Vj sin®(kx), Vo > 0 (or their equiv-
alent in two or three dimensions). In the case of the periodic potential, the
oscillation frequency in the vicinity of a minimum of this lattice is given by
hQ = 24/VyE.. We assume that the Lamb-Dicke condition

| By . h%k?
n= m<1 with Er—hwr—ﬁ

is realized, which imposes the hierarchy of energies in the case of the lat-
tice:

(VL.10)

E, < hQ < Vp. (VL11)

In practice, Lamb-Dicke’s condition is easily satisfied in an optical lattice,
and it can also be satisfied in an optical tweezer, formed by a highly fo-
cused light beam, if it is sufficiently intense. First, we will look at what this
condition implies for the absorption and emission of photons by an atom.
We will then present the principle of sideband cooling, first for trapped
ions, then for neutral atoms.

2-1 The Lamb-Dicke regime

To introduce the important elements that characterize photon absorption
and emission processes in the Lamb-Dicke regime, let us consider an ele-
mentary process (figure V1.6): an atom (or ion) with two levels, g and ¢, is
prepared in its excited internal state e. We are interested in the final state of
the atomic center of mass when the atom has fallen by spontaneous emis-
sion into its internal ground state g. We will assume in this paragraph that
the atom feels the harmonic potential £ MQ?r?, independently of its inter-
nal state, g or e, the energy levels being (at 1D) E,, = (n + %) hQ, n e N.

The initial external state of the atom is an eigenstate of the motion in
the trap, characterized by the three vibrational quantum numbers n =
(ng, ny,n.). The spontaneous emission of a photon with momentum 7k
corresponds to

le,n) — |g,n') + k. (V1.12)
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Figure VI.6. Spontaneous emission of a photon by a two-level atom confined in a
harmonic trap. In the Lamb-Dicke limit, the transition with the greatest weight is
the line without recoil n!, = n,. The other two transitions with significant weight
correspond to nl, = n, + 1.

The natural question to ask concerns the possible values of n/, for a given
triplet n. To answer this, we note that the probability of arriving at a level
n’ involves, via Fermi’s golden rule (cf. Chapter 1):

[(n/|e* 7 |n)|?, (VL.13)

where 7 is the atomic position operator.

The spatial extension of the vibrational state n along a given axis, x for
example, is = /N, aon, where the length

B B\ /2
@b =\ 210

characterizes the extension of the ground state of the harmonic oscillator.
Let us restrict ourselves to weakly excited vibrational states, so that ,/n, is
of order unity. The order of magnitude of the argument of the exponential
entering (VL13), k - 7, is

(VL.14)

k7| ~ kaon ~n < 1, (VL15)
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where 7 is defined in (VI1.10). We can therefore expand the exponential
ik
e*T 14k P (VL16)

Let us take a one-dimensional point of view to simplify notation. The
position operator & is written as a function of the creation and annihilation
operators of the harmonic oscillator forming the trap along «:

# =20 (a+ah) (VL17)

V2

At order 1 of expansion (V1.16), we only obtain a non-zero matrix element
(n'|&|n) if [ln — n'| = 1

~ Qoh
n+1lzn) =vn+1 ,
0+ 1faln) = Va1 2

hence ki =7 (a+a').

(n—1|2[n) = vn ‘f/g (VL18)

From the above we can deduce the type of transitions that are dominant
in the Lamb-Dicke regime! (figure VL6):

¢ Transitions with no change of external state, i.e. n’ = n, obtained from
the first term of (VI.16).

¢ Transitions with a change of one vibration quantum along one axis,
while the other two remain unchanged, for example:
(VL19)

_ !
=Ny, N

r !
n,=n,*x1l, n .

Y =n,.

These transitions are obtained from the second term of (VI.16), and
occur with probability reduced by the factor n?(n,+1) (for n, = n,+1)
and 7’n,, (for n, = n, — 1) with respect to the transitions n’ = n.

Note that the predominance of the line n’ = n corresponds to a situation
formally very close to that of the Mdssbauer effect, in which a strongly
bound radioactive nucleus in a crystal emits a v photon with no change in
frequency due to recoil.

!t can be shown that the average energy increase during the spontaneous emission pro-
cess is independent of n and always equal to E.
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Figure V1.7. Principle of sideband cooling for a trapped ion. A laser of frequency
wr, = wa — §) causes the ion to change state from |g, n+ 1) to |e, n). Spontaneous
emission occurs preferentially at the |e,n) — |g,n) transition, so that a quantum
1< is dissipated (in the form of photon energy) in this process.

2-2  Experiments on trapped ions

The first sideband cooling experiment, carried out in Boulder by Diedrich,
Bergquist, et al. (1989), succeeded in preparing an ion in the vibrational
ground state of the trap. This was a %*Hg™ ion, cooled on the nar-
row transition 25 /o <+? D5 /> (a long-lived electric quadrupole transition:
1 ~0.1s).

The principle of cooling is illustrated in figure 1D. The ion is illuminated
by a laser tuned to the transition

absorption: lg,n+ 1) — |e, n), (V1.20)

i.e. its frequency is

wr, = wa — (VI.Zl)

This choice gives rise to the name sideband cooling: in the ion’s rest frame of
reference, the absorption frequency is wa. In the laboratory frame of refer-
ence, the ion oscillates at the frequency 2 and its absorption and emission
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spectrum is made up of a central band ws and sidebands wa £ nf2. The
cooling laser is tuned to the first sideband on the red side of the resonance.

With the choice (V1.21), the resonant absorption of a photon results in a
one-unit decrease in the vibrational quantum number. Once in the excited
state |e,n), the ion can fall back into the ground state by spontaneously
emitting a photon. In the Lamb-Dicke limit, this emission takes place with
a high probability (cf. fig. VI1.6) on the transition

spontaneous emission: le,n) — |g,n). (V1.22)

Each absorption-spontaneous emission cycle thus reduces the vibrational
state by one in average, until the ion reaches the vibrational ground state
n=0.

The stationary state is characterized by the populations of the different
vibrational levels 7,,, with mg &~ 1 and 7,, < 1 for n > 1. The ratio between
mo and m; is obtained by equating the fluxes g,n = 1 — ¢g,n = 0 and
g,n =0 — g,n = 1. The first is (figure VL8, left)

2,2

K
m%zﬁ, (V1.23)

where « is the Rabi frequency of the excitation laser, reduced by the
Lamb-Dicke factor n? to account for the absorption matrix element (n =
0le'*@|n = 1).

lg,n=1) = |le,n=0) — |g,n=0) :

The flux g,n = 0 — g,n = 1is given by non-resonant excitation of the
excited states e,n = 0 or e,n = 1, followed by de-excitation to g,n = 1
(figure VL8, right). The detuning A for the excitation process is equal to {2
in the first case and to 212 in the second case [cf. (VI.21)], so that

T 2,2
lg,n=0) = |le,n=0) = |g,n=1) yéﬂlzzﬁﬂz , (V1.24)
b L w2np?
lg,n=0) = le,n=1) = |g,n=1) fyéll ~ 1 COEk (VL.25)
and the total rate? is yo_1 = 7521 + ’y(()lzl. The equality
T0Y0—1 = T171—0 (V1.26)

2The probabilities of the two paths are summed here, not their amplitudes. One can show
that this is legitimate since we are taking the average over the momentum carried away by
the scattered photon during the optical pumping process.
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Figure V1.8. The two processes to consider when determining the steady-state of
sideband cooling. Left, flow from g,n = 1 to g,n = 0. Right, flow from g,n =0
to g,n = 1 with two possible relay states.

then leads to (Wineland & Itano 1979)

7T1~5F2

Bx <l (V1.27)

The populations of the other excited states (n = 2,3, ...) are even smaller
than m; in the imit T’ < Q.

One often uses the value of 7 to judge the efficiency of sideband cool-
ing, trying to make it as close to 1 as possible. We can also look at the
average number of excitations®

n= E Ny,
n

as well as at equilibrium temperature. It can be shown that the populations

(V1.28)

.. _ 2
3In the limit (V1.27), we have 7 ~ :—(1) ~ % %
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Figure VI.9. Sideband cooling of a single ion 98Hg+. The upper panel shows
the spectrum before cooling, with roughly equal weights for the two transitions
at wa £ Q, corresponding to |g,n) — |e,n £ 1). The main figure shows the
spectrum after cooling: the lower sideband at wa — §2 is much reduced compared
with the upper sideband at wa + ). From the relative weight of these two lines, one
can deduce the population ratio 71 /7 [figure extracted from Diedrich, Bergquist,
et al. (1989)].

7, follow a Boltzmann law ,, « exp(—nhQ2/kgT), i.e.

1 Q)
n = = kT = h

exp(hQ/kpT) — 1 M+ 1) (V1.29)

In the experiment by Diedrich, Bergquist, et al. (1989), the 1*Hg™ ion
was cooled essentially to the g,n = 0 state with 79 = 0.95. This was
deduced from the absorption spectrum of the trapped ion, which indi-
cated that the first red sideband, corresponding to the |g,n) — |e,n — 1)
transitions, was much reduced compared with the first blue sideband
lg,n) — |e,n + 1) (figure VL9).

The experiment of Diedrich, Bergquist, et al. (1989) required a transition
g < e with a long-lived excited state e, which seems restrictive. However,
we have seen in previous chapters that it is possible to replace the direct
transition g <+ e by a Raman transition g; > g via an excited state, and
thus obtain an effective two-level system, where the lifetime y~! of g» is
adjustable: all that is needed is to change the power of the repumping
beam which brings the atoms back from g» to g;. This principle was im-
plemented by Monroe, Meekhof, et al. (1995) following an initial proposal
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Figure V1.10. Sideband cooling via a Raman transition. The cooling process has
been separated into two phases, although both processes can occur simultaneously.
The atom is initially in the internal state g1 on vibrational level n (1D version).
Left: coherent coherent coupling takes it to the internal state g, and vibrational
level n—1. Right: an optical pumping process involving the spontaneous emission
of a photon (dotted line) returns the atom to the state g1. In the Lamb-Dicke
regime, this process occurs on average without any change of external state, so
that the balance of the cycle is a decrease in the vibrational number by one unit.

by Heinzen & Wineland (1990). Sideband cooling via a Raman transition is
now a standard technique in trapped-ion physics, and leads to an average
population of the vibrational ground state greater than 0.99.

2-3 The case of neutral atoms

The principle of sideband cooling for neutral atoms is very similar to that
for a trapped ion. The atom is initially in the internal state g;, which in
practice is a Zeeman sublevel of the ground state, and in a vibrational state
n = (ng,ny,n,;) of the trap confining the atom.

e A coherent coupling, which we will detail in the next paragraph,
causes the atom to be transferred to another internal state g; and a
lower vibrational state, e.g. n’ = (n, — 1,ny,n.).

¢ An optical pumping process brings the atom back from g, to g; at a
rate v chosen to be small compared with Q. In the Lamb-Dicke limit,
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this optical pumping generally does not modify the vibrational state
of the atom, which therefore ends this cycle in the state |g1,n’): the
atom energy has been reduced by the amount £(2,, this energy being
carried away by the fluorescence photon emitted during the optical
pumping from g to g;.

¢ This procedure is repeated for the spatial directions y and z.

The main difficulty in implementing this procedure lies in creating a
trap of sufficient stiffness. Indeed, the oscillation frequency {2 must be large
compared to w, and ~, which leads to frequencies /27 of the order of
several tens of kHz. As we have already announced, a well-suited method
for obtaining such frequencies is to use an optical lattice (see course 2012-
13). This lattice can be 1D (Perrin, Kuhn, et al. 1998; Vuletic, Chin, et al.
1998), 2D (Hamann, Haycock, et al. 1998) or 3D (Kerman, Vuletic, et al.
2000; Han, Wolf, et al. 2000).

In all that follows (except in § 2-5), we will treat each lattice site as an in-
dependent harmonic well. This approximation is valid when the condition
(VL.11) is satisfied, if we restrict ourselves to weakly excited vibrational
states: the non-harmonicity of the lattice potential is then negligible, as is
tunneling to neighboring wells. A complementary advantage of the op-
tical lattice is that it can cool a large number of atoms simultaneously, in
principle up to one atom per lattice site. However, as soon as two atoms
are present at the same site, at least in the case of a 3D lattice, light-assisted
collisions lead to the loss of this pair of atoms.

It is also possible to achieve sideband cooling in a single well, obtained
in an optical tweezer formed by a tightly focused laser beam. Because of
the losses just mentioned, at most one atom is present in the tweezer at
any time. The first experiments in this direction are recent, and have been
carried out in Boulder and at CUA (MIT-Harvard) by Kaufman, Lester, et
al. (2012) and Thompson, Tiecke, et al. (2013).

Very recently, the sideband cooling technique has been implemented to
image lattice gases (Patil, Chakram, et al. 2014), and observe individual
atoms trapped on optical lattice sites in quantum gas microscopy exper-
iments (Cheuk, Nichols, et al. 2015; Parsons, Huber, et al. 2015; Haller,
Hudson, et al. 2015) (figure VI.11). These are lithium and potassium atoms
(fermionic isotopes) for which Sisyphus-type cooling works poorly due to
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Figure VI.11. Fluorescence of individual °Li atoms trapped in a cubic optical
lattice and experiencing sideband cooling. The filling factor is about 40% at the
center of the cloud [figure extracted from Parsons, Huber, et al. (2015)].

the hyperfine structure being too small in the excited state (see Chapter 5).
Sideband cooling, coupled with high-efficiency imaging, makes it possible
to observe individual atoms while freezing their position, to within one
period of the optical lattice *.

4Haller, Hudson, et al. (2015) uses a variant of sideband cooling, called electromagneti-
cally induced transparency cooling, first proposed by Morigi, Eschner, et al. (2000). There,
ones takes advantage of a dark resonance between g1,n and g2, n to minimize the influence
of transitions without change of the vibrational state, and maximize the desired transitions
gi,n — gz,n — 1.
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2-4 How to achieve coherent coupling

Achieving coherent coupling is the trickiest part of implementing sideband
cooling for trapped atoms. Let us take a one-dimensional approach to sim-
plify the discussion: we need to find an operator W with non-zero matrix
elements between |g1,n) and |g2,n — 1):

(g2, m — 1|{W|g1,n) # 0. (VIL.30)

The operator W must therefore change both the atom’s internal state (g; —
g2) and its external state (n — n — 1).

Use of auxiliary laser beams. Conceptually, the simplest way to induce
the transition g1 — g¢- is to use a pair of laser beams inducing a momentum
transfer hq (Bouchoule, Perrin, et al. 1999; Han, Wolf, et al. 2000). In this
case, the matrix element of the coherent coupling factorizes into

(2,1 — 1|W|g1,n) = (ga|Winternal|g1) X (n — 1" |n) (VL31)

and the spatial part is simply calculated in the Lamb-Dicke regime. The
direction of the vector g must be alternated along to three orthogonal axes
to obtain a 3D cooling (Han, Wolf, et al. 2000).

Use of a radio-frequency wave. To change the internal state, a radio-
frequency (or microwave) transition can do the trick. But as the wave-
length of this radio-frequency is very long compared to the extension of
the vibrational states, the action of W on the atomic external variables is
essentially negligible, so that

radio-frequency: (g2, n—=1|W|g1,n) = (ga|W|g1)x (n—1|n) = 0 (VL32)

because the vibrational states |[n — 1) and |n) are orthogonal.

However, it is possible to get around this difficulty by spatially shifting
the bottom of the potential wells of g» with respect to those of ¢, so that the
vibrational state |n); (for the internal state ¢;) is not centered in the same
place as |n)z (for the internal state g2). We then have:

(g2, n—=1[W|g1,n) = (g2|W|g1) xo{n—1|n)y # 0.
(VL33)

radio-frequency (again) :

(a) (b)
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Figure V1.12. The four steps leading to sideband cooling via the vector compo-
nent of the light-shift operator (see text). This method has been implemented by
Hamann, Haycock, et al. (1998) and Kerman, Vuletic, et al. (2000).

This method is known as projective sideband cooling and has been imple-
mented® in 1D by Forster, Karski, et al. (2009), then in 3D by Li, Corcovilos,
et al. (2012). The spatial shift between the potential wells for the two inter-
nal states g; and g is obtained by taking advantage of the fact that the
light-shift operator, which creates the optical lattice potential, has a vec-
tor component which, for alkaline atoms, is significant if the laser creating
the lattice is not too far from the atomic resonance: the light potential then
depends on the internal state, which is the desired condition.

SPerrin, Kuhn, et al. (1998) used a Raman transition induced by two laser beams to cou-
ple g1 and g2, but these beams propagated in the same direction and did not induce spatial
coupling. Their action was therefore equivalent to a radio-frequency coupling.
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Use of the optical lattice itself. Since the light-shift operator at the origin
of the lattice can have a vector component that couples the different Zee-
man states, one can take advantage of it in the following way [Hamann,
Haycock, et al. (1998) and Kerman, Vuletic, et al. (2000)]:

* One fixes a target value for the oscillation frequency 2 and apply a
static magnetic field that shifts the energy of gs relative to g; by about
1. Here, g1 and g2 are two Zeeman sublevels of the same hyperfine
level, e.g. |g1) = |F,mp = F) and |g2) = |F,mp = F — 1) (figure
VI.12a).

¢ The optical lattice is applied. The scalar component of the light-shift
operator, which is the dominant term, creates identical potential wells
for g1 and g with frequency Q. In combination with the effect of the
static magnetic field, the states |g2, n) are therefore at the same level as
the states |g1,n + 1) (figure VI.12b).

¢ Consider now the vector component of the light-shift operator within
a given multiplicity {|g1,n + 1), |g2,n) }: the energy eigenstates in the
lattice are not factorized in the form |g;,n), but are superpositions
algi,n + 1) + B|g2,n). The only state that remains factorized is the
state |g1,0), as there is no state involving g, in its immediate vicinity
(figure VI.12¢).

¢ An optical pumping beam is applied, destabilizing the state g» and
repumping the atoms back to g;. The atomic eigenstates in the lattice
thus acquire a finite lifetime as they are contaminated by g», with the
exception of the ground state |g;,0) (figure VI.12d). The desired dark
state is thus obtained.

Most exploratory experiments on sideband cooling in optical lattices
have been carried out with cesium atoms. Performance after optimization
is comparable from one experiment to the next. In one and two dimen-
sions, populations my > 95 % were observed by Hamann, Haycock, et al.
(1998), Morinaga, Bouchoule, et al. (1999) and Forster, Karski, et al. (2009).
In three dimensions, Kerman, Vuletic, et al. (2000) and Li, Corcovilos, et al.
(2012) obtained 7y ~ 80 %.
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2-5 Adiabatic opening of a lattice

The temperature of the atoms after sideband cooling is given by (V1.29).
Unless we succeed in producing an average excitation number 7 extremely
small in front of 1, this temperature is generally of order 2. These are
therefore relatively high temperatures, since large values of 2 (compared
with w,, for example) are required for sideband cooling to work properly.

Nevertheless, once the atoms have been cooled in an optical lattice, a
simple way of lowering their temperature (without changing the entropy
of the gas) is to adiabatically lower the lattice depth (Kastberg, Phillips,
et al. 1995; Kerman, Vuletic, et al. 2000). Starting with atoms cooled in the
ground state n = 0 at the lattice nodes, we show below that this leads to
a velocity distribution whose width is below the recoil limit. We will only
outline the reasoning here, and refer readers to the 2012-13 course (Chapter
2), where the physics of optical lattices was studied in more detail.

Since the potential of the optical lattice is periodic, the proper tool for
analyzing the dynamics of an atom is the formalism deduced from Bloch’s
theorem. Let us consider once again the 1D case to simplify notation, and
write the lattice potential V (x) = Vj sin®(kz), with period a = \/2 = 7/k.
Bloch’s theorem indicates that we can search for the eigenstates of the
single-atom Hamiltonian in the form of Bloch states ¢, ,(z) = €'%® u,, ,(z),
where the function w,, 4 is periodic of period @ and the quasi-moment g is
chosen in the first Brillouin zone

—rja<q<m/a &

—k<q<k (V1.34)

The indexn = 0, 1,2, - - - marks, for a fixed quasi-momentum ¢, the differ-
ent energy states ranked in ascending order. When ¢ varies in the Brillouin
zone, we obtain for a given n an energy band E, (¢) (figure VI.13).

Choosing a high oscillation frequency for the Lamb-Dicke regime [con-
dition (VI.11)] implies that the lattice depth Vj is large compared to the gap
between two consecutive bands, which is of order S} for weakly excited
bands. The width of the bands, determined by the tunneling effect from a
given well to the neighboring wells, is then very small compared to 2 and
these bands are almost flat, with energy equal to (n+ 3)7€2: each lattice site
can be treated as a harmonic well in which the atom is trapped, unable to
jump to a neighboring site.
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Figure V1.13. First energy bands E,(q) (unit E, = h?k?/2m), as a function of
q/k for the potential V (x) = V} sin2(k:a:). From left to right, Vo / E, =(20, 4,0).
The shaded rectangle represents the energy zone below the height of potential V.

After sideband cooling, let us assume that each atom has been placed
in the ground state of a lattice site (our reasoning can easily be generalized
to the case 7 # 0). We make no assumptions about the filling rate of the
lattice, and neglect any coherence phenomena between different sites. The
density operator describing this situation is a statistical mixture of the dif-
ferent states 1, 4(z) with n = 0 and with ¢ uniformly distributed in the
first Brillouin zone:

+k
pox [ ol da (VL35)

When we decrease the depth of the lattice, i.e. vary the amplitude of
the potential as V'(z,t) = Vi(t)sin?(kx), we retain the periodic nature of
the problem. This remains true even when the potential is completely ex-
tinguished, since the potential V' (x) = 0 can be seen as a potential of period
a and zero amplitude. In the case V, = 0, the energy bands are obtained
simply by starting with the energy of a free particle E(p) = p?/2M, then
folding this parabola. To do this, we write the momentum in the form
p = (g + 2jk), with j € Z and ¢ in the first Brillouin zone (figure VI.13,
right).

Since the potential retains its periodic nature with period a, Bloch’s the-
orem continues to apply at every instant of the decompression. More pre-
cisely, starting from a Bloch state [t 4), the atom will remain in a Bloch
state e'9”u(z), where u(z) is a periodic function: the quasi-moment g is
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E/E

Figure V1.14. Adiabatic opening of an optical lattice. Atoms initially occupy the
ground band of the optical lattice, with all quasi-momenta q equally populated.
When the lattice intensity is decreased, the periodicity of the problem entails that
the quasi-momentum is conserved. If the intensity variation is sufficiently slow,
the atoms remain on the ground band until the lattice is completely extinguished.

therefore a constant of motion. For decompression to be accompanied by
optimum cooling, we simply need to ensure that the lattice is extinguished
slowly enough for the transfer from the ground band to the excited bands
(at a given ) to be negligible (figure V1.14). The criterion for this, estab-
lished in the 2012-13 course, is that the extinction time 7 should be large in
front of 1/w;.

When this condition is met, the final state is the same statistical mixture
as (VIL.35), but with the energy of a state |y ) corresponding to the case
of the free particle E(q) = h%q?/2M. Since the initial quasi-momentum
q is randomly and uniformly distributed in the Brillouin zone, the mean
kinetic energy after lattice extinction is:

+k h2
5 Qk/ oar 4= EM“

Cooling the atoms in the ground state of each lattice site therefore offers

(VL.36)
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the possibility, via adiabatic opening, of producing a gas at subrecoil tem-
perature, with a rm.s. velocity vy ~ 0.6 v;.

On a practical level, sideband cooling followed by adiabatic lattice de-
compression was studied by Kerman, Vuletic, et al. (2000). The fraction of
atoms in the ground band after cooling was ~ 80% and the rm.s. veloc-
ity after adiabatic decompression 1.2 v,. Kerman, Vuletic, et al. (2000) also
measured the variation of temperature with atomic density, and their re-
sult clearly illustrates the gain made by the lattice in reducing the adverse
effects of multiple scattering. They found

dT

5, <8 nK/(10'%cm™3),

which is 100 times smaller than the result (V1.5) found for Sisyphus cooling.

(V1.37)

Lattice opening and interactions. Our reasoning concerning adiabatic
lattice opening has been made in the limit where interactions between
atoms play a negligible role during opening. The final state is then a gas
of low kinetic energy (below the recoil limit), but not condensed. This is
because two atoms initially occupying two distinct lattice sites are in or-
thogonal quantum states (the Wannier functions associated with each site).
In the absence of interaction, they will remain in orthogonal states during
the Hamiltonian evolution describing the opening. There can thus be no
macroscopic accumulation of particles in an individual state in this case.

The approximation of neglecting interactions is legitimate if the lat-
tice filling factor is low [10~2 in the experiment of Kerman, Vuletic, et al.
(2000)]. On the other hand, if one starts from a situation with all sites oc-
cupied by an atom and in the presence of repulsive interactions, the initial
state can be seen as a Mott insulator with unit filling factor. Adiabatic de-
compression of the lattice in the presence of interactions should then lead
to a condensed, superfluid phase with zero temperature.

3 Can we do without spontaneous emission?

In this course, we have reviewed a number of more or less complex mech-
anisms for increasing the phase-space density of an assembly of atoms,
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whether free or trapped. Common to all these mechanisms is the phe-
nomenon of spontaneous emission. It is thanks to this that we have been
able to reduce the disorder of the gas, entropy being transferred to the
modes of the electromagnetic field. But this spontaneous emission also
imposes limits on cooling.

e At the fundamental level, several of these mechanisms lead to a rm.s.
velocity vy of the order of the recoil velocity v,, due to the random
nature of the recoils taken by the atom when it spontaneously emits a
photon.

* Ona practical level, spontaneously emitted photons can undergo mul-
tiple scatterings before leaving the sample, creating additional heating
that can be considerable for dense gases, as we recalled in § 1.

This brings us to a natural question: is spontaneous emission really
essential for radiative cooling? Even if the intuitive answer to this question
is yes, we shall see that there are nuances to it. On the other hand, some
authors believe they have experimentally observed (slight) cooling of a gas
of atoms without spontaneous emission (Corder, Arnold, et al. 2015). In the
absence of precise information on these very recent experiments, we will
not discuss them here in detail, but we will set out in this final section a
number of results that restrict the type of effects that can be expected.

3-1 Hamiltonian evolution of a gas without interaction

The Hamiltonian evolution of a gas of /N non-interacting atoms cannot lead
to an increase in its phase-space density or in the occupancy of any individ-
ual quantum state. We have already detailed this point in the introductory
chapter of the course [see also Ketterle & Pritchard (1992)]. If the Hamilto-
nian is written as a sum of one-particle Hamiltonians

N
Ht)=> H™M(@), (V1.38)
n=1

then the evolution of the single-particle density operator is unitary and its
eigenvalues are constant over time: we can neither increase nor decrease
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V(X) V(X)

-

| > X . > X

Figure VI.15. Adiabatic opening of a harmonic trap: the population of each quan-
tum state remains constant.

the occupancy of a given state, but simply convert one state into another.
For example, by adiabatically opening a trap, it is possible to convert states
of low spatial extension zy and high r.m.s. velocity vy, into states of large
zo and low vy. The temperature, defined by kg1 = M v, then decreases,
but each quantum state in the trap retains its population (figure VI.15).

3-2 Atoms and quantized electromagnetic fields

When a set of atoms is coupled to the quantized electromagnetic field, the
Hamiltonian of the system is richer than (V1.38). Let us restrict ourselves to
the single-atom case and use the electric dipole approximation to describe
the atom-field coupling. The total Hamiltonian is written:

H=H,+Hp —D-E(#), (VL39)

where H, and Hp represent the Hamiltonians of the atom and of the free
electromagnetic field. The atom Hamiltonian is

~2

N D N
HA = — + HA,intern-

v (VLA40)

In these expressions, 7 and p represent the position and momentum opera-
tors of the atom center of mass, H A,intern 15 the Hamiltonian describing the
evolution of the atom internal variables and D its electric dipole operator.
In the simple two-level model of the atom we have used many times in this
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lecture series, the dipole operator is written as

D =d|e){g| +Hec (V1.41)

where the vector d represents the reduced dipole of the transition. The

field modes are characterized by their wave vector k (with w = ck) and

polarization €, and each mode is indexed by the compact notation A =

(k, €). The Hamiltonian of the free electromagnetic field is
Hp = hwalax (V1.42)

A
where a! and a, are the photon creation and annihilation operators in the
mode ). Finally, the electric field operator E(r) is written as

B(r)=>Y & eaye®*" +He  with & =1 /260%, (VL43)
A

where L? represents the quantization volume, and the wave vectors k are
k= Q%n, n € 73.

When no light beam reaches the atom, the electromagnetic field is the
vacuum state, in which no mode is populated:

vac) = [ 10)a-
A

When the atom is illuminated by a beam of light, some modes of the elec-
tromagnetic field are occupied. The absorption and stimulated emission
processes correspond to the destruction and creation of photons in these
occupied modes, while the phenomenon of spontaneous emission corre-
sponds to the creation of photons in initially empty modes®.

(VL.44)

3-3 Use of a non-classical field

If no additional constraints are placed on the field state, it is possible to find
situations where cooling (in the sense of accumulation in the same quan-
tum state) occurs without populating radiation modes that would initially

®More precisely, the probability of creating a photon in a mode X already containing n
photons will be proportional to ny + 1: the term n} is due to stimulated emission and the
term "1" to spontaneous emission.
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Figure VI.16. 1D laser configuration with two counterpropagating running
waves of frequency w and w' inducing a resonant transition between the zero mo-
mentum state p = 0 and the momentum state p = hK with K = k + k'

be empty. Let us take a 1D example, illustrated in figure VI.16. An atom
is illuminated by two counter-propagating beams of frequency w = ck and
w' = ck’ chosen such that w — ' = hK?/(2M) with K = k + K/, so that
the Raman transition between the zero momentum state p = 0 and the mo-
mentum state p = AK occurs resonantly. The detuning from the excited
state can be assumed to be large enough to neglect the population of this
state. Similarly, for sufficiently weak atom-light coupling, we can neglect
the non-resonant processes that would lead to the population of p = nhAK
states withn # 0, 1.

First, let us assume that the initial state of the atom + field system is

[(0)) = |p = 0) ® [N, N, (VL.45)
with N photons in the mode w and N’ photons in the mode w’. Note that
this notion of explicitly defining the number and momentum of photons
in a given mode only makes sense if these modes are defined by a physical
(ring) cavity, which we will assume from now on. The state of the system
at time ¢ can be written as

(1)) = alt)lp = 0) ® [N, N') + B(t)lp = hK) @ [N — 1,N' +1) (VL46)

112

since the atom goes from p = 0 to p = hK by absorption of a photon
in the mode w and stimulated emission of a photon in the mode w’. The
corresponding matrix element is deduced from the action of the operators
a''a and is therefore proportional to /N (N’ + 1). Starting from p = 0 at
time ¢t = 0, the probability of finding the atom in state p = 0 at time ¢ can
then be written as

P(p=0:tlp=0:0) = cos? ( NIV + 1) aot) : (VI.47)

where the parameter «y is ag = k3/(4A), ko being the single-photon Rabi
frequency characterizing the atom-light coupling, and A the detuning of w
and w’ from the atomic resonance frequency (|A| > w,,T).

Now let us assume that the initial state of the atom + field system is

[4(0)) = |p = hK) ® [N, N'). (V1.48)
A similar reasoning indicates that the state at time ¢ is of the form
P(t) =v(t)|p=hK) @ |N,N') +5(t)lp=0) @ [N +1,N' —1) (VL49)

with absorption in the mode w’ and stimulated emission in the mode w.
The probability of finding the atom in the momentum state p = 0 at time
t, knowing that the atom was in the momentum state p = hK at time 0, is
therefore as follows

P(p=0:tlp=hK :0)=sin? (\/(N—f— 1)N’ aot) .

(VL50)

We can then choose a pair N, N’ and a value of the parameter oot such
that’:

* The atom initially in state p = 0 has a probability close to 1 of still
being in this state at time ¢:

VN(N'+1) apt = 0mod 7.

¢ The atom initially in the p = 7K state has a probability close to 1 of
being in the p = 0 state at time ¢ :

V(N +1)N; apt = g mod 7.

7For example ot = 7/10, N = 102, N’ = 10%.

(VL51)

(VL52)
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Starting from a density matrix for the atom corresponding to a statistical
mixture with weight 1/2 for p = 0 and p = hK, we find at time ¢ a density
matrix where the population of the state p = 0 has become close to 1. In
other words, thanks to the laser field initially prepared in the Fock state
|N, N') (a non-classical state!), we have succeeded (without emitting pho-
tons in the initially empty modes) in reducing the initial disorder of the
atom’s momentum distribution, by transferring this disorder to the light
field.

Note. To write that the above process operates without spontaneous
emission may be considered as a misuse of language: the argument is
based on the difference between N and N + 1 (or N’ vs. N’ +1). However,
the physical origin of this difference corresponds precisely to spontaneous
emission in the mode w (or w’). It is therefore correct to say that there are
no photons created in the empty radiation modes, but abusive to say that
spontaneous emission plays no role at all®.

3-4 And with a coherent state?

The example in the previous paragraph showed us that it was possible,
using a well-chosen state of the electromagnetic field, to cool an assem-
bly of atoms without having to rely on spontaneous emission of photons
into empty modes of the radiation. However, the generation of Fock states,
such as the state | N, N’} in this example, is a delicate operation. In a realis-
tic experiment, we manipulate light fields that originate from laser sources
and are well described by coherent (or quasi-classical) states of the electro-
magnetic field, i.e. eigenstates of annihilation operators:

ay|coh) = ay|coh) (VL.53)

where «) is a complex number.

Let us start with a single mode of the field to simplify notations. The
eigenstate of a with eigenvalue «, which we will denote |a) from now on,

8 A result similar to (VI.51-VL.52) can be obtained by taking N = 0, N’ # 0, a situation in
which accumulation in p = 0 results from spontaneous emission in the mode w, via a simple
optical pumping process.
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can be written explicitly in different ways:

la) = exp(aad’ - a*a)|0) = efla‘z/zeo‘&f|0>

— olel?/2 E o
= e n).
ﬁ'| )

n=0 :

(VL54)

In a realistic situation, several modes of the electromagnetic field are
populated, corresponding to different wave vectors, polarizations and fre-
quencies. The state of the field at initial time ¢ = 0, before interaction with
the atoms has begun, can therefore be written as follows

[¥e(0)) = Dlfar}] vac) (VL55)

with the unitary operator D, called displacement operator, defined by:

Dl{an}] = Hexp (oo\di - aiék) .

A

(VL.56)

We will assume that the state of the total system atom-+field |¥(0)) is fac-
torized at this initial time (no correlation between the two) so that:

[W(0)) = [¢4(0)) ® [¢c(0)). (VL57)

It is then interesting to perform on the state vector of the total system
|¥(t)) the following unitary transformation, originally suggested by Mol-
low (1975) [see also Cohen-Tannoudji, Dupont-Roc, et al. (2012), exercise
17]:

- N o . . 1
1B) = U6 (t))  with U(t) = (D[{m eﬂwt}]) . (VL58)
In this unitary transformation, the Schrodinger equation
n YD) prig ) (VL59)
at
becomes R
mw = H(t)|¥(t)) (VL60)
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with the now time-dependent Hamiltonian

2 NP du(t) -

Ht)=U®)HU'(t) + ih% Ut (t). (VL61)
Before explicitly calculating this new Hamiltonian, let us immediately
point out the interest of this unitary transformation: at initial time, the

state after unitary transformation is
[%(0)) = [¥a(0)) & |vac). (VL.62)

At the cost of an explicit time dependence of the Hamiltonian, we can
therefore consider that the electromagnetic field is initially in its ground
state, the vacuum of photons.

The transformed Hamiltonian is easily calculated from the relations:

Ut)ax UT(t) = ax+aye (VL.63)
(VL.64)
Ui)yal UT(t) = al +ajet™, (VL65)
which imply that
AU (t)

Ut) Hp U (t) + ik Ut(t) = Hp. (VL66)

dt
The atomic Hamiltonian is unchanged in the transformation, and the elec-
tric dipole coupling becomes

Ut)D-E@#) U'(t)=D-E(+)+ D - &E(#1) (VL67)
where the function £(r, t) is given by:
E(r,t) =) Exeare®™ ¥ ec (VL68)
)

This expression is none other than the classical time-dependent electric
field, for which each mode has been given its initial amplitude .

In the end, the Hamiltonian of the total system can be written as the
sum of two terms, H(t) = H,(t) + H,. The first is time-dependent and
relates only to the atomic variables, coupled to the classical field £(r, t) :

Hi(t)=Hy—D-E(7,t). (VI.69)

Quantum field
Atom .
Filled modes
. _. Quantum field
(r.t) Atom Empty modes

Figure VI.17. Summary of the unitary transformation (V1.58). The upper figure
represents the starting situation, the lower one the situation after transformation.

The second involves the dynamics of the quantized electromagnetic field
and the coupling of the quantum field to the atom:

Hy,=Hp — D - E(7). (VL70)

The outcome of this transformation is therefore remarkable: we arrive
at a situation where spontaneous emission phenomena are clearly sepa-
rated from those linked to absorption and stimulated emission:

* The state of the quantum electromagnetic field after transformation is
the photon vacuum (V1.62). The phenomena of absorption and stim-
ulated emission are described by the Hamiltonian H,(t), which in-
volves only the atom’s variables, coupled to an externally imposed,
time-dependent classical field.

* Spontaneous emission phenomena are described by the Hamiltonian
H,, with all field modes initially empty and filling up as the atom
spontaneously emits photons.

We are then able to answer the initial question of this paragraph for the
case of an electromagnetic field initially in a coherent state. If we neglect
spontaneous emission phenomena, i.e. the Hamiltonian H,, we are back
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to a problem of the type considered in (VI.38) via the Hamiltonian H, (t).
In this case, we cannot expect to observe an accumulation of atoms in a
given quantum state: the eigenvalues of the one-body density operator
will be unchanged during the evolution due to atom-field coupling. In
other words, spontaneous emission is indispensable for cooling a gas of
non-interacting atoms when the radiation is prepared in a coherent state.

4 Conclusions

The first conclusion to be drawn from this course devoted to radiative cool-
ing is the great diversity of mechanisms that have been proposed since the
initial idea of Doppler cooling in 1975. Not all of them have been explored
experimentally, and we have chosen to describe in this series of lectures
only those that have given rise to a detailed and convincing practical study.
Despite this restriction, we have not been able to cover all the categories
of processes involved in cooling an assembly of atoms with light. Let us
mention two of them, which we may return to in subsequent years. Firstly,
cavity cooling, which has recently given rise to some spectacular develop-
ments [for a review, see for example Ritsch, Domokos, et al. (2013)]. Sec-
ondly, mechanisms including a feedback loop on the atoms, inspired by
the concept of stochastic cooling widely used in high-energy physics, have
been considered, see, for example, the original proposal by Raizen, Koga,
et al. (1998).

Nor have we touched on evaporative cooling, which, at the cost of par-
ticle losses and relatively long time constants, achieves temperatures com-
parable to those of optimized radiative cooling (between 0.1 and 1 1K),
with spatial densities often considerably greater. The remarkable success
of evaporative cooling begs the question: is it worth exploring further the
use of cooling mechanisms based on atom-light interaction, which are cer-
tainly lossless and faster, but more complicated to implement?

The final conclusion of this course will be a doubly positive answer to
this question. Firstly, evaporative cooling, however effective, also has its
limitations. A high-energy particle evaporates when it reaches the edges
of the sample, which means that cooling is not homogeneous; it is more
effective at the periphery of the gas than at the center, which can be a sig-
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nificant bias in certain situations. Moreover, radiative cooling, transposed
to assemblies of interacting atoms, can provide a tool for exploring new
phases of matter. The principle of dark-state cooling, for example, can be
transposed to an assembly of atoms to prepare strongly correlated N-body
states that could not be reached by standard Hamiltonian evolution [see,
for example, Bardyn, Baranov, et al. (2013)]. Dissipative N-body physics
is still in its infancy in the field of quantum gases, but the concepts devel-
oped over the last forty years for cooling individual atoms with light will
undoubtedly play a key role.
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