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Introduction

Can the thermodynamic equilibrium of a sample of matter be controlled
by a well-chosen electromagnetic radiation? Since the seminal papers by
Einstein in 1917 and Kastler in 1950, this question has accompanied the
development of atomic physics and quantum optics. From the 1970s on-
wards, the development of tunable laser sources has renewed the subject,
with proposals to cool gases of neutral atoms or ions (Hänsch & Schawlow
1975; Wineland & Dehmelt 1975). The development of this research field
have gone far beyond the most optimistic initial predictions. Laser cool-
ing of atomic particles enables the temperature of a gas to be lowered
from room temperature (300 K) to a range between millikekelvin and mi-
crokelvin, or even below in certain special cases (figure 1).

Cold atoms are ubiquitous in time and frequency metrology experi-
ments, as well as in most high-precision measurements in atomic physics.
Radiative cooling has also paved the way for the production of quantum
gases such as Bose-Einstein condensates, in which large numbers of par-
ticles accumulate in a single microscopic state. It allows us to approach
the limit where the thermal wavelength of the gas particles, λT ∼ h/Mv,
where h is Planck’s constant, M the mass of an atom and v the average
velocity at thermal equilibrium, becomes comparable to the distance be-
tween particles. It should be noted, however, that radiative cooling does
not generally lead directly to the condensation threshold. It is followed by
a phase of evaporative cooling, which lowers the temperature by one or
two orders of magnitude (figure 1).

Radiative cooling has been applied to many atomic species, more than
thirty to date (see figure 2). The only determining factor is the availabil-
ity of sufficiently reliable, intense (and relatively inexpensive) continuous
laser sources to resonantly excite an atomic transition. The aim of this
course is to present the evolution of the main ideas behind radiative cool-

Temperature
(Kelvin)103110-310-6

laser cooling

evaporative 
cooling

Figure 1. Temperature scale showing the gain resulting from laser cooling of
atomic gases and the additional gain from evaporative cooling.

ing, and to discuss their performance and limitations. We will not attempt
to describe here all the methods that have been proposed, but will concen-
trate on a few important principles:

• The Doppler effect, which provides an atomic response to the light
wave that depends on the atomic velocity.

• The Sisyphus mechanism, which forces the atom to climb more poten-
tial hills than it descends.

• The use of dark states, which involves hiding atoms in the shadow,
i.e. accumulating them in states where they are effectively decoupled
from light.

As a preliminary, it is probably worth clarifying what we mean by cool-
ing, a sometimes subtle notion that may concern filtering, temperature low-
ering or even an increase in phase-space density.
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Figure 2. Atomic species that have been laser cooled [periodic table from
wikipedia].

v

P(v)

atoms
or

molecules

Figure 3. Velocity selection of an atomic or molecular beam by means of a rotating
wheel. There is no increase in the density of a given velocity class.

Let us look at two examples. Starting from an atomic beam with a wide
velocity distribution ∆v, we can filter a slice of width δv ≪ ∆v by a rotat-
ing wheel (figure 3). The gas is not cooled, but separated into two parts,
one consisting of the desired velocity range, which is transmitted by the
wheel, and the other, which sticks to the walls of the wheel. This filtering
is very different from accumulating all the atoms of the beam in the slice
δv, as is done when slowing down an atomic beam using the radiation
pressure force. The gain in brightness can be several orders of magnitude
in the latter case.

A second example will enable us to distinguish between lowering tem-
perature and increasing phase-space density. Let us consider an assembly of
particles of mass M in a 1D harmonic trap of frequency ω, at thermody-
namic equilibrium at temperature T :

1

2
Mω2∆x2 =

1

2
M∆v2 =

1

2
kBT, (1)

where ∆x and ∆v = ω∆x are the standard deviations of the position and
velocity distributions. Let us suppose we open this trap by modifying its
frequency. This opening, if sufficiently slow, maintains thermal equilib-
rium with a temperature T ′ which can be deduced from T via the adiabatic
theorem:

T ′

ω′ =
T

ω
⇒ T ′ = T

ω′

ω
< T. (2)
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Figure 4. Adiabatic opening of a harmonic trap, the frequency changing from ω to
ω′ < ω.

So we do have cooling. The new widths in position and velocity are:

∆x′ = ∆x
( ω
ω′

)1/2

, ∆v′ = ∆v

(
ω′

ω
.

)1/2

(3)

We therefore divided the width of the velocity distribution by the factor
(ω/ω′)1/2, and multiplied the width of the position distribution by the
same factor. The phase space density, proportional to (∆x∆v)−1, is un-
changed in this process: we have simply exchanged a good knowledge of
position and a bad knowledge of velocity by its inverse.

In this second example, we can see that cooling does not necessarily
lead to an increase in phase-space density, nor – to put it in quantum terms
– to an increase in the population of an individual quantum state. Yet this
increase is essential for many laser-cooling experiments on atoms, since
one of the aims of these experiments is to approach, or even reach, the
quantum degeneracy threshold and Bose-Einstein condensation.

In fact, for a system of N independent particles (i.e. an ideal gas), we
can easily show that this increase can never be obtained in a Hamiltonian
evolution of the gas. The reasoning is simple : let us start with the one-
body density operator ρ̂ characterizing the state of the gas. This operator
can be diagonalized and its eigenvalues π1, π2, . . ., all real positive or zero
with

∑
j πj = 1, give us the occupation probabilities of the different quan-

tum states. Suppose the evolution of the gas of particles between ti and tf

is governed by the Hamiltonian

Ĥ(t) =

N∑
n=1

Ĥ(n)(t), (4)

where Ĥ(n) is the Hamiltonian of the n-th particle. At time tf , the single-
particle density operator will simply be

ρ̂(tf ) = Û(ti → tf ) ρ̂(ti) Û
†(ti → tf ), (5)

where the single-particle evolution operator Û(ti → tf ) is calculated from
Ĥ(n). We do not need an explicit expression for Û here. The only important
point is that this operator is unitary: the eigenvalues of ρ̂(tf ) are always
identical to the eigenvalues of ρ̂(ti). We cannot therefore hope to accumu-
late particles in a given state via a purely Hamiltonian process (such as the
opening of the trap in figure 4) when these particles are independent.

Examination of the assumptions required to arrive at this somewhat
negative conclusion gives us the approach we need to take to move for-
ward:

(i) We have considered a Hamiltonian process. The system considered
above was not necessarily isolated since Ĥ can be time-dependent, but
we have made the assumption that our assembly of N particles is not
coupled to another quantum system that could act as a reservoir. This
is precisely what will happen in laser cooling. Each atom is coupled to
all modes of the electromagnetic field, notably via spontaneous emission
processes: the evolution of the atom’s reduced density matrix is therefore
non-Hamiltonian, and we may well increase one of its eigenvalues to the
detriment of the others.

(ii) We have considered a system of independent particles. If the particles
interact with each other, then it is possible to change the occupation of the
single-particle energy levels by an appropriate variation of the Hamilto-
nian Ĥ(t). In particular, it is possible to produce a Bose-Einstein conden-
sate by modifying only the potential confining the N particles, without in-
troducing any coupling with an external quantum system, or evaporating
any particles. The total entropy of the gas is unchanged (or even increased
if the process is irreversible), but the number of particles occupying the
ground level of the trap can nevertheless increase dramatically during this
transformation. We will see an example of this below.
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The course will run as follows.

• Chapter 1 will be devoted to the seminal approach of Einstein (1916)
and Einstein (1917). Einstein showed how the motion of atoms cou-
pled to electromagnetic radiation is analogous to Brownian motion,
and why the Doppler effect leads to the thermalization of an atom
coupled to blackbody radiation.

• The second chapter will also be devoted to Doppler cooling, now
with lasers; we will also describe its equivalent in position space, the
magneto-optical trap, and encounter the first signature of an effective
atom-atom interaction created by light.

• In the third chapter, we will look at the possibility of manipulating
narrow-line atoms, and we will discuss the possibility of accumulating
atoms in velocity classes that are weakly coupled to light.

• This notion of atoms accumulating in darkness will be explored fur-
ther in Chapter 4, with the use of dark states and discussion of the
very special statistical laws (Lévy’s laws) that can arise.

• Chapter 5 will focus on the Sisyphus effect, which is at work in most
cooling experiments and leads very simply to velocity distributions
limited only by the recoil associated with a single photon. We will
focus in particular on recent developments in grey molasses, which
extend the concept of Sisyphus cooling.

• Finally, Chapter 6 will be devoted to sideband cooling, and will give
us the opportunity to review the maximum phase-space density that
can be expected in this type of radiative cooling experiment.

Let us stress once again that our aim is not to make an exhaustive review
of all the devices that have been proposed or studied since the initial ar-
ticles by Hänsch & Schawlow (1975) and by Wineland & Dehmelt (1975).
Rather, it is to outline the principles of the mechanisms currently in use,
and to illustrate them with recent experiments, in the hope of stimulating
the exploration of new avenues.



Chapter I

Atoms and light in thermal equilibrium

The starting point for this course is blackbody radiation, i.e. the electro-
magnetic radiation emitted by a material body in thermodynamic equilib-
rium with its environment. The spectral distribution of this radiation is a
universal law that depends only on the body’s temperature. It is given by
Planck’s law, proposed in 1900:

ρ(ω, T ) =
ℏω3

π2c3
1

eℏω/kBT − 1
, (I.1)

where ρ(ω) dω represents the electromagnetic energy per unit volume cor-
responding to radiation with a frequency between ω and ω + dω.

A modern version (and completely equivalent as we will see in what
follows) of this law consists in giving ourselves a quantization volume of
finite size and positing that the average number of photons in a mode of
frequency ω is given by the Bose-Einstein law with a zero chemical poten-
tial

n̄(ω, T ) =
1

eℏω/kBT − 1
. (I.2)

Starting from Planck’s law (I.1), Einstein (1917) studied how radiation
with this spectral energy density would impose its temperature on a col-
lection of atoms. To do this, he introduced the notion of the friction force
caused by light on a moving atom, a friction force identical in every respect
to that proposed almost 60 years later by Hänsch & Schawlow (1975) and
at work in the Doppler molasses used in today’s laboratories. Einstein’s
reasoning is identical to the one we will be using to deal with the motion

of atoms in laser beams, with arguments based on the notion of Brownian
motion, which we will also review in this chapter.

1 Einstein 1916: absorption and emission

In 1916, having just published his theory of General Relativity, Einstein re-
turned to the study of energy and momentum exchange between atoms
and radiation. To pursue this theme, which he had already addressed in
1905 in his study of the photo-electric effect, he took as his guiding princi-
ple the achievement of thermodynamic equilibrium.

Einstein considered a collection of atoms illuminated by black-body ra-
diation at temperature T (figure I.1). His aim was to model the way in
which the atom and the radiation can exchange energy. The only constraint
Einstein imposes is statistical physics consistency: the average population
distribution of the atom’s different energy levels must be a Boltzmann dis-
tribution with the same temperature T . In a two-level model of the atom,
with a ground state g and an excited state e separated by an energy ℏωA

(figure I.2, left), the ratio of populations Pg,e must be such that:

Pe

Pg
= exp

(
−ℏωA

kBT

)
. (I.3)
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CHAPITRE I. ATOMS AND LIGHT IN THERMAL EQUILIBRIUM § 1. Einstein 1916: absorption and emission
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Figure I.1. The problem considered by Einstein: an assembly of independent atoms
is illuminated by radiation from a black body at temperature T . Will this assembly
of atoms thermalize with the black-body radiation, in terms of both its internal and
external degrees of freedom?

1-1 Elementary processes and steady state

To explain how such a state of equilibrium can be achieved, Einstein stud-
ies the competition between photon absorption processes1 and emission
processes:

• If the atom is in its ground state, it can absorb a photon and reach
its excited state (figure I.3). Einstein postulated that the probability of
this process occurring over an infinitesimal time interval dt is propor-
tional to dt and to the energy density of the radiation ρ, taken at the
frequency2 for the atomic resonance ωA:

dPg→e = B ρ(ωA) dt, (I.4)
1Einstein does not use the term photon, which will not be introduced until much later

(1926) by Lewis.
2We will frequently use the usual denomination frequency for the quantity ω, although it is

in fact an angular frequency, the frequency being ω/2π.

lumière
σ+"

v

P(v)

atomes 
ou 

molécules

g

e Je = 1

Jg = 0

Figure I.2. The two atomic transition models considered in this chapter. On the
left, a two-level atom; on the right, a Jg = 0 ↔ Je = 1 transition that correctly
takes into account phenomena linked to the polarization of light. We will choose
as a basis of the excited level the states |ej⟩ whose angular momentum projection
on the j axis is zero (j = x, y, z).
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ATOMES ET LUMIÈRE EN ÉQUILIBRE THERMIQUE § 1. Einstein 1916 : absorption et émission
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FIGURE 1.1. Les deux modèles de transition atomique considérées dans ce cha-
pitre. Á gauche, atome à deux niveaux ; à droite, transition Jg = 0 $ Je = 1
permettant de prendre correctement en compte les phénomènes liés à la polarisa-
tion de la lumière. On prendra comme base du niveaux excité la base cartésienne
composée des |eji dont la projection du moment cinétique sur l’axe j est nulle.

1-1 Processus élémentaires et état d’équilibre

Pour expliquer comment un tel état d’équilibre peut être obtenu, Ein-
stein étudie la compétition entre processus d’absorption de photons 1 et
processus d’émission :

– Si l’atome est dans l’état fondamental, il peut absorber un photon et
passer dans l’état excité. Einstein postule que la probabilité pour que
ce processus se produise pendant un intervalle de temps infinitésimal
dt est proportionnelle à dt et à la densité d’énergie du rayonnement 2

⇢, prise à la fréquence de résonance atomique ! :

dPg!e = B ⇢(!) dt, (1.2)

où B est un coefficient indéterminé à ce stade.
– Si l’atome est dans l’état excité, il peut tomber sur l’état fondamental

en émettant un photon. La probabilité pour que cette émission se pro-
duise pendant dt est la somme de deux termes. D’une part, même si
aucun photon n’est initialement présent, l’atome peut passer de e à g
par émission spontanée avec la probabilité :

dPe!g|spont. = A dt, (1.3)

1. Einstein n’utilise pas le terme de photon, qui ne sera introduit que bien plus tard (1926)
par Lewis.

2. La quantité ⇢(!) d3r d! représente l’énergie du rayonnement dans un volume d3r cor-
respondant à des fréquences comprises entre ! et ! + d!. Notons que nous utiliserons ici la
dénomination usuelle fréquence pour la quantité !, bien qu’il s’agisse en réalité d’une pulsa-
tion, la fréquence étant !/2⇡.

c’est-à-dire une loi qui, comme Einstein le remarque, est identique à
celle de la décroissance radioactive. D’autre part, l’émission peut être
stimulée par le rayonnement déjà présent à la fréquence atomique,
avec une probabilité

dPe!g|stim. = B0 ⇢(!) dt. (1.4)

L’évolution des probabilités Pg,e est alors donnée par une équation de
taux :

dPg

dt
= �B ⇢(!)Pg + (A+B0 ⇢(!)) Pe, Pg + Pe = 1, (1.5)

qui entraine que ces probabilités tendent vers l’état stationnaire

Pg =
A+B0 ⇢(!)

A+ (B +B0) ⇢(!)
, Pe =

B ⇢(!)

A+ (B +B0) ⇢(!)
, (1.6)

avec le temps caractéristique

⌧int. = [A+ (B +B0) ⇢(!)]
�1

. (1.7)

L’indice “int." signifie qu’il s’agit ici du temps de mise à l’équilibre des
variables internes, différent de celui que nous rencontrerons plus loin pour
la mise à l’équilibre du centre de masse.

1-2 Contraintes sur les coefficients d’Einstein

La comparaison de l’état stationnaire trouvé en (1.6) avec le résultat
attendu pour l’équilibre thermodynamique (1.1) entraine la contrainte sui-
vante

B ⇢(!)

A+B0 ⇢(!)
= exp (�~!/kBT ) , (1.8)

qui doit être satisfaite à toute temperature T , les coefficients A,B,B0 étant
quant à eux indépendants de la température.

Prenons d’abord la limite haute température, pour laquelle ⇢(!) !
+1 : on en déduit immédiatement :

B0 = B. (1.9)

Cours 1 – page 2 – 9 mai 2015 – 19:25

Figure I.3. Absorption process.

where B is an undetermined coefficient at this stage.

• If the atom is in the excited state, it can fall back to the ground state by
emitting a photon. The probability of this emission occurring during
dt is the sum of two terms. On the one hand, even if no photon is
initially present, the atom can go from e to g by spontaneous emission
of a photon (figure I.4) with probability:

dPe→g|spont. = A dt, (I.5)

i.e. a law which, as Einstein points out, is identical to that of radioac-
tive decay. On the other hand, emission can be stimulated by the radi-
ation already present at atomic frequency, with probability

dPe→g|stim. = B′ ρ(ωA) dt. (I.6)
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FIGURE 1.1. Les deux modèles de transition atomique considérées dans ce cha-
pitre. Á gauche, atome à deux niveaux ; à droite, transition Jg = 0 $ Je = 1
permettant de prendre correctement en compte les phénomènes liés à la polarisa-
tion de la lumière. On prendra comme base du niveaux excité la base cartésienne
composée des |eji dont la projection du moment cinétique sur l’axe j est nulle.

1-1 Processus élémentaires et état d’équilibre

Pour expliquer comment un tel état d’équilibre peut être obtenu, Ein-
stein étudie la compétition entre processus d’absorption de photons 1 et
processus d’émission :

– Si l’atome est dans l’état fondamental, il peut absorber un photon et
passer dans l’état excité. Einstein postule que la probabilité pour que
ce processus se produise pendant un intervalle de temps infinitésimal
dt est proportionnelle à dt et à la densité d’énergie du rayonnement 2

⇢, prise à la fréquence de résonance atomique ! :

dPg!e = B ⇢(!) dt, (1.2)

où B est un coefficient indéterminé à ce stade.
– Si l’atome est dans l’état excité, il peut tomber sur l’état fondamental

en émettant un photon. La probabilité pour que cette émission se pro-
duise pendant dt est la somme de deux termes. D’une part, même si
aucun photon n’est initialement présent, l’atome peut passer de e à g
par émission spontanée avec la probabilité :

dPe!g|spont. = A dt, (1.3)

1. Einstein n’utilise pas le terme de photon, qui ne sera introduit que bien plus tard (1926)
par Lewis.

2. La quantité ⇢(!) d3r d! représente l’énergie du rayonnement dans un volume d3r cor-
respondant à des fréquences comprises entre ! et ! + d!. Notons que nous utiliserons ici la
dénomination usuelle fréquence pour la quantité !, bien qu’il s’agisse en réalité d’une pulsa-
tion, la fréquence étant !/2⇡.

c’est-à-dire une loi qui, comme Einstein le remarque, est identique à
celle de la décroissance radioactive. D’autre part, l’émission peut être
stimulée par le rayonnement déjà présent à la fréquence atomique,
avec une probabilité

dPe!g|stim. = B0 ⇢(!) dt. (1.4)

L’évolution des probabilités Pg,e est alors donnée par une équation de
taux :

dPg

dt
= �B ⇢(!)Pg + (A+B0 ⇢(!)) Pe, Pg + Pe = 1, (1.5)

qui entraine que ces probabilités tendent vers l’état stationnaire

Pg =
A+B0 ⇢(!)

A+ (B +B0) ⇢(!)
, Pe =

B ⇢(!)

A+ (B +B0) ⇢(!)
, (1.6)

avec le temps caractéristique

⌧int. = [A+ (B +B0) ⇢(!)]
�1

. (1.7)

L’indice “int." signifie qu’il s’agit ici du temps de mise à l’équilibre des
variables internes, différent de celui que nous rencontrerons plus loin pour
la mise à l’équilibre du centre de masse.

1-2 Contraintes sur les coefficients d’Einstein

La comparaison de l’état stationnaire trouvé en (1.6) avec le résultat
attendu pour l’équilibre thermodynamique (1.1) entraine la contrainte sui-
vante

B ⇢(!)

A+B0 ⇢(!)
= exp (�~!/kBT ) , (1.8)

qui doit être satisfaite à toute temperature T , les coefficients A,B,B0 étant
quant à eux indépendants de la température.

Prenons d’abord la limite haute température, pour laquelle ⇢(!) !
+1 : on en déduit immédiatement :

B0 = B. (1.9)
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1-1 Processus élémentaires et état d’équilibre

Pour expliquer comment un tel état d’équilibre peut être obtenu, Ein-
stein étudie la compétition entre processus d’absorption de photons 1 et
processus d’émission :

– Si l’atome est dans l’état fondamental, il peut absorber un photon et
passer dans l’état excité. Einstein postule que la probabilité pour que
ce processus se produise pendant un intervalle de temps infinitésimal
dt est proportionnelle à dt et à la densité d’énergie du rayonnement 2

⇢, prise à la fréquence de résonance atomique ! :

dPg!e = B ⇢(!) dt, (1.2)

où B est un coefficient indéterminé à ce stade.
– Si l’atome est dans l’état excité, il peut tomber sur l’état fondamental

en émettant un photon. La probabilité pour que cette émission se pro-
duise pendant dt est la somme de deux termes. D’une part, même si
aucun photon n’est initialement présent, l’atome peut passer de e à g
par émission spontanée avec la probabilité :

dPe!g|spont. = A dt, (1.3)

1. Einstein n’utilise pas le terme de photon, qui ne sera introduit que bien plus tard (1926)
par Lewis.

2. La quantité ⇢(!) d3r d! représente l’énergie du rayonnement dans un volume d3r cor-
respondant à des fréquences comprises entre ! et ! + d!. Notons que nous utiliserons ici la
dénomination usuelle fréquence pour la quantité !, bien qu’il s’agisse en réalité d’une pulsa-
tion, la fréquence étant !/2⇡.

c’est-à-dire une loi qui, comme Einstein le remarque, est identique à
celle de la décroissance radioactive. D’autre part, l’émission peut être
stimulée par le rayonnement déjà présent à la fréquence atomique,
avec une probabilité

dPe!g|stim. = B0 ⇢(!) dt. (1.4)

L’évolution des probabilités Pg,e est alors donnée par une équation de
taux :

dPg

dt
= �B ⇢(!)Pg + (A+B0 ⇢(!)) Pe, Pg + Pe = 1, (1.5)

qui entraine que ces probabilités tendent vers l’état stationnaire

Pg =
A+B0 ⇢(!)

A+ (B +B0) ⇢(!)
, Pe =

B ⇢(!)

A+ (B +B0) ⇢(!)
, (1.6)

avec le temps caractéristique

⌧int. = [A+ (B +B0) ⇢(!)]
�1

. (1.7)

L’indice “int." signifie qu’il s’agit ici du temps de mise à l’équilibre des
variables internes, différent de celui que nous rencontrerons plus loin pour
la mise à l’équilibre du centre de masse.

1-2 Contraintes sur les coefficients d’Einstein

La comparaison de l’état stationnaire trouvé en (1.6) avec le résultat
attendu pour l’équilibre thermodynamique (1.1) entraine la contrainte sui-
vante

B ⇢(!)

A+B0 ⇢(!)
= exp (�~!/kBT ) , (1.8)

qui doit être satisfaite à toute temperature T , les coefficients A,B,B0 étant
quant à eux indépendants de la température.

Prenons d’abord la limite haute température, pour laquelle ⇢(!) !
+1 : on en déduit immédiatement :

B0 = B. (1.9)
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1-1 Processus élémentaires et état d’équilibre

Pour expliquer comment un tel état d’équilibre peut être obtenu, Ein-
stein étudie la compétition entre processus d’absorption de photons 1 et
processus d’émission :

– Si l’atome est dans l’état fondamental, il peut absorber un photon et
passer dans l’état excité. Einstein postule que la probabilité pour que
ce processus se produise pendant un intervalle de temps infinitésimal
dt est proportionnelle à dt et à la densité d’énergie du rayonnement 2

⇢, prise à la fréquence de résonance atomique ! :

dPg!e = B ⇢(!) dt, (1.2)

où B est un coefficient indéterminé à ce stade.
– Si l’atome est dans l’état excité, il peut tomber sur l’état fondamental

en émettant un photon. La probabilité pour que cette émission se pro-
duise pendant dt est la somme de deux termes. D’une part, même si
aucun photon n’est initialement présent, l’atome peut passer de e à g
par émission spontanée avec la probabilité :

dPe!g|spont. = A dt, (1.3)

1. Einstein n’utilise pas le terme de photon, qui ne sera introduit que bien plus tard (1926)
par Lewis.

2. La quantité ⇢(!) d3r d! représente l’énergie du rayonnement dans un volume d3r cor-
respondant à des fréquences comprises entre ! et ! + d!. Notons que nous utiliserons ici la
dénomination usuelle fréquence pour la quantité !, bien qu’il s’agisse en réalité d’une pulsa-
tion, la fréquence étant !/2⇡.

c’est-à-dire une loi qui, comme Einstein le remarque, est identique à
celle de la décroissance radioactive. D’autre part, l’émission peut être
stimulée par le rayonnement déjà présent à la fréquence atomique,
avec une probabilité

dPe!g|stim. = B0 ⇢(!) dt. (1.4)

L’évolution des probabilités Pg,e est alors donnée par une équation de
taux :

dPg

dt
= �B ⇢(!)Pg + (A+B0 ⇢(!)) Pe, Pg + Pe = 1, (1.5)

qui entraine que ces probabilités tendent vers l’état stationnaire

Pg =
A+B0 ⇢(!)

A+ (B +B0) ⇢(!)
, Pe =

B ⇢(!)

A+ (B +B0) ⇢(!)
, (1.6)

avec le temps caractéristique

⌧int. = [A+ (B +B0) ⇢(!)]
�1

. (1.7)

L’indice “int." signifie qu’il s’agit ici du temps de mise à l’équilibre des
variables internes, différent de celui que nous rencontrerons plus loin pour
la mise à l’équilibre du centre de masse.

1-2 Contraintes sur les coefficients d’Einstein

La comparaison de l’état stationnaire trouvé en (1.6) avec le résultat
attendu pour l’équilibre thermodynamique (1.1) entraine la contrainte sui-
vante

B ⇢(!)

A+B0 ⇢(!)
= exp (�~!/kBT ) , (1.8)

qui doit être satisfaite à toute temperature T , les coefficients A,B,B0 étant
quant à eux indépendants de la température.

Prenons d’abord la limite haute température, pour laquelle ⇢(!) !
+1 : on en déduit immédiatement :

B0 = B. (1.9)
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Figure I.4. Spontaneous emission process: the photon is emitted in a random
direction.
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1-1 Processus élémentaires et état d’équilibre

Pour expliquer comment un tel état d’équilibre peut être obtenu, Ein-
stein étudie la compétition entre processus d’absorption de photons 1 et
processus d’émission :

– Si l’atome est dans l’état fondamental, il peut absorber un photon et
passer dans l’état excité. Einstein postule que la probabilité pour que
ce processus se produise pendant un intervalle de temps infinitésimal
dt est proportionnelle à dt et à la densité d’énergie du rayonnement 2

⇢, prise à la fréquence de résonance atomique ! :

dPg!e = B ⇢(!) dt, (1.2)

où B est un coefficient indéterminé à ce stade.
– Si l’atome est dans l’état excité, il peut tomber sur l’état fondamental

en émettant un photon. La probabilité pour que cette émission se pro-
duise pendant dt est la somme de deux termes. D’une part, même si
aucun photon n’est initialement présent, l’atome peut passer de e à g
par émission spontanée avec la probabilité :

dPe!g|spont. = A dt, (1.3)

1. Einstein n’utilise pas le terme de photon, qui ne sera introduit que bien plus tard (1926)
par Lewis.

2. La quantité ⇢(!) d3r d! représente l’énergie du rayonnement dans un volume d3r cor-
respondant à des fréquences comprises entre ! et ! + d!. Notons que nous utiliserons ici la
dénomination usuelle fréquence pour la quantité !, bien qu’il s’agisse en réalité d’une pulsa-
tion, la fréquence étant !/2⇡.

c’est-à-dire une loi qui, comme Einstein le remarque, est identique à
celle de la décroissance radioactive. D’autre part, l’émission peut être
stimulée par le rayonnement déjà présent à la fréquence atomique,
avec une probabilité

dPe!g|stim. = B0 ⇢(!) dt. (1.4)

L’évolution des probabilités Pg,e est alors donnée par une équation de
taux :

dPg

dt
= �B ⇢(!)Pg + (A+B0 ⇢(!)) Pe, Pg + Pe = 1, (1.5)

qui entraine que ces probabilités tendent vers l’état stationnaire

Pg =
A+B0 ⇢(!)

A+ (B +B0) ⇢(!)
, Pe =

B ⇢(!)

A+ (B +B0) ⇢(!)
, (1.6)

avec le temps caractéristique

⌧int. = [A+ (B +B0) ⇢(!)]
�1

. (1.7)

L’indice “int." signifie qu’il s’agit ici du temps de mise à l’équilibre des
variables internes, différent de celui que nous rencontrerons plus loin pour
la mise à l’équilibre du centre de masse.

1-2 Contraintes sur les coefficients d’Einstein

La comparaison de l’état stationnaire trouvé en (1.6) avec le résultat
attendu pour l’équilibre thermodynamique (1.1) entraine la contrainte sui-
vante

B ⇢(!)

A+B0 ⇢(!)
= exp (�~!/kBT ) , (1.8)

qui doit être satisfaite à toute temperature T , les coefficients A,B,B0 étant
quant à eux indépendants de la température.

Prenons d’abord la limite haute température, pour laquelle ⇢(!) !
+1 : on en déduit immédiatement :

B0 = B. (1.9)
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Figure I.5. Stimulated emission process.

The evolution of probabilities Pg,e is then given by a rate equation:

dPg

dt
= −B ρ(ωA)Pg + [A+B′ ρ(ωA)] Pe, Pg + Pe = 1, (I.7)

which implies that these probabilities tend towards the stationary state

Pg =
A+B′ ρ(ωA)

A+ (B +B′) ρ(ωA)
, Pe =

B ρ(ωA)

A+ (B +B′) ρ(ωA)
, (I.8)

with characteristic time

τint. = [A+ (B +B′) ρ(ωA)]
−1
. (I.9)

The subscript “int.” means that this is the equilibration time of the inter-
nal variables, which is different from the equilibration time of the atom’s
center of mass that we will calculate later.

1-2 Constraints on Einstein coefficients

Comparing the stationary state found in (I.8) with the expected result for
thermodynamic equilibrium (I.3) leads to the following constraint

B ρ(ωA)

A+B′ ρ(ωA)
= exp (−ℏωA/kBT ) , (I.10)

which must be satisfied at any temperature T , the coefficients A,B,B′ be-
ing independent of temperature.

Let us first take the high-temperature limit, for which ρ(ω) → +∞: we
immediately deduce:

B′ = B. (I.11)

The processes of absorption and stimulated emission are therefore inti-
mately linked.

More generally, the constraint (I.10) can be satisfied if the energy den-
sity ρ(ωA) of the radiation is equal to:

ρ(ωA) =
A/B′

exp(ℏωA/kBT )− 1
. (I.12)

This relationship is compatible with Planck’s law given in (I.1) provided
that the ratio A/B′ is equal to

A

B′ =
ℏω3

A

π2c3
. (I.13)

With the constraints (I.11) and (I.13), Einstein’s hypotheses concerning
the absorption and emission of light by the atom do indeed lead to ther-
modynamic equilibration of the populations of atomic energy levels with
blackbody radiation. Einstein concludes his 1916 paper by noting that, al-
though the fact that thermal equilibrium is reached does not constitutea
rigorous proof of the validity of the hypotheses (I.4-I.5-I.6), there is a strong
chance that these processes will indeed form the basis of a future theoreti-
cal construct. Furthermore, he notes that the coefficientsA, B andB′ could
be calculated ab initio, and thus the relations (I.11,I.13) tested, if one had "a
modified version of electrodynamics and mechanics compatible with the
quantum hypothesis". This is precisely what we will be doing in the next
section.
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Note: the case of degenerate levels In his study, Einstein also considers
the case where energy levels can be degenerate. Noting de and dg for these
degeneracies, a line of reasoning similar to the previous one leads to

dgB = deB
′,

A

B′ =
ℏω3

A

π2c3
. (I.14)

Further on we encounter the case of a Jg = 0 ↔ Je = 1 transition (see
figure I.2, right), for which dg = 1 and de = 3 and for which the popula-
tion evolution equation Pg of level g, given in (I.7) for a two-level system,
becomes using B = 3B′:

dPg

dt
= A

−3B′

A
ρ(ωA)Pg +

∑
j

[
1 +

B′

A
ρ(ωA)

]
Pe,j

 , (I.15)

where the subscript j denotes the three sublevels forming the excited level
e. We will see later [eq. (I.33)] a more compact way of writing this relation-
ship in terms of the number of photons per mode.

2 The quantum approach

In this paragraph, we will reformulate Einstein’s treatment of the absorp-
tion and emission of light by an atom in an isotropic, incoherent light field,
based on the quantum formalism. We will use the notion of average num-
ber of photons per mode n̄, slightly easier to manipulate than the energy
density ρ, and we will consider a realistic atomic transition for which we
will be able to treat the atom-field interaction from Fermi’s golden rule.

2-1 Energy density and number of photons per mode

To translate the coefficients A and B introduced by Einstein into modern
quantum language, let us start by relating the energy density ρ(ω) to the
average number of photons per mode n̄ for an electromagnetic field con-
fined in a box of volume L3. We consider periodic boundary conditions in
this box, so that the modes of the field are identified by their wave vector

k and their polarization ϵ, with

kj =
2π

L
nj , nj ∈ Z, j = x, y, z (I.16)

and ϵ⊥k. The total energy of the field is written as a function of ρ(ω) in the
form

E = L3

∫ +∞

0

ρ(ω) dω (I.17)

and is expressed in terms of mode occupancy

E =
∑
k,ϵ

ℏω n̄k,ϵ, ω = ck. (I.18)

Let us replace the discrete sum by an integral in this last expression, and
assume that the population n̄k,ϵ of a mode depends only on the frequency
ω of this mode, and is independent of polarization. We then have

E = 2× L3

8π3

∫ +∞

0

ℏω n̄(ω) 4πk2 dk, (I.19)

where the factor 2 corresponds to the sum over the two independent po-
larizations associated with a given wave vector k. Comparing (I.17) and
(I.19) gives:

ρ(ω) =
ℏω3

π2c3
n̄(ω), (I.20)

as could be seen directly by comparing (I.1) and (I.2).

If we go back to Einstein’s reasoning in terms of the number of photons
per mode n̄ rather than the energy density ρ, we are then led to replace the
coefficient B by the coefficient B̃ such that

B ρ(ωA) = B̃ n̄(ωA), that is B̃ = B
ℏω3

A

π2c3
(I.21)

and ditto for B′. The constraints (I.14) to reach thermodynamic equilib-
rium then boil down to:

dgB̃ = deB̃
′ and A = B̃′. (I.22)
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2-2 Model for an atomic transition

To satisfactorily account for the vector nature of the electromagnetic field,
it is best to consider a slightly more complicated level structure than the
two-level atom of the previous section. Here, we will look at a transition
between a ground level with zero angular momentum, i.e. non-degenerate,
and an excited level with unit angular momentum, i.e. triple degenerate
(figure I.2, right). A possible basis for this excited level is obtained by
choosing a reference trihedron uj , j = x, y, z, and considering the three
orthogonal Zeeman states |ej⟩ each having a zero angular momentum pro-

jection along the j axis:
(
Ĵ · uj

)
|ej⟩ = 0.

The atom-radiation coupling is written in the electric dipole approxi-
mation and in the rotating field approximation

V̂ = d

∑
j

uj |g⟩⟨ej |

 · Ê(−)
+ H.c. (I.23)

where d is the reduced atomic dipole characterizing the atomic transition.
The electric field operator is written in terms of the creation (a†k,ϵ) and de-
struction (ak,ϵ) operators of a photon in a given mode:

Ê
(−)

=
∑
k,ϵ

Ek a†k,ϵ ϵ, Ê
(+)

=
(
Ê

(−)
)†
, Ek =

√
ℏω

2ϵ0L3
. (I.24)

2-3 Using Fermi’s golden rule

We are now going to fully determine the Einstein coefficients using quan-
tum electrodynamics. We will use Fermi’s golden rule, which gives, to the
lowest non-zero order, the probability per unit time of going from a given
initial state to a continuum of states.

Let us take the example of a spontaneous or stimulated emission pro-
cess. The initial state corresponds to the atom placed in one of its excited
states |ej⟩ in the presence of a given state of the electromagnetic field. This
state is characterized by the set of occupancy numbers {nk,ϵ} of the radia-
tion modes:

|Ψi⟩ = |ej , {nk,ϵ}⟩. (I.25)

The final state corresponds to the atom in its ground state, in the presence
of the field state {n′k,ϵ}:

|Ψf ⟩ = |g, {n′k,ϵ}⟩, (I.26)

where all n′k,ϵ are equal to nk,ϵ, except one which is increased by one, cor-
responding to the emission of a photon in this particular mode3:

n′k0,ϵ0 = nk0,ϵ0 + 1, n′k,ϵ = nk,ϵ if (k, ϵ) ̸= (k0, ϵ0). (I.27)

The transition probability per unit time from the state Ψi to the contin-
uum of states Ψf is given by Fermi’s golden rule:

Pemission =
2π

ℏ
∑
f

∣∣∣⟨Ψf |V̂ |Ψi⟩
∣∣∣2 δ(Ef − Ei). (I.28)

which is explicitly calculated in terms of a sum on the mode k0, ϵ0 whose
population has been increased by one unit:

Pemission =
2π

ℏ2
∑
k0,ϵ0

d2E2k0
(ϵ0 · uj)

2
(nk0,ϵ0 + 1) δ(ω0 − ωA), (I.29)

where we used

⟨{n′k,ϵ}|a†k0,ϵ0
|{nk,ϵ}⟩ =

√
nk0,ϵ0 + 1. (I.30)

The calculation of the sum (I.29), which we replace by an integral as in
(I.19), is detailed in quantum optics courses. As before, we will assume that
the average population of a mode (k, ϵ) depends only on the frequency of
that mode: this is the assumption of an isotropic state for the field. Let us
just give the result, averaged over the initial state Ψi:

Pemission = [n̄(ωA) + 1] Γ, Γ =
d2ω3

A

3πϵ0ℏc3
, (I.31)

where the quantity Γ is the natural width of the excited state, i.e. the prob-
ability per unit time that the atom will de-excite if the radiation field is
initially empty.

3We are only interested here in the lowest order, given by Fermi’s golden rule. Higher-
order processes would correspond to multiple photon scattering by the atom, with several
n′
k,ϵ different from nk,ϵ.
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A similar calculation gives the probability per unit time that an atom
initially in its ground state will absorb a photon and reach one of the three
excited states:

Pabsorption = 3 n̄(ωA) Γ. (I.32)

The evolution equation for one of the populations, Pg for example, is
then given by

Ṗg = −3n̄Γ Pg +
∑
j

(n̄+ 1)Γ Pej , (I.33)

where we have posed n̄ ≡ n̄(ωA). This equation is formally identical to the
one we wrote in (I.15) based on Einstein’s reasoning, but it is much more
compact thanks to the use of the variable n̄ instead of the energy density ρ.
The stationary state

Pg =
n̄+ 1

4n̄+ 1
, Pej =

n̄

4n̄+ 1
, (I.34)

is reached in a time of the order of

τint =
Γ−1

4n̄+ 1
. (I.35)

The structure of the result, with terms for absorption, stimulated emission
and spontaneous emission, corresponds well to the result predicted by Ein-
stein with

A = Γ. (I.36)

In particular, at equilibrium, the ratio between the population of an excited
state and that of the ground state:

Pej

Pg
=

n̄

n̄+ 1
(I.37)

is equal to the expected result

Pej

Pg
= exp

(
−ℏωA

kBT

)
(I.38)

if we inject the blackbody law given in (I.2):

n̄(ω) =
1

exp(ℏω/kBT )− 1
. (I.39)

The treatment we have just given fulfills Einstein’s wish when he wrote
the sentence quoted above: the coefficients A and B can indeed be calcu-
lated ab initio, and thus the relation (I.13) tested. In other words, we have
checked the proportionality relation between A and B, as well as the rela-
tion B = 3B′, from the first principles of quantum electrodynamics. The
coherence of matter-radiation interaction and thermodynamics is thus well
assured, at least as far as internal atomic dynamics is concerned.

3 Brownian motion

In the previous paragraph, we looked at how the internal atomic variables,
i.e. the populations of the states g and e, reach a thermal equilibrium com-
patible with the temperature imposed by blackbody radiation. In the re-
mainder of this chapter, we will consider the motion of the atom’s center
of mass and verify that the stationary state of this motion is also compati-
ble with thermal equilibrium at temperature T . More specifically, we want
to verify that the stationary probability distribution for the atom’s momen-
tum is the Gaussian

Pstat.(p) ∝ e−p2/2p2
0 (I.40)

with

p20
2M

=
1

2
kBT. (I.41)

The thermalization of the atom in black-body radiation results from the
succession of photon absorption and emission processes by the atom. As
each process is accompanied by a change in the momentum of the atomic
center of mass, the situation is similar to that of Brownian motion: the
atom plays the role of the Brownian particle, and the photons of blackbody
radiation play the role of the fluid molecules. The tools developed for the
study of Brownian motion are therefore perfectly suited to the problem we
are interested in here, and we will briefly summarize them in the following
paragraphs [for more information, see Van Kampen (1992)]. We will then
return to the problem of atomic thermalization in black-body radiation.
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3-1 The Langevin equation approach

This approach assumes that the equation of motion of the Brownian parti-
cle has two components:

dp

dt
= −αp+ F (t). (I.42)

The first, deterministic force corresponds to fluid friction, which damps the
momentum over a characteristic time α−1. The second force F (t), called
Langevin force, is random and characterized by its statistical properties. The
equation (I.42) is therefore a stochastic differential equation.

In practice, we impose the first two moments of the random force F (t):

⟨F (t)⟩ = 0, ⟨Fi(t)Fj(t
′)⟩ = 2Dp δi,j δ(t− t′), i, j = x, y, z, (I.43)

where the averages are taken over different realizations of the disorder
associated with the positions and velocities of the fluid molecules. The
coefficient Dp is called momentum diffusion coefficient, for a reason that will
become clear later.

We now show that the two coefficients α and Dp entering (I.42-I.43) are
related if we impose that the stationary state of the particle’s momentum
distribution corresponds to thermal equilibrium, i.e..:

⟨ p
2
i

2M
⟩ = 1

2
kBT, i = x, y, z. (I.44)

To find this relationship, let us integrate the equation of motion (I.42) be-
tween the initial time t = 0 and an arbitrary time t:

p(t) = p(0) e−αt +

∫ t

0

e−α(t−t′)F (t′) dt′. (I.45)

By averaging this equation over different realizations of disorder, we find:

⟨p(t)⟩ = ⟨p(0)⟩ e−αt. (I.46)

The particle’s mean momentum therefore tends towards 0 with the char-
acteristic time α−1. Let us now consider the evolution of the square of

one component of the momentum and take the average over the disorder
again:

d⟨p2j (t)⟩
dt

= 2⟨pj(t)
dpj
dt
⟩

= −2α⟨p2j (t)⟩+ 2⟨pj(t)Fj(t)⟩. (I.47)

The second term is calculated4 by injecting the result (I.45):

⟨pj(t)Fj(t)⟩ = ⟨pj(0)Fj(t)⟩e−αt +

∫ t

0

e−α(t−t′)⟨Fj(t
′)Fj(t)⟩ dt′

= 0 + 2Dp

∫ t

0

e−ατδ(τ) dτ

= Dp (for t > 0). (I.48)

The root-mean-square momentum evolves under the effect of two terms:

⟨p2j (t)⟩
dt

= −2α⟨p2j (t)⟩+ 2Dp. (I.49)

The first term corresponds to an exponential decrease due to dissipa-
tion, and the second to a linear growth in time due to fluctuations of the
Langevin force. The slope of this growth is 2Dp, hence the name momen-
tum diffusion coefficient for Dp. Equilibrium between dissipation and fluc-
tuations is reached in a characteristic time (2α)−1 and corresponds to

⟨p2j ⟩stat. =
Dp

α
. (I.50)

If the bath of molecules in which the Brownian particle is immersed is at
temperature T , thermodynamic equilibrium (I.44) will be reached if

⟨p2j ⟩
2M

=
1

2
kBT ⇒ Dp

Mα
= kBT. (I.51)

In a phenomenological model of Brownian motion, we can estimate the
coefficient of friction α from Stokes’ law, and we impose the value of the
momentum diffusion coefficient so that (I.51) is satisfied. If we have a mi-
croscopic model of the interaction between Brownian particles and fluid

4We use the relationship
∫∞
0 f(x) δ(x) dx = 1

2
f(0).
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Figure I.6. Random walk in momentum space (one-dimensional model); the quan-
tity W (q|p) represents the transition probability per unit time for a jump of am-
plitude q starting from momentum p.

molecules, we can calculate α and Dp separately: verification of the rela-
tionship (I.51) is then a test of the model’s consistency. This is what we will
be able to do in the next paragraph for the thermalization of atomic motion
in blackbody radiation.

3-2 The Fokker–Planck equation approach

The Langevin equation approach has enabled us to determine the first two
moments of the momentum distribution. We could iterate this approach
to obtain all the moments, thus characterizing the stationary state and ver-
ifying that it is indeed a Gaussian. However, it is quicker to use another
equivalent approach, which consists in establishing the evolution equation
of the momentum distribution P(p, t).

To simplify writing, let us consider a one-dimensional problem so that
the momentum p is now a scalar. We are interested in a class of problems
for which the evolution of P(p, t) is described by a master equation of the
type

∂P(p, t)
∂t

= −
(∫

W (q|p) dq
)
P(p, t) +

∫
W (q|p−q)P(p−q, t) dq. (I.52)

The meaning of this equation is as follows. Since the Brownian particle is
initially in the state p, it has the probability W (q|p) dt of gaining the mo-
mentum q during the time interval dt. The quantity W (q|p) is therefore
the transition probability per unit time for a jump of amplitude q starting from p
(figure I.6). The first term of (I.52) corresponds to the total departure from
momentum class p by momentum gains q. The second term corresponds
to feeding the momentum class p with an amplitude jump q from the ini-

tial momentum p − q. One can check that the normalization of P(p, t),∫
P(p, t) dp = 1, is well preserved by this evolution.

All the physics of the problem is contained in the choice of the function
W (q|p). For example, for a problem involving fluid friction, this function
should be such that, for p > 0, jumps with q < 0 will be favored over jumps
with q > 0 (and vice versa for an momentum p < 0), so that the particle’s
momentum is on average reduced towards 0.

Let us now assume small jumps in amplitude: more precisely, we will
assume that W (q|p) is peaked around the value q = 0 with a characteristic
width qc, while varying smoothly with the momentum p. Let us further
assume that the momentum distribution P is a slowly varying function
of p on the scale of qc. In particular, qc must be small compared with the
width

√
MkBT expected for P(p) at thermodynamic equilibrium. We will

therefore develop the term involved in the second member of (I.52):

W (q|p− q)P(p− q, t) = W (q|p)P(p, t) − q
∂

∂p
[W (q|p)P(p, t)]

+
q2

2

∂2

∂p2
[W (q|p)P(p, t)] + . . . (I.53)

We can, of course, push this expansion to an arbitrarily high order
(Kramers–Moyal expansion), but order two will suffice for what follows.
Let us inject this expansion into the master equation (I.52). We then obtain
for P(p, t) the partial differential equation (Fokker–Planck equation):

∂P(p, t)
∂t

= − ∂

∂p
[F(p)P(p, t)] + ∂2

∂p2
[D(p)P(p, t)] , (I.54)

with

F(p) =
∫
qW (q|p) dq, D(p) = 1

2

∫
q2W (q|p) dq. (I.55)

The first term of (I.54) corresponds to the evolution of the probability den-
sity P(p, t) under the effect of the force F(p). To confirm this, we can eval-
uate the evolution of the average momentum ⟨p(t)⟩ =

∫
pP(p, t) dp for a

probability distribution centered around p0. After integration by parts, we
find

d⟨p⟩
dt

=

∫
F(p)P(p, t) dp ≈ F(p0). (I.56)
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The second term in (I.54) corresponds to diffusion in momentum space. To
demonstrate this, let us once again consider a distribution centered around
p0 and study the evolution of the root-mean-square momentum:

d⟨p2⟩
dt

= 2

∫
pF(p)P(p, t) dp+ 2

∫
D(p)P(p, t) dp,

(I.57)

≈ 2p0F(p0) + 2D(p0). (I.58)

We find a structure similar to that obtained in (I.49) by the Langevin equa-
tion approach, with the two contributions of mean force and momentum
diffusion.

At this stage, the class of problems described by the Fokker–Planck
equation is more general than that described by the Langevin equation
(eq:Langevin), since the deterministic force F is not necessarily linear in
momentum and the diffusion coefficient D is not necessarily constant. We
will see in the rest of this course that this generalization can be very use-
ful when modeling certain types of light cooling. For now, we can restrict
ourselves to the simple case of

F(p) = −αp, D(p) = Dp, (I.59)

and model Brownian motion by the linear Fokker–Planck equation:

∂P(p, t)
∂t

= α
∂ (pP(p, t))

∂p
+Dp

∂2P(p, t)
∂p2

. (I.60)

A stationary solution of this equation is the Gaussian function

Pstat.(p) =
1

p0
√
2π

e−p2/2p2
0 , with p20 =

Dp

α
, (I.61)

which corresponds to the Maxwell-Boltzmann distribution expected for a
particle in contact with a reservoir at temperature T , provided that kBT =
Dp/(Mα) [cf. (I.51)].

3-3 Spatial diffusion

So far we have been interested in the atom’s motion in momentum space.
We have seen that this motion is the resultant of a momentum diffusion

characterized by Dp and a friction force characterized by α. In the rest of
this course, we will also consider the atom’s motion in position space. We
will see here that this motion is purely diffusive and characterized by the
spatial diffusion coefficient Dx = Dp/(Mα)2.

To calculate this spatial diffusion coefficient, let us start again with
Langevin’s equation

dp

dt
= −αp+ F (t), (I.62)

and its solution between an initial time ti and time t.

p(t) = p(ti)e
−α(t−ti) +

∫ t

ti

e−α(t−t′)F (t′)dt′. (I.63)

Let us look at the distance covered by the particle between ti and t:

r(t) = r(ti) +
1

M

∫ t

ti

p(t′) dt′. (I.64)

Because of the isotropy of Brownian motion, it is clear that if the particle
is at point r(ti) at initial time, its mean position will still be r(ti) at time t.
Now consider the mean square deviation

∆r2(t) = ⟨[r(t)− r(ti)]
2⟩ (I.65)

and calculate its time derivative:

d∆r2

dt
=

2

M
⟨p(t) · [r(t)− r(ti)]⟩ =

2

M2

∫ t

ti

⟨p(t) · p(t′)⟩ dt′. (I.66)

We therefore need to evaluate the correlation function of the momentum
at two different time, which is immediately deduced from (I.63): since the
Langevin force at time t is not correlated with the value of the momentum
at an earlier time t′, we have:

⟨p(t) · p(t′)⟩ = ⟨p2(t′)⟩ e−α(t−t′) for t > t′. (I.67)

We will assume that at times t′ contributing to the integral (I.66), the par-
ticle is in thermal equilibrium, so that ⟨p2(t′)⟩ = 3p20 (three-dimensional).
So, for a time interval t− ti ≫ α−1:

d∆r2

dt
=

6p20
M2α

, (I.68)
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i.e. a constant increase in ∆r2, characteristic of diffusion along each com-
ponent of x, y, z space:

d∆x2

dt
= 2Dx with Dx =

p20
M2α

=
Dp

M2α2
. (I.69)

This spatial diffusion coefficient can be interpreted as the result of a ran-
dom walk in the position space, with the rate α and the step v0/α, i.e. the
distance covered by a particle of average velocity v0 = p0/M during the
velocity damping time α−1.

4 Thermalization in black-body radiation

In his 1917 article, Einstein took up the arguments developed in 1916 to
identify the three elementary processes of atom-radiation interaction: ab-
sorption, stimulated emission and spontaneous emission. He develops a
line of reasoning that reinforces his 1916 conclusions: if we accept that
these three processes are present, then not only do the internal atomic vari-
ables (populations Pg,e) reach the expected state of thermal equilibrium,
but so does the momentum distribution P(p) of the atom’s center of mass.
To establish this result, Einstein developed a formalism that is the direct
precursor of Doppler cooling as used in modern experiments. The aim
of this paragraph is to present Einstein’s argument, with tools that can be
directly transposed to the study of laser cooling of atoms.

We use a Brownian motion approach here, decomposing the mechanical
action of radiation on the atom into two parts: on the one hand, a friction
force −αp, and on the other, a momentum diffusion characterized by the
coefficient Dp. We will calculate the two coefficients α and Dp separately,
then check that the equilibrium reached corresponds to what is expected,
i.e. thatDp/α =MkBT , where T is the blackbody temperature. In practice,
calculating the diffusion coefficient is simpler than calculating the friction
coefficient, so we will start with Dp.

4-1 Atomic momentum diffusion

Let us consider an atom initially at rest (p = 0). If the image of Brown-
ian motion is correct, the evolution of its mean square momentum under
the effect of the random kicks constituted by the elementary processes of
absorption and emission is given by

d⟨p2j (t)⟩
dt

= −2α⟨p2j (t)⟩+ 2Dp. (I.70)

The root-mean-square momentum begins to grow linearly with a slope
2Dp, saturating at long time at Dp/α.

Let us consider a time interval ∆t short enough for the contribution
of the friction −2α⟨p2j (t)⟩ to be negligible compared to diffusion, but long
enough for several elementary processes to take place (we will verify a pos-
teriori that such a time interval exists). The rate R at which these processes
occur is:

R = 3n̄Γ Pg +
∑
j

(n̄+ 1)Γ Pej . (I.71)

Using the stationary population values given in (I.34), we obtain

R = 6Γ
n̄(n̄+ 1)

4n̄+ 1
. (I.72)

During the time interval ∆t, ∆N = R∆t elementary processes will oc-
cur, each corresponding to a kick transferring to the atom a momentum of
modulus ℏk in a random direction. The atom’s momentum thus follows a
random walk of step ℏk and rate R. At the end of the time interval ∆t, the
atom’s mean momentum remains zero, but the root-mean-square momen-
tum along one of the three directions in space has increased by

⟨p2j (∆t)⟩ =
1

3
ℏ2k2 ∆N, (I.73)

From this we deduce the momentum diffusion coefficient

Dp =
1

2

⟨p2j (∆t)⟩
∆t

⇒ Dp = ℏ2k2Γ
n̄(n̄+ 1)

4n̄+ 1
. (I.74)
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4-2 Friction force

Let us now consider an atom moving at velocity v = p/M . We will assume
v ≪ c so that the particle is non-relativistic. The origin of the friction force
is the Doppler effect: in the frame of reference R in motion with the atom,
blackbody radiation is not isotropic, unlike in the laboratory frame. Now,
the atom probes the radiation in R at its resonant frequency ωA; it will
therefore interact with modes of the field that are not all equally populated.

For example, let us consider two modes in opposite directions, one go-
ing in the same direction as the atom, the other in the opposite direction,
which are likely to interact with the atom. The frequency of the mode
running in the same direction as the atom is ωA in the atomic frame of ref-
erence, i.e. ωA(1 + v/c) in the laboratory frame. The mode going in the
opposite direction to the atom also has a frequency ωA in the atomic frame
of reference, so ωA(1 − v/c) in the laboratory frame. The number of pho-
tons per mode n̄(ω) is a decreasing function of ω for blackbody radiation.
Therefore

n̄[ωA(1− v/c)] > n̄[ωA(1 + v/c)]. (I.75)

The moving atom sees more resonant photons coming towards it than go-
ing in the same direction as it: there will therefore be more kicks decreasing
atomic velocity than increasing it: this is the origin of the friction force.

For a quantitative assessment of the coefficient of friction α, let us take
an atom moving in one direction in space, z for example. Let us denote its
velocity vz and assume that the atom is in its electronic ground state g. The
average change in momentum over an infinitesimal time interval ∆t can be
calculated using a formalism very similar to the one we used to evaluate
absorption and emission probabilities based on Fermi’s golden rule. It is
obtained by considering all the momentum gains ℏk resulting from the
absorption of a photon in a given mode of the k0, ϵ0 field, accompanied by
the atom’s passage into the state ej , j = x, y, z:

∆pz = ∆t
2π

ℏ2
∑
j

∑
k0,ϵ0

ℏkz
∣∣∣⟨ej , {n′k,ϵ}| V̂ |g, {nk,ϵ}⟩∣∣∣2 δ(ω0 − ωat). (I.76)

The Dirac distribution δ(ω0 − ωA) selects the modes with frequency ωA in
the atomic frame of reference5, i.e. frequency ωA + kzvz in the laboratory

5The reasoning can also be done directly in the laboratory reference frame. The Dirac

reference frame. The population of a mode corresponding to this resonance
is

n̄(ωA + kzvz) ≈ n̄(ωA) + kzvz
∂n̄

∂ω

∣∣∣∣
ω=ωA

. (I.77)

The calculation of the sum over the modes is then similar to that of the
absorption and emission rates. After some rather tedious algebra, we find
for absorption processes:

∆pz
∆t

= ℏk2Γ
∂n̄

∂ω
vz (I.78)

and an identical result, but of opposite sign, for emission processes after
averaging over the three ej states. Finally, by weighting the momentum
changes between absorption and emission by the stationary populations
(I.34), we arrive at the expression for the friction force:

Fz = −αpz with α = −ℏk2

M

Γ ∂n̄
∂ω

4n̄+ 1
. (I.79)

The friction coefficient is therefore directly proportional to the frequency
derivative of the mode population around the atomic resonance frequency.
This result confirms the intuition based on the Doppler effect discussed
above [cf. (I.75)]: it is the differential between the population of modes
going in the same direction as the atom and those opposing its motion that
creates the friction force.

4-3 Thermal balance ?

We are now in a position to apply the general results of Brownian mo-
tion theory: atomic motion is characterized by a friction coefficient α and a
momentum diffusion coefficient Dp, so that the momentum distribution at
equilibrium is a Gaussian to which we can associate an effective tempera-
ture

kBTeff =
Dp

Mα
= ℏ

n̄(n̄+ 1)∣∣ ∂n̄
∂ω

∣∣ . (I.80)

distribution expressing the energy conservation then selects modes of frequency ω such that
Ei − Ef = [p2/2M + ℏω] − [(p + ℏk)2/2M + ℏωA] = 0, which is equivalent to taking
ω = ωA + kzvz , except for the recoil energy ℏ2k2/2M , which plays a negligible role here.
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If we inject the mode occupancy for blackbody radiation into this relation-
ship:

n̄ =
1

exp(ℏω/kBT )− 1
, (I.81)

we check that the model is thermodynamically consistent, i.e. that the ef-
fective temperature associated with the atom’s momentum distribution co-
incides with the blackbody temperature:

Teff = T. (I.82)

For Einstein, this result was a confirmation of his hypotheses on the na-
ture of exchanges between atoms and radiation. The 1916 argument about
the populations of the atom’s internal states only concerned energy. On
the contrary, for this thermalization problem, it is essential to posit that
the atom’s momentum increases or decreases by ℏk when the atom ab-
sorbs or emits a photon. Einstein concluded his article with two prescient
remarks. On the one hand, while acknowledging the weaknesses of his
model, in which the instants and directions of elementary processes are
left to chance, he stated that "I have full confidence in the safety of the ap-
proach followed here". He also pointed out that almost all theories of ther-
mal radiation take into account only the exchange of energy between light
and matter, but not the exchange of momenta: "We readily believe that we
are authorized to do so by the fact that the momenta transferred by radia-
tion are small, and therefore in reality almost always negligible compared
with the other causes of motion". He went on to stress the importance of
taking these momentum exchanges into account on a theoretical level for a
justified theory. The cooling of atoms by light shows that it is also essential
to take these exchanges into account on a practical level!

4-4 Orders of magnitude and validity criteria

In the above, we have obtained the value of the friction coefficient for the
motion of an atom in blackbody radiation [eq. (I.79)]. Let us consider a
sodium atom and model it by its resonance line at λ = 589nm. The tem-
perature required to reach kBT = ℏω is considerable, on the order of 25 000
Kelvins. Although this is a rather unrealistic situation (even for our two-
level atom model), we can calculate the corresponding friction coefficient

and find a time α−1 of the order of 10 minutes. For a blackbody of more
reasonable temperature, kBT ≪ ℏω, the thermalization time diverges ex-
ponentially:

α−1 ≈ M

ℏk2
kBT

ℏΓ
eℏω/kBT . (I.83)

A 6000 Kelvin blackbody (an atom close to the sun’s surface) gives n̄(ωA) =
0.017 and a thermalization time of 40 minutes. The thermal velocity
v0 =

√
kBT/M corresponds in this case to 1500 m/s, and the average dis-

tance covered during a thermalization time, i.e. the step of the random
walk in position space, is 3600 km. Even in an astrophysical environment,
it is likely that other thermalization processes, such as collisions with other
atoms or molecules, will limit the mean free path of our sodium atom to
much lower values. The advantage of using laser sources will be to pro-
duce much larger values of

∣∣ ∂n̄
∂ω

∣∣, the thermalization time then being simply
the first factor in (I.83), i.e. M/ℏk2.

Finally, it should be noted that our assumption of low-amplitude jumps,
essential for the Brownian motion approach, is well verified in this exam-
ple. The recoil velocity of the sodium atom when it absorbs or emits a
photon is vr = ℏk/M = 3 cm/s, which is very small indeed compared with
the characteristic width of the thermal velocity distribution at 6000 K, of
the order of 1500 m/s.
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Chapter II

Doppler cooling and magneto-optical trap

Sixty years after Einstein’s paper showing how light from a blackbody
could impose a kinetic temperature on an assembly of atoms, two papers
by Hänsch & Schawlow (1975) on the one hand and Wineland & Dehmelt
(1975) on the other, came simultaneously to propose exploiting light from
tunable lasers (a novelty in 1975) to create new thermodynamic equilibria.
In the language we developed in the previous chapter, a monochromatic
laser can produce a spectral distribution of light with ∂n̄

∂ω arbitrarily large: it
is then the natural width Γ of the excited level of the atom that will replace
the width of the blackbody distribution. In other words, there is no longer
any temperature imposed on the exterior by incident light, and it is the
parameters of the atomic transition used that determine the equilibrium
temperature.

As in Einstein’s paper, it is the Doppler effect that is at the root of the
friction force that cools the atoms. The approach we are going to follow will
therefore be very similar to what we have seen for blackbody radiation. We
will use Brownian motion theory to determine both a friction coefficient
and a diffusion coefficient, to arrive at the famous Doppler limit:

kBT =
ℏΓ
2
. (II.1)

Once we have established the principle of these optical molassess, we will
transpose them from velocity space to position space, substituting the Zee-
man effect for the Doppler effect. We will then arrive at the principle of the
magneto-optical trap, which we will describe and illustrate using recent
experiments with both atoms and molecules.

1 Radiation pressure force

At the root of Doppler cooling of atoms is the radiation pressure force. The
simplest physical situation in which this force appears is that of an atom
with two relevant electronic levels, g and e, placed in a monochromatic
plane light wave, of wave vector k (figure II.1). The atom’s internal state
performs absorption – emission cycles, each of which transfers a certain mo-
mentum to the atom. More precisely:

• During a photon absorption process, the atom passes from the g state
to the e state by gaining the momentum ℏk.

• During a photon emission process, the atom passes from the e state to
the g state, and two cases are possible:

1. In the case of stimulated emission, the emitted photon is identical
to the photons of the incident wave; the momentum lost by the
atom is therefore ℏk, so the momentum change of the absorption–
stimulated emission cycle is zero.

2. In the case of spontaneous emission, the photon is emitted in a
random direction in space. The angular distribution of this emis-
sion is not universal and depends on the nature of the atomic
transition, but it always occurs with equal probability in two op-
posite directions in space. The average momentum carried away
by the spontaneously emitted photon is therefore always zero, so
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Figure II.1. A two-level atom illuminated by a plane wave; the repetition of
"absorption– spontaneous emission" cycles creates a radiation pressure force on
the atom that can reach the value ℏkΓ/2, where Γ is the natural width of the ex-
cited state e.

that the balance of the cycle absorption-spontaneous emission is a
gain of ℏk.

We deduce from this analysis that the radiation pressure force is equal
to

F = ℏk γ (II.2)

where γ is the rate for the spontaneous emission of photons. Using the
result from the previous chapter, this rate can be written as

γ = ΓPe, (II.3)

where Γ is the natural width of the excited state (Einstein’s A coefficient)
and Pe is the steady-state population of this excited state. The result will
be the equivalent for a coherent field of the result Pe = n̄/(2n̄ + 1) found
for a two-level atom in an incoherent, isotropic field.

1-1 Optical Bloch equations

We are interested here in the internal dynamics of an atom coupled both to
a monochromatic (i.e. coherent) light field and to the empty modes of the
electromagnetic field, this second –incoherent– coupling being responsible
for the spontaneous emission phenomenon. If we were dealing solely with
the coherent coupling with the light field, we could describe the atom’s
internal state by a state vector αg(t)|g⟩ + αe(t)|e⟩, and deduce the evolu-
tion of αg,e(t) from Schrödinger equation to then calculate Pe = |αe|2. If

we were dealing solely with incoherent coupling, we could, as in the pre-
vious chapter, write rate equations for the populations Pg,e and determine
their stationary state. The simultaneous presence of both types of coupling,
coherent and incoherent, necessitates recourse to the master equation for-
malism. We will briefly summarize this formalism, which leads to the op-
tical Bloch equations [for more details, see for example Cohen-Tannoudji,
Dupont-Roc, et al. (2012)].

We describe the atom’s internal state by its density operator ρ̂, i.e. for
the case of the two-level system of interest here, a 2× 2 matrix:

ρ̂ =

(
ρgg ρge
ρeg ρee

)
. (II.4)

This matrix is Hermitian and its diagonal elements, which are real, give the
populations of the states concerned:

ρgg = Pg, ρee = Pe, ρgg + ρee = 1. (II.5)

The matrix therefore has trace 1. The non-diagonal elements describe the
quantum coherence between the g state and the e state and the Hermitian
character of the matrix imposes:

ρeg = ρ∗ge. (II.6)

In the incoherent field model developed in the previous chapter, these non-
diagonal elements were zero in steady state.

In the master equation description, valid if the laser excitation is not too
intense1, the evolution of ρ is written as the sum of two terms:

dρ̂

dt
=

dρ̂

dt

∣∣∣∣
coh.

+
dρ̂

dt

∣∣∣∣
incoh.

. (II.7)

The first term describes the coherent evolution under the effect of the
atom’s coupling with the light field. This coupling is characterized by two
parameters, each having the dimension of a frequency:

• The detuning ∆ = ωL−ωA between the frequency of the light field ωL

and the resonant frequency of the atom ωA.
1The Rabi frequency κ and the detuning ∆ must both be small compared to the atomic

frequency ωA.
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• The Rabi frequency κ = dE0 e
iϕ/ℏ, proportional to the reduced dipole

d associated with the transition g ↔ e and to the complex ampli-
tude of the electric field of the light wave: E(t) = E0 cos(ωLt − ϕ) =
1
2E0e

i(ωLt−ϕ) + c.c.. We have assumed here that the atom is located at
the origin of coordinates r = 0.

In the rotating field approximation2, the Hamiltonian characterizing the
coupling is written as a 2× 2 matrix in the {|g⟩, |e⟩} basis:

Ĥ =
ℏ
2

(
∆ κ∗

κ −∆

)
. (II.8)

In particular, the non-diagonal terms of this Hamiltonian, κ|e⟩⟨g| and
κ∗|g⟩⟨e|, describe the photon absorption and emission processes in the
monochromatic laser wave. In the density operator formalism, the atom-
coherent field coupling is then deduced from the Schrödinger equation:

iℏ
dρ̂

dt

∣∣∣∣
coh.

= [Ĥ, ρ̂]. (II.9)

Incoherent coupling related to spontaneous emission processes is given
by the simple evolution (Cohen-Tannoudji, Dupont-Roc, et al. 2012):

dPg

dt

∣∣∣∣
incoh.

= ΓPe,
dPe

dt

∣∣∣∣
incoh.

= −ΓPe (II.10)

dρeg
dt

∣∣∣∣
incoh.

= −Γ

2
ρeg,

dρge
dt

∣∣∣∣
incoh.

= −Γ

2
ρge (II.11)

The first line is identical to what we established in the previous chapter
from Fermi golden rule. The second line shows that the coherence between
g and e decreases with the rate Γ/2, i.e. half the population decay rate
Pe = ρee.

By adding the two contributions, coherent and incoherent, we arrive at
the equation of motion of the density operator, constituting the set of optical
Bloch equations:

Ṗe = −ΓPe +
i

2
(κ∗ρeg − κρge) , (II.12)

ρ̇eg =

(
i∆− Γ

2

)
ρeg −

iκ

2
(ρgg − ρee) , (II.13)

2This approximation was detailed in the 2013-14 course, chapter 4.

to which we add the two other equations for Ṗg and ρ̇ge deduced from
Pg + Pe = 1 and ρge = ρ∗eg .

1-2 Stationary state of optical Bloch equations

The characteristic time to equilibrium for the system of equations (II.12-
II.13) is of the order of Γ−1. The stationary value of populations and coher-
ences is given by

Pe =
1

2

s

1 + s
, ρeg =

κ

2∆ + iΓ

1

1 + s
, (II.14)

where we have introduced the saturation parameter:

s =
2|κ|2

Γ2 + 4∆2
. (II.15)

Note. We often introduce the notion of saturation intensity Isat for an
atomic line, measured in W·m−2, and characterize the strength of laser ex-
citation by the ratio I/Isat, where I is the intensity of light at the atomic
location. This ratio is related to the parameters introduced above by:

I

Isat
=

2|κ|2
Γ2

, s =
I/Isat

1 + 4∆2/Γ2
. (II.16)

Our saturation parameter therefore coincides with the ratio I/Isat for a
laser beam in resonance with the atom. The advantage of using s is that
it directly characterizes the atom’s excitation rate:

• if s≪ 1, which can be obtained with low laser intensity or high detun-
ing, the population of the excited state is negligible compared to that
of the ground state:

s≪ 1 : Pg ≈ 1, Pe ≈
s

2
. (II.17)

• if s≫ 1, the atom occupies the ground state and the excited state with
equal probabilities

s≫ 1 : Pg ≈ Pe ≈
1

2
. (II.18)
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Knowing the stationary population of the excited state, we can now
return to the expression for the radiation pressure force (II.2-II.3):

γ =
Γ

2

s

1 + s
, F = ℏk

Γ

2

s

1 + s
. (II.19)

The maximum value of this force is reached in the limit of strong satu-
ration, s ≫ 1, for which the atom performs on average Γ/2 absorption–
spontaneous emission cycles per second. The corresponding acceleration
is

amax =
Fmax

M
= vr

Γ

2
(II.20)

where we have introduced the recoil velocity

vr =
ℏk
M
, (II.21)

i.e. the change in velocity of an atom when it absorbs or emits a photon.
For a sodium atom illuminated on its resonance line, the recoil velocity is
3 cm/s and the maximum acceleration is 106 m/s2.

1-3 Using Ehrenfest’s theorem

In the foregoing, we have adopted an intuitive approach (II.2-II.3) to re-
late the radiation pressure force to the spontaneous emission rate and thus
to the excited state population. This result can be rigorously justified by
starting from the complete Hamiltonian describing the coupling between
the atom and the radiation, i.e. the Hamiltonian taking into account both
the atom’s internal variables and those describing the motion of its center
of mass.

Noting r̂ and p̂ as the operators for the position and momentum of the
center of mass, this Hamiltonian can be written as follows

Ĥtot. =
p̂2

2M
+

ℏ
2

(
∆ κ∗ e−ik·r̂

κ eik·r̂ −∆

)
. (II.22)

The force operator acting on the atom is calculated using the Heisenberg

picture(Gordon & Ashkin 1980):

F̂ =
dp̂

dt
=

i

ℏ
[Ĥtot, p̂]

(II.23)

=
1

2
ℏk

(
0 iκ∗e−ik·r̂

−iκeik·r̂ 0

)
. (II.24)

We take the average of this operator on a wave packet localized in the
vicinity of r = 0 and of small extension in front of the optical wavelength:

⟨F̂ ⟩ = Tr(F̂ ρ̂) = ℏk
i

2
(κ∗ρeg − κρge) . (II.25)

In steady state, the term in the right-hand side is none other than ΓPe [cf.
(II.12)], hence the announced result (II.2-II.3).

1-4 Doppler effect and the broad line condition

In the preceding paragraphs, we have outlined the notion of an average ra-
diation pressure force. This average force, applied to the atom, will change
its velocity. Taking this velocity into account in the formalism we have just
established is simple: just use the fact that for a moving atom, the effective
frequency of the laser is not ωL but ωL−k ·v due to the Doppler effect. The
saturation parameter is then a function of velocity:

s(v) =
2|κ|2

4(∆− k · v)2 + Γ2
, (II.26)

as well as the radiation pressure force F (v). The evolution of the atom’s
velocity in a light wave is therefore given by the equation of motion

M
dv

dt
= F (v), (II.27)

an expression we will generalize in what follows to the case where several
plane waves simultaneously illuminate the atom.

However, we must first examine the validity of the notion of average
force. We have already used the fact that the average momentum carried
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away by a spontaneously emitted photon is zero. The notion of force can
be deduced from this if the value of this force changes only by a small
amount in an elementary change in velocity v → v± vr. It is this necessary
condition that we now propose to examine.

For low light intensity (s≪ 1), the width of the resonance curve giving
Pe as a function of the detuning ∆ is equal to Γ (total width at half-height).
The change in detuning in an elementary absorption or emission process
is equal to kvr = 2ωr, where ωr = ℏk2/(2M) is the recoil frequency. We can
therefore distinguish two limiting situations:

• If Γ≫ ωr (broad line), then an elementary absorption or emission pro-
cess hardly changes the saturation parameter s, nor the population of
the excited state. It is only by repeating a large number of such pro-
cesses that s(v) can be modified appreciably. This is the case that will
interest us in the remainder of this chapter. It occurs for the resonance
line of many atomic species, as shown in the table below. For example,
we find Γ/ωr ∼ 400 for the sodium atom.

• If Γ ≪ ωr, the absorption or emission of a single photon is enough
to change s(v) considerably. The atom may be in resonance with the
laser before a spontaneous absorption-emission cycle, and completely
out of resonance after this cycle3, so that the notion of average force for
a given v velocity loses its meaning. We will explore the possibilities
offered by these narrow lines in the next chapter.

3We can nevertheless recover a broad-line situation even if Γ ≪ ωr. To do this, we need to
choose a value for the Rabi frequency |κ| ≫ Γ, so that the population of the excited state

Pe =
1

2

s

1 + s
=

|κ|2
4(∆− k · v)2 + 2|κ|2 + Γ2

(II.28)

has an broadened resonance:

Γ −→
√

Γ2 + 2|κ|2 = Γ
√

1 + I/Isat, (II.29)

which can be considerably larger than Γ for realistic values of I/Isat.

A λ Γ/2π ωr/2π Γ/ωr Tmin vr v0 δvres ℓ
nm kHz kHz µK cm/s cm/s cm/s µm

He 4 1083 1600 42.3 38 38 9.16 28.2 173 3.3
Li 6 671 5910 73.5 80 142 9.86 44.2 397 4.3
Na 23 589 9800 24.9 394 235 2.93 29.1 577 18.5
Mg 24 285 80000 101.8 786 1922 5.80 81.3 2280 17.8
K 39 770 6000 8.6 699 144 1.32 17.5 462 42.8
Ca 40 423 34600 27.7 1248 831 2.35 41.4 1464 42.0
Cr 52 426 5020 21.1 238 121 1.79 13.8 214 8.1
Rb 87 780 6100 3.8 1627 147 0.59 11.8 476 101.0
Sr 84 461 30500 11.1 2743 733 1.03 26.8 1406 100.6
Cs 133 852 5200 2.1 2529 125 0.35 8.8 443 171.5
Er 168 401 27500 7.3 3743 661 0.59 18.0 1103 119.4

583 190 3.5 55 5 0.41 1.5 11 2.5
Dy 170 421 32000 6.6 4857 769 0.55 19.3 1347 162.7

626 135 3.0 45 3 0.37 1.3 8 2.3
Yb 174 399 29100 7.2 4061 699 0.57 18.2 1161 128.9

556 183 3.7 50 4 0.41 1.4 10 2.2
Hg 202 254 1300 15.2 85 31 0.77 3.6 33 1.7

Table II.1. Characteristics of some chemical elements with a broad resonance line
(Γ/ωr ≫ 1) that can be laser-cooled. For certain atoms with two outer electrons,
the main line 1S0 ↔1P1 and the intercombination line 1S0 ↔3P1 are indicated.
The minimum temperature shown, and the root-mean-square velocity v0, corre-
spond to the Doppler cooling studied in this chapter. For some of these elements,
Sisyphus-type cooling is also possible, leading to lower temperatures than those
indicated here.
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2 Doppler cooling

We now turn to the description of Doppler cooling with lasers. The mecha-
nism involved is very similar to that seen in the previous chapter for black-
body radiation. The theoretical description will also be very similar, with
a Brownian motion-type approach to evaluating a friction coefficient and
a momentum diffusion coefficient, and finally deducing the cooling limit
temperature.

2-1 Optical molasses and low saturation assumption

We aim to achieve a Doppler cooling situation, in which an atom with a
non-zero initial velocity experiences a friction force that drives its velocity
towards 0. To achieve this, we illuminate the zone of interest with one, two
or three pairs of waves, depending on the number of directions in space
we wish to cool (figure II.2). As initially proposed by Hänsch & Schawlow
(1975), we choose a detuning ∆ < 0, i.e. ωL < ωA, so that a moving atom is
closer to resonance with a counter-propagating wave (k · v < 0) than with
a co-propagating wave (k · v > 0). This is the cooling phenomenon we are
looking for. Now let us be more quantitative and calculate the total force
acting on the atom.

To calculate this force, it is tempting to add the radiation pressure forces
created by the 2, 4 or 6 waves illuminating the atom. In the case of the sin-
gle plane wave studied in paragraph 1, the absorption-stimulated emission
cycles played no role, as they were not associated with any momentum
transfer, the atom returning to the wave the momentum it had borrowed
from it during absorption. If several plane waves are simultaneously in-
cident on the atom, the atom can absorb a photon in wave 1, then make
a stimulated emission in wave 2, thus gaining the momentum ℏ(k1 − k2).
Of course, the reverse process is also possible, but it is unclear that both
processes occur with the same amplitude, for a given atomic velocity and
position.

There is one situation in which taking the sum of the radiation pressures
is a good approximation: this is the case where the saturation parameter s0
associated with each travelling wave is much smaller than 1, and where we
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Figure II.2. Basic diagram of a three-dimensional optical molasses. The atoms
are illuminated by 3 pairs of monochromatic waves, with negative detuning ∆ =
ωL − ωA.

can therefore neglect the processes of stimulated emission in comparison
with those of spontaneous emission. Note, however, that this approxima-
tion ignores the periodic structure of the standing waves created by the
superposition of traveling waves. The calculated force must therefore be
understood as the spatial average (over one standing-wave period) of the
force F (r,v) calculated by a more sophisticated method, such as numer-
ical resolution of the optical Bloch equations at any point (r,v) in phase
space.

Once this approximation has been made, the force acting on the atom is
easy to calculate:

F (v) =
Γ

2

∑
j

ℏkjsj(v), (II.30)

where the sum relates to all running plane waves illuminating the atom,
with

sj(v) =
2|κ|2

4(∆− kj · v)2 + Γ2
, sj(0) ≡ s0. (II.31)

To apply the theory of Brownian motion, we consider the case of velocities
small in front of the interval δvres quasi-resonant with a monochromatic
light wave:

|kv| ≪ Γ ⇒ |v| ≪ δvres ≡ Γ/k, (II.32)
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which allows us to calculate the force at order 1 in velocity:

F (v) = −Mα v, with Mα = ℏk2s0
2(−∆)Γ

∆2 + Γ2/4
, (II.33)

where we used
∑

j kj = 0 for the geometry considered, which cancels out
the 0-order term in v. We have also used for the term of order 1:∑

j

kj (kj · v) = 2k2 v (II.34)

in the geometry of figure II.2. It is clear from (II.33) that a negative detuning
∆ must be chosen to generate friction (α > 0).

If we fix a given value of the saturation parameter s0, chosen in partic-
ular such that s0 ≪ 1 so that the approximation consisting in summing the
forces created by the different plane waves is valid, we see that the coeffi-
cient of friction α is maximum when |∆|/(∆2 + Γ2/4) is maximum, which
occurs for ∆ = −Γ/2:

Maximum friction coefficient at fixed s : α = 2 s0
ℏk2

M
for ∆ = −Γ

2
.

2-2 Momentum diffusion and equilibrium temperature

As in the previous chapter, an analysis in terms of Brownian motion also
requires the knowledge of the momentum diffusion coefficient (Gordon &
Ashkin 1980). The treatment developed for the blackbody radiation can
be directly transposed. We found that this coefficient can be written as
Dp = ℏ2k2R/6, where R is the rate of elementary processes, absorption or
emission, for an atom at rest. In this case, the scattering rate for an atom
illuminated by six waves of saturation parameter s0 is R = 6× Γs0, i.e.

Dp = ℏ2k2s0 Γ. (II.35)

The final step is to determine the equilibrium temperature of the atoms
illuminated by these light beams:

kBT =
Dp

Mα
=

ℏ
2

∆2 + Γ2/4

|∆| . (II.36)

First, we note that this quantity is independent of the power of the light
waves. In fact, the coefficients of friction α and diffusionDp are both linear
in intensity (∝ s0|κ|2). We then see that this temperature is minimal for :

∆min = −Γ

2
, kBTmin =

ℏΓ
2
, (II.37)

which constitutes the Doppler limit announced in the introduction to this
chapter. These temperatures are located in the 1 − 1000 µK range. The
values corresponding to certain atomic species commonly used in radiative
cooling experiments are given in table II.1.

As we saw in the previous chapter, a Fokker–Planck equation approach
shows that the stationary velocity distribution is a Gaussian, identical to a
Maxwell-Boltzmann distribution of velocity width v0 given by

1

2
Mv20 =

1

2
kBTmin, i v0 =

√
ℏΓ
2M

. (II.38)

2-3 Validity of the Brownian motion approach

Since we have used a Brownian motion approach here, we need to check
that the underlying assumption of small steps is verified. Furthermore, we
have used a linear approximation to calculate the force as a function of the
velocity, and we need to ensure that this approximation is satisfied for the
predicted mean-square velocity v0 at equilibrium.

Let us show that the broad-line criterion ensures that these two condi-
tions are met. For our problem, the elementary step of the random walk
in velocity space is the recoil velocity vr = ℏk/M . This velocity is indeed
small compared to v0:

vr
v0

=
ℏk/M√
ℏΓ/2M

= 2

√
ωr

Γ
≪ 1. (II.39)

Regarding the validity of the linear approximation, we check that v0 is
small compared to the velocity range δvres :

v0
δvres

=

√
ℏΓ/2M
Γ/k

=

√
ωr

Γ
≪ 1. (II.40)
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We therefore have three velocity scales in the problem:

vr ≪ v0 ≪ δvres, (II.41)

which guarantees the validity of our approach. For the sodium atom, these
three velocities are 3 cm/s, 30 cm/s and 600 cm/s (see table).

Time constants. The model we have just presented can also be used to
estimate the typical cooling time for ∆ = ∆min:

α−1 =
M

ℏk2
1

2s0
. (II.42)

In the limit of low saturation, this time can of course be arbitrarily long. Let
us take s0 = 0.1 as a typical upper bound for our perturbative treatment.
We then find α−1 ∼ 20µs for the sodium atom, which is short: for an initial
velocity vi = δvres = 6 m/s (at the limit of the linearity range), the atom
only travels about a hundred microns before its mean velocity becomes
negligible.

3 Optical molasses in practice

The first optical molasses was produced by Chu, Hollberg, et al. (1985)
shortly after atoms were successfully stopped by radiation pressure (Ert-
mer, Blatt, et al. 1985; Prodan, Migdall, et al. 1985). Figure II.3 shows an
image of an optical molasses obtained in 1987 in Bill Phillips’ group, with
sodium atoms (Lett, Watts, et al. 1988a). The central volume, of the or-
der of a cubic centimetre, contains 108 atoms. We are showing this image
now, but we will see later that another cooling mechanism, based on the
Sisyphus effect, was also at work in this gas of sodium atoms.

3-1 How to take saturation into account?

Our description in the previous paragraph was based on an assumption
of low saturation, allowing the radiation pressure forces created by all the
traveling waves making up the optical molasses to be added together. But

Figure II.3. Sodium molasses made in W.D. Phillips’ group (NBS-NIST).

in this low-saturation hypothesis, the cooling time varies as 1/s0 and is
therefore long. In practice, it is tempting to increase the light intensity, but
how can we take into account the phenomena that may then occur?

It should be pointed out at the outset that it is difficult to give an exact
treatment of the problem. It is possible to calculate the force acting on an
atom of velocity v in a standing light wave of arbitrarily high intensity, by
searching for the steady-state regime of the optical Bloch equations (Mino-
gin & Serimaa 1979). Let us briefly outline the principle behind this calcula-
tion: the Rabi frequency associated with a standing wave varies as cos(k·r),
which creates time-modulated terms for a given trajectory r(t) = r0+vt of
the atom. The system of optical Bloch equations can then be solved numer-
ically by a Fourier series expansion (via the continued fraction approach).
Going beyond the calculation of the force and evaluating the diffusion coef-
ficient is an tedious task, which does not provide much physical intuition,
especially in the three-dimensional case.

In practice, the optimal regime for optical molasses corresponds to a
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saturation parameter per wave that does not exceed unity. In this case,
we use a ad-hoc procedure, which consists of considering that the atom is
simply saturated by all six incident waves, and using the response of this
saturated system. Two slightly different procedures can be found in Lett,
Phillips, et al. (1989) and Wohlleben, Chevy, et al. (2001). As an example,
let us mention the procedure proposed by Lett, Phillips, et al. (1989), where
one takes as an approximate value the total force acting on the atom:

F (v) ≈
∑
j

ℏkj
Γ

2

I/Isat
1 + 4(∆− kj · v)2/Γ2 +NI/Isat

. (II.43)

whereN is the total number of traveling plane waves incident on the atom.
We will see later that the results obtained are in reasonable agreement with
experimental observations, in particular the equilibrium temperature:

kBT =
ℏΓ
2

Γ

4|∆|

(
1 +

4∆2

Γ2
+
NI

Isat

)
. (II.44)

Remember, however, that this is just one heuristic solution to a complex
situation.

3-2 Capture of atoms in optical molasses

Optical molasses is formed by centimeter-sized beams intersecting in the
center of a vacuum chamber (figure II.3). A key practical issue is the load-
ing of this molasses with atoms of any velocity v. Given a finite distance L
to capture an atom, what is the maximum velocity that can be brought to
rest by the friction force?

Let us work with a one-dimensional version of the problem for simplic-
ity. The equation of motion of an atom is

M
dv

dt
= F (v) (II.45)

with

F (v) =
ℏkΓ
2

I

Isat

[
1

1 + 4(∆− kv)2/Γ2
− 1

1 + 4(∆ + kv)2/Γ2

]
. (II.46)

We write this equation as

Mv
dv

dx
= F (v) (II.47)

which can be integrated into

M

∫ vf

vi

v

F (v)
dv =

∫
dx = L. (II.48)

We wish to obtain vf ≈ 0 and seek to maximize vi, for a fixed L. In practice,
this optimum is obtained by taking the detuning ∆ ≈ −kvi/2, so that the
effective detuning is initially on the blue of the atomic resonance ∆+kvi ≈
+kvi/2, and finally on the red of this resonance ∆ + kvf ≈ ∆ ≈ −kvi/2.
We then find, keeping only the contribution of the resonant wave with the
atom in (II.46)

1

6

k2v4i
Γ2

+
v2i
2
≈ ℏkΓ

2M

I

Isat
L. (II.49)

As soon as the distance L is large enough, the dominant term in the left-
hand side of (II.49) is the term in v4i , corresponding to the variation F (v) ∝
1/v2 for |∆− kv| ≳ Γ. We thus obtain the scaling law

kvi
Γ
≈

(
3
L

ℓ

I

Isat

)1/4

(II.50)

where ℓ = MΓ/ℏk3 is the relevant length scale for this problem (cf. table
II.1). The velocity that can be captured in optical molasses therefore varies
only as the power 1/4 of the available distance, which is not very favor-
able. We will see later how the magneto-optical trap leads to a much more
promising situation.

An example of a phase portrait, i.e. the variation of velocity as a func-
tion of position, is shown in figure II.4. The distance L = 400 ℓ corresponds
to about one centimeter for sodium atoms. The maximum velocity that can
be captured in this molasses, obtained for ∆ ≈ −3Γ, is such that kvi/Γ ≈ 5,
in good agreement with (II.50).

3-3 Spatial diffusion

Optical molasses is a simple way of accumulating a large number of atoms,
in excess of a million, in a given volume of space, on the order of a cubic
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Figure II.4. Phase portrait of 1D capture in optical molasses (left) and in a
magneto-optical trap (right), with two waves of intensity I = Isat/2 and effec-
tive length L = 400 ℓ, with ℓ = MΓ/ℏk3. The total force is taken to be the sum
of the two individual radiation pressure forces (taking saturation into account).
The shaded area represents the phase-space zone resonant with the light wave (to
within ±Γ/2). The detuning has been optimized to maximize the capture rate, as
well as the magnetic field gradient in the case of the magneto-optical trap. Mo-
lasses: ∆ = −3Γ; Magneto-optical trap: ∆ = −6Γ, µb′ℓ/ℏΓ = 0.022. The tra-
jectories correspond to initial velocities k|v|/Γ = 2, 4.5, 7, 10, 11. The capture
velocity is of the order of 5Γ/k for molasses and 10Γ/k for the magneto-optical
trap.

centimetre. The reason why this number can be so large lies in the rela-
tively long time it takes for an atom to find the edge of the molasses and
escape. In other words, the spatial diffusion coefficient in molasses is low
(and additional cooling mechanisms, such as Sisyphus cooling, lowers it
further).

In the previous chapter, we obtained the general expression for the spa-
tial diffusion coefficient Dx for Brownian motion:

Dx = v20/α. (II.51)

Consider molasses with optimal detuning ∆ = −Γ/2:

v20 =
ℏΓ
2M

, α = 2s0
ℏk2

M
⇒ Dx =

Γ

4k2
1

s0
. (II.52)

For a sodium atom (λ = 0.59µm, Γ/2π = 10MHz) and the choice s0 = 0.1,
this gives Dx ∼ 1.4mm2/s: for a centimetre-sized molasses, it takes more
than ten seconds for an atom starting from the center to reach the edge of
the molasses and escape. Although there is no trapping force as such, the
high viscosity means that atoms accumulate in the molasses. Sub-Doppler
cooling processes further reduce this spatial diffusion coefficient and thus
reinforce the accumulation of atoms, the coefficientDx in this case being of
the order of tens of h/M .

3-4 Some recent experimental tests at 3D

Testing the theory of broad-line Doppler cooling is not as easy as it sounds,
at least not in three dimensions. Indeed, for many atomic species, the
ground level is degenerate and other cooling mechanisms are also present,
such as the Sisyphus cooling we will see in a later chapter. This is notably
the case for all alkali-metal species, whose ground level is degenerate due
to (i) the spin of the outer electron, (ii) the spin of the nucleus. Good candi-
dates for testing Doppler cooling theory are the bosonic isotopes of atoms
with two outer electrons. Indeed, these atoms have a zero electron spin in
their ground state (singlet state for the two outer electrons) and the nuclear
spin can also be zero for bosonic isotopes (it is necessarily half-integer for
fermionic isotopes).
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The timing sequence for the temperature measure-
ments is shown in Fig. 1(b). At the end of an∼2 s loading
phase, the frequency detuning, δ, is swept from −6Γ or
−7Γ (depending on the isotope) toward the center of re-
sonance (approximately −Γ) to provide additional con-
traction of the MOT cloud. For the fermionic (bosonic)
isotopes, at least 20 ms (10 ms) are required for this con-
traction phase.
By monitoring the ballistic expansion of the MOT

cloud, we can assess the temperature and determine
the frequency detuning that leads to minimized tempera-
tures. By cycling the loading of the MOT and increment-
ing the release time before each CCD exposure, a series
of images is generated that records the ballistic expan-
sion of the MOT cloud in the x–y plane. Here the release
time is incremented in 0:5 ms steps for as long as the
signal-to-noise ratio permits reliable curve fitting of the
MOT cloud profiles (usually seven frames). Fitting with
f ðx; tÞ ¼ exp½−ð x

rxðtÞ
Þ2=2% provides the rms radius, rxðtÞ, at

time t. We take the rms over the x and y directions to give
rðtÞ. From the sequence of cloud radii, a second curve
fitting procedure using r2ðtÞ ¼ r20 þ ðkBT=MÞt2 evaluates
the temperature, T , and the initial rms cloud size, r0; kB is
the Boltzmann constant, and M is the atomic mass. The
influence of the detection duration on estimating T and
r0 was tested with the 200Hg isotope, as seen in Fig. 2. The
estimated temperature is seen to be little affected by the
detection duration; instead, only r0 is altered due to re-
sidual atomic motion during the CCD exposure. An expo-
sure time of 2 ms is used below, where r0 is equal to the
continuous loading cloud size. With regard to tempera-
ture, a more important concern is establishing the pre-
cise delay time for the first release period. The start time
of the CCD exposure can fluctuate by 0:3 ms over a ser-
ies of frames, introducing a 4 μK uncertainty for T .
Temperature measurements were carried out as a

function of frequency detuning for isotopes 199Hg, 200Hg,
201Hg, and 202Hg, as seen in Fig. 3. Each data point is an
average of >10 measurements. The temperatures for the
two bosons are very similar and show much the same
detuning dependence. For 199Hg, TðδÞ shows a similar
characteristic to that of the bosons, but is ∼20 μK lower,
while, for 201Hg, the temperature falls slightly for Γ <
jδj < 3Γ, before rising slowly.
From Doppler cooling considerations [15], we have

T ¼ ℏΓ2

8kBjδj

!
1þ It

Is
þ 4δ2

Γ2

"
; ð1Þ

where δ and Γ are as previously defined, Is is the satura-
tion intensity for the cooling transition (102 W=m2), and
It is the combined intensity of the six MOT beams. To
gauge the UV intensity at the MOT, we placed an iris
of known diameter at the center of each MOT beam
and with a calibrated photodiode measured the trans-
mitted power. The total intensity at the MOT center is
ð4:0' 0:30ÞIs for the fermions and ð3:5' 0:25ÞIs for
the bosons. Based on the fermion intensity level, we plot
the temperature according to Doppler cooling theory, as
shown by the dotted curve in Fig. 3 (at 3:5Is, the curve
falls by only 4 μK for δ∼ −Γ). We see that the theoretical
curve and the temperature of the bosons agree well,
while the measurements for the fermionic isotopes lie be-
low that of the predicted Doppler temperature. In one-
dimensional polarization gradient cooling, sub-Doppler
temperatures are not expected for Jg ¼ 1

2 transitions
[16]; hence we assume that the sub-Doppler tempera-
tures for 199Hg arise from the Sisyphus cooling allowed
by the 3D nature of the experiment. The 201Hg isotope has
additional degeneracy in the ground state and is there-
fore more likely to experience sub-Doppler cooling
mechanisms, as reflected in the results here. The low
fermionic temperatures agree well with our previous
measurements [13]: probing the 199Hg 1S0 ↔

3P0 transi-
tion with an ultrastable laser showed Doppler broaden-
ing to 360 kHz, corresponding to 39 μK.

The measured cloud size may also be compared
with theoretical predictions. From the equipartition the-
orem, we have 1

2 κir2i rms ¼ 1
2 kBT , where κi is the spring

constant in the i direction. Governing κi, we have

κi ¼ gJμBβ
!
∂B
∂xi

"
=ℏk; ð2Þ

where ∂B
∂xi

is the radial field gradient, β is the velocity
damping coefficient, gJ ¼ 3=2 is the Landé g factor for

Fig. 2. Influence of the detection duration upon measure-
ments of temperature and cloud size. The dotted line is the
rms radius with continuous loading of the MOT.

Fig. 3. (Color online) Temperature versus detuning for several
Hg isotopes. Is is the saturation intensity of the cooling transi-
tion (102 W=m2). The Doppler cooling theory curve is given an
uncertainty due to that of the intensity.
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Figure II.5. Temperature of an optical molasses of mercury atoms for different
isotopes. Figure taken from McFerran, Yi, et al. (2010). The Doppler cooling pre-
diction is shown as a solid line, heuristically taking saturation effects into account
[eq. (II.44)]. Bosonic isotopes, with zero nuclear spin, give results in good agree-
ment with Doppler cooling theory. For fermionic isotopes, sub-Doppler cooling
mechanisms are also present.

In figure II.5, we have plotted the result of McFerran, Yi, et al. (2010), ob-
tained on isotopes 200 and 202 of the mercury atom (pink and green dots).
Cooling is performed on the 1S0 ↔3P1 intercombination line (λ = 254nm
and Γ/2π = 1.3MHz). The broad-line condition is well verified in this case,
since the natural width is about 100 times greater than ωr. Temperatures
are measured using the time-of-flight technique, from atoms initially cap-
tured in a magneto-optical trap (see below). The measured temperature
variation reproduces well the expected Doppler cooling law, once satura-
tion effects have been taken into account in the heuristic way described in
§ 3-1 (in this experiment, there was a total intensity at the molasses center
∼ 4 Isat, with Isat = 10.2mW/cm2). Temperature measurements made on
fermionic isotopes of mercury are also shown on this graph, and clearly
demonstrate the existence of sub-Doppler mechanisms for these isotopes.

R. CHANG et al. PHYSICAL REVIEW A 90, 063407 (2014)

is smaller than the range of velocities achievable with Doppler
cooling. This statement applies both to the σ+-σ− and lin ⊥
lin configurations. Thus we conclude that sub-Doppler cooling
is not expected to play a role in the 2 3S1 → 2 3P2 transition
of helium-4. Indeed, in the experiment we do not observe
any signatures of sub-Doppler cooling. The semiclassical
arguments we have presented above highlight the special place
that helium occupies among laser-cooled species. A precise
and quantitative condition for the appearance of efficient
sub-Doppler cooling would require a fully quantum, three-
dimensional computation and is beyond the scope of this paper.

C. Steady-state temperature for a multilevel
atom in the Doppler regime

From the above arguments, sub-Doppler effects on
metastable helium in the 2 3S1 → 2 3P2 transition are expected
to be negligible. We will therefore compare the temperature
measurements in 3D gases to the predictions of Doppler theory
[9]. To account for the multilevel atomic structure in the 3D
Doppler theory we take a weighted sum over all possible
one-photon transitions, where the weights are given by the
square of the Clebsch-Gordan coefficients [see Fig. 2(a)]. This
leads to a rescaling of the saturation intensity I0 = 9/5 Isat and
a steady-state temperature

kBT = !"
2

1 + Itot/I0 + (2δ/")2

4|δ|/"
, (7)

where Itot is the total intensity in the six beams. A similar
approach has been used in [34].

III. DESCRIPTION OF THE EXPERIMENTAL APPARATUS

A. The 4He* magneto-optical traps

Our measurements are performed with an apparatus that
cools and traps metastable helium atoms in a MOT. The 4He*
atoms are produced in a hot plasma (dc discharge) and slowed
down to trappable velocities on the order of several tens of me-
ters per second with a 2.5-m-long Zeeman slower. The slowed
atoms enter the science chamber where three orthogonal

pairs of counterpropagating laser beams are shone onto the
atoms in the presence of a quadrupole magnetic field. The
cooling light, which addresses the 2 3S1 → 2 3P2 transition, is
derived from a Koheras AdjustiK Y10 fiber laser from NKT
Photonics with a manufacturer stated linewidth less than
10 kHz. During the MOT phase, the typical intensity per beam
is ∼20Isat at a detuning δMOT = −2π×50 MHz ≃ −31"
from the atomic transition, where the transition linewidth is
" = 2π×1.6 MHz. The magnetic-field gradient along the
coil axis is B ′

x = 24 G/cm. Under these conditions, 8×108

atoms at a temperature of 1.5(1) mK are loaded within 2 s.
Detection of the gas is performed using a thermoelectrically

cooled InGaAs camera (XEVA type from Xenics, 256×320
pixels with a pixel size of 30×30 µm2). This technology is
suited to imaging metastable helium atoms with a quantum
efficiency of ∼80% at 1083 nm. The camera collects the
fluorescence of the atoms from the probe beams. The latter
are made of the six beams we use to make a MOT, which
are tuned in resonance with the atomic transition during the
imaging pulse. The duration of the imaging pulse is 100 µs and
the total intensity is about 175Isat, where Isat = πhc"/3λ3 ≃
0.165 mW/cm2 is the saturation intensity of the J = 1 →
J ′ = 2 cycling transition. The sizes and temperature of the
4He* clouds are extracted by monitoring the time-of-flight
expansion of the initially trapped gases and fitting the imaged
2D density profiles with a Gaussian function.

B. Optical molasses

After the MOT phase we implement an optical molasses on
the 2 3S1 → 2 3P2 transition, as we now describe. At the end of
the MOT phase we ramp the magnetic-field gradient to zero
and ramp both the detuning and intensity of the laser beams
from the MOT values to those of the molasses within 20 ms
[see Fig. 3(a)]. This ramp of the parameters allows us to capture
and cool half of the atoms (N = 4×108) in the molasses. The
polarization of the light beams during the molasses stage is
identical to that of the MOT. We then wait for a variable time
tmol at fixed final intensity and detuning of the laser beams to
reach a steady state. We monitor the time-of-flight expansion
of the optical molasses cloud to extract its temperature.
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FIG. 3. (Color online) (a) Sketch of the experimental cycle to probe optical molasses. After the MOT phase, the magnetic-field gradient
B ′, the beam intensity Itot, and the detuning δ are ramped over 20 ms. A molasses phase at constant parameters lasts tmol. After switching off
the molasses beams, fluorescence pictures are taken after a time of flight tTOF. (b) Temperature of optical molasses as a function of the duration
tmol of the second stage of molasses. Solid lines are a guide to the eye. (c) Temperature of optical molasses as a function of the laser detuning. A
comparison with Doppler theory for laser-cooling multilevel atoms of Eq. (3) (solid lines) is shown. The different sets correspond to different
intensity in the cooling beams.
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Figure II.6. Evolution of temperature with detuning in an optical molasses of
metastable helium atoms, for different values of light intensity. The lines represent
the prediction (II.44). Figure taken from Chang, Hoendervanger, et al. (2014).

Another recent result on the test of Doppler cooling theory is given by
Chang, Hoendervanger, et al. (2014) and is shown in figure II.6. This time,
the experiment is performed on metastable helium atoms (λ = 1083nm,
Γ/2π = 1.6MHz), which has a degenerate ground level. However, the
authors placed themselves in conditions where sub-Doppler mechanisms
play a negligible role. The experiment carried out at low intensity (Isat/10
for total intensity) leads to very good agreement with Doppler theory [min-
imum measured temperature ∼ 1.3 Tmin given in (II.38)]. At higher inten-
sities, the variation in temperature with detuning is also in good agreement
with the heuristic law (II.44).

3-5 Laser cooling of macroscopic bodies

Although this course is devoted to the cooling of individual atoms, let us
briefly mention here that the radiation pressure force can also be used to
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cool certain degrees of freedom of macroscopic objects, such as the cen-
ter of mass of a mirror in an optical cavity. The corresponding field of
research, optomechanics, is rapidly expanding and it is beyond the scope
of this lecture series to cover it [see, for example, the recent review arti-
cle by Aspelmeyer, Kippenberg, et al. (2014)]. We will just briefly describe
here the initial experiments carried out some ten years ago, the principle
of which is close to what we have seen so far for individual atoms (Arcizet,
Cohadon, et al. 2006; Gigan, Böhm, et al. 2006; Schliesser, Del’Haye, et al.
2006).

Let us take a look at the experimental diagram shown in figure II.7,
where a light beam impinges on a Fabry–Perot cavity, the second mirror of
which is mounted on a spring. The light in the cavity creates a radiation
pressure force on this mirror, whose equilibrium position is a certain ab-
scissa L∗, for which the radiation pressure force FRP, directed to the right,
exactly compensates for the spring force Fspring, directed to the left:

Mirror at rest in L∗ : FRP + Fspring = 0. (II.53)

The radiation pressure force depends on the light power stored in the cav-
ity, which in turn depends on the cavity length L. When L is an integer
multiple of λ/2, this power is maximum.

Let us assume that the position of the spring is chosen such that L∗

is slightly less than nλ/2, and let us consider an oscillation of the mirror
around its equilibrium position. When the mirror passes through L∗ on its
way to the right, the number of photons in the cavity is increasing. Because
of the time constant required for this photon number to reach its stationary
value, it will be lower than it would be if the mirror were stationary at
L∗. The radiation pressure force is therefore weaker than it would be for a
stationary mirror, and the force felt by the mirror as it passes the point L∗

is therefore directed to the left:

Mirror passing in L∗ to the right : FRP + Fspring < 0, (II.54)

therefore opposite to the motion of the mirror. Similarly, when the atom
passes through L∗ coming from the right, the cavity contains a few more
photons than if the mirror were stationary and

Mirror passing in L∗ to the left : FRP + Fspring > 0. (II.55)

Figure II.7. Fabry–Perot cavity with a moving mirror. For a suitable choice of
equilibrium position L∗, the radiation pressure force dampens the motion of the
mirror’s center of mass. The damping comes from the non-zero time it takes for
the intracavity power to adjust to the mirror position as it oscillates around its
equilibrium position.
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radiation pressure. Indeed, with the estimated mirror absorption
(,3 p.p.m.), thermoelastic effects are expected to be 106 times lower.
Bolometric effects15 are difficult to estimate, but both the low absorp-
tion and the large thickness of the resonator are in favour of a neg-
ligible effect. We have also performed the same experiment for other
modes of the resonator, with the same excellent agreement with
theory. In particular, a mode with a resonance frequency
Vm5 2p3 2.824MHz larger than the cavity bandwidth Vc exhibits
a frequency shift (Veff2Vm) with an opposite sign, as expected from
equations (3) and (7) for not-too-large detunings Q.

Figure 4b presents a colour-chart of the dependence of the effective
damping Ceff in the detuning/intracavity power plane. Experimental

series of points were taken for fixed stabilized incident powers, fol-
lowing the Airy curves in the plane. The colour code ranges fromdark
blue (for large Ceff and low Teff) to red (for low Ceff and large Teff).
The green points (corresponding to Ceff <Cm ) are located at the
resonance, at large detunings (where the slope of the Airy peak
vanishes) and at low intracavity power (where radiation-pressure
effects are weaker). The highest cooling (dark blue) is obtained near
a negative detuning Q<{0:6 and for a high intracavity power P,
whereas the largest heating effect (red) is obtained for a positive
detuning. Grey curves correspond to equal effective dampings Ceff

and the black one to Ceff5 0. Above this line, the resonator becomes
unstable and starts to oscillate at its effective resonance frequency, as

814.0 814.5

a b

Frequency (kHz)

N
oi

se
 p

ow
er

 (m
2  

H
z–

1 )

N
oise pow

er (m
2 H

z
–1)

815.0 814.5
Frequency (kHz)

815.0

10–28

10–29

10–30

10–31

10–32

10–30

10–31

10–32

10–33

Figure 3 | Thermal noise spectra, normalized as microresonator
displacements. Black curves correspond to Q5 0. a, Curves light to dark
blue are obtained for negative detunings Q520.1, 20.25, 20.4 and 20.6,
respectively, and for an incident power of 5mW. b, Curves green to red are

obtained for positive detunings Q5 0.03, 0.06, 0.09, 0.11 and 0.13,
respectively, and for an incident power of 2.5mW. The cooling and heating
are evident through the area reduction or increase of these spectra. Note the
related drift of the resonance frequency.

–0.5

2 3

10

c

ba

100

1,000

0

5

10

10–1–2

8.0
3.0
1.0
0.5

0
   eff/   mΓ Γ

–3

Detuning, ϕ

Detuning, ϕ

2 4310

2 310
0

5

10

Incident power (mW)

In
tr

ac
av

ity
 p

ow
er

, P
 (W

)

Intracavity pow
er, P

 (W
)

Effective tem
perature (K

)

–1–2–4
0

2

4

6

–200

–100

0

100

200

–3
Detuning, ϕ

D
am

pi
ng

 ra
tio

,  
 e

ff/
  m

0

6

Γ
Fr

qu
en

cy
 s

hi
ft,

 ( 
  e

ff 
– 

   
m

)/2
π 

(H
z)

Ω
Ω

Γ
Unstable
domain

Unstable
domain

–0.4 –0.3 –0.2 –0.1 0.0

Figure 4 | Evolution of the cavity cooling and heating effects with respect
to the detuning Q. a, Frequency shift (Veff2Vm)/2p (top) and damping
ratio Ceff/Cm (bottom), for five values of incident power: 0.5mW (purple),
0.9mW (blue), 1.6mW (green), 2.2mW (yellow) and 3.2mW (red). Points
are experimental results and full lines are fits obtained from equations (4),
(7) and (8), by adjusting the intracavity power at resonance for each curve.
Inset, evolution of the adjusted intracavity power Pwith the incident power.
The dashed line is the linear dependence expected from cavity and insertion
losses, with no adjustable parameter. The shaded area in the upper curve
shows the instability zone where Ceff vanishes. b, Colour-chart of the
evolution of the damping ratio Ceff/Cm in the detuning/intracavity power

plane {Q, P}, for the same measurements as in a. The value is colour-coded
from dark blue (large damping, low temperature) to red (low damping,
high temperature). Grey curves are equal effective damping loci. Note the
green points (unity damping ratio) at the resonance Q5 0 and the red points
in the vicinity of the instability region (shaded area). c, Evolution of the
effective temperature with the cavity detuning, for a 3.2mW incident beam.
Squares, experimental points with error bars (s.e.m.). The dotted line is the
reference level at T5 300K (Q5 0), the dashed line the fit with the single
oscillator model of equation (9), and the full line the fit with a model taking
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Figure II.8. The effective temperature associated with the motion of the center of
mass of the moving mirror of a Fabry–Perot cavity, as a function of the detuning
of this cavity. The dotted line is the prediction obtained by considering only one
mode of the mechanical micro-resonator, while the solid line takes into account the
contribution of the other modes. Figure taken from Arcizet, Cohadon, et al. (2006).

So, in addition to the static forces acting on the mirror at rest, we find a
velocity-dependent force opposing the motion of the mirror’s center of
mass and cooling this degree of freedom (figure II.8). This friction force,
analogous to the Doppler friction force for an atom, lowers the tempera-
ture associated with this degree of freedom. Note that friction is obtained
only if L∗ is chosen slightly to the left of the resonance nλ/2 of the Fabry–
Perot cavity. Had we chosen L∗ slightly to the right of this resonance, we
would have found an accelerating force. The quantity L∗ − nλ/2 (denoted
φ in figure II.8) therefore plays the role of detuning ∆ = ωL − ωA for free
atoms.

4 The magneto-optical trap

Optical molasses based on the Doppler effect provides a simple means
of slowing down atoms and maintaining their velocity around 0, with a
temperature of the order of ℏΓ/kB. In addition to Doppler cooling, the
magneto-optical trap provides a means of confining atoms around a given
point. The only additional ingredient is a magnetic field gradient, which
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Figure II.9. Basic principle of the magneto-optical trap (one-dimensional version).
The radiation pressure force created by each light wave is position-dependent, due
to the presence of a magnetic field gradient. The resultant of the two radiation
pressure forces is a restoring force towards the origin.

acts differently on the ground and excited levels of the atom, and intro-
duces a spatial dependence of the radiation pressure force. This principle
was first put into practice by Raab, Prentiss, et al. (1987).

4-1 Equilibrium size for small atom numbers

The basic principle of the magneto-optical trap is illustrated in figure II.9,
in a one-dimensional geometry (generalization to 3D poses no problem
of principle). Consider a transition between a ground level with zero an-
gular momentum and an excited level with angular momentum Je = 1.
A magnetic field gradient lifts the degeneracy between the three Zeeman
states of the excited level. If we take a circular polarization for each of
the beams making up the molasses, we achieve the desired situation: for
a negative detuning (the one required for Doppler cooling), an immobile
atom at x > 0 will feel a greater radiation pressure force from the wave
coming from the right than from the one coming from the left: it will there-
fore be pushed towards the central point. Similarly, an atom at x < 0 will
feel a greater force from the wave propagating to the right, and will also be
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pushed towards the center.

To be more quantitative, we introduce the magnetic moment µ associ-
ated with the excited atomic level, so that the Zeeman displacement of a
sublevel m is mµB, where B is the amplitude of the magnetic field at the
atom’s location. For the magnetic field gradient shown in figure II.9, the
field amplitude is written B = b′x, so the force felt by an atom located at
point x with velocity v is written:

F (x, v) =
ℏkΓ
2

I

Isat

[ 1

1 + 4(∆− kv − µb′x/ℏ)2/Γ2

− 1

1 + 4(∆ + kv + µb′x/ℏ)2/Γ2

]
. (II.56)

Let us restrict ourselves to Doppler (kv) and Zeeman (µb′x/ℏ) shifts that
are small compared to the natural width Γ. At lowest non-zero order, we
obtain a force which is linear in position and velocity:

F (x, v) = −Kx−Mαv, (II.57)

which gives rise to damped harmonic motion. The coefficient of friction
α is identical to that found for molasses. The stiffness K of the restoring
force is:

K = kµb′s0
2Γ|∆|

∆2 + Γ2/4
. (II.58)

Let us move on to determining the equilibrium size of the trapped atom
cloud. The momentum diffusion coefficient is unchanged, so the equi-
librium state is always a thermal state, with temperature determined by
kBT = Dp/Mα. The equilibrium distribution is a Gaussian in position,
with standard deviation x0 given by

1

2
Kx20 =

1

2
Mv20 =

1

2
kBT, (II.59)

which gives

x0 =

(
ℏΓ

4kµb′s0

)1/2

(II.60)

if we choose the detuning ∆ = −Γ/2 providing the minimum temperature
kBT = ℏΓ/2. To obtain an order of magnitude for x0, let us take again the

case of sodium atoms, with s0 = 1/10 and a typical magnetic field gradient
b′ = 10G/cm (0.1 Tesla per meter). We find x0 = 40µm for the detuning
∆ = −Γ/2.

In practice, two antagonistic effects modify this prediction:

• For a degenerate ground level, the Sisyphus processes that increase the
friction coefficient will also increase the stiffness K of the magneto-
optical trap, thus reducing its size (Cooper, Hillenbrand, et al. 1994;
Townsend, Edwards, et al. 1995).

• Collective effects, related to the multiple scattering of photons within
the cloud of atoms, increase the equilibrium size of the trapped gas, as
we will see below (4-3).

The aforementioned article by Chang, Hoendervanger, et al. (2014)
measured this size for helium atoms in a metastable electronic level. The
spatial density in the magneto-optical trap they made was low (limited by
Penning collisions), so the collective effects we will discuss below were
negligible in their case. The measured sizes are in good agreement with
the prediction (II.60), as shown in figure II.10.

4-2 Capture in a magneto-optical trap

In addition to bringing all atoms to the same point in space, the magneto-
optical trap has the advantage of capturing atoms at a significantly higher
velocity than optical molasses. This point is illustrated in the phase portrait
in figure II.4. The resonance of an atom with the laser beams occurs for all
"position-velocity" pairs satisfying:

±∆ = kv + µb′x/ℏ. (II.61)

If we have a total distance L to capture the atoms, the optimal configura-
tion is obtained when an atom at rest at the point x = L/2, on the right
edge of the capture zone, is resonant with the beam pushing it towards the
center, i.e.:

|∆| ≈ µb′

ℏ
L

2
. (II.62)
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IV. RESULTS

A. Temperature

In Fig. 1 we present the results of the temperature
measurements performed on the MOT and on the optical
molasses by recording the time-of-flight expansion of the
atomic clouds. Temperature is plotted as a function of the
laser detuning δ. We observe a minimum temperature at a
detuning δ = −"/2 as predicted by Doppler-cooling theory.
The minimum measured temperature T = 1.3(1)TD is close
to the expected Doppler limit, which occurs for vanishingly
small light intensity. In addition, we compare our temperature
measurements to the Doppler prediction of Eq. (3) and we find
excellent agreement over the entire range of detunings studied
in the experiment. For the high-temperature measurements,
the confining potential provided by the MOT is necessary to
reach a steady state on the time scale of the experiment. On the
other hand, the low-temperature measurements are performed
on an optical molasses [see Figs. 1 and 3(c)], since otherwise
density-dependent Penning collisions would severely reduce
the number of trapped atoms [35].

B. Cooling dynamics for 3D optical molasses

In Fig. 3(b) we plot the time evolution of the atom cloud
temperature during the molasses phase. On a short time
scale of tmol ∼ 1 ms, we observe a rapid decrease of the
temperature. However, reaching the steady-state temperature
requires even longer durations. Close to the Doppler limit TD

(δ = −"/2 and Itot/Isat = 1/10), the molasses temperature
reaches a steady-state on a time scale tmol ≃ 10 ms. We
have observed that this time scale can vary drastically in the
presence of uncompensated bias magnetic fields and power
imbalances between counterpropagating beams. As we will
see in Sec. IV D, the steady-state molasses is also very sensitive
to such technical issues.

In Doppler theory, the time scale to reach the steady-
state temperature is directly related to the velocity damping
coefficient, predicting an expected cooling time of τcool =
m/2α [9]. For the low value of the saturation parameter
s ≃ 0.05 and detuning |δ| ∼ " used in the data presented in
Fig. 3, the expected Doppler cooling time is tcool ≃ 0.5 ms.
Although this time scale is similar to that of the observed initial
rapid decrease in temperature, for the above stated reasons we
cannot use this measurements to estimate α.

C. The MOT sizes

The Penning collision rate in nonpolarized 4He* is rela-
tively high [35], limiting the atomic density of laser-cooled
helium clouds to ∼109 cm−3. As a result, photon rescattering
effects, which can result in heating of the atom cloud in
other species, are typically negligible for helium [36]. As a
consequence, the steady state of metastable helium MOTs
is reached in the absence of both multiple scattering and
sub-Doppler cooling. In this simple regime, the steady-state
temperature is given by Eq. (3) and the MOT sizes derive
from the equipartition theorem at the Doppler temperature.
The force acting onto the MOT can be written F⃗ = −αv⃗ −
κx x⃗ − κy y⃗ − κzz⃗ at low velocities and close to the trap center.

The expected rms cloud size σi of the MOT is then given by
1
2κiσ

2
i = 1

2kBT , (8)

with the three-dimensional steady-state temperature T cal-
culated from Eq. (3) and index i referring to the different
coordinate axis i = {x,y,z}. The one-dimensional spring
constants κi are given by

κi = −α2-level
µB ′

i

!k
, (9)

where B ′
i is the magnetic-field gradient along direction i

and µ = 3µB/2 is an average magnetic moment for the
multilevel atom in the the 2 3S1 → 2 3P2 transition [the Landé
factors are gJ (2 3S1) = 2 and gJ (2 3P2) = 3/2]. From this
model we calculate the expected MOT sizes from the known
experimental parameters.

We have measured the rms MOT sizes as a function of
both the axial magnetic-field gradient B ′

x and the detuning
δ of the MOT beams. We plot in Fig. 4 the experimental
measurements along with the theoretical predictions in the
Doppler-cooling regime. The behavior of the MOT sizes with

3.5

3.0

2.5

2.0

1.5

1.0

0.5

rm
s 

M
O

T 
si

ze
s 

(m
m

)

-30 -25 -20 -15

Detuning (units of Γ )

Magnetic-field gradient (G/cm)

rm
s 

M
O

T 
si

ze
s 

(m
m

)

(a)

(b)

5.0

4.5

4.0

3.5

3.0

2.5

2.0

30252015

1.6

1.2

0.8

T 
 (

m
K

)

242016
B’ (G/cm)

FIG. 4. (Color online) The rms sizes of the MOT clouds σx and
σy (blue and red) as a function of (a) the laser detuning and (b) the
magnetic-field gradient. The lines result from numerical calculation
(no adjustable parameter) of the expected sizes in the regime of
Doppler cooling (see the text), accounting for a 5% error on the
calibration of the light intensity. The inset in (b) shows the temperature
of the MOT as a function of the magnetic-field gradient B ′.
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IV. RESULTS

A. Temperature

In Fig. 1 we present the results of the temperature
measurements performed on the MOT and on the optical
molasses by recording the time-of-flight expansion of the
atomic clouds. Temperature is plotted as a function of the
laser detuning δ. We observe a minimum temperature at a
detuning δ = −"/2 as predicted by Doppler-cooling theory.
The minimum measured temperature T = 1.3(1)TD is close
to the expected Doppler limit, which occurs for vanishingly
small light intensity. In addition, we compare our temperature
measurements to the Doppler prediction of Eq. (3) and we find
excellent agreement over the entire range of detunings studied
in the experiment. For the high-temperature measurements,
the confining potential provided by the MOT is necessary to
reach a steady state on the time scale of the experiment. On the
other hand, the low-temperature measurements are performed
on an optical molasses [see Figs. 1 and 3(c)], since otherwise
density-dependent Penning collisions would severely reduce
the number of trapped atoms [35].

B. Cooling dynamics for 3D optical molasses

In Fig. 3(b) we plot the time evolution of the atom cloud
temperature during the molasses phase. On a short time
scale of tmol ∼ 1 ms, we observe a rapid decrease of the
temperature. However, reaching the steady-state temperature
requires even longer durations. Close to the Doppler limit TD

(δ = −"/2 and Itot/Isat = 1/10), the molasses temperature
reaches a steady-state on a time scale tmol ≃ 10 ms. We
have observed that this time scale can vary drastically in the
presence of uncompensated bias magnetic fields and power
imbalances between counterpropagating beams. As we will
see in Sec. IV D, the steady-state molasses is also very sensitive
to such technical issues.

In Doppler theory, the time scale to reach the steady-
state temperature is directly related to the velocity damping
coefficient, predicting an expected cooling time of τcool =
m/2α [9]. For the low value of the saturation parameter
s ≃ 0.05 and detuning |δ| ∼ " used in the data presented in
Fig. 3, the expected Doppler cooling time is tcool ≃ 0.5 ms.
Although this time scale is similar to that of the observed initial
rapid decrease in temperature, for the above stated reasons we
cannot use this measurements to estimate α.

C. The MOT sizes

The Penning collision rate in nonpolarized 4He* is rela-
tively high [35], limiting the atomic density of laser-cooled
helium clouds to ∼109 cm−3. As a result, photon rescattering
effects, which can result in heating of the atom cloud in
other species, are typically negligible for helium [36]. As a
consequence, the steady state of metastable helium MOTs
is reached in the absence of both multiple scattering and
sub-Doppler cooling. In this simple regime, the steady-state
temperature is given by Eq. (3) and the MOT sizes derive
from the equipartition theorem at the Doppler temperature.
The force acting onto the MOT can be written F⃗ = −αv⃗ −
κx x⃗ − κy y⃗ − κzz⃗ at low velocities and close to the trap center.

The expected rms cloud size σi of the MOT is then given by
1
2κiσ

2
i = 1

2kBT , (8)

with the three-dimensional steady-state temperature T cal-
culated from Eq. (3) and index i referring to the different
coordinate axis i = {x,y,z}. The one-dimensional spring
constants κi are given by

κi = −α2-level
µB ′

i

!k
, (9)

where B ′
i is the magnetic-field gradient along direction i

and µ = 3µB/2 is an average magnetic moment for the
multilevel atom in the the 2 3S1 → 2 3P2 transition [the Landé
factors are gJ (2 3S1) = 2 and gJ (2 3P2) = 3/2]. From this
model we calculate the expected MOT sizes from the known
experimental parameters.

We have measured the rms MOT sizes as a function of
both the axial magnetic-field gradient B ′

x and the detuning
δ of the MOT beams. We plot in Fig. 4 the experimental
measurements along with the theoretical predictions in the
Doppler-cooling regime. The behavior of the MOT sizes with
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FIG. 4. (Color online) The rms sizes of the MOT clouds σx and
σy (blue and red) as a function of (a) the laser detuning and (b) the
magnetic-field gradient. The lines result from numerical calculation
(no adjustable parameter) of the expected sizes in the regime of
Doppler cooling (see the text), accounting for a 5% error on the
calibration of the light intensity. The inset in (b) shows the temperature
of the MOT as a function of the magnetic-field gradient B ′.
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Figure II.10. Equilibrium size of a magneto-optical trap of metastable helium
atoms as a function of the detuning ∆ and the magnetic field gradient b′. The two
sets of points correspond to two different axes of the quadrupole magnetic field.
The solid lines are the predictions of the theory presented in this chapter, taking
saturation effects into account. Figures taken from Chang, Hoendervanger, et al.
(2014).

At the other end of the capture zone (x = −L/2), the same beam is resonant
with atoms of velocity vi satisfying the resonance condition (II.61):

|∆| = kvi +
µb′

ℏ
(−L)
2

⇒ kvi = 2 |∆| = µb′L/ℏ. (II.63)

It remains to choose the largest possible magnetic field gradient b′, com-
patible with the available radiation pressure force. This problem is similar
to that of a "Zeeman slower" for an atomic beam, in which the resonance
condition must be maintained at all points in space, taking into account
the Doppler effect variation. In this case, the points (x, v) in phase space at
which the resonance condition (II.61) is satisfied must be such that

F =M
dv

dt
=Mv

dv

dx
< Fmax (II.64)

where Fmax = ℏk Γ
2

I
Isat

is the maximum force created by each beam. By
injecting the value dv

dx = µb′/ℏk deduced from the resonance condition
and the initial velocity (II.63) into this relationship, we deduce the capture

velocity and the corresponding magnetic field gradient:

kvi
Γ

=
µb′L
ℏΓ
≈

(
L

ℓ

I

2Isat

)1/2

. (II.65)

We can see that this capture rate varies as L1/2 instead of the L1/4 law
found for molasses. In practice, for reasonable parameters, this capture
velocity in a magneto-optical trap is two to three times greater than for
optical molasses (see figure II.4). This translates into a considerable gain in
terms of the number of atoms cooled if one starts with a vapor at thermal
equilibrium at room temperature. In this case, the "low velocity" part of the
thermal distribution is captured and the flux of atoms entering the capture
region with a velocity v ≲ vi varies as v4i . A gain of a factor of 2 in the
capture velocity (as shown in figure II.4) translates into a gain of a factor of
16 in the flux of cooled atoms.

4-3 Equilibrium size for large atom numbers

In practice, the sizes measured for clouds of atoms confined in a magneto-
optical trap are generally well above prediction (II.60), the result shown
in figure II.10 being an exception. This is due to collective effects between
atoms, specifically the repulsion caused by the radiation pressure from flu-
orescence light (Walker, Sesko, et al. 1990). The situation is similar to that
of a star like the sun, where the force of gravity that tends to contract the
star in on itself is offset by radiation pressure.

In practice, the density within a magneto-optical trap is limited to a
value of the order of 1010 atoms/cm3, and the diameter of the trapped
cloud can reach a value of the order of a cm. To find these orders of mag-
nitude, let us start by evaluating the effective repulsion between atoms.
Consider a pair of atoms separated by a distance r. Atom 1, illuminated by
the six laser beams forming the magneto-optical trap, scatters photons at a
rate γ = 6× (Γs0/2). For simplicity’s sake, we will assume that these pho-
tons are emitted isotropically. Atom 2 will absorb a fraction σabs/(4πr2) of
these photons, and thus feel a radiation pressure force directed along the
axis joining the two atoms

F = γℏk
σabs
4πr2

. (II.66)
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The effective absorption cross-section of scattered photons σabs depends
on their wavelength. Let us assume for the moment that these photons are
emitted at the wavelength of the incident lasers (elastic Rayleigh scatter-
ing), and that 4:

σabs =
3λ2

2π

1

1 + 4∆2/Γ2
. (II.67)

The equilibrium of the cloud of atoms under the combined effect of the
trapping force−Kr and the repulsion between atoms boils down to a well-
known problem in physics. For simplicity’s sake, let us assume zero tem-
perature, which is legitimate if the equilibrium size is much larger than the
single-atom prediction given in (II.60). Let us also make the assumption,
which we will check later, that the atomic density is constant and equal to
n inside a sphere of radius R, and zero outside, with N = 4

3πR
3n. In this

case, the average effect of the repulsive force can be evaluated by Gauss’s
theorem: we have an assembly of particles repelling each other by a force
in 1/r2 like Coulomb’s force. In a spherical geometry with uniform density,
we know that the electric field is radial and varies linearly with distance r
from the center inside the sphere. In the case we are interested in here,
the total radiation pressure force due to scattered light can be written as
F = K ′r with

K ′ =
1

3
γℏkσabsn (II.68)

The desired equilibrium is then obtained at any point in the cloud, pro-
vided K ′ = K, which occurs for a density

n =
16π

3

µb′

ℏλ2
|∆|
Γ2

. (II.69)

The fact that equilibrium is achieved at every point validates the initial
assumption of uniform density. Taking typical magneto-optical trap pa-
rameters for alkali atoms, b′ = 0.1T/m, |∆| = 3Γ and µ equal to the Bohr
magneton, we find an equilibrium density of 1.7×1010 atoms/cm3, leading
to a radius of 2.4 mm for a cloud of one billion atoms.

Note. Our model is in fact a pessimistic version of reality. Indeed, we
have neglected a similar effect, linked to the absorption of laser beams,

4We will come back to the subtleties concerning the effective scattering cross-section of a
photon by an atom when the latter is "dressed" by laser light

which on the contrary reinforces the trapping effect (Dalibard 1988). To
understand this effect, let us take a 1D model with an atomic cloud cen-
tered at z = 0. For an atom located on one edge of the cloud, for exam-
ple on the right (z > 0), the two trapping waves do not have the same
intensity. Indeed, the wave propagating towards z > 0, which tends to
move the atom further away from the center, has crossed the entire cloud
before reaching the atom; it is therefore significantly attenuated, due to ab-
sorption by the cloud. On the other hand, the wave propagating towards
z < 0, which tends to bring the atom back towards the center, has hardly
been attenuated at all. This absorption effect increases the stiffness of the
magneto-optical trap. It can be shown that if the scattered photons had
exactly the same frequency as the laser photons, the multiple scattering ef-
fect discussed above and this absorption effect would exactly offset each
other. It is because some of the scattered photons are emitted with a fre-
quency close to atomic resonance that the multiple scattering effect (which
tends to explode the cloud) outweighs the absorption effect (which tends
to compress it) (Walker, Sesko, et al. 1990). For a quantitative account of
the competition between these two effects, see for example Townsend, Ed-
wards, et al. (1995).

The magneto-optical trap with a large number of atoms is in fact a very
rich non-linear system, which can lead to bistability effects, parametric
instabilities and chaotic dynamics [see for example Sesko, Walker, et al.
(1991), Wilkowski, Ringot, et al. (2000), Stefano, Fauquembergue, et al.
(2003), Kim, Noh, et al. (2004), and Terças, Mendonça, et al. (2010) and
refs. in]. In particular, the 1/r2 repulsive force between two atoms leads
to effects similar to those seen in charged plasmas, such as the coulombic
explosion (Pruvost, Serre, et al. 2000). We should also mention the dark
magneto-optical trap (dark MOT) technique, in which optical pumping at
the centre of the trap in the center of the trap to reduce the fluorescence
light, thereby increasing the spatial density (Ketterle, Davis, et al. 1992).

4-4 Molecules enter the game

The magneto-optical trap can capture a large number of atomic species,
opening the way to numerous applications ranging from metrology to
quantum gas physics. Extending this technique to molecules is a consid-
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Extended Data Figure 1 | Relevant energy levels and transitions in SrF.
a, Vibrational branching in SrF. Solid upward arrows denote transitions driven
by the MOT lasers. Spontaneous decays from the A2P1/2(v95 0) state (solid
wavy arrows) and A2P1/2(v95 1, 2) states (dashed wavy arrows) are governed
by the vibrational branching fractions b0v, b1v and b2v, as shown. b, Optical

addressing scheme for the SrF MOT. c, Energy levels of the X2S(v5 0, N5 1)
state versus B. Energy levels are labelled by their mF value with mF5 2 (red
lines), mF5 1 (orange lines), mF5 0 (green), mF521 (blue) and mF522
(purple).

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014

Figure II.11. Schematic diagram of the SrF molecular levels used for magneto-
optical trapping of this molecule. Four laser sources and several electro-optical
modulators are needed to interact with the molecule for ∼ 1s (106 photons ex-
changed). Right, magneto-optical trap with ∼ 300 molecules, T ∼ 2mK, and
a lifetime of 60 ms, limited by the depth of the trap. Figure taken from Barry,
McCarron, et al. (2014).

erable challenge, but one that could lead to even more applications, given
the wealth of observable phenomena, in conjunction with with quantum
chemistry and with the possibility to induce an electric dipole moment in
these molecules.

Very recently, the first 3D magneto-optical trap for molecules was
achieved by Barry, McCarron, et al. (2014). Shortly before, 1D and 2D trap-
ping had been observed by Hummon, Yeo, et al. (2013). These are complex
experiments, as the level structure of a di-atomic molecule makes it impos-
sible to isolate a single transition over which a sufficient number of photons
could be exchanged. The experiment by Barry, McCarron, et al. (2014), car-
ried out on strontium monofluoride (SrF), involves 7 different molecular

vibrational levels (figure II.11), each of which is split into sublevels due to
the molecule’s rotation and hyperfine structure (the line representing the
ground level v = 0 corresponds to 12 states). 4 laser sources are required
(the straight lines in figure II.11), each electro-optically modulated to excite
the different sublevels. Thanks to these multiple lasers, a given molecule
can exchange an average of ∼ 106 photons before falling onto a level not
shown in the figure and not excited by one of the light beams. This ex-
change of 106 photons makes it possible to interact with the molecule and
exert a force on it for about one second.

The difficulty of the experiment is further increased by the fact that the
transition considered is not a simple Jg = 0 ↔ Je = 1 transition, but in-
cludes dark states (we will come back to this notion in a later chapter).
Once in a dark state, the molecule ceases to feel a force and risks escaping
the trap. The polarizations of the light beams and the direction of the mag-
netic field must therefore be periodically switched to recycle these dark
states. Once all these precautions have been taken, the trap can be ob-
served! The newborn contains around 300 molecules (still a small number
compared with the billions of atoms a magneto-optical trap can accumu-
late), at a temperature of around 2 millikelvin. This temperature is ten
times higher than the Doppler limit, which the authors interpret as a con-
sequence of the existence of dark states. The trap’s lifetime is 60 ms, which
again is well below the result measured for atoms (which can reach several
minutes). The probable reason for this short lifetime is the limited depth of
the trap, estimated at only 5 kBT . Molecules therefore evaporate from the
trap, limiting their residence time.
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Chapter III

The virtues of narrow lines

In the previous chapter, we studied broad-line Doppler cooling, i.e.
cooling that operates on an atomic line with a natural width Γ of the ex-
cited level that is large compared with the recoil frequency ωr = ℏk2/2M .
We then found a temperature proportional to the natural width Γ . It is nat-
ural to wonder what happens to the temperature limit when we try to use
narrower and narrower lines, approaching the Γ ∼ ωr situation, or even
going beyond it. Does the law T ∝ Γ remain valid, or is it replaced by
another limit?

This question may have seemed academic some fifteen years ago, but
it is now highly relevant experimentally: there is a great deal of interest
in atoms with two outer electrons, particularly in terms of metrology and
degenerate quantum gases. These atoms naturally have narrow resonance
lines, which couple the sector where the total spin of the two outer elec-
trons is S = 0 (spin singlet) and the sector where S = 1 (spin triplet). For
example, for strontium, the line at 689 nm coupling the ground state 1S0

and the excited state 3P1 has a width Γ/2π = 7.5kHz, which is comparable
to the recoil frequency ωr/2π = 4.7kHz (see table III.1). The cooling of this
atom is of considerable metrological interest, since it was with it that Jun
Ye’s group in Boulder recently demonstrated the operation of an optical
clock with an accuracy at the record level of 2 × 10−18 (Bloom, Nicholson,
et al. 2014; Nicholson, Campbell, et al. 2015).

As we pointed out in the previous chapter, the absorption or emission
of a single photon is enough in this case to significantly change the atom’s
saturation parameter. We can therefore no longer adopt a Fokker-Planck

A λ Γ/2π ωr/2π Er/kB vr
nm kHz kHz nK cm/s

Mg 24 457 0.031 40 1.9 3.6
Ca 40 657 0.40 12 0.55 1.5
Zn 64 309 6.0 32 1.6 2.0
Sr 84 689 7.6 5.0 0.24 0.69
Cd 114 326 70 16 0.79 1.1

Table III.1. Narrow intercombination lines 1S0 ↔3P1 for some atomic species
with two outer electrons (data taken from Zeb Barber’s doctoral thesis, Boulder,
and refs. in).

approach, since the small-step approximation is no longer valid. We need
to return to a description of motion in which the discrete nature of each
jump is taken into account. For simplicity’s sake, we will deal with the
one-dimensional case first; the extension to three dimensions will then be
straightforward, via a numerical treatment. Using this approach, we will
show that the stationary distribution has a minimum width given by the
recoil velocity vr = ℏk/M .

In the second part of this chapter, we describe some recent experi-
ments. We will see that this cooling method makes it possible to reach sub-
microkelvin temperatures, we will tackle the problem of heating linked to
multiple scattering in the sample, and we will discuss the possibility of ob-
taining a degenerate quantum gas from clouds of atoms that are cooled on
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a narrow line. We will conclude with the scheme developed by Stellmer,
Pasquiou, et al. (2013) to obtain a Bose-Einstein condensate without any
evaporation, in a continuous laser-cooled cloud.

1 Single-frequency cooling

In this section, we develop a simple model of narrow-line cooling, adding
one by one the ingredients that will bring us closer to a real-life situation.
First, we will deal with a one-dimensional situation along a given direc-
tion in space (z), assuming that spontaneous photons carry no momentum
along this axis. We will then see how to take this momentum into account,
before moving on to the 3D case.

1-1 A model with no "spontaneous recoil"

We consider here a two-level atom g, e, mobile along the z axis, and we
assume that this atom is illuminated by two waves propagating along the
z axis, of wave vector ±kuz . We assume that these waves are of low inten-
sity, so that the probability per unit time that the atom absorbs a photon is,
to a good approximation, given by the sum of the probabilities associated
with each of the two waves. In this first paragraph, we also assume that
spontaneous photons are emitted perpendicular to the axis considered1.

Consider an atom initially in the internal state g with velocity v. This
atom can absorb a photon in the +z direction or in the −z direction, its
velocity increasing or decreasing by vr (figure III.1). We saw in previous
chapters that the rates for these two processes are given by Γs±(v)/2 with

s±(v) =
2|κ|2

Γ2 + 4∆2
v

. (III.1)

In this equation, the quantity κ corresponds to the Rabi frequency of each
wave, characterizing the electric dipolar coupling of the atom with the elec-

1Our model is therefore optimistic, since it completely neglects heating due to recoil dur-
ing spontaneous emission processes. Another version, pessimistic but equally simple to han-
dle analytically, would be to assume that spontaneously emitted photons all propagate along
the z axis.

Excited state

Ground state

v v+vrv-vr

s-(v) s+(v)

Figure III.1. Discrete model for narrow-line Doppler cooling. Absorption of a
photon changes the atomic velocity by ±vr. Spontaneous emission is assumed to
take place in the plane perpendicular to the cooling axis, so the atomic velocity is
unchanged during this process.

tromagnetic field. The detuning ∆v is calculated by comparing the energy
Ei of the initial state (before absorption, atom in state g in the presence
of N laser photons) and the energy Ef of the final state (after absorption,
atom in state e in the presence of N − 1 laser photons):

Ei = Eg +
1

2
Mv2 +NℏωL, (III.2)

Ef = Ee +
1

2
M(v ± vr)2 + (N − 1)ℏωL, (III.3)

that is, posing ∆ = ωL − ωA with ℏωA = Ee − Eg :

∆v = ∆∓ kv − ωr. (III.4)

Once in the excited state, the atom falls back into the ground state, spon-
taneously emitting a photon. As mentioned above, we first assume that
this photon propagates in the plane orthogonal to the z axis, which does
not modify the velocity v along this axis.

Denoting P(v, t) the velocity distribution at time t, we have the evolu-
tion equation:

∂P(v, t)
∂t

= − Γ

2
[s+(v) + s−(v)]P(v) (III.5)

+
Γ

2
s+(v − vr)P(v − vr) +

Γ

2
s−(v + vr)P(v + vr).

42



CHAPITRE III. THE VIRTUES OF NARROW LINES § 1. Single-frequency cooling

Excited state

Ground state

v v+vr

s-(v+vr)s+(v)

Figure III.2. To find the stationary regime of (III.5), we write the equality of flows
crossing a fictitious boundary located at v + vr/2.

In this model, we couple an infinite, but discrete, chain of velocity
classes:

. . .↔ v − 2vr ↔ v − vr ↔ v ↔ v + vr ↔ . . . (III.6)

1-2 Stationary state

To evaluate the stationary state of this 1D narrow-line cooling model, the
simplest way is to consider a virtual boundary located between v and v+vr
and to write the equality of flows crossing this boundary from right to left
and from left to right (figure III.2):

s+(v) P(v) = s−(v + vr) P(v + vr). (III.7)

which gives
P(v + vr)

P(v) =
(∆ + ωr + kv)2 + Γ2/4

(∆− ωr − kv)2 + Γ2/4
. (III.8)

Let us start with the special case ∆ = −ωr and consider the family
vn = (n− 1

2 )vr:

. . .↔ −3

2
vr ↔ −1

2
vr ↔ 1

2
vr ↔ 3

2
vr ↔ . . . (III.9)

The relationship (III.8) becomes in the limit Γ→ 0:

P(vn+1)

P(vn)
=

(n− 1
2 )

2

(n+ 1
2 )

2
, soit P(vn) ∝

1

(n− 1
2 )

2
∝ 1

v2n
. (III.10)

This particular case reveals an important point: in the limit of a narrow
line, the velocity distribution is no longer Gaussian, unlike in the case of a
broad line, for which the Fokker-Planck equation was valid. This velocity
distribution decreases as a power law v−α, in this case α = 2 for the choice
∆ = −ωr.

As we shall see in what follows, this power-law decay raises new ques-
tions compared with the Gaussian case: on what condition is the second-
order moment ⟨v2⟩ which enters into the definition of kinetic energy de-
fined [this is clearly not the case for (III.10)]? Is the distribution P(v) al-
ways normalizable?

To answer these questions, let us now take an arbitrary detuning ∆.
There is no exact solution as for the special case ∆ = −ωr, but we can show
that the behavior at high velocities remains a power-law behavior

P(v) ∝ |v|−α. (III.11)

To determine α, we use the expansion at high velocities

P(v + vr)

P(v) ≈ 1− αvr
v
. (III.12)

An expansion in powers of 1/v of the right-hand side of (III.8) gives the
dominant term:

1 + 4
∆

kv
= 1 + 2

∆

ωr

vr
v

(III.13)

from which we deduce the exponent of the power law for P .

P(v) ∝ |v|−α with α = 2
|∆|
ωr

, (III.14)

where ∆ is negative. The necessary condition for this treatment to make
sense is that the distribution P is normalizable, i.e.:

P normalizable: |∆| > 1

2
ωr. (III.15)
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If we want
∫
v2 P(v) dv to converge so that the mean kinetic energy is

finite, the constraint is stronger:

Well defined kinetic energy: |∆| > 3

2
ωr. (III.16)

The special case ∆ = −ωr studied above corresponds to a distribution
varying as 1/v2, i.e. normalizable but with infinite mean kinetic energy.

Before discussing the precise value of the width of the velocity distribu-
tion and the mean kinetic energy, the lesson we can draw is that when the
linewidth Γ becomes very small, we cannot expect the broad-line Doppler
limit kBT = ℏΓ/2, obtained for ∆ = −Γ/2, to remain valid. The detuning
should be chosen no smaller than the recoil frequency, to within a multi-
plicative factor of the order of unity. The velocity classes v = 0, v = ±vr
then have comparable populations according to (III.8) and the kinetic en-
ergy obtained is therefore at least of order Er.

1-3 Recoil due to spontaneous emission

The 1D model developed earlier, in which we neglected the momentum
carried away by the fluorescence photons, enabled us to solve the evolu-
tion equation (III.5) very simply. However, this model is too optimistic,
since it neglects an important heating source. We now propose to go be-
yond this approximation and take into account the random recoil due to
spontaneous emission phenomena. We will do this first in a 1D model,
then generalize our results to 3D.

To begin with, let us consider narrow-line cooling along the z axis. The
projection on this axis of the momentum ℏk of a spontaneously emitted
photon is a continuous variable between −ℏk and ℏk (figure III.3). To take
this variable into account, we modify the population feeding terms for the
velocity class v [second line of (III.5)] as follows:

s+(v − vr)P(v − vr) −→
∫ −vr

−vr

N (v′) s+(v − vr + v′)P(v − vr + v′) dv′

s−(v + vr)P(v + vr) −→
∫ −vr

−vr

N (v′) s−(v + vr + v′)P(v + vr + v′) dv′

Excited state

Ground state

v v+2vrv-2vr

Figure III.3. Continuous model for narrow-line Doppler cooling. Absorption of a
photon (solid line) changes the atomic velocity by ±vr. A spontaneously emitted
photon (dotted line) has a non-zero momentum component along the cooling axis,
with a probability density given by (III.17).

whereN (v′) is the probability density for a spontaneously emitted photon
to have an momentum ℏkz = Mv′ along the z axis. This quantity can be
calculated from classical electromagnetic formulas for the radiation of an
oscillating dipole. Taking (for example) the case of circular polarization
along the z axis:

N (v′) =
3

8vr

(
1 +

v′2

v2r

)
. (III.17)

Figure III.4 shows the result of the evolution found for the evolution of
the distribution P(v), calculated for ωr = Γ. A few salient facts emerge
from this evolution:

• As expected, the final distribution obtained has a width of the order
of the recoil velocity.

• This distribution is not a monotonic function of v for v > 0. Holes
appear for the velocities at which resonance occurs with one of the
two laser waves, and for multiples of these velocities.

• A detailed examination of the long-time solution shows that the wings
of this distribution vary like a power law, P(v) ∝ |v|−α, as in the dis-
crete model developed earlier.
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The evolution of the eight other family quantities defined in
Eqs. (2.2) is much simpler, corresponding simply to the usual
decrease resulting from spontaneous emission. One has, for
example,

[*+(P)]SE =-rr+(p),

[k+-(P)ISE =-rp+_(p), (2.20)

[kg+(P)]SE = 2 Pg+(P).

E. Structure of the Equations of Evolution
If one puts together all the various terms found above, one
gets

*g(P) = r[ir(p - hk) + ir-(p + hk)]

-2 [P+g(P) - P (- 2 [p-g(P) -Pg-(P)b,

ir+(p) = -rir+(p) + iQ [P+g(P) - pg+(P)],

kg+(P) = (,kp) + r] g+(p)

+ 2 [rg(P) - (p)]- P-(P)
22

j, (p) =-(2i P + r) P+-(P) + 2 [P+g(P)-Pg-(P)I,

(2.21)

plus the five equations that can be deduced from Eqs. (2.21)
by taking complex conjugates and/or exchanging + and -.

Let us comment briefly on the structure of these equa-
tions. A first important remark is that the evolution of any
of the nine functions rg(p), 7r+(p), p+g(p), . . . does not in-
volve any coupling to interfamily density-matrix elements
such as (g,plpig, p') withp 5 p'. This simplification, which
we mentioned at the beginning of this section, arises from
the choice of a a+-o-- laser configuration. The conservation
of angular momentum in this case prevents any coherent
redistribution of photons between the two counterpropagat-
ing waves from taking place, which would in turn couple
these nine functions to the interfamily density-matrix ele-
ments. This simplification must be contrasted with the case
of a two-level atom in a standing wave. In the latter case,
one finds that the state Ig, p) is coupled by absorption from a
traveling wave to the state le, p + hi), itself coupled by
stimulated emission into the other traveling wave to Ig, p +
2hk), and so on .... The quantum treatment of this prob-
lem would then require consideration of, for instance, an
infinite number of elements (g, plpig, p') with p' - p =
2nhk, instead of keeping only (g, pipig, p). Actually, at low
power (Rabi frequency 0 smaller than the width r), we do
not expect a large difference between the o-+-a.- configura-
tion and the standing-wave case, since stimulated processes
are negligible compared with spontaneous ones. On the
other hand, at high power ( >> r), we know from the semi-
classical treatment that the two configurations lead to quite
different results."

With regard to the structure of the equations of evolution
(2.21), we also can note that all these equations except for

the one giving *g are similar to usual optical Bloch equations,
the label p being just a spectator. On the other hand, the
equation giving rg contains the term r(r+ + r_), which
describes the transfer among families because of recoil.
This term is at the origin of the radiation force and its
fluctuations.'2 Now if we consider the evolution of the total
population of the family p, we get

*g(P) + *+(p) + *_(p) = -r[7r+(p) + 7r(p)]

+ r[k(p - hk) + ir-(p + hk)].
(2.22)

This equation has a clear physical meaning: The atom
leaves the family p by spontaneous emission from level e+, p
+ hi) and le-, p - hk) terms - r[7r+(p) + r_(p)]j, and it
enters this family by spontaneous emission from any le+, p')
with Ip' - pi < hk (terms involving r+ and r-). When
stationary state is reached, these two entering and leaving
fluxes are equal for any family p.

3. NUMERICAL RESULTS FOR ARBITRARY
INTENSITIES

In order to study the dynamics and the stationary state of
the atomic density matrix, we performed a numerical study
of the full set of Eqs. (2.21). We discretized the momenta by
using typically 200 points. For a narrow line (Fig. 2) corre-
sponding to hF = Er, we took 10 points per recoil h. In
comparison, numerical solutions of the usual Fokker-Planck
approach involve typically one point per recoil hi.

In Fig. 2, we plotted for this narrow line the evolution of
the function giving the probability W(p) of finding the atom
with a momentum p, independently of its internal state

W(p) = 7rg(p) + r+(p - hi) + wr-(p + hk I). (3.1)

t t=00

.t=1000r-l

t= L100Fr 1

t= 15F

t= 7 

~~~~t=O
-5%k 0 5fk

Fig. 2. Time evolution of the momentum distribution W(p) for the
case of a narrow line (hr = E,) with a Rabi frequency = r and a
detuning 6 = -2.5r (discretization 200 points, 10 points per recoil
momentum). The last distribution (for t = a) was obtained direct-
ly by solving the set of equations deduced from b = 0.

Castin et al.
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Figure III.4. Evolution of the one-dimensional velocity distribution for Doppler
cooling on a narrow line Γ = ωr. The detuning is ∆ = −1.5ωr and the Rabi
frequency κ = ωr. The atomic transition is of type Jg = 0 ↔ Je = 1 and the
two beams propagating along ±z are polarized σ±. Figure extracted from Castin,
Wallis, et al. (1989).

1-4 Steady state and scaling laws

Within the framework of the continuous model of the previous paragraph,
we can numerically search for the detuning that minimizes the mean ki-
netic energy

Ec =
1

2
M⟨v2⟩ ≡ 1

2
kBTeff (III.18)

for each value of the ratio Γ/ωr, and then study how this minimum ef-
fective temperature Teff,min varies with Γ/ωr. Note that the definition of
a temperature in this situation is debatable, since we have seen that sta-
tionary distributions are not Gaussian, but vary as a power law for high
velocities.

The result for Teff,min as a function of Γ/ωr is shown in figure III.5, taken
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states belonging to different families. Using simultaneously
the parity of the ground-state population in the stationary
state

7rg(p) = 7rg(-p), (4.3)

it is possible then to derive all the momenta (pn) of this
stationary distribution.

First, we consider the case of a broad line (E, << hr). We
multiply Eq. (4.2) byp2 and take the integral over p from -
to +X. We then get by using Eq. (2.19)

r+ r+ hk

dpp 2[7r (p) + r_(p)] = dpp 2
Jhk dpjV(p')

X [7r+(p + p'-hi) + 7r-(p + p' + hi)]. (4.4)

We now replace r+ and r_ by their expression in terms of rg
[Eq. (4.1)] and take as new integration variables P1 = p' and
P2 = p + p' F h. Equation (4.4) can now be written as an
average over momentum with a weight rg:

(p(,_- 7'+)(p)) = 7 hk((y + y_)(p)), (4.5)

where the coefficients y+, are given in Eq. (3.7) and where we
get from Eq. (2.18)

dptp t =- h2k (4.6)

Relation (4.5) describes the equilibrium in the steady state
between dissipation and fluctuations. The dissipation is
due to the cooling force f(p) = hk(-y+ - y_)(p), and the
fluctuations are described by the momentum diffusion coef-
ficient 7/10(hk)2 (y+ + y_)(p). For a broad line, the average
Doppler shift Ikp/ml in the stationary state is small com-
pared with the natural width r, so that we get from Eq. (3.7)

'Y-(P) - +(P) - 226kp/m -' (4.7)
(6 + 2 /4) 2

yi-(P) Y+(P) + F2 /4 (4.8)

If we insert these two results into Eq. (4.5), we get

- (p2 ) = 7 h + r 2 /4 (4.9)
2m 40 -6

This is the well-known cooling limit for broad lines, which is
minimum for = -r/2, where E = 7hr/40.

For a narrow line, the problem of the derivation of E is
more complex since an expansion like the one that leads to
expressions (4.7) and (4.8) is no longer possible. The princi-
ple of the calculations is presented in detail in Appendix B;
here we indicate only the main results.

The first result deals with the convergence of the integral
SI p2n7rg(p)dp. We find that this integral converges if

<--(3 + 2n).
20 m

In particular, this leads to

-g i <21h2
7

9g normalizable if 6 < - 2 0

(p2 ) exists if < h-i?4 m (4.12)

Physically, this means that in an experiment with a finite
collection of atoms, the number of particles with a velocity
smaller than a given bound tends to zero with increasing
interaction time when condition (4.11) is violated.

The analytical expression for (p
2

) is given explicitly in
Appendix B [Eq. (B16)]. We plotted in Fig. 6 the variations
of (p 2)/2m with detuning a for various ratios hF/Er. The
optimum detunings, which minimize (p

2
), range from 6 =

-r/2 for a broad line to 6 = -1.72hk2 /m = -3.44r(Er/hr) for
a narrow line. This confirms the numerical results found in
Section 3. The corresponding values for E, = (p 2 )/2m are
plotted in Fig. 7. They range from 7hr/40 for a broad line to
0.53Er for a narrow line.

Finally, we can mention an interesting point that was
pointed out to us by Phillips and co-workers, who first ob-
tained this result by using a Monte Carlo approach to this
problem1 9; it concerns the large INI variation of EK (see Fig. 6).
We see that for large 1l1, E, increases linearly with 161, as one
would expect from the limit (4.9), but it remains below the
semiclassical limit 7I16/40. This can be understood by a
simple reasoning. First, we note that for very large 61, an
expansion such as the one shown in expressions (4.7) and
(4.8) is valid, even for narrow atomic lines. In this case, the
Doppler shift kp/m is indeed small compared with 161. In

EK/I FS

-~~~r_ ~

1 2 3 4 5 6 7 8 9
Fig. 6. Variations (for Q << r) of the stationary kinetic energy E
with detuning 6 for various recoil shifts. The curve with Er = 0
represents the predictions of usual semiclassical molasses theory
[Eq. (4.9)].

EK/ Er

(4.10)

100

0.1

Fig. 7. Variations for u << r of the stationary kinetic energy E.
(4.11) with the ratio hr/E,. The detuning is always chosen in order to

minimize EK.
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Figure III.5. Minimum kinetic energy as a function of the ratio Γ/ωr. Figure
extracted from Castin, Wallis, et al. (1989).

from Castin, Wallis, et al. (1989). For a narrow line, this minimum temper-
ature is obtained for ∆ ≈ −3.4ωr and leads to Ec ≈ 0.53Er, which gives

narrow line cooling in 1D: kBTeff,min ≈ 1.06Er,
√
⟨v2⟩ ≈ 0.73 vr.

(III.19)
For a broad line, we recover the Doppler limit found in the previous chap-
ter. It reads in the one-dimensional model studied here:

broad-line cooling in 1D: kBTeff,min =
7

10

ℏΓ
2
. (III.20)

The 7/10 coefficient found in this 1D model compared with the 3D result
can be explained simply: the heating associated with the recoil of sponta-
neously emitted photons corresponds to ⟨p2⟩ = 2

5ℏ
2k2. Whereas at 3D, the

momentum diffusion coefficient due to recoil during spontaneous emis-
sion is equal to that arising from the randomness of the direction of ab-
sorbed photons, its contribution is reduced here by a factor of 2/5, result-
ing in an overall reduction in scattering by a factor of

1 + 2
5

1 + 1
=

7

10
. (III.21)

Finally, we can extrapolate these results to three dimensions, by multi-
plying the 1D results by the factor 10/7. We then obtain an estimate of the

45



CHAPITRE III. THE VIRTUES OF NARROW LINES § 2. How to structure the resonance line

expected minimum temperature:

narrow line cooling in 3D: kBTeff,min ≈ 1.5Er,
√
⟨v2⟩ ≈ 0.9 vr.

(III.22)

In conclusion, the minimum temperature obtained by narrow-line
Doppler cooling is limited by the recoil of a single photon. The regime
leading to this minimum temperature is very different from that found for
a broad line: the optimum detuning is of the order of −3ωr, the total exci-
tation rate of an atom

stot(v) = s+(v) + s−(v) (III.23)

is weak in the vicinity of v = 0 and only takes on appreciable values for
v ≈ ±2 vr. This gives rise to the idea that atoms are accumulated in a dark
region of velocity space (figure III.6): when the atom is in this dark region,
it remains at the same velocity for a long time, as the photon scattering
rate Γstot/2 is very low. When photon scattering occurs, the atom may
approach one of the two bright regions v ≈ ±2 vr. Photon scattering then
occurs at a high rate, and absorption takes place with virtual certainty in
the wave propagating away from the atom: for example, if v ≈ +2 vr, then
s−(v) ≫ s+(v). This last point is essential to ensure that the atom almost
never crosses the bright wall: if it does, and the atom acquires a velocity
of 3 or 4 vr, then it will take a considerable time to return to the vicinity
of zero velocity. This is why we need to choose a detuning ∆ significantly
greater than ωr. We will see in the next paragraph how the use of multiple-
frequency beams can relax this constraint.

2 How to structure the resonance line

From the above, narrow-line cooling provides a means of cooling atoms
to a temperature of the order of the recoil associated with a single photon.
But the disadvantage associated with a narrow line is clear from figure
III.6: for an atom of any velocity v to be cooled, this velocity must be close
to the resonant velocity class with lasers, kv ∼ ∆ to within Γ. Since Γ is
assumed to be small, of the order of the recoil frequency ωr, only a narrow
velocity class (of the order of vr) will be concerned. How can we remedy
this inefficiency?

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

v/vr

Figure III.6. Variation of s+(v) (blue dashes), s−(v) (red dashes) and stot(v)
(black solid line) for a narrow line, Γ = ωr, ∆ = −3ωr and κ = ωr/2.

A first solution is to broaden the line by saturation. We have seen that
when the Rabi frequency characterizing the atom-laser coupling becomes
greater than the natural width Γ, the effective width of the resonance is
increased:

Γ −→ Γeff =
√
Γ2 + 2|κ|2. (III.24)

We can therefore choose |κ| to be large in front of the recoil frequency ωr,
to ensure that the capture range of optical molasses is large in front of vr.
But then we lose the benefit of a narrow line: everything happens as if we
were using a resonance line of width Γeff ≫ ωr, and the temperature we
will reach will be given by kBT ∼ ℏΓeff , which is large compared with the
recoil energy.

2-1 Line broadening by phase modulation

It makes much more sense to broaden the line using polychromatic ex-
citation, which can be achieved by introducing sidebands through phase
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modulation of the light wave:

eiωLt → ei[ωLt+ϕ(t)]. (III.25)

Consider, for example, a phase modulation ϕ(t) of period T for which the
phase varies locally quadratically with time. Let us assume T0 < T and for
the period −T0/2 < t < T − T0/2 :

ϕ(t) = α(t2 − T 2
0 /4) if |t| < T0/2, (III.26)

ϕ(t) = −β(t− T0/2)(t− T + T0/2) if T0/2 < t < T − T0/2,

which are then reproduced periodically. We impose αT0 = β(T − T0) to
ensure the continuity and derivability of ϕ(t) in T0. The frequency of the
wave, equal to the derivative of the phase, then has a sawtooth variation
and covers a frequency interval between ωL − Ω/2 and ωL + Ω/2, with
Ω = 2αT0. Fourier analysis shows that the light spectrum is made up of
harmonics separated by the frequency 2π/T , with comparable weights if
the sawtooth is sufficiently asymmetrical (T0 close to T ). An example is
shown in figure III.7. Harmonics outside the range [ωL − Ω/2, ωL + Ω/2]
have negligible weights compared to those inside.

To obtain a significant, uniform excitation of the atom over a wide range
of velocities, we choose a harmonic spacing 2π/T of the order of the natural
width Γ. An example of the profile obtained by independently summing
the contributions of the various Fourier components is shown in figure III.8
for a very narrow line (Γ = 0.2ωr).

In the following, we will model this profile using the rectangular shape
shown in figure III.9. We are discussing the 1D case here, but this model
can be extended to three dimensions without difficulty. Let us divide ve-
locity space into three zones:

• The central zoneA corresponds to low velocities |v| < v0. These atoms
are almost in the dark, i.e. they have a low probability of absorbing a
photon. We denote γa the probability per unit time for an absorption
process, which proceeds in a random direction.

• The intermediate zone B corresponds to v0 < |v| < v1. In this zone,
atoms absorb photons at a high γb rate. This absorption is directive: it
takes place in the light beam propagating in the opposite direction to
the atom, and therefore tends to bring the atom back to zero velocity.

�20 �10 0 10 20
0

2 · 10�2

4 · 10�2

6 · 10�2

harmoniqueharmonics

Figure III.7. Example of spectrum obtained by quadratic phase modulation
(III.26) with T0 = 0.99T and α = 20π/(TT0) (i.e. 20 significantly populated
harmonics).

• The zone C corresponds to atoms with high velocity |v| > v1. These
atoms have a negligible probability of absorbing a photon. The veloc-
ity v1 can in principle be chosen arbitrarily large in front of the recoil
velocity, and these velocity classes |v| > v1 will play a negligible role
in the following.

2-2 Scaling laws for a broadened resonance line

Broadening the excitation line by phase modulation can have two bene-
fits. The first is to accelerate the decay of the velocity distribution P(v) at
high velocities. We have seen that for monochromatic excitation, this decay
takes place with a power law |v|−α, with α = 2|∆|/ωr. For the broadened
line we are considering here, the effective detuning corresponds to the cen-
ter of the rectangular excitation profile and can therefore be large compared
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Figure III.8. Saturation parameter s+(v) (blue dashed line), s−(v) (red dashed
line) and stot(v) (black solid line) as a function of velocity v. Parameters for this
figure: Γ = 0.2ωr, κ = 0.4ωr, average ∆ equal to −5ωr, 100 significantly
populated harmonics with a harmonic spacing 0.1ωr.

to ωr. The exponent of the power law is therefore large in front of 1, ensur-
ing convergence of all relevant moments of this velocity distribution.

The second virtue is to lower the average energy of cooled atoms, at
least in the case of Γ ≪ ωr. To clarify this point, we will do some simple
statistical reasoning, based on the absorption rate model shown in figure
III.9. Let us denote Pa and Pb as the respective populations of zones A and
B, and let us assume that the boundary velocity v0 is significantly smaller
than the recoil velocity vr. In steady state, there is equilibrium between the
flows into and out of each zone:

• The outflow from zone A is simply given by

ΦA→B ≈ Paγa. (III.27)

Since v0 ≪ vr, an atom initially located in zone A and which under-
goes photon scattering generally leaves this zone due to the random
recoil associated with spontaneous emission.

• The flux entering zone A corresponds to atoms from zone B which
have undergone an absorption – spontaneous emission process, and
which by chance have arrived in a velocity class |v| < v0. Since atoms
in zone B have a velocity of the order of the recoil velocity vr, the flux
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states belonging to different families. Using simultaneously
the parity of the ground-state population in the stationary
state

7rg(p) = 7rg(-p), (4.3)

it is possible then to derive all the momenta (pn) of this
stationary distribution.

First, we consider the case of a broad line (E, << hr). We
multiply Eq. (4.2) byp2 and take the integral over p from -
to +X. We then get by using Eq. (2.19)

r+ r+ hk

dpp 2[7r (p) + r_(p)] = dpp 2
Jhk dpjV(p')

X [7r+(p + p'-hi) + 7r-(p + p' + hi)]. (4.4)

We now replace r+ and r_ by their expression in terms of rg
[Eq. (4.1)] and take as new integration variables P1 = p' and
P2 = p + p' F h. Equation (4.4) can now be written as an
average over momentum with a weight rg:

(p(,_- 7'+)(p)) = 7 hk((y + y_)(p)), (4.5)

where the coefficients y+, are given in Eq. (3.7) and where we
get from Eq. (2.18)

dptp t =- h2k (4.6)

Relation (4.5) describes the equilibrium in the steady state
between dissipation and fluctuations. The dissipation is
due to the cooling force f(p) = hk(-y+ - y_)(p), and the
fluctuations are described by the momentum diffusion coef-
ficient 7/10(hk)2 (y+ + y_)(p). For a broad line, the average
Doppler shift Ikp/ml in the stationary state is small com-
pared with the natural width r, so that we get from Eq. (3.7)

'Y-(P) - +(P) - 226kp/m -' (4.7)
(6 + 2 /4) 2

yi-(P) Y+(P) + F2 /4 (4.8)

If we insert these two results into Eq. (4.5), we get

- (p2 ) = 7 h + r 2 /4 (4.9)
2m 40 -6

This is the well-known cooling limit for broad lines, which is
minimum for = -r/2, where E = 7hr/40.

For a narrow line, the problem of the derivation of E is
more complex since an expansion like the one that leads to
expressions (4.7) and (4.8) is no longer possible. The princi-
ple of the calculations is presented in detail in Appendix B;
here we indicate only the main results.

The first result deals with the convergence of the integral
SI p2n7rg(p)dp. We find that this integral converges if

<--(3 + 2n).
20 m

In particular, this leads to

-g i <21h2
7

9g normalizable if 6 < - 2 0

(p2 ) exists if < h-i?4 m (4.12)

Physically, this means that in an experiment with a finite
collection of atoms, the number of particles with a velocity
smaller than a given bound tends to zero with increasing
interaction time when condition (4.11) is violated.

The analytical expression for (p
2

) is given explicitly in
Appendix B [Eq. (B16)]. We plotted in Fig. 6 the variations
of (p 2)/2m with detuning a for various ratios hF/Er. The
optimum detunings, which minimize (p

2
), range from 6 =

-r/2 for a broad line to 6 = -1.72hk2 /m = -3.44r(Er/hr) for
a narrow line. This confirms the numerical results found in
Section 3. The corresponding values for E, = (p 2 )/2m are
plotted in Fig. 7. They range from 7hr/40 for a broad line to
0.53Er for a narrow line.

Finally, we can mention an interesting point that was
pointed out to us by Phillips and co-workers, who first ob-
tained this result by using a Monte Carlo approach to this
problem1 9; it concerns the large INI variation of EK (see Fig. 6).
We see that for large 1l1, E, increases linearly with 161, as one
would expect from the limit (4.9), but it remains below the
semiclassical limit 7I16/40. This can be understood by a
simple reasoning. First, we note that for very large 61, an
expansion such as the one shown in expressions (4.7) and
(4.8) is valid, even for narrow atomic lines. In this case, the
Doppler shift kp/m is indeed small compared with 161. In

EK/I FS

-~~~r_ ~

1 2 3 4 5 6 7 8 9
Fig. 6. Variations (for Q << r) of the stationary kinetic energy E
with detuning 6 for various recoil shifts. The curve with Er = 0
represents the predictions of usual semiclassical molasses theory
[Eq. (4.9)].

EK/ Er

(4.10)

100

0.1

Fig. 7. Variations for u << r of the stationary kinetic energy E.
(4.11) with the ratio hr/E,. The detuning is always chosen in order to

minimize EK.

Castin et al.
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Absorption rate

Figure III.9. Modeling the absorption rate: a central zone with a low rate γa and
a peripheral zone with a much higher rate γb. The width of the central zone v0 is
smaller than the recoil velocity.

entering zone A is:

ΦB→A ≈ Pbγb

(
v0
vr

)D

(III.28)

where D is the dimension of the velocity space to be cooled. Note
immediately that the factor (v0/vr)D makes three-dimensional cooling
much trickier than its 1D equivalent, at given v0 and vr; this point will
be confirmed later.

The equality of the two flows corresponding to steady-state conditions
therefore leads to:

Pa

Pb
=
γb
γa

(
v0
vr

)D

. (III.29)

It remains to evaluate the ratio γb/γa. Assuming a resonance line broad-
ened by phase modulation as shown in figure III.8, the residual absorption
rate around zero velocity corresponds to the sum of the wings of the dif-
ferent Lorentzians corresponding to each harmonic of the broadened line.
Up to a numerical coefficient, we find:

γa ≈ γb
Γ

|∆min|
where we assume γa ≈ γb

Γ

|∆min|
(III.30)

where ∆min is the detuning value for the harmonic closest to resonance.
This value is directly linked to the boundary velocity v0: kv0 = |∆min| so
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that we arrive at

Pa

Pb
=

vD+1
0

vDr δvres
with δvres = Γ/k ≪ vr. (III.31)

The nature of the possible optimization is then clear: we want to have
at least a fraction of the atoms (those in zone A) as cold as possible, and
therefore a boundary velocity v0 as low as possible. At the same time, we
want this fraction to be significant, so that Pa is not too small compared
with Pb.

For the sake of clarity, let us impose Pa = Pb. This fixes the value of v0:

v0
vr

=

(
Γ

ωr

) 1
D+1

. (III.32)

In one dimension, the gain is significant compared with monochromatic
cooling if Γ≪ ωr. We have v0 =

√
vr δvres ≪ vr (Wallis & Ertmer 1989). In

three dimensions, on the other hand, the gain is only marginal compared
to vr, since the Γ/ωr ratio only comes into play to the power of 1/4. The
main advantage of broadening the line in this case is to increase the optical
molasses capture zone (this is the first argument we mentioned).

3 Experiments on narrow-line cooling

3-1 Temperature measurements

The first narrow-line cooling experiments were carried out on the stron-
tium atom (isotope 88) in H. Katori’s group in Japan (Katori, Ido, et al.
1999; Ido, Isoya, et al. 2000).

The strontium atom has two relevant resonance lines (figure III.10); the
first, a broad line, corresponds to the 5s2 1S0 ↔ 5s5p 1P1 transition, with
wavelength λ1 = 461nm and width Γ1/2π = 32MHz. This line is used to
pre-cool atoms in a magneto-optical trap. The second, narrow line corre-
sponds to the 5s2 1S0↔ 5s5p 3P1 intercombination transition, λ2 = 689nm
and Γ2/2π = 7.6kHz. Katori, Ido, et al. (1999) showed that they could
transfer atoms pre-cooled on the broad line into a magneto-optical trap

5s5p 1P1

5s5s 1S0

5s4d 1D2

5s5p 3P10
1
2

461 nm

689 nm

Figure III.10. Relevant energy levels for the strontium atom. The excited state
for the 5s5p 1P1 broad line transition can de-excite to the 5s4d 1D2 level. A
repumping scheme may thus be required.

for the narrow line, by broadening this line through phase modulation.
They then switched off this phase modulation to obtain a sample cooled in
monochromatic light. By reducing the laser power as much as possible (to
the threshold at which the radiation pressure force no longer compensates
for gravity), they were able to reach a temperature of 400 nK, i.e. 1.7Er/kB.
The corresponding root-mean-square velocity is

v0 =

√
kBT

M
= 6.1mm/s = 0.9 vr. (III.33)

Katori, Ido, et al. (1999) also measured the phase-space density of the
cooled cloud, and showed that it could reach 10−2, exceeding by several
orders of magnitude that measured in a broad-line magneto-optical trap
(∼ 10−6). They attribute the observed limit for this phase-space density
to heating due to multiple photon scattering, to which we will return a
little later. For the geometry of their sample, they observe an increase in
temperature with increasing spatial density:

dT

dn
= 400nK/(1012 cm−3) (III.34)

over the range n = 0.1 – 0.5 1012 cm−3. Since phase-space density varies as
n/T 3/2, this law favors the low-density and low-temperature regime.

Ido, Isoya, et al. (2000) then improved on this result by applying
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(Δ1+Δ2)/2$
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by measuring the evolution of the cloud over half of the
trap period, after switching off the 1D cooling laser.
For that purpose, we use the relationship !2

zðtÞ ¼
!2

zð0Þcos2ð!tÞ þ ½!pð0Þ=m!&2sin2ð!tÞ, linking the rms
value of the cloud size in the 1D harmonic trap, !zðtÞ, to
the initial values (at the switching off of the lasers) in real
space and momentum space.

Moreover, the mean square momentum depend on the
number of atoms, showing that collective effects also
induce extra heating. Regardless of the exact origin of
this extra heating, one example of this dependency is
shown in the inset of Fig. 2. We extrapolate the mean
square momentum value to the noninteracting limit (van-
ishing number of atoms) using a linear fit. The data points
for the mean square momentum in Fig. 2 are deduced in
this way.

Finally, even if the trap is loose along the cooling axis
(!k ' !r), it is not clear that it does not affect the cooling
process. Later on we will show that the trapping indeed has
a major impact when the transition is very narrow,!r(!.
To explore the influence of the trap, we use a Monte Carlo
(MC) simulation comparing cooling with and without the
trap. The MC simulation is based on a rate equation
describing the scattering events where the external degrees
of freedom are treated classically. This approach, neglect-
ing the quantum nature of the external degrees of freedom,
is known to be consistent with the full quantum approach in
free space [14]. This point is also confirmed here, where
the results of the MC simulation in free space are plotted in
Fig. 2 (green stars). In the trap, the dynamic is more subtle

because of the presence of the trapping force. It turns out,
however, that for the strontium intercombination transition
with !r ’ 0:6! the trap does not significantly modify the
mean square momentum in the steady state (red dots in
Fig. 2). We will see later that the condition !r ( ! leads
to different conclusions.
Other signatures of the quantum nature of Doppler

cooling can be found in the shape of the momentum
distribution. In the broad transition semiclassical picture,
the momentum distribution is essentially Gaussian since it
remains very well confined far from the two )"m=k
resonance lines. With a narrow transition, a single scatter-
ing event might be enough to bring the atom out of reso-
nance. As a consequence, the momentum distribution is not
Gaussian anymore and shows out-of-resonance long tails
and dips at the resonance lines [14,27]. A precise measure-
ment of the momentum distribution has been done for the
case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
is a likely explanation to why there is only a qualitative
agreement found between the experiment and the MC

FIG. 2 (color online). Mean square momentum in temperature
and recoil units as function of cooling laser detuning. The
experimental data (black, full circles), extrapolated for N ! 0
(noninteracting gas), are compared to the full quantum approach
developed by Castin et al.[14] (green, solid line). The blue,
dashed curve shows the prediction for broad transition Doppler
theory. The red points (green stars) correspond to the MC
simulation performed in (without) the dipole trap. Inset:
Measured mean square momentum as function of the number
of atoms in the trap with " ¼ *20 kHz and If ¼ 0:06Is (red
circles) with linear fit (dashed line).

FIG. 3 (color online). Upper panels: Raw data, false color
image of the atomic cloud after 1D cooling in free space, and
50 ms time of flight. The cooling laser are along the horizontal
axis. From left to right the laser detunings are respectively
" ¼ *33 kHz, " ¼ *21 kHz and " ¼ *10 kHz, and the laser
intensity is around 0:5Is. The small horizontal asymmetry is
likely due to imperfect balance of the cooling beams intensity,
which were not precisely adjusted like for the cloud in the Dipole
trap case. Middle panels: Normalized spatial distribution along
the cooling axis extracted from the upper images. Lower panels:
Normalized momentum distribution extracted from the MC
simulation. The laser detuning is the same as in the experiment,
but the simulation is performed at the low intensity limit. These
plots show a qualitative agreement with the experiment at higher
intensity without the added trap (green open circles), as well as
in the trap (red dots). The resonance lines correspond to the
vertical, dashed lines.
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Moreover, the mean square momentum depend on the
number of atoms, showing that collective effects also
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this extra heating, one example of this dependency is
shown in the inset of Fig. 2. We extrapolate the mean
square momentum value to the noninteracting limit (van-
ishing number of atoms) using a linear fit. The data points
for the mean square momentum in Fig. 2 are deduced in
this way.

Finally, even if the trap is loose along the cooling axis
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a major impact when the transition is very narrow,!r(!.
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mean square momentum in the steady state (red dots in
Fig. 2). We will see later that the condition !r ( ! leads
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distribution. In the broad transition semiclassical picture,
the momentum distribution is essentially Gaussian since it
remains very well confined far from the two )"m=k
resonance lines. With a narrow transition, a single scatter-
ing event might be enough to bring the atom out of reso-
nance. As a consequence, the momentum distribution is not
Gaussian anymore and shows out-of-resonance long tails
and dips at the resonance lines [14,27]. A precise measure-
ment of the momentum distribution has been done for the
case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
is a likely explanation to why there is only a qualitative
agreement found between the experiment and the MC
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and recoil units as function of cooling laser detuning. The
experimental data (black, full circles), extrapolated for N ! 0
(noninteracting gas), are compared to the full quantum approach
developed by Castin et al.[14] (green, solid line). The blue,
dashed curve shows the prediction for broad transition Doppler
theory. The red points (green stars) correspond to the MC
simulation performed in (without) the dipole trap. Inset:
Measured mean square momentum as function of the number
of atoms in the trap with " ¼ *20 kHz and If ¼ 0:06Is (red
circles) with linear fit (dashed line).

FIG. 3 (color online). Upper panels: Raw data, false color
image of the atomic cloud after 1D cooling in free space, and
50 ms time of flight. The cooling laser are along the horizontal
axis. From left to right the laser detunings are respectively
" ¼ *33 kHz, " ¼ *21 kHz and " ¼ *10 kHz, and the laser
intensity is around 0:5Is. The small horizontal asymmetry is
likely due to imperfect balance of the cooling beams intensity,
which were not precisely adjusted like for the cloud in the Dipole
trap case. Middle panels: Normalized spatial distribution along
the cooling axis extracted from the upper images. Lower panels:
Normalized momentum distribution extracted from the MC
simulation. The laser detuning is the same as in the experiment,
but the simulation is performed at the low intensity limit. These
plots show a qualitative agreement with the experiment at higher
intensity without the added trap (green open circles), as well as
in the trap (red dots). The resonance lines correspond to the
vertical, dashed lines.
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Figure III.11. Left: Evolution of temperature versus detuning for a cloud of 88Sr
atoms confined in a dipole trap. The temperatures shown result from extrapolation
to low atom numbers of the temperatures actually measured. Right: influence of
atom number on temperature [figure taken from Chalony, Kastberg, et al. (2011)].

narrow-line cooling to strontium atoms confined in a dipole trap. By re-
ducing the power of the dipole trap, they achieved a phase-space density
of 0.1 (within a factor of 20 of Bose-Einstein condensation). Note that the
equilibrium obtained probably corresponded to a combination of laser and
evaporative cooling.

A detailed study of the temperature obtained by narrow-line cooling
has also been carried out by the Nice group for 88Sr (Chalony, Kastberg, et
al. 2011). This study was performed both with atoms confined in a dipole
trap and with free atoms. For trapped atoms, the variation in temperature
with detuning is in good agreement with the theoretical models presented
above (Castin, Wallis, et al. 1989). The minimum temperature measured is
∼ 400nK as for Katori, Ido, et al. (1999), and the minimum temperature
deduced from extrapolation to a very low number of atoms is ∼ 200nK
(figure III.11). Here, too, the increase of temperature with the number of
atoms was clearly observed: the temperature is doubled for a number of
atoms corresponding to an optical thickness of the cloud of the order of
unity (in its transverse direction). We will come back to this result in the
next paragraph. For free atoms, the measured velocity profile is in good
agreement with that shown in figure III.4, with holes corresponding to res-
onant velocity classes and notable non-Gaussian wings.

3-2 The role of collective effects

In the theory-experiment comparison we have just described, collective ef-
fects play an important role. The theoretical models we presented earlier
focused on the case of a single atom coupled to radiation. In the experi-
ments, a large number of particles are cooled (from 104 to 107), and it is
important to specify the conditions under which we can expect the predic-
tions made for a single atom to be valid.

The most important problem, already encountered in the broad-line
magneto-optical trap, is the multiple scattering of photons. In the case
of the magneto-optical trap, we reported that this multiple scattering was
responsible for a repulsive force between the atoms, which increased the
equilibrium size of the trapped cloud. Multiple scattering also creates heat-
ing, due to the random recoil it causes. In what follows, we estimate the
parameters of the atom cloud at which these effects become significant.

To be cooled to the desired temperature, the atoms are continuously
illuminated by the cooling light beams, and each atom scatters the incident
photons at a rate γ. The emitted photons have approximately the same
wavelength as the incident photons, so they can also be scattered, with an
effective cross-section close to the resonant scattering cross-section.

σ =
3

2π
λ2. (III.35)

Note the very large value of this effective resonant cross-section (a micron-
square), far greater than the geometric dimension of an atom (an angström-
square).

The mean free path of a photon in the atomic assembly is given by
1/(nσ). Reabsorption becomes significant when this mean free path is of
the order of the size L of the cloud, i.e. using σ ∼ λ2:

significant reabsorption if : nλ2L ≳ 1. (III.36)

This criterion can be recovered by looking for the situation where the scat-
tering rate γ′ due to reabsorption becomes comparable to the scattering
rate γ of incident laser photons: there are Nγ laser photons scattered per
second, and the probability that a given atom will reabsorb a photon scat-
tered by another atom at an average distance ∼ L/2 is ∼ σ/L2. The rate γ′
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is therefore
γ′ ∼ σ

L2
Nγ (III.37)

so that γ′ ∼ γ when nσL ∼ 1. Note that when this criterion is met, the ab-
sorption of incident laser beams becomes significant: the atomic medium
is optically thick.

As we wrote above, as soon as γ′ becomes of the order of γ, the cooling
dynamics is altered: the random recoil that accompanies multiple scatter-
ing phenomena generates additional heating of the trapped atoms, and the
equilibrium temperature rises. In a later chapter, we will discuss some of
the possibilities that have been envisaged to counteract this heating associ-
ated with multiple scattering. In this chapter, we will just mention one that
has been used in the experiments presented here: one takes a cloud of high
anisotropy (cigar or pancake), so that at least one of the cloud’s linear di-
mensions is small, of the order of just a few optical wavelengths. Photons
can then easily escape in this direction, even though the trap may contain
a large number of atoms.

Note. The collective effects that occur when an atomic cloud interacts
with resonant light are not limited to multiple scattering. The atomic den-
sities actually reached correspond to an average distance between atoms of
the order of the optical wavelength. When an excited atom and an atom in
the ground state are separated by such a small distance, the dipole-dipole
interaction between atoms must be taken into account (Julienne, Smith,
et al. 1992). This gives rise to multiple potential curves, attractive or re-
pulsive, and the corresponding acceleration can also contribute very sig-
nificantly to the heating of the gas, or even to atom loss via light-assisted
inelastic collisions [see for example Fuhrmanek, Bourgain, et al. (2012) and
refs. in].

3-3 Narrow line magneto-optical trap

The operation of a narrow-line magneto-optical trap is significantly dif-
ferent from that of the traditional broad-line trap. This operation has
been studied in detail by the Boulder group (Loftus, Ido, et al. 2004),
and we summarize their analysis here. Consider an atomic transition
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by measuring the evolution of the cloud over half of the
trap period, after switching off the 1D cooling laser.
For that purpose, we use the relationship !2

zðtÞ ¼
!2

zð0Þcos2ð!tÞ þ ½!pð0Þ=m!&2sin2ð!tÞ, linking the rms
value of the cloud size in the 1D harmonic trap, !zðtÞ, to
the initial values (at the switching off of the lasers) in real
space and momentum space.

Moreover, the mean square momentum depend on the
number of atoms, showing that collective effects also
induce extra heating. Regardless of the exact origin of
this extra heating, one example of this dependency is
shown in the inset of Fig. 2. We extrapolate the mean
square momentum value to the noninteracting limit (van-
ishing number of atoms) using a linear fit. The data points
for the mean square momentum in Fig. 2 are deduced in
this way.

Finally, even if the trap is loose along the cooling axis
(!k ' !r), it is not clear that it does not affect the cooling
process. Later on we will show that the trapping indeed has
a major impact when the transition is very narrow,!r(!.
To explore the influence of the trap, we use a Monte Carlo
(MC) simulation comparing cooling with and without the
trap. The MC simulation is based on a rate equation
describing the scattering events where the external degrees
of freedom are treated classically. This approach, neglect-
ing the quantum nature of the external degrees of freedom,
is known to be consistent with the full quantum approach in
free space [14]. This point is also confirmed here, where
the results of the MC simulation in free space are plotted in
Fig. 2 (green stars). In the trap, the dynamic is more subtle

because of the presence of the trapping force. It turns out,
however, that for the strontium intercombination transition
with !r ’ 0:6! the trap does not significantly modify the
mean square momentum in the steady state (red dots in
Fig. 2). We will see later that the condition !r ( ! leads
to different conclusions.
Other signatures of the quantum nature of Doppler

cooling can be found in the shape of the momentum
distribution. In the broad transition semiclassical picture,
the momentum distribution is essentially Gaussian since it
remains very well confined far from the two )"m=k
resonance lines. With a narrow transition, a single scatter-
ing event might be enough to bring the atom out of reso-
nance. As a consequence, the momentum distribution is not
Gaussian anymore and shows out-of-resonance long tails
and dips at the resonance lines [14,27]. A precise measure-
ment of the momentum distribution has been done for the
case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
is a likely explanation to why there is only a qualitative
agreement found between the experiment and the MC

FIG. 2 (color online). Mean square momentum in temperature
and recoil units as function of cooling laser detuning. The
experimental data (black, full circles), extrapolated for N ! 0
(noninteracting gas), are compared to the full quantum approach
developed by Castin et al.[14] (green, solid line). The blue,
dashed curve shows the prediction for broad transition Doppler
theory. The red points (green stars) correspond to the MC
simulation performed in (without) the dipole trap. Inset:
Measured mean square momentum as function of the number
of atoms in the trap with " ¼ *20 kHz and If ¼ 0:06Is (red
circles) with linear fit (dashed line).

FIG. 3 (color online). Upper panels: Raw data, false color
image of the atomic cloud after 1D cooling in free space, and
50 ms time of flight. The cooling laser are along the horizontal
axis. From left to right the laser detunings are respectively
" ¼ *33 kHz, " ¼ *21 kHz and " ¼ *10 kHz, and the laser
intensity is around 0:5Is. The small horizontal asymmetry is
likely due to imperfect balance of the cooling beams intensity,
which were not precisely adjusted like for the cloud in the Dipole
trap case. Middle panels: Normalized spatial distribution along
the cooling axis extracted from the upper images. Lower panels:
Normalized momentum distribution extracted from the MC
simulation. The laser detuning is the same as in the experiment,
but the simulation is performed at the low intensity limit. These
plots show a qualitative agreement with the experiment at higher
intensity without the added trap (green open circles), as well as
in the trap (red dots). The resonance lines correspond to the
vertical, dashed lines.
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free space [14]. This point is also confirmed here, where
the results of the MC simulation in free space are plotted in
Fig. 2 (green stars). In the trap, the dynamic is more subtle

because of the presence of the trapping force. It turns out,
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mean square momentum in the steady state (red dots in
Fig. 2). We will see later that the condition !r ( ! leads
to different conclusions.
Other signatures of the quantum nature of Doppler
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distribution. In the broad transition semiclassical picture,
the momentum distribution is essentially Gaussian since it
remains very well confined far from the two )"m=k
resonance lines. With a narrow transition, a single scatter-
ing event might be enough to bring the atom out of reso-
nance. As a consequence, the momentum distribution is not
Gaussian anymore and shows out-of-resonance long tails
and dips at the resonance lines [14,27]. A precise measure-
ment of the momentum distribution has been done for the
case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
is a likely explanation to why there is only a qualitative
agreement found between the experiment and the MC

FIG. 2 (color online). Mean square momentum in temperature
and recoil units as function of cooling laser detuning. The
experimental data (black, full circles), extrapolated for N ! 0
(noninteracting gas), are compared to the full quantum approach
developed by Castin et al.[14] (green, solid line). The blue,
dashed curve shows the prediction for broad transition Doppler
theory. The red points (green stars) correspond to the MC
simulation performed in (without) the dipole trap. Inset:
Measured mean square momentum as function of the number
of atoms in the trap with " ¼ *20 kHz and If ¼ 0:06Is (red
circles) with linear fit (dashed line).

FIG. 3 (color online). Upper panels: Raw data, false color
image of the atomic cloud after 1D cooling in free space, and
50 ms time of flight. The cooling laser are along the horizontal
axis. From left to right the laser detunings are respectively
" ¼ *33 kHz, " ¼ *21 kHz and " ¼ *10 kHz, and the laser
intensity is around 0:5Is. The small horizontal asymmetry is
likely due to imperfect balance of the cooling beams intensity,
which were not precisely adjusted like for the cloud in the Dipole
trap case. Middle panels: Normalized spatial distribution along
the cooling axis extracted from the upper images. Lower panels:
Normalized momentum distribution extracted from the MC
simulation. The laser detuning is the same as in the experiment,
but the simulation is performed at the low intensity limit. These
plots show a qualitative agreement with the experiment at higher
intensity without the added trap (green open circles), as well as
in the trap (red dots). The resonance lines correspond to the
vertical, dashed lines.
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Figure III.12. Basic diagram of the magneto-optical trap. We are interested here
in the case where the radiation pressure force only takes on significant values in
the vicinity of ±x0.

Jg = 0 ↔ Je = 1, a magnetic field gradient b′ along the x axis, illumi-
nate the atoms with a pair of counter-propagating monochromatic waves
(figure III.12), and assume that the following inequalities are satisfied:

ωr ≲ Γ

√
1 +

2|κ|2
Γ2
≪ |∆|. (III.38)

The first inequality allows us to use a semi-classical calculation for the force
acting on an atom at rest:

F = F++F− with F±(z) = ±ℏkΓ
|κ|2

4(∆∓ µb′x)2 + Γ2 + 2|κ|2 (III.39)

The second inequality indicates that the force will only take on significant
values in two well-localized regions of the x axis (figure III.13): F± is non-
zero at x = ∓|∆|/µb′. We then realize the equivalent of "walls" for atoms,
with an almost square potential well2. Along the vertical axis, we must

2The notion of potential well is to be taken with care: in one dimension, knowing a force
F (x), we can always define the potential V (x) = −

∫ x F (x′) dx′. In several dimensions, it
is not guaranteed that the radiation pressure force of the magneto-optical trap derives from a
potential (it would require that ∂iFj = ∂jFi for the three i, j components of space).
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Figure III.13. Magneto-optical trap with a narrow line. Top: radiation pressure
force (in units of Fmax = ℏkΓ/2) for highly detuned excitation: ∆ = −40Γ, κ =
5Γ, as a function of position measured in units of x0 = |∆|/µb′. Middle: potential
corresponding to this radiation pressure force on a horizontal axis. Bottom: total
light+gravity potential on the vertical axis, calculated for Mg = 0.1Fmax.

ser cooling regimes whose underlying mechanics are gov-
erned by either semiclassical or quantum mechanical phys-
ics. In this and the following section, we will describe the
unique experimental signatures for regimes (I)–(III) and give
detailed explanations for the observed trapped atom behav-
ior.

Insight into regimes (I) and (II) thermal-mechanical dy-
namics is provided by the semiclassical radiative force equa-
tion [12]

F! !v! ,x!" =
!k!"

2 # s

1 + s! + 4!# − k! · v! − $dB! · x!"2/"2

−
s

1 + s! + 4!# + k! · v! + $dB! · x!"2/"2$ − mg! ,

!1"

where x! = %x ,y ,z&, dB! = %dBx ,dBy ,dBz&, and $= !gJ$B /!"
where gJ=1.5 !$B" is the 3P1 state Lande g-factor (Bohr
magneton). s!%s accounts, along a single axis, for saturation
induced by the remaining four trapping beams. Figure 5(a)
shows the 1S0-3P1 radiative force at s=s!=248 for a range of
& values while Fig. 6(a) shows the force at &=−520 kHz for
a range of s=s! values. As described in Sec. I, the qualitative
nature of the force and hence the resulting trap mechanical
dynamics depends on the relative size of # and "E. For re-
gime (I), corresponding to '&'%120 kHz in Fig. 5(a) or s
'248 in Fig. 6(a), #%"E and the 3D radiative force acts
only along a thin shell volume marking the outer trap bound-
ary. Here, the trap boundary roughly corresponds to positions
where the radiative force is peaked. This situation, as shown
by Figs. 5(b) and 6(b), produces a box potential with a gravi-
tationally induced z-axis tilt. Hence, in the x-y plane, motion

consists of free-flight between hard wall boundaries while
along the z axis, mechanical dynamics are set by the relative
size of the radiative force “kicks,” gravity, and the cloud
thermal energy. As shown in Sec. V, the thermal energy is
small compared to the gravitational potential energy. More-
over, the ratio of the maximum radiative force to the gravi-
tational force, R(16. Thus, the atoms sink to the bottom of
the trap where they interact, along the z axis, with only the
upward propagating trapping beam.

As & decreases in Fig. 5(a) or s increases in Fig. 6(a), the
trap mechanically evolves to regime (II) where #'"E pro-
duces a linear restoring force and hence, damped harmonic
motion [12,15]. Consequently the trap potential energy as-
sumes the U-shaped form familiar from standard broad line
Doppler cooling. As the trap moves more fully into regime
(II), perturbations to the potential energy due to gravity be-
come less pronounced. One expects, therefore, that the cloud
aspect ratio will evolve toward the 2:1 value set by the quad-
rupole magnetic field.

The intuitive descriptions developed above are directly
confirmed by Figs. 5(c) and 6(c) which show in situ images
of the 1S0-3P1 MOT along with overlaid maximum force
contours calculated from Eq. (1). For excitation conditions
corresponding to regime (II), the cloud approaches the 2:1
quadrupole magnetic field aspect ratio. In contrast, for re-
gime (I) the cloud x-y width is determined largely by the
separation between x-y force maxima or alternatively, by the
wall separation for the x-y potential energy box. In the ver-
tical direction, the atoms sink to the bottom of the trap where
the lower cloud boundary z0 is defined by the location of the
z-axis potential energy minima which is, in turn, proportional
to the position where the Zeeman shift matches the laser
detuning. As & increases, z0 shifts vertically downward, an
effect predicted in Fig. 5(b) and clearly revealed in Fig. 5(c).
To quantify this relationship, Fig. 7 shows z0 versus & along

FIG. 5. (Color online). (a) Semiclassical radiative force versus
position (bottom axis, vx=vy =0) and velocity (upper axis, x=y=0)
for a range of detunings. Corresponding (b) trap potential energy in
the z direction and (c) in situ images of the 1S0-3P1 MOT. Dashed
lines in (c) are calculated maximum force contours. For each, s
=248.

FIG. 6. (Color online) (a) Semiclassical radiative force versus
position (bottom axis, vx=vy =0) and velocity (upper axis, x=y=0)
for a range of intensities. Corresponding (b) trap potential energy in
the z direction and (c) in situ images of the 1S0-3P1 MOT. Dashed
lines in (c) are calculated maximum force contours. For each, &=
−520 kHz.

LOFTUS et al. PHYSICAL REVIEW A 70, 063413 (2004)

063413-6

Figure III.14. Images in situ of a strontium magneto-optical trap operating in the
narrow-line regime. The dotted lines correspond to the contours along which the
radiation pressure force is maximal (|κ| ≈ 11Γ ≈ 2π × 83 kHz, ∆ = 2π × δ).
Figure taken from Loftus, Ido, et al. (2004).

also take into account gravity, which is not negligible compared to the ra-
diation pressure force for a narrow line: for the strontium atom, the max-
imum radiation pressure force ℏkΓ/2 is only 16 times the atom’s weight.
The combined light+gravity potential is then shaped like a tilted box, and
the atoms accumulate below the zero-magnetic-field point. The images
in figure III.14, taken from Loftus, Ido, et al. (2004), clearly illustrate the
asymmetry of the trap in this regime.

4 Towards Bose-Einstein condensation

We have just seen that narrow-line cooling experiments can produce very
cold gases (sub-microkelvin), with relatively high spatial densities since
the average distance between particles, n1/3, is only two to three times
greater than the thermal wavelength.

λT =
ℏ
√
2π√

MkBT
. (III.40)

These gases (made up of zero-spin atoms, i.e. bosons) are at the threshold
of the quantum degeneracy regime and are good candidates for producing
a Bose-Einstein condensate, with a "small" additional step. This step was
taken in the experiment by Stellmer, Pasquiou, et al. (2013), which was in-
spired by a method proposed by Pinkse, Mosk, et al. (1997) and developed
experimentally by Stamper-Kurn, Miesner, et al. (1998).
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Atoms in the dimple thermalize with the reservoir of
laser-cooled atoms by elastic collisions and form a BEC.
Earlier work [16] has shown that Bose-Einstein condensa-
tion can be attained in a conservative dimple potential, if
the reservoir is evaporatively precooled close to quantum
degeneracy and the dimple is finally applied in the absence
of near resonant cooling light. In contrast, a striking feature
of our technique is that the BEC is created within a sample
that is being continuously laser cooled.

The details of our scheme are shown in Fig. 1. Based on
our previous work [29–31], we use several stages of laser
cooling to prepare a sample of 84Sr atoms in the reservoir
trap [32]. The trap consists of an infrared laser beam
(wavelength 1065 nm) propagating horizontally (x direc-
tion). The beam profile is strongly elliptic, with a beam
waist of 300 !m in the horizontal direction (y direction)
and 17 !m along the field of gravity (z direction). The
depth of the reservoir trap is kept constant at kB ! 9 !K.
After preparation of the sample, another laser cooling stage

is performed on the narrow 1S0-
3P1 intercombination line,

using a single laser beam propagating vertically upwards.
The detuning of the laser cooling beam from resonance is
"# 2! and the peak intensity is 0:15 !W=cm2, which is
0.05 of the transition’s saturation intensity. These parame-
ters result in a photon scattering rate of "70 s#1. At this
point, the ultracold gas contains 9! 106 atoms at a tem-
perature of 900 nK.
To render the atoms transparent to cooling light in a

central region of the laser cooled cloud, we induce a light
shift on the 3P1 state, using a ‘‘transparency’’ laser beam
15 GHz blue detuned to the 3P1-

3S1 transition [32]. This
beam propagates downwards under a small angle of 15$ to
vertical and has a beam waist of 26 !m in the plane of the
reservoir trap (xy plane). The beam has a peak intensity of
0:7 kW=cm2. It upshifts the 3P1 state by more than
10 MHz and also influences the nearest molecular level
tied to the 3P1 state significantly [32,33]. Related schemes
of light-shift engineering were used to image the density
distribution of atoms [34,35], to improve spectroscopy
[36], or to enhance loading of dipole traps [23,24]. To
demonstrate the effect of the transparency laser beam, we
take absorption images of the cloud on the laser cooling
transition. Figure 1(d) shows a reference image without the
transparency beam. In the presence of this laser beam,
atoms in the central part of the cloud are transparent for
the probe beam, as can be seen in Fig. 1(e).
To increase the density of the cloud, a dimple trap is

added to the system. It consists of an infrared laser beam
(wavelength 1065 nm) propagating upwards under a small
angle of 22$ to vertical and crossing the laser cooled cloud
in the region of transparency. In the plane of the reservoir
trap, the dimple beam has a waist of 22 !m. The dimple is
ramped to a depth of kB ! 2:6 !K, where it has trap
oscillation frequencies of 250 Hz in the horizontal plane.
Confinement in the vertical direction is only provided by
the reservoir trap and results in a vertical trap oscillation
frequency of 600 Hz. Figure 1(f) shows a demonstration of
the dimple trap in absence of the transparency beam. The
density in the region of the dimple increases substantially.
However, with the dimple alone no BEC is formed because
of photon reabsorption.
The combination of the transparency laser beam and the

dimple trap leads to Bose-Einstein condensation. Starting
from the laser cooled cloud held in the reservoir trap, we
switch on the transparency laser beam and ramp the dimple
trap to a depth of kB ! 2:6 !K. The potentials of the 1S0
and 3P1 states in this situation are shown in Fig. 1(c).
Atoms accumulate in the dimple without being disturbed
by photon scattering. Elastic collisions thermalize atoms in
the dimple with the laser cooled reservoir. The phase-space
density in the dimple increases and a BEC emerges.
We detect the BEC by taking absorption images 24 ms

after switching off all laser beams. Figure 2(a) shows the
momentum distribution 20 ms after switching on the
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FIG. 1 (color online). Scheme to reach quantum degeneracy by
laser cooling. (a) A cloud of atoms is confined in a deep reservoir
dipole trap and exposed to a single laser cooling beam
(red arrow). Atoms are rendered transparent by a ‘‘transparency’’
laser beam (green arrow) and accumulate in a dimple dipole trap
by elastic collisions. (b) Level scheme showing the laser cooling
transition and the transparency transition. (c) Potential experi-
enced by 1S0 ground-state atoms and atoms excited to the 3P1

state. The transparency laser induces a light shift on the 3P1

state, which tunes the atoms out of resonance with laser cooling
photons. (d)–(f) Absorption images of the atomic cloud recorded
using the laser cooling transition. The images show the cloud
from above and demonstrate the effect of the transparency laser
(e) and the dimple (f). (d) is a reference image without these two
laser beams.
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Atoms in the dimple thermalize with the reservoir of
laser-cooled atoms by elastic collisions and form a BEC.
Earlier work [16] has shown that Bose-Einstein condensa-
tion can be attained in a conservative dimple potential, if
the reservoir is evaporatively precooled close to quantum
degeneracy and the dimple is finally applied in the absence
of near resonant cooling light. In contrast, a striking feature
of our technique is that the BEC is created within a sample
that is being continuously laser cooled.

The details of our scheme are shown in Fig. 1. Based on
our previous work [29–31], we use several stages of laser
cooling to prepare a sample of 84Sr atoms in the reservoir
trap [32]. The trap consists of an infrared laser beam
(wavelength 1065 nm) propagating horizontally (x direc-
tion). The beam profile is strongly elliptic, with a beam
waist of 300 !m in the horizontal direction (y direction)
and 17 !m along the field of gravity (z direction). The
depth of the reservoir trap is kept constant at kB ! 9 !K.
After preparation of the sample, another laser cooling stage

is performed on the narrow 1S0-
3P1 intercombination line,

using a single laser beam propagating vertically upwards.
The detuning of the laser cooling beam from resonance is
"# 2! and the peak intensity is 0:15 !W=cm2, which is
0.05 of the transition’s saturation intensity. These parame-
ters result in a photon scattering rate of "70 s#1. At this
point, the ultracold gas contains 9! 106 atoms at a tem-
perature of 900 nK.
To render the atoms transparent to cooling light in a

central region of the laser cooled cloud, we induce a light
shift on the 3P1 state, using a ‘‘transparency’’ laser beam
15 GHz blue detuned to the 3P1-

3S1 transition [32]. This
beam propagates downwards under a small angle of 15$ to
vertical and has a beam waist of 26 !m in the plane of the
reservoir trap (xy plane). The beam has a peak intensity of
0:7 kW=cm2. It upshifts the 3P1 state by more than
10 MHz and also influences the nearest molecular level
tied to the 3P1 state significantly [32,33]. Related schemes
of light-shift engineering were used to image the density
distribution of atoms [34,35], to improve spectroscopy
[36], or to enhance loading of dipole traps [23,24]. To
demonstrate the effect of the transparency laser beam, we
take absorption images of the cloud on the laser cooling
transition. Figure 1(d) shows a reference image without the
transparency beam. In the presence of this laser beam,
atoms in the central part of the cloud are transparent for
the probe beam, as can be seen in Fig. 1(e).
To increase the density of the cloud, a dimple trap is

added to the system. It consists of an infrared laser beam
(wavelength 1065 nm) propagating upwards under a small
angle of 22$ to vertical and crossing the laser cooled cloud
in the region of transparency. In the plane of the reservoir
trap, the dimple beam has a waist of 22 !m. The dimple is
ramped to a depth of kB ! 2:6 !K, where it has trap
oscillation frequencies of 250 Hz in the horizontal plane.
Confinement in the vertical direction is only provided by
the reservoir trap and results in a vertical trap oscillation
frequency of 600 Hz. Figure 1(f) shows a demonstration of
the dimple trap in absence of the transparency beam. The
density in the region of the dimple increases substantially.
However, with the dimple alone no BEC is formed because
of photon reabsorption.
The combination of the transparency laser beam and the

dimple trap leads to Bose-Einstein condensation. Starting
from the laser cooled cloud held in the reservoir trap, we
switch on the transparency laser beam and ramp the dimple
trap to a depth of kB ! 2:6 !K. The potentials of the 1S0
and 3P1 states in this situation are shown in Fig. 1(c).
Atoms accumulate in the dimple without being disturbed
by photon scattering. Elastic collisions thermalize atoms in
the dimple with the laser cooled reservoir. The phase-space
density in the dimple increases and a BEC emerges.
We detect the BEC by taking absorption images 24 ms

after switching off all laser beams. Figure 2(a) shows the
momentum distribution 20 ms after switching on the
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FIG. 1 (color online). Scheme to reach quantum degeneracy by
laser cooling. (a) A cloud of atoms is confined in a deep reservoir
dipole trap and exposed to a single laser cooling beam
(red arrow). Atoms are rendered transparent by a ‘‘transparency’’
laser beam (green arrow) and accumulate in a dimple dipole trap
by elastic collisions. (b) Level scheme showing the laser cooling
transition and the transparency transition. (c) Potential experi-
enced by 1S0 ground-state atoms and atoms excited to the 3P1

state. The transparency laser induces a light shift on the 3P1

state, which tunes the atoms out of resonance with laser cooling
photons. (d)–(f) Absorption images of the atomic cloud recorded
using the laser cooling transition. The images show the cloud
from above and demonstrate the effect of the transparency laser
(e) and the dimple (f). (d) is a reference image without these two
laser beams.
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transparency beam, which is well described by a thermal
distribution. By contrast, we observe that 140 ms later, an
additional, central elliptical feature has developed; see
Fig. 2(b). This is the hallmark of the BEC. Although clearly
present, the BEC is not very well visible in Fig. 2(b),
because it is shrouded by 8! 106 thermal atoms originat-
ing from the reservoir. To show the BEC with higher
contrast, we have developed a background reduction
technique. We remove the reservoir atoms by an intense
flash of light on the 1S0-

3P1 transition applied for 10 ms.
Atoms in the region of transparency remain unaffected by
this flash. Only 5! 105 thermal atoms in the dimple
remain and the BEC stands out clearly; see Fig. 2(c). We
use this background reduction technique only for demon-
stration purposes, but not for measuring atom numbers or
temperatures.

Quantitative data on our experiment are obtained by
two-dimensional fits to time-of-flight absorption images
[32]. The atom number of the thermal cloud and of the
BEC are extracted from fits to 24-ms expansion images,
consisting of Gaussian distributions describing the thermal
background and an integrated Thomas-Fermi distribution
describing the BEC. Further absorption images taken
after 4 ms expansion time are used to determine atom
number and temperature of the gas in the reservoir and
the dimple, respectively.

We now analyze the dynamics of the system after the
transparency laser beam has been switched on. As we
increase the dimple strength to its final depth in 10 ms,
106 atoms accumulate in it and the temperature of the
dimple gas increases; see Figs. 3(a) and 3(b). During the

next "100 ms the dimple gas thermalizes with the reser-
voir gas by elastic collisions [32,37,38]. The temperature
of the reservoir gas is hereby not increased, since the
energy transferred to it is dissipated by laser cooling. We
carefully check that evaporation is negligible even for the
highest temperatures of the gas [32]. Already after 60 ms a
BEC is detected. Its atom number saturates at 1:1! 105

after 150 ms, as shown in Fig. 3(c). The atom number in the
reservoir decreases slightly, initially because of migration
into the dimple and on longer time scales because of light
assisted loss processes in the laser cooled cloud.
The continuous laser cooling of the reservoir provides a

dissipation mechanism, which renders our system resilient
against perturbations. To demonstrate this fact, we repeat-
edly destroy the BEC and let it re-form (Fig. 4). To destroy
the BEC, we pulse the dimple trap depth to kB ! 15 !K
for 2 ms, which increases the temperature of the dimple gas
by a factor 2. We follow the evolution of the BEC atom
number while the heating pulse is applied every 200 ms.
A new BEC starts forming a few 10 ms after each heating
pulse for more than 30 pulses. We find that the observed
decrease in the BEC size from pulse to pulse stems from
the reduction of the total atom number in the system.
To clarify the role laser cooling plays in our scheme, we

perform a variation of the experiment. Here, we switch off
the laser cooling beam before ramping up the dimple and
we do not use the transparency beam. Heat released while
ramping up the dimple or after a heating pulse is again
distributed from the dimple to the whole system by elastic
collisions, but this time not dissipated by laser cooling.
Since the reservoir gas has a ten times higher atom number
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FIG. 2 (color online). Creation of a BEC by laser cooling. Shown are time-of-flight absorption images and integrated density profiles
of the atomic cloud for different times t after the transparency laser has been switched on, recorded after 24 ms of free expansion.
(a), (b) The appearance of an elliptic core at t ¼ 160 ms indicates the creation of a BEC. (c) Same as in (b), but to increase the
visibility of the BEC, atoms in the reservoir trap were removed before the image was taken. The fits (blue lines) consist of Gaussian
distributions to describe the thermal background and an integrated Thomas-Fermi distribution describing the BEC. The red lines show
the component of the fit corresponding to the thermal background. The x0y0 plane is rotated by 45$ around the z axis with respect to the
xy plane and the field of view of the absorption images is 2 mm! 1:4 mm.
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Figure III.15. Left, cubic potential well with side L. Right, single-particle energy
levels ϵp = p2/2M , where the momentum p is quantized according to (III.42).
The red line represents the position of the chemical potential µ for an ideal gas
contained in this box. For Maxwell-Boltzmann statistic, µ can take any value,
but only sufficiently negative values are physically relevant, since they correspond
to occupancy probabilities n(p) ≪ 1 for all p. For Bose-Einstein statistic, the
only mathematically acceptable values of µ are negative. Bose-Einstein conden-
sation (macroscopic accumulation of atoms in the p = 0 state) occurs when µ is
sufficiently close to 0.

The remarkable feature of the Stellmer, Pasquiou, et al. (2013) experi-
ment is that at no point does it require the evaporation or loss of atoms.
Insofar as this condensation without evaporation is based on the particu-
lar properties of Bose-Einstein statistic, we will begin by recalling the main
properties of this statistic, comparing it with Maxwell-Boltzmann statis-
tic. We will not describe here the standard mechanism of Bose-Einstein
condensation at the thermodynamic limit [see for example Huang (1987)],
but we will develop a simplified model of the method of Stamper-Kurn,
Miesner, et al. (1998) and Stellmer, Pasquiou, et al. (2013). We will see how
macroscopic particle accumulation can occur by changing the shape of the
confinement potential, and then present the main features of the experi-
ment of Stellmer, Pasquiou, et al. (2013).

4-1 Maxwell-Boltzmann statistics

In what follows, we consider a gas of non-interacting particles, confined in
a cubic box of side L (figure III.15). We assume periodic boundary condi-
tions, so that the eigenstates of the single-particle Hamiltonian are plane
waves

ψp(r) =
eir·p/ℏ

L3/2
with energy ϵp =

p2

2M
, (III.41)

with the quantization condition in the box

pj =
2πℏ
L
nj , j = x, y, z, nj ∈ Z. (III.42)

In thermodynamics, the state of the gas in the box of volume V = L3

is determined by two independent thermodynamic variables. Knowing
these two variables, we can then deduce the other thermodynamic quanti-
ties, such as pressure (P = NkBT/V ), internal energy ( 32kBT ), entropy, and
so on. In what follows, we will take the temperature T and the chemical
potential µ as a pair of variables, well suited to calculating the occupancy
of single-particle states.

In Maxwell-Boltzmann statistics, the average number of particles occu-
pying an momentum state p is written as

n(Boltz.)(p) = e(µ−ϵp)/kBT . (III.43)

The total number of particles N is obtained by summing the contribution
of all states, and replacing this discrete sum by an integral in the large-box
limit:

N =
∑
p

n(Boltz.)(p) =

(
L

2πℏ

)3 ∫
e(µ−ϵp)/kBT d3p, (III.44)

which gives

N = Z
L3

λ3T
(III.45)

where the fugacity Z of the gas is defined as:

Z = eµ/kBT . (III.46)
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In Maxwell-Boltzmann statistics, the chemical potential can take on any
value, positive or negative. However, we can see from (III.43) that for µ > 0
(or more generally µ greater than the energy of the ground level), the oc-
cupation of the lowest energy levels becomes greater than 1. In the case of
indistinguishable particles, using Maxwell-Boltzmann statistic for µ > 0 is
incorrect, even if it does not lead to a mathematical singularity: the statis-
tical nature of the particles plays an important role when n(p) approaches
unity, and we have to turn to Bose-Einstein or Fermi-Dirac statistics, de-
pending on whether we are dealing with bosons (particles with integer
spin) or fermions (particles with half-integer spin). In what follows, we
will concentrate on Bose-Einstein statistic.

4-2 Bose-Einstein statistics

In Bose-Einstein statistics, the average occupancy of a state is given by

n(Bose)(p) =
1

e(ϵp−µ)/kBT − 1
. (III.47)

A remark can immediately be made about this expression. For the pop-
ulation of each state to be defined and positive, the value of the chemical
potential µ must always be strictly smaller than the energy of the ground
state of the system, in this case zero energy for our particles in a box. Unlike
Maxwell-Boltzmann (and Fermi-Dirac) statistics, there is therefore a math-
ematical constraint on the chemical potential for the Bose-Einstein statistics
(figure III.15):

µ < Eground, i.e. for ϵp =
p2

2M
: µ < 0. (III.48)

A second remark concerns the link between Bose-Einstein and
Maxwell-Boltzmann statistics. In the context of Bose-Einstein statistics, let
us consider a sparsely populated state, i.e. n(p) ≪ 1. This means that the
denominator of (III.47) is much greater than 1, and so e(ϵp−µ)/kBT ≫ 1. So
for these sparsely populated levels:

n(p)≪ 1 : n(Bose)(p) ≈ n(Boltz.)(p) = Ze−ϵp/kBT . (III.49)

This approximation will be valid for all levels, including the ground level,
if we take Z ≪ 1, i.e. negative µ with |µ| ≫ kBT .

The total number of atoms for Bose-Einstein statistic is obtained as for
Maxwell-Boltzmann statistic by the sum

N =
∑
p

n(Bose)(p). (III.50)

Here too, it is tempting to replace the discrete sum by an integral, which
yields a simple calculation:

N = g3/2(Z)
L3

λ3T
with gα(Z) =

+∞∑
n=1

Zn

nα
(polylogarithm function).

(III.51)
The similarity with the result for Maxwell-Boltzmann statistic is striking.
In particular, for Z ≪ 1, we have g3/2(Z) ≈ Z and the two results are
comparable, as announced above.

However, this similarity is also misleading. For Maxwell-Boltzmann
statistic, the result (III.45) always provides a value of the fugacity (or of
the chemical potential) that accounts for a given number of N atoms. In
contrast, for Bose-Einstein statistics, we have seen that the values of Z are
limited to the interval [0, 1[; the function g3/2(Z) therefore takes values be-
tween 0 and g3/2(1) ≈ 2.612, so that the number of atoms calculated in this
way cannot exceed

Nmax = 2.612
L3

λ3T
. (III.52)

Why is it that the number of atoms that can be placed in the gas is
bounded? The answer to this question is Bose-Einstein condensation. We
will not go into detail here, but let us recall its origin: the transition from
the discrete sum (III.50) to the integral (III.51) is only legitimate if the chem-
ical potential is sufficiently far from its maximum value µ = 0. When µ
tends towards the ground-state energy (here E = 0), the population of the
ground level diverges [cf. (III.47)]. However, this divergence is neglected
in the transition to the integral (III.51). As Z approaches 1, the population
of this ground level needs to be treated more carefully. We then find that
a macroscopic fraction of particles can accumulate there, via a mechanism
that becomes a phase transition at the thermodynamic limit.

Condensation therefore occurs when the number of atoms N reaches
the value (III.52), which corresponds to the phase-space density D = nλ3T
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with n = N/L3: Dmax = 2.612. This value is reached when the average
distance between particles, n−1/3, is of the order of the thermal wavelength
λT .

4-3 Condensation in a micro-trapÒ

Before describing the Stellmer, Pasquiou, et al. (2013) experiment in detail,
we present a simple model for understanding how it is possible to obtain a
degenerate quantum gas, in this case a Bose-Einstein condensate, starting
from a non-degenerate gas and with a simple transformation of the poten-
tial confining the gas.

Let us take our gas of N atoms at temperature T , confined in a cubic
box of side L, with the occupancy n(p) of each state given by (III.47). Let
us start by recalling that a trivial deformation of the potential, consisting
in increasing or decreasing the size L of the box, will not produce any-
thing spectacular. If this deformation is carried out very slowly to achieve
an adiabatic transformation, the phase-space density will remain constant;
we demonstrated this point for a harmonic potential in the introductory
chapter. If this deformation is carried out non-adiabatically, the situation
will only get worse, as entropy will increase and phase-space density will
decrease.

In what follows, we will take a look at the following non-trivial defor-
mation: let us assume that we suddenly create a trap described by a very
localized potential V (r) (figure III.16). The volume ℓ3 over which V (r) is
non-zero is small compared with L3. The exact form of V (r) is unimpor-
tant; the only important assumption for what follows is that there is one
and only one bound state |ϕ0⟩ of energy ϵ0 < 0 in this well. In the follow-
ing, we will take |ϵ0| ∼ kBT . The eigenstates in the box with this additional
micro-trap are therefore the state |ϕ0⟩ and the extended states |ψp⟩ formed
from plane waves (III.41), but slightly distorted to ensure their orthogonal-
ity with |ϕ0⟩.

As the branching of this well is sudden, and the volume involved ℓ3

is very small, we can consider to a good approximation that the N atoms
remain on the extended states |ψp⟩ at the moment of branching. However,

Atoms in the dimple thermalize with the reservoir of
laser-cooled atoms by elastic collisions and form a BEC.
Earlier work [16] has shown that Bose-Einstein condensa-
tion can be attained in a conservative dimple potential, if
the reservoir is evaporatively precooled close to quantum
degeneracy and the dimple is finally applied in the absence
of near resonant cooling light. In contrast, a striking feature
of our technique is that the BEC is created within a sample
that is being continuously laser cooled.

The details of our scheme are shown in Fig. 1. Based on
our previous work [29–31], we use several stages of laser
cooling to prepare a sample of 84Sr atoms in the reservoir
trap [32]. The trap consists of an infrared laser beam
(wavelength 1065 nm) propagating horizontally (x direc-
tion). The beam profile is strongly elliptic, with a beam
waist of 300 !m in the horizontal direction (y direction)
and 17 !m along the field of gravity (z direction). The
depth of the reservoir trap is kept constant at kB ! 9 !K.
After preparation of the sample, another laser cooling stage

is performed on the narrow 1S0-
3P1 intercombination line,

using a single laser beam propagating vertically upwards.
The detuning of the laser cooling beam from resonance is
"# 2! and the peak intensity is 0:15 !W=cm2, which is
0.05 of the transition’s saturation intensity. These parame-
ters result in a photon scattering rate of "70 s#1. At this
point, the ultracold gas contains 9! 106 atoms at a tem-
perature of 900 nK.
To render the atoms transparent to cooling light in a

central region of the laser cooled cloud, we induce a light
shift on the 3P1 state, using a ‘‘transparency’’ laser beam
15 GHz blue detuned to the 3P1-

3S1 transition [32]. This
beam propagates downwards under a small angle of 15$ to
vertical and has a beam waist of 26 !m in the plane of the
reservoir trap (xy plane). The beam has a peak intensity of
0:7 kW=cm2. It upshifts the 3P1 state by more than
10 MHz and also influences the nearest molecular level
tied to the 3P1 state significantly [32,33]. Related schemes
of light-shift engineering were used to image the density
distribution of atoms [34,35], to improve spectroscopy
[36], or to enhance loading of dipole traps [23,24]. To
demonstrate the effect of the transparency laser beam, we
take absorption images of the cloud on the laser cooling
transition. Figure 1(d) shows a reference image without the
transparency beam. In the presence of this laser beam,
atoms in the central part of the cloud are transparent for
the probe beam, as can be seen in Fig. 1(e).
To increase the density of the cloud, a dimple trap is

added to the system. It consists of an infrared laser beam
(wavelength 1065 nm) propagating upwards under a small
angle of 22$ to vertical and crossing the laser cooled cloud
in the region of transparency. In the plane of the reservoir
trap, the dimple beam has a waist of 22 !m. The dimple is
ramped to a depth of kB ! 2:6 !K, where it has trap
oscillation frequencies of 250 Hz in the horizontal plane.
Confinement in the vertical direction is only provided by
the reservoir trap and results in a vertical trap oscillation
frequency of 600 Hz. Figure 1(f) shows a demonstration of
the dimple trap in absence of the transparency beam. The
density in the region of the dimple increases substantially.
However, with the dimple alone no BEC is formed because
of photon reabsorption.
The combination of the transparency laser beam and the

dimple trap leads to Bose-Einstein condensation. Starting
from the laser cooled cloud held in the reservoir trap, we
switch on the transparency laser beam and ramp the dimple
trap to a depth of kB ! 2:6 !K. The potentials of the 1S0
and 3P1 states in this situation are shown in Fig. 1(c).
Atoms accumulate in the dimple without being disturbed
by photon scattering. Elastic collisions thermalize atoms in
the dimple with the laser cooled reservoir. The phase-space
density in the dimple increases and a BEC emerges.
We detect the BEC by taking absorption images 24 ms

after switching off all laser beams. Figure 2(a) shows the
momentum distribution 20 ms after switching on the
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FIG. 1 (color online). Scheme to reach quantum degeneracy by
laser cooling. (a) A cloud of atoms is confined in a deep reservoir
dipole trap and exposed to a single laser cooling beam
(red arrow). Atoms are rendered transparent by a ‘‘transparency’’
laser beam (green arrow) and accumulate in a dimple dipole trap
by elastic collisions. (b) Level scheme showing the laser cooling
transition and the transparency transition. (c) Potential experi-
enced by 1S0 ground-state atoms and atoms excited to the 3P1

state. The transparency laser induces a light shift on the 3P1

state, which tunes the atoms out of resonance with laser cooling
photons. (d)–(f) Absorption images of the atomic cloud recorded
using the laser cooling transition. The images show the cloud
from above and demonstrate the effect of the transparency laser
(e) and the dimple (f). (d) is a reference image without these two
laser beams.
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Atoms in the dimple thermalize with the reservoir of
laser-cooled atoms by elastic collisions and form a BEC.
Earlier work [16] has shown that Bose-Einstein condensa-
tion can be attained in a conservative dimple potential, if
the reservoir is evaporatively precooled close to quantum
degeneracy and the dimple is finally applied in the absence
of near resonant cooling light. In contrast, a striking feature
of our technique is that the BEC is created within a sample
that is being continuously laser cooled.

The details of our scheme are shown in Fig. 1. Based on
our previous work [29–31], we use several stages of laser
cooling to prepare a sample of 84Sr atoms in the reservoir
trap [32]. The trap consists of an infrared laser beam
(wavelength 1065 nm) propagating horizontally (x direc-
tion). The beam profile is strongly elliptic, with a beam
waist of 300 !m in the horizontal direction (y direction)
and 17 !m along the field of gravity (z direction). The
depth of the reservoir trap is kept constant at kB ! 9 !K.
After preparation of the sample, another laser cooling stage

is performed on the narrow 1S0-
3P1 intercombination line,

using a single laser beam propagating vertically upwards.
The detuning of the laser cooling beam from resonance is
"# 2! and the peak intensity is 0:15 !W=cm2, which is
0.05 of the transition’s saturation intensity. These parame-
ters result in a photon scattering rate of "70 s#1. At this
point, the ultracold gas contains 9! 106 atoms at a tem-
perature of 900 nK.
To render the atoms transparent to cooling light in a

central region of the laser cooled cloud, we induce a light
shift on the 3P1 state, using a ‘‘transparency’’ laser beam
15 GHz blue detuned to the 3P1-

3S1 transition [32]. This
beam propagates downwards under a small angle of 15$ to
vertical and has a beam waist of 26 !m in the plane of the
reservoir trap (xy plane). The beam has a peak intensity of
0:7 kW=cm2. It upshifts the 3P1 state by more than
10 MHz and also influences the nearest molecular level
tied to the 3P1 state significantly [32,33]. Related schemes
of light-shift engineering were used to image the density
distribution of atoms [34,35], to improve spectroscopy
[36], or to enhance loading of dipole traps [23,24]. To
demonstrate the effect of the transparency laser beam, we
take absorption images of the cloud on the laser cooling
transition. Figure 1(d) shows a reference image without the
transparency beam. In the presence of this laser beam,
atoms in the central part of the cloud are transparent for
the probe beam, as can be seen in Fig. 1(e).
To increase the density of the cloud, a dimple trap is

added to the system. It consists of an infrared laser beam
(wavelength 1065 nm) propagating upwards under a small
angle of 22$ to vertical and crossing the laser cooled cloud
in the region of transparency. In the plane of the reservoir
trap, the dimple beam has a waist of 22 !m. The dimple is
ramped to a depth of kB ! 2:6 !K, where it has trap
oscillation frequencies of 250 Hz in the horizontal plane.
Confinement in the vertical direction is only provided by
the reservoir trap and results in a vertical trap oscillation
frequency of 600 Hz. Figure 1(f) shows a demonstration of
the dimple trap in absence of the transparency beam. The
density in the region of the dimple increases substantially.
However, with the dimple alone no BEC is formed because
of photon reabsorption.
The combination of the transparency laser beam and the

dimple trap leads to Bose-Einstein condensation. Starting
from the laser cooled cloud held in the reservoir trap, we
switch on the transparency laser beam and ramp the dimple
trap to a depth of kB ! 2:6 !K. The potentials of the 1S0
and 3P1 states in this situation are shown in Fig. 1(c).
Atoms accumulate in the dimple without being disturbed
by photon scattering. Elastic collisions thermalize atoms in
the dimple with the laser cooled reservoir. The phase-space
density in the dimple increases and a BEC emerges.
We detect the BEC by taking absorption images 24 ms

after switching off all laser beams. Figure 2(a) shows the
momentum distribution 20 ms after switching on the

y

x

z

y

gravity

0.3 mm

y

xz

(d)

(e)

(f)

(a) (b)

(c)
light shift by 
“transparency” beam

dimple
reservoir

dimple

reservoir “transparency”
transition

cooling 
transition

688 nm
4.4 MHz

689 nm
7.4 kHz

3P1

1S0

3P1

3S1

1S0

en
er

gy

cooling light

“transparency”
beam

FIG. 1 (color online). Scheme to reach quantum degeneracy by
laser cooling. (a) A cloud of atoms is confined in a deep reservoir
dipole trap and exposed to a single laser cooling beam
(red arrow). Atoms are rendered transparent by a ‘‘transparency’’
laser beam (green arrow) and accumulate in a dimple dipole trap
by elastic collisions. (b) Level scheme showing the laser cooling
transition and the transparency transition. (c) Potential experi-
enced by 1S0 ground-state atoms and atoms excited to the 3P1

state. The transparency laser induces a light shift on the 3P1

state, which tunes the atoms out of resonance with laser cooling
photons. (d)–(f) Absorption images of the atomic cloud recorded
using the laser cooling transition. The images show the cloud
from above and demonstrate the effect of the transparency laser
(e) and the dimple (f). (d) is a reference image without these two
laser beams.
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transparency beam, which is well described by a thermal
distribution. By contrast, we observe that 140 ms later, an
additional, central elliptical feature has developed; see
Fig. 2(b). This is the hallmark of the BEC. Although clearly
present, the BEC is not very well visible in Fig. 2(b),
because it is shrouded by 8! 106 thermal atoms originat-
ing from the reservoir. To show the BEC with higher
contrast, we have developed a background reduction
technique. We remove the reservoir atoms by an intense
flash of light on the 1S0-

3P1 transition applied for 10 ms.
Atoms in the region of transparency remain unaffected by
this flash. Only 5! 105 thermal atoms in the dimple
remain and the BEC stands out clearly; see Fig. 2(c). We
use this background reduction technique only for demon-
stration purposes, but not for measuring atom numbers or
temperatures.

Quantitative data on our experiment are obtained by
two-dimensional fits to time-of-flight absorption images
[32]. The atom number of the thermal cloud and of the
BEC are extracted from fits to 24-ms expansion images,
consisting of Gaussian distributions describing the thermal
background and an integrated Thomas-Fermi distribution
describing the BEC. Further absorption images taken
after 4 ms expansion time are used to determine atom
number and temperature of the gas in the reservoir and
the dimple, respectively.

We now analyze the dynamics of the system after the
transparency laser beam has been switched on. As we
increase the dimple strength to its final depth in 10 ms,
106 atoms accumulate in it and the temperature of the
dimple gas increases; see Figs. 3(a) and 3(b). During the

next "100 ms the dimple gas thermalizes with the reser-
voir gas by elastic collisions [32,37,38]. The temperature
of the reservoir gas is hereby not increased, since the
energy transferred to it is dissipated by laser cooling. We
carefully check that evaporation is negligible even for the
highest temperatures of the gas [32]. Already after 60 ms a
BEC is detected. Its atom number saturates at 1:1! 105

after 150 ms, as shown in Fig. 3(c). The atom number in the
reservoir decreases slightly, initially because of migration
into the dimple and on longer time scales because of light
assisted loss processes in the laser cooled cloud.
The continuous laser cooling of the reservoir provides a

dissipation mechanism, which renders our system resilient
against perturbations. To demonstrate this fact, we repeat-
edly destroy the BEC and let it re-form (Fig. 4). To destroy
the BEC, we pulse the dimple trap depth to kB ! 15 !K
for 2 ms, which increases the temperature of the dimple gas
by a factor 2. We follow the evolution of the BEC atom
number while the heating pulse is applied every 200 ms.
A new BEC starts forming a few 10 ms after each heating
pulse for more than 30 pulses. We find that the observed
decrease in the BEC size from pulse to pulse stems from
the reduction of the total atom number in the system.
To clarify the role laser cooling plays in our scheme, we

perform a variation of the experiment. Here, we switch off
the laser cooling beam before ramping up the dimple and
we do not use the transparency beam. Heat released while
ramping up the dimple or after a heating pulse is again
distributed from the dimple to the whole system by elastic
collisions, but this time not dissipated by laser cooling.
Since the reservoir gas has a ten times higher atom number
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FIG. 2 (color online). Creation of a BEC by laser cooling. Shown are time-of-flight absorption images and integrated density profiles
of the atomic cloud for different times t after the transparency laser has been switched on, recorded after 24 ms of free expansion.
(a), (b) The appearance of an elliptic core at t ¼ 160 ms indicates the creation of a BEC. (c) Same as in (b), but to increase the
visibility of the BEC, atoms in the reservoir trap were removed before the image was taken. The fits (blue lines) consist of Gaussian
distributions to describe the thermal background and an integrated Thomas-Fermi distribution describing the BEC. The red lines show
the component of the fit corresponding to the thermal background. The x0y0 plane is rotated by 45$ around the z axis with respect to the
xy plane and the field of view of the absorption images is 2 mm! 1:4 mm.
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Figure III.16. Micro-trap of size ℓ in the middle of a cubic box of much larger
size L. The micro-trap is assumed to contain only one bound state |ϕ0⟩, of energy
ϵ0 < 0. For a gas described by Bose-Einstein statistic, the chemical potential is
necessarily less than ϵ0.

once the branching has been made, collisions between atoms3 will lead to
thermalization of the gas.

After a sufficient time, which we will not attempt to characterize, a new
thermodynamic equilibrium is reached thanks to the elastic collisions that
can populate the micro-trap (figure III.17). This equilibrium is described by
a temperature T ′ and a chemical potential µ′, which are the two unknowns
of the problem. This equilibrium corresponds to N0 atoms in the state |ϕ0⟩
and N ′ = N −N0 in the states |ψp⟩. Our aim is to show that it is possible to
find situations where N0 is comparable to N : this is the definition of Bose-
Einstein condensation, with an accumulation of a macroscopic number of
atoms in an individual quantum state.

3The existence of these collisions means that the gas is not really ideal, and that there are
deviations from the ideal gas model. But these deviations can be made arbitrarily small, if we
accept that the relaxation time is long.
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Figure III.17. Micro-trap filling by elastic collision between two particles

The occupancy of the extended states |ψp⟩ is given by Bose law

n′(p) =
1

e

(
p2

2M −µ′
)
/kBT ′ − 1

(III.53)

and the occupancy of the ground state |ϕ0⟩ is

N0 =
1

e(ϵ0−µ′)/kBT ′ − 1
. (III.54)

Particle number conservation is written

N = N0 +
∑
p

n′(p), (III.55)

which provides a first constraint on the two unknowns µ′ and T ′. The
second constraint comes from energy conservation. Once the micro-trap is
switched on, the gas is an isolated system and total energy is conserved.
The initial and final energies are therefore equal

Ei =
∑
p

p2

2M
n(p), Ef = N0ϵ0 +

∑
p

p2

2M
n′(p). (III.56)

This problem with two unknowns can be easily solved using a numerical
program. The input parameters are

• The initial fugacity of the gas Z = eµ/kBT . We will assume that the
gas is initially weakly degenerate, and we will take Z = 0.5, for which
Bose and Boltzmann laws give similar results in terms of both atom
number and energy.

• The energy of the bound state ϵ0, measured in units of kBT .

• The ratio L/λT between box size and initial thermal wavelength. Here
we will take L/λT = 100.

The conditions given above correspond to a total number of atomsN =
g3/2(Z) (L/λT )

3 ≈ 620 000. The results are shown in figure III.18. Take, for
example, ϵ0 = −3kBT ; the numerical resolution then indicates that, after
thermalization, 23% of the atoms have accumulated on the microscopic
level, and the gas temperature has become T ′ ≈ 1.8T : the gas has warmed
up (as could be anticipated from figure III.17), but a significant condensed
fraction has appeared.

Note 1. The problem can be solved in an approximate, quasi-analytical
way by noting (i) that in the above example, the occupancies of the ex-
tended states are given to a good approximation by Boltzmann’s law, and
(ii) that the chemical potential µ′ is practically equal to the energy ϵ0 of the
bound state, since the latter is macroscopically occupied. We find the final
fugacity

Z ′ ≈ eϵ0/kBT ′
= e−η/x with η =

|ϵ0|
kBT

, x =
T ′

T
(III.57)

and the conservation laws for the number of particles and energy give:

N = N0 +N ′ with N ≈ Z L
3

λ3T
, N ′ ≈ Z ′ L

3

λ′3T
, (III.58)

3

2
NkBT = N0ϵ0 +

3

2
N ′kBT

′. (III.59)
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Figure III.18. Evolution of the condensed fraction and final temperature in the
box+micro-trap system as a function of the control parameter η = |ϵ0|/kBT for
a weakly degenerate initial state Z = 0.5. Blue solid line: exact treatment from
(III.53)-(III.56), in the case L = 100λT . Red dotted line: approximate treatment
(III.60).

We choose to work with the unknowns x = T ′/T and the condensed frac-
tion f0 = N0/N :

1 = f0 +
x3/2 e−η/x

Z
,

1 = −2

3
f0η + (1− f0)x. (III.60)

Solving this system gives a result close to that obtained by exact calculation
(figure III.18). In this approximation, the result no longer depends on the
ratio L/λT , but simply on the initial fugacity Z and the choice of ratio
η = |ϵ0|/kBT .

Note 2. The condensate fraction obtained here is of the order of 20% and
varies slowly with the control parameter |ϵ0|/kBT . However, we note that
the condensate formed in the |ϕ0⟩ state is highly localized in space. We can
then take advantage of a very efficient evaporation, consisting in evacuat-
ing all the atoms outside the ℓ3 volume. Atoms in the state |ϕ0⟩will remain

unaffected, while virtually all non-condensed atoms [N ′(1 − ℓ3

L3 )] will be
eliminated. The result is a quasi-pure condensate at a cost of the loss of
around 4/5 of the atoms. This method of taking advantage of the shape of
the confinement potential to localize entropy in particular zones of space
has been proposed in a slightly different context by various authors (see,
for example, Bernier, Kollath, et al. (2009) and refs. in).

Note 3. We have neglected the interactions between atoms here, except
for gas thermalization. In practice, these interactions can play an impor-
tant role, as the N0 atoms are accumulated in a very small region of space,
corresponding to a high spatial density. The mean field energy will there-
fore shift the position of the level ϵ0, and inelastic collisions, via three-
body recombination leading to molecule formation, can play an important
role. Our limiting case of an extremely narrow well should therefore be
regarded as a simple model to analyze, but not necessarily an optimal sit-
uation in practical terms.

4-4 The Innsbruck experience (2013)

In their experiment, Stellmer, Pasquiou, et al. (2013) started with a gas of
N ≈ 107 atoms of 84Sr, cooled to T = 0.9µK thanks to the narrow line
at 689 nm we have already mentioned. This gas is confined in an optical
tweezer (dipole trap) formed by a strongly focused Gaussian beam with
wavelength λ = 1065nm. The beam is elliptical with radii at 1/e2 (waists)
wy = 300µm and wz = 17µm. Oscillation frequencies in the trap are 6, 35
and 600 Hz along the three axes of space x, y, z. The depth of the trap is
9µK, well above atomic temperature, so evaporation losses are negligible.
This optical tweezer plays the role of the L3 volume box in our model.

To create the micro-well that will induce condensation, Stellmer et al.
superimpose a second optical tweezer (dimple), much more focused than
the first (figure III.19ab). This second tweezer propagates almost vertically,
creating a potential trough in the horizontal plane with radius ∼ 20µm,
characterized by oscillation frequencies of 250 Hz. To help the atoms ac-
cumulate in this dimple, Stellmer et al. add an additional beam, similar
in size and direction to the micro-tweezer, to make the atoms transparent
to the cooling lasers. This beam, with a wavelength of 688 nm, creates a
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Atoms in the dimple thermalize with the reservoir of
laser-cooled atoms by elastic collisions and form a BEC.
Earlier work [16] has shown that Bose-Einstein condensa-
tion can be attained in a conservative dimple potential, if
the reservoir is evaporatively precooled close to quantum
degeneracy and the dimple is finally applied in the absence
of near resonant cooling light. In contrast, a striking feature
of our technique is that the BEC is created within a sample
that is being continuously laser cooled.

The details of our scheme are shown in Fig. 1. Based on
our previous work [29–31], we use several stages of laser
cooling to prepare a sample of 84Sr atoms in the reservoir
trap [32]. The trap consists of an infrared laser beam
(wavelength 1065 nm) propagating horizontally (x direc-
tion). The beam profile is strongly elliptic, with a beam
waist of 300 !m in the horizontal direction (y direction)
and 17 !m along the field of gravity (z direction). The
depth of the reservoir trap is kept constant at kB ! 9 !K.
After preparation of the sample, another laser cooling stage

is performed on the narrow 1S0-
3P1 intercombination line,

using a single laser beam propagating vertically upwards.
The detuning of the laser cooling beam from resonance is
"# 2! and the peak intensity is 0:15 !W=cm2, which is
0.05 of the transition’s saturation intensity. These parame-
ters result in a photon scattering rate of "70 s#1. At this
point, the ultracold gas contains 9! 106 atoms at a tem-
perature of 900 nK.
To render the atoms transparent to cooling light in a

central region of the laser cooled cloud, we induce a light
shift on the 3P1 state, using a ‘‘transparency’’ laser beam
15 GHz blue detuned to the 3P1-

3S1 transition [32]. This
beam propagates downwards under a small angle of 15$ to
vertical and has a beam waist of 26 !m in the plane of the
reservoir trap (xy plane). The beam has a peak intensity of
0:7 kW=cm2. It upshifts the 3P1 state by more than
10 MHz and also influences the nearest molecular level
tied to the 3P1 state significantly [32,33]. Related schemes
of light-shift engineering were used to image the density
distribution of atoms [34,35], to improve spectroscopy
[36], or to enhance loading of dipole traps [23,24]. To
demonstrate the effect of the transparency laser beam, we
take absorption images of the cloud on the laser cooling
transition. Figure 1(d) shows a reference image without the
transparency beam. In the presence of this laser beam,
atoms in the central part of the cloud are transparent for
the probe beam, as can be seen in Fig. 1(e).
To increase the density of the cloud, a dimple trap is

added to the system. It consists of an infrared laser beam
(wavelength 1065 nm) propagating upwards under a small
angle of 22$ to vertical and crossing the laser cooled cloud
in the region of transparency. In the plane of the reservoir
trap, the dimple beam has a waist of 22 !m. The dimple is
ramped to a depth of kB ! 2:6 !K, where it has trap
oscillation frequencies of 250 Hz in the horizontal plane.
Confinement in the vertical direction is only provided by
the reservoir trap and results in a vertical trap oscillation
frequency of 600 Hz. Figure 1(f) shows a demonstration of
the dimple trap in absence of the transparency beam. The
density in the region of the dimple increases substantially.
However, with the dimple alone no BEC is formed because
of photon reabsorption.
The combination of the transparency laser beam and the

dimple trap leads to Bose-Einstein condensation. Starting
from the laser cooled cloud held in the reservoir trap, we
switch on the transparency laser beam and ramp the dimple
trap to a depth of kB ! 2:6 !K. The potentials of the 1S0
and 3P1 states in this situation are shown in Fig. 1(c).
Atoms accumulate in the dimple without being disturbed
by photon scattering. Elastic collisions thermalize atoms in
the dimple with the laser cooled reservoir. The phase-space
density in the dimple increases and a BEC emerges.
We detect the BEC by taking absorption images 24 ms

after switching off all laser beams. Figure 2(a) shows the
momentum distribution 20 ms after switching on the
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FIG. 1 (color online). Scheme to reach quantum degeneracy by
laser cooling. (a) A cloud of atoms is confined in a deep reservoir
dipole trap and exposed to a single laser cooling beam
(red arrow). Atoms are rendered transparent by a ‘‘transparency’’
laser beam (green arrow) and accumulate in a dimple dipole trap
by elastic collisions. (b) Level scheme showing the laser cooling
transition and the transparency transition. (c) Potential experi-
enced by 1S0 ground-state atoms and atoms excited to the 3P1

state. The transparency laser induces a light shift on the 3P1

state, which tunes the atoms out of resonance with laser cooling
photons. (d)–(f) Absorption images of the atomic cloud recorded
using the laser cooling transition. The images show the cloud
from above and demonstrate the effect of the transparency laser
(e) and the dimple (f). (d) is a reference image without these two
laser beams.
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laser-cooled atoms by elastic collisions and form a BEC.
Earlier work [16] has shown that Bose-Einstein condensa-
tion can be attained in a conservative dimple potential, if
the reservoir is evaporatively precooled close to quantum
degeneracy and the dimple is finally applied in the absence
of near resonant cooling light. In contrast, a striking feature
of our technique is that the BEC is created within a sample
that is being continuously laser cooled.

The details of our scheme are shown in Fig. 1. Based on
our previous work [29–31], we use several stages of laser
cooling to prepare a sample of 84Sr atoms in the reservoir
trap [32]. The trap consists of an infrared laser beam
(wavelength 1065 nm) propagating horizontally (x direc-
tion). The beam profile is strongly elliptic, with a beam
waist of 300 !m in the horizontal direction (y direction)
and 17 !m along the field of gravity (z direction). The
depth of the reservoir trap is kept constant at kB ! 9 !K.
After preparation of the sample, another laser cooling stage

is performed on the narrow 1S0-
3P1 intercombination line,

using a single laser beam propagating vertically upwards.
The detuning of the laser cooling beam from resonance is
"# 2! and the peak intensity is 0:15 !W=cm2, which is
0.05 of the transition’s saturation intensity. These parame-
ters result in a photon scattering rate of "70 s#1. At this
point, the ultracold gas contains 9! 106 atoms at a tem-
perature of 900 nK.
To render the atoms transparent to cooling light in a

central region of the laser cooled cloud, we induce a light
shift on the 3P1 state, using a ‘‘transparency’’ laser beam
15 GHz blue detuned to the 3P1-

3S1 transition [32]. This
beam propagates downwards under a small angle of 15$ to
vertical and has a beam waist of 26 !m in the plane of the
reservoir trap (xy plane). The beam has a peak intensity of
0:7 kW=cm2. It upshifts the 3P1 state by more than
10 MHz and also influences the nearest molecular level
tied to the 3P1 state significantly [32,33]. Related schemes
of light-shift engineering were used to image the density
distribution of atoms [34,35], to improve spectroscopy
[36], or to enhance loading of dipole traps [23,24]. To
demonstrate the effect of the transparency laser beam, we
take absorption images of the cloud on the laser cooling
transition. Figure 1(d) shows a reference image without the
transparency beam. In the presence of this laser beam,
atoms in the central part of the cloud are transparent for
the probe beam, as can be seen in Fig. 1(e).
To increase the density of the cloud, a dimple trap is

added to the system. It consists of an infrared laser beam
(wavelength 1065 nm) propagating upwards under a small
angle of 22$ to vertical and crossing the laser cooled cloud
in the region of transparency. In the plane of the reservoir
trap, the dimple beam has a waist of 22 !m. The dimple is
ramped to a depth of kB ! 2:6 !K, where it has trap
oscillation frequencies of 250 Hz in the horizontal plane.
Confinement in the vertical direction is only provided by
the reservoir trap and results in a vertical trap oscillation
frequency of 600 Hz. Figure 1(f) shows a demonstration of
the dimple trap in absence of the transparency beam. The
density in the region of the dimple increases substantially.
However, with the dimple alone no BEC is formed because
of photon reabsorption.
The combination of the transparency laser beam and the

dimple trap leads to Bose-Einstein condensation. Starting
from the laser cooled cloud held in the reservoir trap, we
switch on the transparency laser beam and ramp the dimple
trap to a depth of kB ! 2:6 !K. The potentials of the 1S0
and 3P1 states in this situation are shown in Fig. 1(c).
Atoms accumulate in the dimple without being disturbed
by photon scattering. Elastic collisions thermalize atoms in
the dimple with the laser cooled reservoir. The phase-space
density in the dimple increases and a BEC emerges.
We detect the BEC by taking absorption images 24 ms

after switching off all laser beams. Figure 2(a) shows the
momentum distribution 20 ms after switching on the
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FIG. 1 (color online). Scheme to reach quantum degeneracy by
laser cooling. (a) A cloud of atoms is confined in a deep reservoir
dipole trap and exposed to a single laser cooling beam
(red arrow). Atoms are rendered transparent by a ‘‘transparency’’
laser beam (green arrow) and accumulate in a dimple dipole trap
by elastic collisions. (b) Level scheme showing the laser cooling
transition and the transparency transition. (c) Potential experi-
enced by 1S0 ground-state atoms and atoms excited to the 3P1

state. The transparency laser induces a light shift on the 3P1

state, which tunes the atoms out of resonance with laser cooling
photons. (d)–(f) Absorption images of the atomic cloud recorded
using the laser cooling transition. The images show the cloud
from above and demonstrate the effect of the transparency laser
(e) and the dimple (f). (d) is a reference image without these two
laser beams.
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transparency beam, which is well described by a thermal
distribution. By contrast, we observe that 140 ms later, an
additional, central elliptical feature has developed; see
Fig. 2(b). This is the hallmark of the BEC. Although clearly
present, the BEC is not very well visible in Fig. 2(b),
because it is shrouded by 8! 106 thermal atoms originat-
ing from the reservoir. To show the BEC with higher
contrast, we have developed a background reduction
technique. We remove the reservoir atoms by an intense
flash of light on the 1S0-

3P1 transition applied for 10 ms.
Atoms in the region of transparency remain unaffected by
this flash. Only 5! 105 thermal atoms in the dimple
remain and the BEC stands out clearly; see Fig. 2(c). We
use this background reduction technique only for demon-
stration purposes, but not for measuring atom numbers or
temperatures.

Quantitative data on our experiment are obtained by
two-dimensional fits to time-of-flight absorption images
[32]. The atom number of the thermal cloud and of the
BEC are extracted from fits to 24-ms expansion images,
consisting of Gaussian distributions describing the thermal
background and an integrated Thomas-Fermi distribution
describing the BEC. Further absorption images taken
after 4 ms expansion time are used to determine atom
number and temperature of the gas in the reservoir and
the dimple, respectively.

We now analyze the dynamics of the system after the
transparency laser beam has been switched on. As we
increase the dimple strength to its final depth in 10 ms,
106 atoms accumulate in it and the temperature of the
dimple gas increases; see Figs. 3(a) and 3(b). During the

next "100 ms the dimple gas thermalizes with the reser-
voir gas by elastic collisions [32,37,38]. The temperature
of the reservoir gas is hereby not increased, since the
energy transferred to it is dissipated by laser cooling. We
carefully check that evaporation is negligible even for the
highest temperatures of the gas [32]. Already after 60 ms a
BEC is detected. Its atom number saturates at 1:1! 105

after 150 ms, as shown in Fig. 3(c). The atom number in the
reservoir decreases slightly, initially because of migration
into the dimple and on longer time scales because of light
assisted loss processes in the laser cooled cloud.
The continuous laser cooling of the reservoir provides a

dissipation mechanism, which renders our system resilient
against perturbations. To demonstrate this fact, we repeat-
edly destroy the BEC and let it re-form (Fig. 4). To destroy
the BEC, we pulse the dimple trap depth to kB ! 15 !K
for 2 ms, which increases the temperature of the dimple gas
by a factor 2. We follow the evolution of the BEC atom
number while the heating pulse is applied every 200 ms.
A new BEC starts forming a few 10 ms after each heating
pulse for more than 30 pulses. We find that the observed
decrease in the BEC size from pulse to pulse stems from
the reduction of the total atom number in the system.
To clarify the role laser cooling plays in our scheme, we

perform a variation of the experiment. Here, we switch off
the laser cooling beam before ramping up the dimple and
we do not use the transparency beam. Heat released while
ramping up the dimple or after a heating pulse is again
distributed from the dimple to the whole system by elastic
collisions, but this time not dissipated by laser cooling.
Since the reservoir gas has a ten times higher atom number
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FIG. 2 (color online). Creation of a BEC by laser cooling. Shown are time-of-flight absorption images and integrated density profiles
of the atomic cloud for different times t after the transparency laser has been switched on, recorded after 24 ms of free expansion.
(a), (b) The appearance of an elliptic core at t ¼ 160 ms indicates the creation of a BEC. (c) Same as in (b), but to increase the
visibility of the BEC, atoms in the reservoir trap were removed before the image was taken. The fits (blue lines) consist of Gaussian
distributions to describe the thermal background and an integrated Thomas-Fermi distribution describing the BEC. The red lines show
the component of the fit corresponding to the thermal background. The x0y0 plane is rotated by 45$ around the z axis with respect to the
xy plane and the field of view of the absorption images is 2 mm! 1:4 mm.
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Figure III.19. Experiment by Stellmer, Pasquiou, et al. (2013) at Innsbruck. (a)
84Sr atoms are Doppler-cooled to a narrow line in a large optical tweezer acting
as a reservoir. An optical micro-trap (dimple) is superimposed, in which about
10% of the atoms will accumulate. (b) The atoms in the micro-trap are made
transparent to the cooling light by an auxiliary beam which strongly displaces
the excited level. Conditions are such that a condensate appears in this micro-
trap. (c-d) The condensate is observed by eliminating the atoms outside the micro-
trap. After time of flight, the usual bi-modal distribution is observed, revealing
the condensate (narrow central component) and the non-condensed fraction (wider
pedestal). The condensed fraction is of the order of 1%.

significant light-shift of the 3P1 excited level (more than 1000Γ).

The experiment leads to the formation of a Bose-Einstein condensate
inside the dimple. The condensed fraction is small (∼ 1%), making the
condensate difficult to detect amid the 99% of remaining atoms, essentially
confined within the first large optical tweezer. But one can take advan-
tage of the fact that the atoms in the dimple have become transparent to
the cooling light to observe this condensate: the radiation pressure of an
intense flash of light can push out of the detection zone all atoms except
those confined in the dimple. After a time of flight, a bimodal velocity dis-
tribution is revealed, the usual signature of a condensate in an anisotropic
harmonic trap (figure III.19cd). This formation is reversible, as the dimple
can be switched on and off many times, allowing the condensate to form
and then disappear.

Although the absolute performance of this experiment in terms of the
number of atoms condensed remains below that obtained by evaporation,
it represents an important step towards the realization of dissipative quan-
tum systems with cold atomic gases. The condensate is continuously fed
by a reservoir of laser-cooled atoms, which can itself be continuously re-
filled from atomic vapor at room temperature. Transposing this experi-
ment to gases of fermionic atoms would enable one to achieve a situation
similar to that of electrons in a metal (normal or superconducting): we
would then have a dissipative quantum system, in contact with a thermo-
stat permanently imposing its temperature on the system.
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Chapter IV

Hiding in the shadow

The previous chapters were devoted to Doppler cooling, first with a
broad line such that the width Γ of the excited level is large in front of the
recoil frequency ωr = ℏk2/2M , then with a narrow line.

In the first case, we found that the optimum detuning was ∆ = −Γ/2,
leading to the well-known Doppler limit, kBT = ℏΓ/2. The variation of the
photon scattering rate with atomic velocity is shown in figure IV.1 (left). It
is roughly constant throughout the interval from v = −Γ/k to Γ/k, and the
root-mean-square velocity at equilibrium is large compared with the recoil
velocity vr = ℏk/M .

In the second case, we found that the optimum detuning is ∆ ≈ −3ωr,
leading to a root-mean-square velocity at equilibrium of the order of vr.
The variation of the photon scattering rate with velocity is then very dif-
ferent from the case of a broad line (see figure IV.1 right): this rate passes
through a pronounced minimum around v = 0, with atoms accumulating
in velocity classes where they scatter very few photons.

The aim of this chapter is to generalize the notion of optical pumping
in velocity space that occurs in narrow-line Doppler cooling. We will ex-
ploit the idea of interference between quantum paths to cancel the atom’s
excitation probability when it has reached the desired velocity class. We
will discuss two different schemes, leading to the same statistical laws: co-
herent population trapping and Raman cooling, which uses light pulses
of optimized shape to transfer an atom from a given state of the ground
electronic level to another, in a velocity-selective manner.

What these two schemes have in common is the use of a Λ configura-
tion of internal levels, with two ground states g1 and g2, coupled to a single
excited state e (figure IV.2). Despite its apparent simplicity, this is a very
rich system, giving rise to many counter-intuitive phenomena. We will
start by outlining a number of its properties; we refer the interested reader
to the review articles of Arimondo (1996), Harris (1997), and Fleischhauer,
Imamoglu, et al. (2005) for a more in-depth study, particularly with regard
to its applications concerning electromagnetically induced transparency
and quantum information.

1 The Λ system and its dark state

The aim of this first section is to describe some remarkable properties of the
Λ system, composed of two states |g1⟩ and |g2⟩ of infinite lifetime and an
excited state |e⟩. In this section, we will concentrate on the atom’s internal
dynamics. The study of the atomic center-of-mass motion will be carried
out in § 2.

1-1 Reminder of two-level system

Before tackling the Λ system, let us briefly review a few elements we have
already encountered for a two-level system, composed of a stable ground

59



CHAPITRE IV. HIDING IN THE SHADOW § 1. The Λ system and its dark state

−2 0 2
0

0.5

1

1.5

kv/Γ

ta
ux

de
di

ff
us

io
n

(u
ni

t.
ar

b.
)

−2 0 2
0

0.5

1

v/vr

Figure IV.1. Excitation rate γ of an atom cooled by one-dimensional Doppler
effect. Left: broad line case, with Γ≫ ωr and ∆ = −Γ/2. Right: narrow line case
with Γ = ωr and ∆ = −3.4ωr. The value of γ is proportional to the light power
and its unit here is arbitrary. The dotted curves represent the rates induced by the
two running waves creating the cooling, and the solid curve represents the sum of
these two rates.

state g of energy Eg and an excited state e of energy Ee and lifetime Γ−1.

First of all, let us remember that in many calculations we can simply
take into account the finite lifetime of the excited state e by adding to its
energy the imaginary term −iℏΓ/2. Indeed, the exponential decay law
Pe(t) = e−Γt is obtained from the evolution of the state vector

|ψ(t)⟩ = e−iEet/ℏ e−Γt/2|e⟩+ . . . , (IV.1)
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2
. (IV.2)
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by measuring the evolution of the cloud over half of the
trap period, after switching off the 1D cooling laser.
For that purpose, we use the relationship !2

zðtÞ ¼
!2

zð0Þcos2ð!tÞ þ ½!pð0Þ=m!&2sin2ð!tÞ, linking the rms
value of the cloud size in the 1D harmonic trap, !zðtÞ, to
the initial values (at the switching off of the lasers) in real
space and momentum space.

Moreover, the mean square momentum depend on the
number of atoms, showing that collective effects also
induce extra heating. Regardless of the exact origin of
this extra heating, one example of this dependency is
shown in the inset of Fig. 2. We extrapolate the mean
square momentum value to the noninteracting limit (van-
ishing number of atoms) using a linear fit. The data points
for the mean square momentum in Fig. 2 are deduced in
this way.

Finally, even if the trap is loose along the cooling axis
(!k ' !r), it is not clear that it does not affect the cooling
process. Later on we will show that the trapping indeed has
a major impact when the transition is very narrow,!r(!.
To explore the influence of the trap, we use a Monte Carlo
(MC) simulation comparing cooling with and without the
trap. The MC simulation is based on a rate equation
describing the scattering events where the external degrees
of freedom are treated classically. This approach, neglect-
ing the quantum nature of the external degrees of freedom,
is known to be consistent with the full quantum approach in
free space [14]. This point is also confirmed here, where
the results of the MC simulation in free space are plotted in
Fig. 2 (green stars). In the trap, the dynamic is more subtle

because of the presence of the trapping force. It turns out,
however, that for the strontium intercombination transition
with !r ’ 0:6! the trap does not significantly modify the
mean square momentum in the steady state (red dots in
Fig. 2). We will see later that the condition !r ( ! leads
to different conclusions.
Other signatures of the quantum nature of Doppler

cooling can be found in the shape of the momentum
distribution. In the broad transition semiclassical picture,
the momentum distribution is essentially Gaussian since it
remains very well confined far from the two )"m=k
resonance lines. With a narrow transition, a single scatter-
ing event might be enough to bring the atom out of reso-
nance. As a consequence, the momentum distribution is not
Gaussian anymore and shows out-of-resonance long tails
and dips at the resonance lines [14,27]. A precise measure-
ment of the momentum distribution has been done for the
case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
is a likely explanation to why there is only a qualitative
agreement found between the experiment and the MC

FIG. 2 (color online). Mean square momentum in temperature
and recoil units as function of cooling laser detuning. The
experimental data (black, full circles), extrapolated for N ! 0
(noninteracting gas), are compared to the full quantum approach
developed by Castin et al.[14] (green, solid line). The blue,
dashed curve shows the prediction for broad transition Doppler
theory. The red points (green stars) correspond to the MC
simulation performed in (without) the dipole trap. Inset:
Measured mean square momentum as function of the number
of atoms in the trap with " ¼ *20 kHz and If ¼ 0:06Is (red
circles) with linear fit (dashed line).

FIG. 3 (color online). Upper panels: Raw data, false color
image of the atomic cloud after 1D cooling in free space, and
50 ms time of flight. The cooling laser are along the horizontal
axis. From left to right the laser detunings are respectively
" ¼ *33 kHz, " ¼ *21 kHz and " ¼ *10 kHz, and the laser
intensity is around 0:5Is. The small horizontal asymmetry is
likely due to imperfect balance of the cooling beams intensity,
which were not precisely adjusted like for the cloud in the Dipole
trap case. Middle panels: Normalized spatial distribution along
the cooling axis extracted from the upper images. Lower panels:
Normalized momentum distribution extracted from the MC
simulation. The laser detuning is the same as in the experiment,
but the simulation is performed at the low intensity limit. These
plots show a qualitative agreement with the experiment at higher
intensity without the added trap (green open circles), as well as
in the trap (red dots). The resonance lines correspond to the
vertical, dashed lines.
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case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
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dashed curve shows the prediction for broad transition Doppler
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50 ms time of flight. The cooling laser are along the horizontal
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Figure IV.2. Three-level system, illuminated by two coherent light waves. The
spontaneous emission rates from the excited level |e⟩ are assumed to be Γ1 =
Γ2 = Γ/2.
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Figure IV.3. A two-level atom dressed by the photons of a monochromatic light
wave. The three frequencies characterizing the problem are the natural width Γ of
the excited state, the detuning ∆ = ωL − ωA and the Rabi frequency κ.

formalism (figure IV.3), the eigenenergies in the presence of coupling are
the eigenvalues of the non-Hermitian matrix describing the Hamiltonian
in the {|g⟩, |e⟩} basis:

H̄ = ℏ

 0 κ∗/2

κ/2 −∆− iΓ/2

 . (IV.3)

One of its eigenvalues remains close to −ℏ(∆ + iΓ/2) and corresponds to
the state ē, dressed by the coupling with the laser. Since the product of the
eigenvalues (matrix determinant) is −(ℏ|κ|/2)2, the other eigenvalue is

≈ ℏ
|κ|2/4

∆ + iΓ/2
. (IV.4)
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CHAPITRE IV. HIDING IN THE SHADOW § 1. The Λ system and its dark state
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by measuring the evolution of the cloud over half of the
trap period, after switching off the 1D cooling laser.
For that purpose, we use the relationship !2

zðtÞ ¼
!2

zð0Þcos2ð!tÞ þ ½!pð0Þ=m!&2sin2ð!tÞ, linking the rms
value of the cloud size in the 1D harmonic trap, !zðtÞ, to
the initial values (at the switching off of the lasers) in real
space and momentum space.

Moreover, the mean square momentum depend on the
number of atoms, showing that collective effects also
induce extra heating. Regardless of the exact origin of
this extra heating, one example of this dependency is
shown in the inset of Fig. 2. We extrapolate the mean
square momentum value to the noninteracting limit (van-
ishing number of atoms) using a linear fit. The data points
for the mean square momentum in Fig. 2 are deduced in
this way.

Finally, even if the trap is loose along the cooling axis
(!k ' !r), it is not clear that it does not affect the cooling
process. Later on we will show that the trapping indeed has
a major impact when the transition is very narrow,!r(!.
To explore the influence of the trap, we use a Monte Carlo
(MC) simulation comparing cooling with and without the
trap. The MC simulation is based on a rate equation
describing the scattering events where the external degrees
of freedom are treated classically. This approach, neglect-
ing the quantum nature of the external degrees of freedom,
is known to be consistent with the full quantum approach in
free space [14]. This point is also confirmed here, where
the results of the MC simulation in free space are plotted in
Fig. 2 (green stars). In the trap, the dynamic is more subtle

because of the presence of the trapping force. It turns out,
however, that for the strontium intercombination transition
with !r ’ 0:6! the trap does not significantly modify the
mean square momentum in the steady state (red dots in
Fig. 2). We will see later that the condition !r ( ! leads
to different conclusions.
Other signatures of the quantum nature of Doppler

cooling can be found in the shape of the momentum
distribution. In the broad transition semiclassical picture,
the momentum distribution is essentially Gaussian since it
remains very well confined far from the two )"m=k
resonance lines. With a narrow transition, a single scatter-
ing event might be enough to bring the atom out of reso-
nance. As a consequence, the momentum distribution is not
Gaussian anymore and shows out-of-resonance long tails
and dips at the resonance lines [14,27]. A precise measure-
ment of the momentum distribution has been done for the
case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
is a likely explanation to why there is only a qualitative
agreement found between the experiment and the MC

FIG. 2 (color online). Mean square momentum in temperature
and recoil units as function of cooling laser detuning. The
experimental data (black, full circles), extrapolated for N ! 0
(noninteracting gas), are compared to the full quantum approach
developed by Castin et al.[14] (green, solid line). The blue,
dashed curve shows the prediction for broad transition Doppler
theory. The red points (green stars) correspond to the MC
simulation performed in (without) the dipole trap. Inset:
Measured mean square momentum as function of the number
of atoms in the trap with " ¼ *20 kHz and If ¼ 0:06Is (red
circles) with linear fit (dashed line).

FIG. 3 (color online). Upper panels: Raw data, false color
image of the atomic cloud after 1D cooling in free space, and
50 ms time of flight. The cooling laser are along the horizontal
axis. From left to right the laser detunings are respectively
" ¼ *33 kHz, " ¼ *21 kHz and " ¼ *10 kHz, and the laser
intensity is around 0:5Is. The small horizontal asymmetry is
likely due to imperfect balance of the cooling beams intensity,
which were not precisely adjusted like for the cloud in the Dipole
trap case. Middle panels: Normalized spatial distribution along
the cooling axis extracted from the upper images. Lower panels:
Normalized momentum distribution extracted from the MC
simulation. The laser detuning is the same as in the experiment,
but the simulation is performed at the low intensity limit. These
plots show a qualitative agreement with the experiment at higher
intensity without the added trap (green open circles), as well as
in the trap (red dots). The resonance lines correspond to the
vertical, dashed lines.

PRL 107, 243002 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 DECEMBER 2011

243002-3
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Other signatures of the quantum nature of Doppler
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resonance lines. With a narrow transition, a single scatter-
ing event might be enough to bring the atom out of reso-
nance. As a consequence, the momentum distribution is not
Gaussian anymore and shows out-of-resonance long tails
and dips at the resonance lines [14,27]. A precise measure-
ment of the momentum distribution has been done for the
case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
is a likely explanation to why there is only a qualitative
agreement found between the experiment and the MC
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and recoil units as function of cooling laser detuning. The
experimental data (black, full circles), extrapolated for N ! 0
(noninteracting gas), are compared to the full quantum approach
developed by Castin et al.[14] (green, solid line). The blue,
dashed curve shows the prediction for broad transition Doppler
theory. The red points (green stars) correspond to the MC
simulation performed in (without) the dipole trap. Inset:
Measured mean square momentum as function of the number
of atoms in the trap with " ¼ *20 kHz and If ¼ 0:06Is (red
circles) with linear fit (dashed line).

FIG. 3 (color online). Upper panels: Raw data, false color
image of the atomic cloud after 1D cooling in free space, and
50 ms time of flight. The cooling laser are along the horizontal
axis. From left to right the laser detunings are respectively
" ¼ *33 kHz, " ¼ *21 kHz and " ¼ *10 kHz, and the laser
intensity is around 0:5Is. The small horizontal asymmetry is
likely due to imperfect balance of the cooling beams intensity,
which were not precisely adjusted like for the cloud in the Dipole
trap case. Middle panels: Normalized spatial distribution along
the cooling axis extracted from the upper images. Lower panels:
Normalized momentum distribution extracted from the MC
simulation. The laser detuning is the same as in the experiment,
but the simulation is performed at the low intensity limit. These
plots show a qualitative agreement with the experiment at higher
intensity without the added trap (green open circles), as well as
in the trap (red dots). The resonance lines correspond to the
vertical, dashed lines.
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Figure IV.4. Three-level system of figure IV.2, in dressed-atom representation.

This gives the complex energy of the state ḡ, also dressed by the coupling
with the laser. The real part of this energy represents the light shift δE(g)
of ḡ with respect to g, and the imaginary part can be written−iℏγ/2, where
γ−1 is the finite lifetime of ḡ corresponding to photon scattering with rate
γ. Explicit calculation of these two terms from (IV.4) gives

δE(g) =
ℏ∆
2
s, γ =

Γ

2
s, with s =

|κ|2/2
∆2 + Γ2/4

. (IV.5)

The expression for γ corresponds to what we found in Chapter 2 using
the optical Bloch equations in the low-saturation limit. The expression for
δE(g) represents the dipole potential we used in previous lecture series
when describing the trapping of atoms by light. We will use it again in the
chapter on the Sisyphus effect.

1-2 The Λ system without spontaneous emission

We now switch to the three-level Λ system. We assume that the atoms
modelled by this three-level system are illuminated by two monochromatic
waves, each driving a |gj⟩ ↔ |e⟩ transition. We note κj the Rabi frequen-
cies and ∆j the corresponding detunings (figure IV.2). In a dressed-atom
representation (figure IV.4), the state |e,N1, N2⟩ is coupled to the two states
|g1, N1 + 1, N2⟩ and |g2, N1, N2 + 1⟩ by atom-laser coupling:

V̂AL =
ℏκ1
2
|e⟩⟨g1|+

ℏκ2
2
|e⟩⟨g2|+ H.c. (IV.6)

By choosing the origin of the energies in the middle of the two states

|g1, N1 + 1, N2⟩ and |g2, N1, N2 + 1⟩, the Hamiltonian of this three-level
system is written in the basis {|g1, N1+1, N2⟩, |g2, N1, N2+1⟩, |e,N1, N2⟩}:

Ĥ =
ℏ
2

∆ 0 κ∗1
0 −∆ κ∗2
κ1 κ2 −(∆1 +∆2)

 with ∆ = ∆1 −∆2. (IV.7)

The quantity ∆ represents the detuning of the pair of light beams from the
Raman resonance between |g1⟩ and |g2⟩.

We will not give the full expression of the eigenstates and associated
energies for this Hamiltonian here, but we note a point that will play a
crucial role in what follows. The state

|ψNC⟩ ∝ κ2|g1⟩ − κ1|g2⟩ =

 κ2
−κ1
0

 (IV.8)

is not coupled to light:
V̂AL|ψNC⟩ = 0 (IV.9)

(the subscript "NC" means "not coupled"). If the Raman resonance is sat-
isfied, ∆ = 0, then this state is also an eigenstate of the Hamiltonian Ĥ :
the atom prepared in this state will not evolve. The fact that this state is
not coupled to light results from an interference phenomenon: to go from
|ψNC⟩ to |e⟩, two paths are possible: |g1⟩ → |e⟩ and |g2⟩ → |e⟩; however,
these two paths have opposite amplitudes and interfere destructively: the
total probability amplitude to go from |ψNC⟩ to |e⟩ is zero.

In what follows, we will also use the combination state of |g1⟩ and |g2⟩
orthogonal to |ψNC⟩which we will call "coupled state":

|ψC⟩ ∝ κ∗1|g1⟩+ κ∗2|g2⟩. (IV.10)

1-3 Accounting for spontaneous emission

When we take into account the fact that the excited state has a finite lifetime
Γ−1, the study of the system’s dynamics must pass through the master
equation formalism [or through another formalism that allows dissipative
processes to be taken into account, such as the Monte Carlo wave function
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method (Mølmer, Castin, et al. 1993)]. The master equation is written in a
similar way to what we saw in Lecture 2 for the two-level atom:

dρ̂

dt
=

1

iℏ
[Ĥ, ρ̂] +

dρ̂

dt

∣∣∣∣
spont. em.

. (IV.11)

The incoherent evolution due to spontaneous emission phenomena gener-
alizes what we have encountered for a two-level system:

dρee
dt

∣∣∣∣
spont. em.

= −(Γ1 + Γ2)ρee,
dρgjgj
dt

∣∣∣∣
spont. em.

= +Γjρee (IV.12)

for the populations of the three levels (j = 1, 2),

dρegj
dt

∣∣∣∣
spont. em.

= −Γj

2
ρegj , (IV.13)

for optical coherences and

dρg1g2
dt

∣∣∣∣
spont. em.

= 0 (IV.14)

for the coherence between the two ground levels.

For this three-level system, it is possible to give an analytical expres-
sion for the steady state of the master equation (Janik, Nagourney, et al.
1985; Lounis & Cohen-Tannoudji 1992). As this analytical treatment is
fairly lengthy (without posing any difficulties of principle), we will con-
fine ourselves here to discussing a few physical points that will be useful
for what follows.

1-4 Some important results for the Λ system

We consider here the observable corresponding to the stationary popula-
tion of the excited state Pe. We note immediately that when the Raman
resonance condition is satisfied, the uncoupled state (IV.8) proposed above
remains a stable state of the system:

ρ̂NC = |ψNC⟩⟨ψNC| =⇒ dρ̂NC

dt
= 0. (IV.15)

In fact, ρ̂NC commutes with the Hamiltonian since |ψNC⟩ is an eigenstate
of this Hamiltonian. Moreover, this state does not evolve by spontaneous
emission, since the entire population is concentrated in the ground states.
This is an example of a state protected from dissipation (caused here by
spontaneous emission processes).

When the Raman resonance condition is not verified, the stationary
population of the excited state is non-zero. In figure IV.5, we have plot-
ted the variation of this population with the detuning of one of the light
beams (∆1) for different parameter regimes.

• When the Rabi frequencies κ1 and κ2 are equal, the cancellation of
Pe for the Raman resonance ∆1 = ∆2 occurs in a regular manner,
with an approximately symmetrical curve in the vicinity of the point
where Pe vanishes (figures IV.5 A and B). This strict cancellation of the
atom’s excitation rate when the Raman resonance is reached will play
a key role in the cooling mechanism based on coherent population
trapping. Velocity selectivity will be ensured by the dependence of
∆1,2 on atomic velocity via the Doppler effect. We will come back to
the typical width of the hole around the Raman resonance when we
study this cooling mechanism.

• On the other hand, if the Rabi frequencies are very different (figures
IV.5 C and D), the profile around the cancellation point is strongly
asymmetrical and takes on the appearance of a line shape of the type
predicted by Fano (1961). This type of profile is encountered when
interference occurs between a resonant scattering process and a much
flatter scattering process. Lounis & Cohen-Tannoudji (1992) proved
that Fano’s model was indeed realized for the Λ system when κ1 ≪
κ2 ≪ |∆1,2|. To recover this result, we start by treating the interaction
of beam 2 with the atom exactly. In the case where κ2 ≪ |∆2|, the
"dressing" of the level g2 induces the light shift found in (IV.5):

|g2⟩ → |ḡ2⟩, E(ḡ2) = E(g2) + δE(g2) δE(g2) =
ℏ∆2

2
s2. (IV.16)

Starting with the atom in the state |g1⟩, a photon from the weak laser
beam (beam 1) can be scattered either non-resonantly through |e⟩ (fig-
ure IV.6, left), or resonantly via a Raman transition that leads the atom
transiently into |ḡ2⟩ (figure IV.6, right). The narrow maximum of the
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Figure IV.5. Variation of excited population Pe with detuning ∆1, measured in
units of Γ. The other parameters are (in units of Γ): (A) solid line:κ1 = κ2 = 0.5,
∆2 = 0 ; dotted line: κ1 = κ2 = 1, ∆2 = 0, (B) κ1 = κ2 = 1, ∆2 = 2 , (C)
κ1 = 0.1, κ2 = 1, ∆2 = 2 , (D) κ1 = 0.01, κ2 = 1, ∆2 = 2.
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Figure IV.6. The two scattering processes for a photon from laser 1, leading to the
Fano profile of figure IV.5 C and D.

curve for Pe is obtained when Raman resonance with respect to the
dressed state |ḡ2⟩ occurs:

ℏ∆1 = ℏ∆2 + δE(g2). (IV.17)

We thus obtain a remarkable situation where Pe vanishes for the "bare"
Raman resonance ∆1 = ∆2, then passes through a maximum for the
"dressed" Raman resonance (IV.17). The width of the resonance is
given by the width of the state ḡ2 , i.e. γ2 = Γs2/2 [IV.5]. We will come
back to this Fano excitation profile when we study the reabsorption of
scattered photons within a cloud of atoms.

1-5 Beyond the Λ system

The notion of dark state is not limited to a three-level system. Consider a
resonance transition from a ground level g with angular momentum Jg to
an excited level e with angular momentum Je. For a dipole transition to
be allowed, one must have Je = Jg ± 1 or Je = Jg . We will assume here
that a transition of this type is illuminated with monochromatic light. The
atom-laser coupling can be written in the general form

V̂AL =
ℏ
2

∑
m,m′

κm,m′ |e,m′⟩⟨g,m|+ H.c. (IV.18)
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by measuring the evolution of the cloud over half of the
trap period, after switching off the 1D cooling laser.
For that purpose, we use the relationship !2

zðtÞ ¼
!2

zð0Þcos2ð!tÞ þ ½!pð0Þ=m!&2sin2ð!tÞ, linking the rms
value of the cloud size in the 1D harmonic trap, !zðtÞ, to
the initial values (at the switching off of the lasers) in real
space and momentum space.

Moreover, the mean square momentum depend on the
number of atoms, showing that collective effects also
induce extra heating. Regardless of the exact origin of
this extra heating, one example of this dependency is
shown in the inset of Fig. 2. We extrapolate the mean
square momentum value to the noninteracting limit (van-
ishing number of atoms) using a linear fit. The data points
for the mean square momentum in Fig. 2 are deduced in
this way.

Finally, even if the trap is loose along the cooling axis
(!k ' !r), it is not clear that it does not affect the cooling
process. Later on we will show that the trapping indeed has
a major impact when the transition is very narrow,!r(!.
To explore the influence of the trap, we use a Monte Carlo
(MC) simulation comparing cooling with and without the
trap. The MC simulation is based on a rate equation
describing the scattering events where the external degrees
of freedom are treated classically. This approach, neglect-
ing the quantum nature of the external degrees of freedom,
is known to be consistent with the full quantum approach in
free space [14]. This point is also confirmed here, where
the results of the MC simulation in free space are plotted in
Fig. 2 (green stars). In the trap, the dynamic is more subtle

because of the presence of the trapping force. It turns out,
however, that for the strontium intercombination transition
with !r ’ 0:6! the trap does not significantly modify the
mean square momentum in the steady state (red dots in
Fig. 2). We will see later that the condition !r ( ! leads
to different conclusions.
Other signatures of the quantum nature of Doppler

cooling can be found in the shape of the momentum
distribution. In the broad transition semiclassical picture,
the momentum distribution is essentially Gaussian since it
remains very well confined far from the two )"m=k
resonance lines. With a narrow transition, a single scatter-
ing event might be enough to bring the atom out of reso-
nance. As a consequence, the momentum distribution is not
Gaussian anymore and shows out-of-resonance long tails
and dips at the resonance lines [14,27]. A precise measure-
ment of the momentum distribution has been done for the
case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
is a likely explanation to why there is only a qualitative
agreement found between the experiment and the MC

FIG. 2 (color online). Mean square momentum in temperature
and recoil units as function of cooling laser detuning. The
experimental data (black, full circles), extrapolated for N ! 0
(noninteracting gas), are compared to the full quantum approach
developed by Castin et al.[14] (green, solid line). The blue,
dashed curve shows the prediction for broad transition Doppler
theory. The red points (green stars) correspond to the MC
simulation performed in (without) the dipole trap. Inset:
Measured mean square momentum as function of the number
of atoms in the trap with " ¼ *20 kHz and If ¼ 0:06Is (red
circles) with linear fit (dashed line).

FIG. 3 (color online). Upper panels: Raw data, false color
image of the atomic cloud after 1D cooling in free space, and
50 ms time of flight. The cooling laser are along the horizontal
axis. From left to right the laser detunings are respectively
" ¼ *33 kHz, " ¼ *21 kHz and " ¼ *10 kHz, and the laser
intensity is around 0:5Is. The small horizontal asymmetry is
likely due to imperfect balance of the cooling beams intensity,
which were not precisely adjusted like for the cloud in the Dipole
trap case. Middle panels: Normalized spatial distribution along
the cooling axis extracted from the upper images. Lower panels:
Normalized momentum distribution extracted from the MC
simulation. The laser detuning is the same as in the experiment,
but the simulation is performed at the low intensity limit. These
plots show a qualitative agreement with the experiment at higher
intensity without the added trap (green open circles), as well as
in the trap (red dots). The resonance lines correspond to the
vertical, dashed lines.
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Figure IV.7. Atom with resonance transition Jg = 3/2 ↔ Je = 1/2 illuminated
by circularly (left) and linearly (right) polarized light. Dark states are indicated
by red disks.

where the Rabi frequencies κm,m′ are non-zero only if m′ = m,m ± 1
due to the selection rules for electric dipole interaction. These involve
the different polarization components of the elerctromagnetic field (σ±
and π) and the Clebsh-Gordan coefficients associated with the transitions
|g,m⟩ ↔ |e,m′⟩.

Let us start by noting that there are no dark states in the Je = Jg + 1
case. Whatever the polarization of the laser wave chosen, there is always
a non-zero stationary population for the excited level, unless of course the
light intensity is strictly zero.

Let us now consider the case Je = Jg − 1. In this case, the ground
level has two more Zeeman sublevels than the excited level. Recall that the
number of Zeeman sublevels is 2Jg,e + 1. The matrix V̂AL which describes
the atom-laser coupling therefore couples a space of dimension 2Jg + 1 to
a space of smaller dimension 2Je +1 = (2Jg +1)− 2. Its kernel is therefore
necessarily of dimension greater than or equal to 2, i.e. there is necessarily
a subspace of dimension at least 2 in the space associated with the g level,
formed by uncoupled states such as

V̂AL|gα⟩ = 0. (IV.19)

These subspaces are shown in figure IV.7 for a transition Jg = 3/2↔ Je =
1/2, in both cases of circular polarization and linear polarization parallel
to the quantization axis (π polarization).

Finally, let us move on to the case of a Je = Jg resonance transition.
This case is more subtle. The matrix V̂AL connects two spaces of the same
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by measuring the evolution of the cloud over half of the
trap period, after switching off the 1D cooling laser.
For that purpose, we use the relationship !2

zðtÞ ¼
!2

zð0Þcos2ð!tÞ þ ½!pð0Þ=m!&2sin2ð!tÞ, linking the rms
value of the cloud size in the 1D harmonic trap, !zðtÞ, to
the initial values (at the switching off of the lasers) in real
space and momentum space.

Moreover, the mean square momentum depend on the
number of atoms, showing that collective effects also
induce extra heating. Regardless of the exact origin of
this extra heating, one example of this dependency is
shown in the inset of Fig. 2. We extrapolate the mean
square momentum value to the noninteracting limit (van-
ishing number of atoms) using a linear fit. The data points
for the mean square momentum in Fig. 2 are deduced in
this way.

Finally, even if the trap is loose along the cooling axis
(!k ' !r), it is not clear that it does not affect the cooling
process. Later on we will show that the trapping indeed has
a major impact when the transition is very narrow,!r(!.
To explore the influence of the trap, we use a Monte Carlo
(MC) simulation comparing cooling with and without the
trap. The MC simulation is based on a rate equation
describing the scattering events where the external degrees
of freedom are treated classically. This approach, neglect-
ing the quantum nature of the external degrees of freedom,
is known to be consistent with the full quantum approach in
free space [14]. This point is also confirmed here, where
the results of the MC simulation in free space are plotted in
Fig. 2 (green stars). In the trap, the dynamic is more subtle

because of the presence of the trapping force. It turns out,
however, that for the strontium intercombination transition
with !r ’ 0:6! the trap does not significantly modify the
mean square momentum in the steady state (red dots in
Fig. 2). We will see later that the condition !r ( ! leads
to different conclusions.
Other signatures of the quantum nature of Doppler

cooling can be found in the shape of the momentum
distribution. In the broad transition semiclassical picture,
the momentum distribution is essentially Gaussian since it
remains very well confined far from the two )"m=k
resonance lines. With a narrow transition, a single scatter-
ing event might be enough to bring the atom out of reso-
nance. As a consequence, the momentum distribution is not
Gaussian anymore and shows out-of-resonance long tails
and dips at the resonance lines [14,27]. A precise measure-
ment of the momentum distribution has been done for the
case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
is a likely explanation to why there is only a qualitative
agreement found between the experiment and the MC

FIG. 2 (color online). Mean square momentum in temperature
and recoil units as function of cooling laser detuning. The
experimental data (black, full circles), extrapolated for N ! 0
(noninteracting gas), are compared to the full quantum approach
developed by Castin et al.[14] (green, solid line). The blue,
dashed curve shows the prediction for broad transition Doppler
theory. The red points (green stars) correspond to the MC
simulation performed in (without) the dipole trap. Inset:
Measured mean square momentum as function of the number
of atoms in the trap with " ¼ *20 kHz and If ¼ 0:06Is (red
circles) with linear fit (dashed line).

FIG. 3 (color online). Upper panels: Raw data, false color
image of the atomic cloud after 1D cooling in free space, and
50 ms time of flight. The cooling laser are along the horizontal
axis. From left to right the laser detunings are respectively
" ¼ *33 kHz, " ¼ *21 kHz and " ¼ *10 kHz, and the laser
intensity is around 0:5Is. The small horizontal asymmetry is
likely due to imperfect balance of the cooling beams intensity,
which were not precisely adjusted like for the cloud in the Dipole
trap case. Middle panels: Normalized spatial distribution along
the cooling axis extracted from the upper images. Lower panels:
Normalized momentum distribution extracted from the MC
simulation. The laser detuning is the same as in the experiment,
but the simulation is performed at the low intensity limit. These
plots show a qualitative agreement with the experiment at higher
intensity without the added trap (green open circles), as well as
in the trap (red dots). The resonance lines correspond to the
vertical, dashed lines.
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nance. As a consequence, the momentum distribution is not
Gaussian anymore and shows out-of-resonance long tails
and dips at the resonance lines [14,27]. A precise measure-
ment of the momentum distribution has been done for the
case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
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dashed curve shows the prediction for broad transition Doppler
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image of the atomic cloud after 1D cooling in free space, and
50 ms time of flight. The cooling laser are along the horizontal
axis. From left to right the laser detunings are respectively
" ¼ *33 kHz, " ¼ *21 kHz and " ¼ *10 kHz, and the laser
intensity is around 0:5Is. The small horizontal asymmetry is
likely due to imperfect balance of the cooling beams intensity,
which were not precisely adjusted like for the cloud in the Dipole
trap case. Middle panels: Normalized spatial distribution along
the cooling axis extracted from the upper images. Lower panels:
Normalized momentum distribution extracted from the MC
simulation. The laser detuning is the same as in the experiment,
but the simulation is performed at the low intensity limit. These
plots show a qualitative agreement with the experiment at higher
intensity without the added trap (green open circles), as well as
in the trap (red dots). The resonance lines correspond to the
vertical, dashed lines.
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Figure IV.8. Transition Jg = 1/2 ↔ Je = 1/2: there is a dark state only if the
polarization is strictly circular.

dimension, so there is no obvious reason why we should expect the exis-
tence of a dark state. In fact, the existence of these states depends on the
integer or half-integer value of Jg and Je.

• In the half-integer case, there is generally no dark state. For example,
for a transition Jg = 1/2 ↔ Je = 1/2 and linear polarization, we ob-
tain two systems with two independent levels and a non-zero excited
population. Only if the light is circularly polarized do we find a dark
state in this case (figure IV.8).

• In the case of integer Jg, Je, there is always a dark state. This is due to
the particular values of the Clebsh-Gordan coefficients. If the light
is circularly polarized, the dark state is the same as that found for
half-integer Jg : |mg = ±Jg⟩. If the light is linearly polarized and
parallel to the quantization axis, the dark state is |g,m = 0⟩, due to
the cancellation of the Clebsh–Gordan coefficient characterizing the
|g,m = 0⟩ ↔ |e,m = 0⟩ transition.

Note: the special case Jg = 1 ↔ Je = 1. Ol’shanii & Minogin (1992)
have obtained in this case a remarkably simple expression of the dark state
for a light field of any polarization. Let us choose a quantization axis and
characterize a ground state by the three-component complex vector g⃗ :

|ψg⟩ =
+1∑

m=−1

ψg,m|g,m⟩ ↔ g⃗ =

ψg,−1

ψg,0

ψg,+1

 (IV.20)
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Jg=1&

Je=1&
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Figure IV.9. Transition Jg = 1 ↔ Je = 1: there is a dark state whatever the
polarization, although the dimension of the Hilbert space for the excited level is as
large as for the ground level.

and ditto for any excited state, which will be characterized by a vector with
three complex components e⃗. Let us also consider the (complex) polariza-
tion vector ϵ of the laser electric field:

E(t) = E0 ϵ e−iωLt + c.c.. (IV.21)

With these notations, Ol’shanii & Minogin (1992) have shown that the ab-
sorption of a laser photon sends any ground state characterized by g⃗ to the
excited state characterized by e⃗ such that

e⃗ ∝ ϵ× g⃗. (IV.22)

The expression for the uncoupled state can be deduced immediately:
this is the ground state whose components ψg,m are such that the three-
component vector g⃗ is parallel to the polarization ϵ of the light beam.

2 Dark state cooling

2-1 A simple picture

We have seen above that the Λ system offers the possibility of obtaining an
internal state decoupled from the light:

|ψNC⟩ ∝ κ2|g1⟩ − κ1|g2⟩. (IV.23)
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Figure IV.10. 1D configuration for velocity-selective coherent population trap-
ping.

This state |ψNC⟩ is an eigenstate of the Hamiltonian provided that the Ra-
man resonance condition is satisfied.

∆ ≡ ∆1 −∆2 = 0. (IV.24)

For this effect to be used to cool atoms, it must be made velocity-
dependent. Let us work in one dimension of space (z); velocity depen-
dence will be obtained if the two waves propagate in opposite directions,
since the Raman detuning ∆1−∆2 is then a function of v, the velocity com-
ponent along the z axis. Let us assume that the wave driving the g1 ↔ e
transition propagates towards negative z, and that the wave driving the
g2 ↔ e transition propagates towards positive z (figure IV.10):

∆1(v) = ∆1(0) + kv, ∆2(v) = ∆2(0)− kv. (IV.25)

Suppose we choose a zero Raman detuning for an atom at rest, ∆1(0) =
∆2(0), as shown in figure IV.5A. The Raman detuning ∆ for an atom with
velocity v along Oz will be

∆ = 2kv. (IV.26)

We can then propose a simple image for the cooling mechanism exploit-
ing these dark states (figure IV.11). We start with a broad velocity distri-
bution and illuminate the atoms with the two counter-propagating lasers
1 and 2, taking these two lasers to be resonant and with the same cou-
pling κ1 = κ2. The variation of the excited-state population with velocity,
which also gives the spontaneous emission rate, is shown in figure IV.12.
This population shows a marked hole at v = 0 as expected: this is called
velocity-selective coherent population trapping ("trapping" here refers to
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Figure IV.11. Brownian motion in velocity space with accumulation around zero
velocity due to velocity-selective coherent population trapping.

accumulation in the uncoupled state). Atoms with initially non-zero ve-
locity will absorb laser photons, emit spontaneous photons and thus per-
form a Brownian motion. When, by chance, they arrive in the vicinity of
zero velocity, the probability per unit time that they will absorb a photon
falls sharply if they are in the |ψNC(v)⟩ state: we therefore expect an ac-
cumulation of atoms around v = 0, as we saw with narrow-line Doppler
cooling. However, there is an important difference between the two types
of cooling: in coherent population trapping as described above, there is
no friction force to bring the velocity back to around 0: the evolution of
velocity here is a purely diffusive phenomenon.

We will see below that this simple reasoning, based on the semi-classical
notion of an atom’s velocity defined independently of its internal state, is
valid, but still needs to be completed. It also raises a number of questions
that need to be addressed to assess cooling performance:

• Since the expected cooling depends on the presence of an excitation
hole in the vicinity of zero velocity, how does the size of this hole vary
with the laser parameters?

• If we want to achieve sub-recoil cooling, we cannot just reason about
the atom’s velocity without saying whether it is the velocity before or
after the last photon. How can we reason in quantum terms, taking
into account these elementary changes in velocity?

• The process as we have described it is based on purely diffusive Brow-
nian motion, which from time to time brings the atom’s velocity back

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

5 · 10−2

0.1

Figure IV.12. Variation of excited state population Pe with atomic velocity, mea-
sured in units of Γ/k. Figure made for ∆1 = ∆2 = 0. Blue: κ1 = κ2 = 0.2Γ,
Red: κ1 = κ2 = 0.4Γ.

to the vicinity of v = 0. However, the probability of the Brownian mo-
tion returning to the origin depends strongly on the dimensionality of
the problem. How efficient is this process in 2D or 3D?

2-2 The width of the excitation hole

Let us take a look at the width of the hole in the excitation curve around
zero velocity, which will determine the efficiency of the cooling process.
We will discuss the influence of dissipation by successively reviewing the
three internal states (figure IV.13)

|e⟩, |ψC⟩ =
1√
2
(|g1⟩+ |g2⟩) , |ψNC⟩ =

1√
2
(|g1⟩ − |g2⟩) . (IV.27)

For simplicity’s sake, we are interested in the case where both waves have
the same Rabi frequency, and we posit κ ≡ κ1 = κ2, which we will assume
to be very small compared to Γ. Our reasoning reproduces that developed
by Aspect, Arimondo, et al. (1989).

The state |e⟩ has the width Γ: the atom prepared in this state sponta-
neously emits a photon after a time ∼ Γ−1.

The state |ψC⟩ is resonantly coupled to the state |e⟩ with the Rabi fre-
quency

√
2 κ. This coupling gives the state |ψC⟩ the width [cf. (IV.5)]:

γC =
2κ2

Γ
, (IV.28)
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Figure IV.13. The three coupled states of the problem and their width. The figure
is made at resonance ∆1 = ∆2 = 0, with equal Rabi frequencies κ1 = κ2 = κ.

which means that an atom initially placed in the state |ψC⟩ will scatter a
photon after a time of the order γ−1

C .

The state |ψNC⟩ is by construction uncoupled from the excited state. On
the other hand, if the Raman detuning ∆ = ∆1 −∆2 is non-zero, the states
|ψNC⟩ and |ψC⟩ are coupled to each other. Indeed, for κ = 0, the initial state

|ψ(0)⟩ = |ψNC⟩ =
1√
2
(|g1⟩ − |g2⟩) (IV.29)

evolves as
|ψ(t)⟩ = 1√

2

(
e−i∆t/2|g1⟩ − e+i∆t/2|g2⟩

)
(IV.30)

and thus becomes proportional to |ψC⟩ at time t = π/∆. The coupling
between |ψNC⟩ and |ψC⟩ is therefore directly given by ∆. A non-zero value
of ∆ (or a non-zero velocity in our case) will give to the state |ψNC⟩ the
width:

γNC =
∆2

γC
, (IV.31)

which can be rewritten using (IV.28) and ∆ = 2kv:

γNC = 2Γ
(kv)2

κ2
. (IV.32)

This estimate of γNC corresponds to the width of the excitation hole in the
vicinity of the Raman resonance. In particular, we note that:

• The variation in excitation rate is quadratic with respect to velocity.

• The smaller the Rabi frequency κ, the steeper the quadratic variation.
This point is clearly visible in figure IV.12, where we have plotted Pe

for two different values of κ.

2-3 Quantum version of the problem

In the foregoing, we have reasoned about the velocity v of the atom with-
out specifying whether this is the velocity before or after the atom has ab-
sorbed a photon. This type of reasoning is legitimate when the change in
Doppler effect due to the recoil of a single photon, kvr = 2ωr, is small com-
pared with all the other frequencies in the problem. On the other hand, it
cannot be maintained if we are looking for subrecoil cooling. In this case,
we need to be more precise to determine the state in which the atoms will
accumulate.

To deal with the atom-radiation interaction in this case, we need to take
into account the atom’s recoil in the absorption-emission processes. Let us
start with the case without spontaneous emission. We can then group the
atomic states (internal+external) into families

F(v) = { |g1, v + vr⟩, |e, v⟩, |g2, v − vr⟩ }. (IV.33)

Atom-laser coupling leaves these families globally stable. The Raman res-
onance condition in a given family is then written:

E(g1) + ℏωL,1 +
M(v + vr)

2

2
= E(g2) + ℏωL,2 +

M(v − vr)2
2

. (IV.34)

As above, let us assume ∆1 = ∆2, i.e. E(g1) + ℏωL,1 = E(g2) + ℏωL,2.
The Raman resonance condition (IV.34) is obtained for v = 0; the only
family exhibiting a truly dark state is therefore the family F(v = 0), and
the corresponding dark state is written as

|ψNC(v = 0)⟩ = 1√
2
(|g1,+vr⟩ − |g2,−vr⟩) . (IV.35)

A velocity analysis of this state should show two peaks at ±vr, on either
side of zero velocity.

In the presence of spontaneous emission, the family occupied by the
atom will change randomly due to the recoil associated with emission pro-
cesses. Within each family, the longest-lived state is the uncoupled state
|ψNC(v)⟩ and the estimate made in (IV.32) for its lifetime remains valid.

This more precise treatment therefore confirms the image proposed
above for subrecoil cooling, provided that we replace the somewhat vague

67



CHAPITRE IV. HIDING IN THE SHADOW § 3. Scale laws for subrecoil cooling

notion of atomic velocity by the notion of F(v) families. The atom’s state
is indeed a random walk, with the atom jumping from one family to an-
other under the effect of spontaneous emission. When this random walk
leads the atom into the uncoupled state |ψNC(v)⟩ of a family with v very
close to 0, the residence time in this family becomes extremely long. We
can therefore hope to accumulate a large number of atoms in the vicinity
of |ψNC(v = 0)⟩.

2-4 Experimental evidence at 1D

The first one-dimensional subrecoil cooling experiment was carried out by
the ENS group using precisely this mechanism (Aspect, Arimondo, et al.
1988). The transition used was the 23S1 ↔ 23P1 of helium in its metastable
triplet state, illuminated by two polarized counter-propagating waves σ+
and σ−. After a few optical pumping processes, the atom reaches the Λ
system (figure IV.14, top):

|g,m = −1⟩ ↔ |e,m = 0⟩ ↔ |g,m = +1⟩ (IV.36)

because the |e,m = 0⟩ state has a zero probability of de-exciting to the third
ground sublevel |g,m = 0⟩. The experiment confirmed the expected effect,
and a two-peak velocity distribution was observed (figure IV.14, bottom).
This is indeed a cooling effect (and not a simple filtering), as the number
of atoms in these velocity classes is higher after interaction with light than
before.

3 Scale laws for subrecoil cooling

In this section, we discuss some ideas for assessing the efficiency of sub-
recoil cooling, taking advantage of a zero in the atom’s excitation rate,
as shown in figure IV.12. The same reasoning applies to Raman cooling,
which we will look at in § 4. We want to determine the characteristic width
of the narrow velocity peak generated by cooling, as well as the fraction of
atoms likely to accumulate in this peak. This is a tricky problem, both be-
cause of the multitude of possible situations and because of the complexity
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Figure IV.14. Top: Transition Jg = 1 ↔ Je = 1 composed of a Λ system and a
V system and illuminated with σ+ and σ− light. After a few spontaneous emis-
sion processes, the atom is optically pumped into the Λ system, and cooling by
coherent population trapping can begin. Bottom: figure taken from Aspect, Ari-
mondo, et al. (1988), showing the principle of transverse sub-recoil cooling of a
metastable helium atomic beam by coherent population trapping and the observed
collimation. The double-peak structure of the final velocity distribution (solid line)
is characteristic of the dark state (IV.35) (or its immediate neighbors). The dotted
lines represent the initial velocity distribution.
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Figure IV.15. Excitation rate modeling (here at 1D) according to (IV.38), with
"walls" in velocity space, located here at |v| = vr.

of the mathematical and statistical tools to be used. We shall restrict our-
selves here to describing a representative case, which will enable us to dis-
cuss the influence of two important parameters: (i) the dimensionality of
the space and (ii) the variation of the excitation rate around its zero. We re-
fer the reader interested in these notions to Bardou, Bouchaud, et al. (1994)
as well as the comprehensive work by Bardou, Bouchaud, et al. (2002).

3-1 Excitation rate model

To simplify the discussion, we will model the problem as follows (figure
IV.15): the atom’s state is labelled by its velocity v (1D, 2D or 3D), which is
used to calculate the excitation rate γ(v). We describe this rate as follows:

γ(v) = γ0

(
v

v0

)α

if |v| < v0,

(IV.37)

= γ0 if |v| > v0, (IV.38)

the case of the dark state seen above corresponding to the exponent α = 2
(cf. IV.32).

We will also assume that, in addition to the subrecoil cooling mecha-
nism that creates the hole in the excitation rate near v = 0, there is another
cooling mechanism, which we will not detail here, and which may be of
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Figure IV.16. Random walk in velocity space. When the particle arrives in the
dark zone, the dwell time on a given velocity class is increased compared to the
bright zone.

the Doppler or Sisyphus type. This other mechanism keeps the atoms in
a zone of finite size centered around v = 0. It was not present in our dis-
cussion in the previous paragraph, nor in the experiment shown in figure
IV.14. Insofar as these were one-dimensional situations, this mechanism
was not really necessary, as the Brownian motion of the velocity caused
by the random recoils due to spontaneous emission was sufficient to bring
the atom back to the vicinity of the hole at v = 0 from time to time. But in
three dimensions, this pure Brownian motion cannot be relied upon, and
the atom must be helped to approach v = 0 and find the dark zone in
velocity space.

To model this other cooling mechanism as simply as possible, we will
assume that the modulus of the atom’s velocity cannot exceed the recoil
velocity: |v| < vr. We therefore place "walls" in velocity space that confine
the atom in the central zone. The exact position of these walls is not impor-
tant, as it acts as a simple multiplicative factor in the calculation. We fix it
here at vr to simplify the analysis.

3-2 Residence time in the dark zone and Lévy’s law

We consider the model described above assuming that v0 ≪ vr and we take
the walls into account. As long as the particle is not in the dark zone |v| <
v0, it jumps randomly from one velocity to another at a rate γ0, each step of
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this random walk being of the order of vr (figure IV.16). At each jump, the
particle has a chance to fall into the dark zone, which is uniformly sprayed.
Once in the dark zone, it takes the particle a time τ of the order of 1/γ(v)
to make another jump.

Let us take a one-dimensional view to evaluate the statistical law P(τ)
of the residence time τ , the quantity P (τ) dτ giving the probability that
the particle falling into the dark zone will remain there for a time between
τ and τ + dτ . We will assume that during its stay in the dark zone, the
particle occupies one and only one velocity v. Indeed, the probability of
the particle leaving v for another velocity v′ also located in the dark zone
is low if the width of this zone is small compared with the average size of
a jump vr.

We will take the following expression for the probability density P(v)
that a particle entering the dark zone reaches velocity v:

P(v) = 1

2v0
, (IV.39)

which means that the dark zone is uniformly "sprayed". Let us assume that
the residence time on the velocity class v is exactly equal1 to 1/γ(v). Since
the velocity classes v and −v correspond to the same residence time, we
then have

P(τ) dτ = [P(v) + P(−v)] dv with τ =
1

γ0

(v0
v

)α

(IV.40)

which leads to
P(τ) ∝ 1

τ1+
1
α

. (IV.41)

In particular, for the case of coherent population trapping, we have α = 2
and therefore:

Dark resonance in 1D : P(τ) ∝ 1

τ3/2
. (IV.42)

The distribution law (IV.42) is the source of some of the problem’s math-
ematical complexity. It is a broad law which, while normalizable, has no

1It would be more correct to write that the residence time τ is itself a random variable with
an exponential distribution whose mean is given by 1/γ(v); however, this does not change
the scaling law given in (IV.41) [see Bardou, Bouchaud, et al. (2002), § 3.3.1.2].
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Laser cooling [1] provides interesting examples of ran-
dom walks. The atomic momentum p changes in a ran-
dom way, as a result of coherent absorptions and stimu-
lated emissions of laser photons between a ground state
manifold (g) and an excited one (e), interrupted at ran-
dom times by spontaneous emission of fluorescence pho-
tons. In usual cooling schemes, the exchanges of momen-
tum between atoms and laser photons give rise to a net
drift of the atomic momenta towards p 0. Competing
with such a friction mechanism, there is also a rnomen-
tum diffusion due to the randomness introduced by spon-
taneous emission, leading to a random walk in momen-
tum space, as in Brownian motion. The random recoil
Alt, due to fluorescence photons also gives rise to an im-

portant landmark in the temperature scale, the recoil
temperature Ttt, given by ktt Ttt/2 =Ett = II1 k /2M.

Up to now, two subrecoil cooling schemes have been
demonstrated [2,3]. We will focus here on the first one
[2], based on velocity selective coherent population trap-
ping (VSCPT). Some of the ideas developed here could
possibly be extended to the other scheme and to other
proposals [4]. In VSCPT, there is no friction mechanism,
but a combination of two effects. First, there are quan-
tum interference effects which prevent atoms from ab-
sorbing light if they are in certain linear superpositions of
ground state sublevels (dark states) and if they have a
very small momentum p=0. Second, for atoms with

p&0, which scatter photons in random directions, there is
a momentum diffusion in p space which allows some
atoms to be transferred from the p&0 absorbing states
into the p=0 dark states where they remain trapped for
a long time, and where they pile up. An important ques-
tion then arises concerning the ultimate efficiency of such
a cooling process. Using simple arguments, we have ar-
gued [2] that the width of the momentum distribution has
no lower limit and should decrease as 8 ', when the
laser-atom interaction time 8 is increased. However, up
to now, no quantitative prediction concerning the propor-
tion of cooled atoms and the exact shape of the mornen-

turn distribution was available [5]. This is not surprising
in view of the complexity of the full quantum optical
Bloch equations (both internal and external degrees of
freedom must be treated quantum mechanically at these
subrecoil temperatures). Furthermore, in the problem
studied here, where no steady state exists, it seems quite
difficult to extract the asymptotic behavior from a numer-
ical solution of optical Bloch equations.

In order to improve our understanding of VSCPT, we

have performed quantum Monte Carlo simulations [6],
using the "delay function" [7]. It clearly appears (see
Fig. I) that the smaller the atomic momentum p, the
longer the delay rg between two successive spontaneous
emissions, which is the principle of VSCPT. There is

another striking feature of Fig. 1 which is the starting
point of the analysis presented here: The random se-
quence of time intervals rg is clearly dominated by a sin-
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FIG. 1. Monte Carlo simulation of VSCPT. Each vertical
discontinuity corresponds to a spontaneous emission jump dur-
ing which the atomic momentum p changes abruptly. The de-
lay between two successive jumps can become very long if p gets
close to zero. The longest time interval (out of 4000) takes
about 70% of the total time. The inset shows a zoomed part of
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Figure IV.17. Example of a trajectory in velocity space obtained by a Monte Carlo
simulation of dark resonance cooling. We can clearly see that these trajectories are
dominated by a few rare events during which the particle velocity reaches a value
close to zero [Figure extracted from Bardou, Bouchaud, et al. (1994)].

well-defined moments of order 1, 2 or 3. This means, for example, that the
central limit theorem does not apply: if we are interested in the total time
spent by the atom in the dark zone after N passages:

TN = τ1 + τ2 + . . .+ τN , (IV.43)

we do not find a Gaussian distribution (even though we sum N indepen-
dent random variables), but a Lévy distribution. More precisely, the usual
central limit theorem would indicate that TN grows as N⟨τ⟩ plus a cor-
rection in

√
N . Here, on the contrary, the sum TN is dominated by a few

events (cf. figure IV.17) and we find that TN grows likeN2 [see for example
Bouchaud & Georges (1990)].

We can generalize the above reasoning to the multi-dimensional case.
In three dimensions, assuming uniform "spraying" of the sphere |p| < p0,
we find instead of (IV.39):

P(v) = 3v2

v30
(IV.44)

which leads to
P(τ) ∝ 1

τ1+
3
α

. (IV.45)
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More generally, in D dimension, we have

P(τ) ∝ 1

τ1+
D
α

. (IV.46)

3-3 Width of the velocity distribution

The cooling process we are considering here has no stationary state, unlike
Doppler or Sisyphus cooling. Let us give ourselves an interaction time t
long enough for many jumps to have occurred, at least for the particles
that avoided the dark zone:

t≫ 1/γ0. (IV.47)

Particles that have fallen sufficiently close to v = 0 in the course of their
evolution have then remained in this zone. More precisely, for a given
time t, we can define the velocity vt ≪ v0 such that

t =
1

γ(vt)
←→ vt =

v0
(γ0t)1/α

(IV.48)

which defines the radius of a second sphere (in 3D) inside the dark zone
sphere of radius v0 (figure IV.18). In what follows, we will call this second
sphere the "black zone"; indeed, particles that arrived inside this zone be-
tween 0 and t are still there (with a good probability) at time t. Assuming
uniform spraying of the dark zone, we expect the density in this zone to be
uniform too.

We therefore expect the velocity distribution P(v) to have three compo-
nents, which we schematize in figure IV.18:

• The black zone v < vt: velocity classes in this zone have a popula-
tion that increases with time, since they are continuously fed, without
particles escaping. Note, however, that the size of this zone decreases
with time, as 1/

√
t in the case α = 2 of dark resonances. The probabil-

ity density is uniform in this zone.

• The bright zone v > v0 in which particles make frequent jumps in
velocity. The probability density is also roughly uniform in this zone.

black
zone

v0 vr

g0

v0vt

dark
zone 

bright
zone 

0 vrv0vt

P(v)

Figure IV.18. Left: excitation rate and "black zone": for a given interaction time t,
we can define a black zone, such that an atom falling into this zone then remained
there until time t: γ(vt)t = 1. Right: Qualitative diagram of the expected velocity
profile; the density inside the black zone increases with time, but the radius vt of
this zone decreases.

• The intermediate zone vt < v < v0, located inside the dark zone, but
composed of velocity classes with a relatively high rate γ(v), such that
particles have had time to move in and out of these velocity classes
during the time interval t.

This qualitative prediction can be confirmed by a more precise analyt-
ical or numerical treatment of the various stochastic processes [Bardou,
Bouchaud, et al. (2002), chapter 6].

3-4 Fraction of cooled atoms

The final step in our analysis is to estimate, for a given interaction time t,
the fraction of atoms that have reached the dark zone |v| < vt (figure IV.18).
As the size of this zone decreases with time, it is not obvious how large
this fraction is. Here again, we will use a qualitative reasoning, which can
be confirmed by a much more elaborate quantitative analysis [see Bardou,
Bouchaud, et al. (2002), in particular § 6.3 for the 1D case and § 6.4 for the
3D case].

We will assume that over the time interval of duration t, an atom per-
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forms the number of attempts Natt. = γ0t to enter the black zone2. At each
attempt, the atom evolving in dimension D has a probability

p ∼
(
vt
vr

)D

(IV.49)

to arrive in the black zone of radius vt. The total probability of an atom
arriving in the black zone during time t is therefore

ptot = p Natt. ∝ t (vt)
D ∝ t1−

D
α . (IV.50)

In this simple model, the determining parameter is 1−D/α:

• If D/α < 1, then the probability ptot given in (IV.50) increases indefi-
nitely with time3. This means that a significant fraction of atoms will
accumulate in the central peak. This is the case at 1D for dark reso-
nances (D/α = 1/2).

• If D/α > 1, then the probability of an atom ending up in the central
peak tends towards 0 as t increases. The peak around zero velocity
may be detectable in an experiment of finite duration, but it will con-
tain only a small fraction of the atoms. This is the case with three-
dimensional dark resonances (D/α = 3/2).

• The case D = α, corresponding to two-dimensional dark resonances,
is marginal. Determining the precise value of the fraction of atoms
in the dark zone requires a more precise treatment than the simple
scaling laws presented here.

3-5 2D and 3D experiments

Experiments carried out at 1D on the metastable helium atom (§ 2-4) were
generalized a few years later to 2D and 3D by the ENS group (Lawall, Bar-
dou, et al. 1994; Lawall, Kulin, et al. 1994). The starting point for these

2There is an important shortcut here, as some atoms may have spent time in the grey zone
vt < |v| < v0, slowing the rate of their random walk without actually placing them in the
desired black zone

3Our simple model of summing probabilities as in (IV.50) of course ceases to be valid when
the probability ptot is no longer small in front of 1.
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have Ei (r) X % (r) = 0 for all r. Second, since El (r) is
a monochromatic laser field with frequency cuI, all wave
vectors k; appearing in the plane wave expansion of EL(r),

El (r) = g X'„i;exp(ik; . r),

have the same modulus ~k;~ = col. /c = k. Using the same
expansion for %'r(r) given in (2), we find that the atomic
kinetic energy P2/2M, which depends only on the modulus
of the wave vectors, has a well-defined value in Wr(r)
equal to h2k2/2M. If we replace in (2) the c-number a by an
arbitrary scalar field u(r), we still have El (r) x Nr(r) =
0 for all r, so that n(r)EL(r) is the most general state
in g not coupled to e, i.e., leading to a zero transition
amplitude (1)for all @(r). Expanding u(r) in plane waves
exp(ip r/h), we introduce a set of noncoupled states,

Detect

(r) = El (r) exp(ip r/h) (4)

labeled by p. Equations (3) and (4) then show that %'Nc(r)
is a linear superposition of plane waves with wave vectors
k; + p/Fi. In general, these wave vectors do not have the
same modulus, and (4) is not an eigenfunction of P2/2M.
There are motional couplings, proportional to k; p/M,
which destabilize the states (4) and introduce a photon
absorption rate I Nc(p) from these states proportional to
p2 (if ~p~ is small enough) [5,11]. Such an absorption is
then followed by a spontaneous emission process, which
introduces a random change of momentum and allows
atoms to diffuse in momentum space. The smaller ~p~,

the smaller is the diffusion rate. Atoms thus progressively
accumulate in a set of states &Nc(r), with ~p~ distributed
over a range 8p around the value p = 0 corresponding to
the perfectly dark state (2). Arguments similar to those
used in [5] show that 6p decreases as 1/~O where 8 is
the interaction time.

We now apply these general considerations to the
laser configuration used in our experiment. It consists of
counterpropagating beams along the x and y axes, with
o.+ and cr polarizations (Fig. 1). In Eq. (3) we have
N=4 and ki=kx, k2= —kx, k3=ky, and k4=
—k y. It is then clear that for any p orthogonal to the x-y
plane the four vectors k; + p/h have the same modulus,
so that there is no velocity selection and thus no cooling
along the z axis. On the other hand, the reasoning above
shows that there is velocity selection for p in the x-y
plane, where the only trapping state of the form (4) is VNc

with p = 0. Furthermore, one can show [10]that with the
polarization configuration of Fig. 1 there is a unique two-
dimensional trapping state. We thus expect that, after the
laser configuration of Fig. 1 has been applied for a time
0 to an atom, the state of the atom will be of the form
(4) with a p component in the x-y plane very close to 0
(~p~ less than hk) and an arbitrary value for p, . This state
will thus consist of four coherent wave packets with mean
momenta ~hkx, ~hky. Thus, on the detection plane,
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FIG. 1. 2D VSCPT scheme. Under the influence of the
four VSCPT cooling beams, the atoms are pumped into a
coherent superposition of four wave packets whose centers
follow ballistic trajectories to the position-sensitive detector
5 cm below.

one should observe four spots separated by a distance
2hkrf/M, where rf is the time of flight to the detector,
the width of these spots decreasing as 1/v 8.

In order to have real cooling, one needs to fill the

trapping state with sufficient efficiency. As shown in [11],
a pure diffusion in momentum space is much less efficient
in two dimensions than in one dimension. On the other
hand, as emphasized in [9], 2D VSCPT schemes on a

Jg = 1 = = J, = 1 transition may lead to a friction force
for atoms which are not yet trapped. There is then a drift
toward p = 0 which helps to fill the trapping states [12].
Although we have not yet made any detailed calculations,
we expect, based on the fact that the light shifts in our
laser configuration are spatially dependent, that VSCPT
efficiency would be augmented by Sisyphus precooling
for the case of blue detuning [1].

We start with atoms precooled to -200 p, K in a
magneto-optical trap [13,14]. A cryogenic (6 K) beam of
He* in the 2 5& state is decelerated by radiation pressme
using a Zeeman slowing technique [15] to load the trap.
Our trap contains -10 atoms in a volume of -1 mm .
The trap is shut off, and the beams for the VSCPT cooling
process, tuned to the 2 S] —2 P[ transition, are pulsed
on (Fig. 1). All of the VSCPT laser beams are derived
from the same laser, so the phase coherence is limited

by the stability of the retroreAection mirrors. During
the time of the VSCPT cooling, the atoms move less
than 1 mm, after which they follow ballistic trajectories
under the inAuence of gravity. Atoms are detected 5 cm
below the trap by means of a microchannel plate detector
which intercepts a solid angle of 0.32 sr. High spatial
resolution (0.5 mm) is obtained by accelerating the output
of the microchannel plates toward a phosphor screen, and
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the resulting blips of light are recorded with a triggered
charge coupled device (CCD) camera which provides

temporal resolution.
The detailed sequence is the following: The trap is

loaded for about 1.5 s, at which point the deceleration
coils are turned off while the quadrupole trapping coils
remain on. This allows the magnetic fields of the
deceleration coils to decay, during which time the trap
laser parameters are adjusted to provide further cooling.
After 250 ms, the trapping coils are switched off as

well, and the trapping laser beams are left on for an

additional 3.5 ms. This phase confines the atoms in an

optical molasses while allowing the residual fields of
the quadrupole to decay. At this point, the trapping
beams are turned off and the VSCPT cooling beams are
switched on. The VSCPT interaction time is 500 p, s

in the work described here. Atoms are detected on the
microchannel plate detector a time 7.f (30—70 ms) later
within a temporal window ~ which can be as small as
1 ms. By varying rf we can probe the (uncooled) vertical

velocity distribution, and by varying v we can select
the time resolution. Images from the CCD camera are
digitized in a PC, and successive images are summed.

Simple arguments [6] show that the temperature attain-

able is limited by the stray magnetic field and scales as
the square of the field; a stray field on the order of 1 mG
limits the achievable temperature to -T&/100. The ac
components of the magnetic field at 50 Hz (-10 mG) are
reduced to less than 1 mG by means of a Mumetal shield.
The static components are canceled in situ and at the time

of interest to within 0.5 mG by means of an additional

step based on the mechanical Hanle effect [16].
An image of the atomic position distribution detected

on the microchannel plate is shown in Fig. 2. The
four peaks are clearly resolved. The widths of the

peaks reflect, in addition to the final VSCPT momentum

distribution, contributions due to the size of the cloud of
trapped atoms, the size of the blips of light emitted by
the phosphor, and the dispersion of atom arrival times

during the observation time r T.he latter broadening
mechanism is absent in the direction perpendicular to
the recoil momentum. With this in mind, we present
in Fig. 3 a vertical profile through the peak at the right
in Fig. 2. An upper bound to the momentum dispersion
is given by neglecting the initial cloud size and the

imperfect detector resolution [17]. From the width of the

peak, we deduce a velocity spread (half-width at 1/~e)
of 2.3 cm/s (= v~/4, where v~ = hk/M = 9.2 cm/s is
the recoil velocity), with an uncertainty of 10%. The
corresponding temperature is TR/16.

A crucial issue is whether the VSCPT process actually
increases the density in momentum space or merely acts
to select atoms within a small velocity group. The answer
is dependent on the laser parameters. For a fixed value of
the detuning 8 = +0.5I, a scan of the laser power (Rabi
frequency 0 varying from 0 = 0.5I to 0 = 1.06I )
revealed both a monotonically increasing temperature
and a number of cooled atoms. The smallest laser
power, while giving the narrowest velocity distribution

(T = TR/30), yielded fewer atoms in the peak than

in the absence of the VSCPT cooling process. We
interpret this expulsion of atoms as being due to heating
from a "blue Doppler molasses" [1] before atoms are

trapped in the velocity-selective state. As the laser power
is increased, the distributions are observed to broaden

Cooled atom profile
~ Uncooled atom profile

FIG. 2. Image of the detected atomic position distribution
for the experimental parameters: Rabi frequency 0 = 0.81,
detuning 6 = +0.51, interaction time 0 = 500 p, s. The
figure shows an integration of 25 consecutive images for each
of which the camera was exposed from 45 to 65 ms after the
VSCPT interaction. The corresponding momentum distribution
consists of four peaks at ~hk along the x and Y axes; the peak
widths are clearly subrecoil.
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FIG. 3. Profiles of the atomic position distributions along the
dotted line of Fig. 2 with and without VSCPT cooling.
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the resulting blips of light are recorded with a triggered
charge coupled device (CCD) camera which provides

temporal resolution.
The detailed sequence is the following: The trap is

loaded for about 1.5 s, at which point the deceleration
coils are turned off while the quadrupole trapping coils
remain on. This allows the magnetic fields of the
deceleration coils to decay, during which time the trap
laser parameters are adjusted to provide further cooling.
After 250 ms, the trapping coils are switched off as

well, and the trapping laser beams are left on for an

additional 3.5 ms. This phase confines the atoms in an

optical molasses while allowing the residual fields of
the quadrupole to decay. At this point, the trapping
beams are turned off and the VSCPT cooling beams are
switched on. The VSCPT interaction time is 500 p, s

in the work described here. Atoms are detected on the
microchannel plate detector a time 7.f (30—70 ms) later
within a temporal window ~ which can be as small as
1 ms. By varying rf we can probe the (uncooled) vertical

velocity distribution, and by varying v we can select
the time resolution. Images from the CCD camera are
digitized in a PC, and successive images are summed.

Simple arguments [6] show that the temperature attain-

able is limited by the stray magnetic field and scales as
the square of the field; a stray field on the order of 1 mG
limits the achievable temperature to -T&/100. The ac
components of the magnetic field at 50 Hz (-10 mG) are
reduced to less than 1 mG by means of a Mumetal shield.
The static components are canceled in situ and at the time

of interest to within 0.5 mG by means of an additional

step based on the mechanical Hanle effect [16].
An image of the atomic position distribution detected

on the microchannel plate is shown in Fig. 2. The
four peaks are clearly resolved. The widths of the

peaks reflect, in addition to the final VSCPT momentum

distribution, contributions due to the size of the cloud of
trapped atoms, the size of the blips of light emitted by
the phosphor, and the dispersion of atom arrival times

during the observation time r T.he latter broadening
mechanism is absent in the direction perpendicular to
the recoil momentum. With this in mind, we present
in Fig. 3 a vertical profile through the peak at the right
in Fig. 2. An upper bound to the momentum dispersion
is given by neglecting the initial cloud size and the

imperfect detector resolution [17]. From the width of the

peak, we deduce a velocity spread (half-width at 1/~e)
of 2.3 cm/s (= v~/4, where v~ = hk/M = 9.2 cm/s is
the recoil velocity), with an uncertainty of 10%. The
corresponding temperature is TR/16.

A crucial issue is whether the VSCPT process actually
increases the density in momentum space or merely acts
to select atoms within a small velocity group. The answer
is dependent on the laser parameters. For a fixed value of
the detuning 8 = +0.5I, a scan of the laser power (Rabi
frequency 0 varying from 0 = 0.5I to 0 = 1.06I )
revealed both a monotonically increasing temperature
and a number of cooled atoms. The smallest laser
power, while giving the narrowest velocity distribution

(T = TR/30), yielded fewer atoms in the peak than

in the absence of the VSCPT cooling process. We
interpret this expulsion of atoms as being due to heating
from a "blue Doppler molasses" [1] before atoms are

trapped in the velocity-selective state. As the laser power
is increased, the distributions are observed to broaden

Cooled atom profile
~ Uncooled atom profile

FIG. 2. Image of the detected atomic position distribution
for the experimental parameters: Rabi frequency 0 = 0.81,
detuning 6 = +0.51, interaction time 0 = 500 p, s. The
figure shows an integration of 25 consecutive images for each
of which the camera was exposed from 45 to 65 ms after the
VSCPT interaction. The corresponding momentum distribution
consists of four peaks at ~hk along the x and Y axes; the peak
widths are clearly subrecoil.
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FIG. 3. Profiles of the atomic position distributions along the
dotted line of Fig. 2 with and without VSCPT cooling.

1917Figure IV.19. Left: schematic diagram of a two-dimensional dark-state cooling
experiment. The dark-state momentum distribution is composed of four peaks,
corresponding to the four plane waves illuminating the atoms. This momentum
distribution is measured by time-of-flight. Right: example of a momentum distri-
bution. Each peak has a width significantly less than the recoil velocity vr (vr/4
for the one shown in the figure). The dotted curve represents the uncooled distri-
bution.

experiments was a cloud of metastable helium atoms cooled and confined
in a magneto-optical trap, operating on the 23S1 ↔ 23P2 transition. At a
given instant, the magneto-optical trap beams are switched off and the four
(2D) or six (3D) beams creating both Sisyphus cooling and coherent popu-
lation trapping are switched on. The role of Sisyphus cooling is to create
the equivalent of "walls" in velocity space, whose presence is essential in
2D or 3D as we saw above. The width of the velocity distribution obtained
by Sisyphus cooling, before dark-state cooling becomes significant, is of
the order of 1.5 vr (Lawall, Kulin, et al. 1994).

Measurement of the velocity distribution of atoms after cooling by co-
herent population trapping reveals four (at 2D) or six (at 3D) peaks, cor-
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CHAPITRE IV. HIDING IN THE SHADOW § 4. A tailor-made shadow: a Raman transition

responding to the accumulation of atoms in the desired dark state (figure
IV.19). The fact that the number of peaks is equal to the number of light
beams is a direct consequence of the result of Ol’shanii & Minogin (1992)
presented in (IV.20)-(IV.22): when the motion of the atom’s center of mass is
taken into account, the dark state is a three-component spinor, g⃗(r), which
is proportional to the electric field E(r) of the laser wave (more precisely
to the coefficient of e−iωLt in the expression of this field). The minimum
widths observed for these peaks are of the order of vr/4 at 2D and vr/6 at
3D.

4 A tailor-made shadow: a Raman transition

We have just seen how the use of a dark resonance allows us to obtain
a velocity-selective excitation profile, with strict cancellation for a given
velocity class. We now explore a second method for obtaining a similar
result: this method, also based on a Λ system, consists in using light pulses
that transfer atoms between the sublevels |g1⟩ and |g2⟩ (figure IV.20). The
time profile of the pulse is optimized so that the transfer is also velocity-
selective, opening up a second route to cooling well below the recoil veloc-
ity vr.

4-1 The principle of Raman cooling

Raman cooling operates by alternating two types of phase:

• At the start of the first phase, the atoms are in the state |g1⟩, with a
velocity distribution that we want to make as narrow as possible (fig-
ure IV.21, top). They are illuminated for a time τ with a pair of Raman
beams of Rabi frequency κj and detuning ∆j (j = 1, 2). The aim is to
induce the transition from |g1⟩ to |g2⟩ in a velocity-selective manner.
If the detunings ∆j are large compared with the Rabi frequencies κj ,
we can perturbatively eliminate the excited state e and define a Rabi
frequency for the Raman transition:

κ =
κ1κ

∗
2

2∆e
. (IV.51)
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have Ei (r) X % (r) = 0 for all r. Second, since El (r) is
a monochromatic laser field with frequency cuI, all wave
vectors k; appearing in the plane wave expansion of EL(r),

El (r) = g X'„i;exp(ik; . r),

have the same modulus ~k;~ = col. /c = k. Using the same
expansion for %'r(r) given in (2), we find that the atomic
kinetic energy P2/2M, which depends only on the modulus
of the wave vectors, has a well-defined value in Wr(r)
equal to h2k2/2M. If we replace in (2) the c-number a by an
arbitrary scalar field u(r), we still have El (r) x Nr(r) =
0 for all r, so that n(r)EL(r) is the most general state
in g not coupled to e, i.e., leading to a zero transition
amplitude (1)for all @(r). Expanding u(r) in plane waves
exp(ip r/h), we introduce a set of noncoupled states,

Detect

(r) = El (r) exp(ip r/h) (4)

labeled by p. Equations (3) and (4) then show that %'Nc(r)
is a linear superposition of plane waves with wave vectors
k; + p/Fi. In general, these wave vectors do not have the
same modulus, and (4) is not an eigenfunction of P2/2M.
There are motional couplings, proportional to k; p/M,
which destabilize the states (4) and introduce a photon
absorption rate I Nc(p) from these states proportional to
p2 (if ~p~ is small enough) [5,11]. Such an absorption is
then followed by a spontaneous emission process, which
introduces a random change of momentum and allows
atoms to diffuse in momentum space. The smaller ~p~,

the smaller is the diffusion rate. Atoms thus progressively
accumulate in a set of states &Nc(r), with ~p~ distributed
over a range 8p around the value p = 0 corresponding to
the perfectly dark state (2). Arguments similar to those
used in [5] show that 6p decreases as 1/~O where 8 is
the interaction time.

We now apply these general considerations to the
laser configuration used in our experiment. It consists of
counterpropagating beams along the x and y axes, with
o.+ and cr polarizations (Fig. 1). In Eq. (3) we have
N=4 and ki=kx, k2= —kx, k3=ky, and k4=
—k y. It is then clear that for any p orthogonal to the x-y
plane the four vectors k; + p/h have the same modulus,
so that there is no velocity selection and thus no cooling
along the z axis. On the other hand, the reasoning above
shows that there is velocity selection for p in the x-y
plane, where the only trapping state of the form (4) is VNc

with p = 0. Furthermore, one can show [10]that with the
polarization configuration of Fig. 1 there is a unique two-
dimensional trapping state. We thus expect that, after the
laser configuration of Fig. 1 has been applied for a time
0 to an atom, the state of the atom will be of the form
(4) with a p component in the x-y plane very close to 0
(~p~ less than hk) and an arbitrary value for p, . This state
will thus consist of four coherent wave packets with mean
momenta ~hkx, ~hky. Thus, on the detection plane,
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FIG. 1. 2D VSCPT scheme. Under the influence of the
four VSCPT cooling beams, the atoms are pumped into a
coherent superposition of four wave packets whose centers
follow ballistic trajectories to the position-sensitive detector
5 cm below.

one should observe four spots separated by a distance
2hkrf/M, where rf is the time of flight to the detector,
the width of these spots decreasing as 1/v 8.

In order to have real cooling, one needs to fill the

trapping state with sufficient efficiency. As shown in [11],
a pure diffusion in momentum space is much less efficient
in two dimensions than in one dimension. On the other
hand, as emphasized in [9], 2D VSCPT schemes on a

Jg = 1 = = J, = 1 transition may lead to a friction force
for atoms which are not yet trapped. There is then a drift
toward p = 0 which helps to fill the trapping states [12].
Although we have not yet made any detailed calculations,
we expect, based on the fact that the light shifts in our
laser configuration are spatially dependent, that VSCPT
efficiency would be augmented by Sisyphus precooling
for the case of blue detuning [1].

We start with atoms precooled to -200 p, K in a
magneto-optical trap [13,14]. A cryogenic (6 K) beam of
He* in the 2 5& state is decelerated by radiation pressme
using a Zeeman slowing technique [15] to load the trap.
Our trap contains -10 atoms in a volume of -1 mm .
The trap is shut off, and the beams for the VSCPT cooling
process, tuned to the 2 S] —2 P[ transition, are pulsed
on (Fig. 1). All of the VSCPT laser beams are derived
from the same laser, so the phase coherence is limited

by the stability of the retroreAection mirrors. During
the time of the VSCPT cooling, the atoms move less
than 1 mm, after which they follow ballistic trajectories
under the inAuence of gravity. Atoms are detected 5 cm
below the trap by means of a microchannel plate detector
which intercepts a solid angle of 0.32 sr. High spatial
resolution (0.5 mm) is obtained by accelerating the output
of the microchannel plates toward a phosphor screen, and
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the resulting blips of light are recorded with a triggered
charge coupled device (CCD) camera which provides

temporal resolution.
The detailed sequence is the following: The trap is

loaded for about 1.5 s, at which point the deceleration
coils are turned off while the quadrupole trapping coils
remain on. This allows the magnetic fields of the
deceleration coils to decay, during which time the trap
laser parameters are adjusted to provide further cooling.
After 250 ms, the trapping coils are switched off as

well, and the trapping laser beams are left on for an

additional 3.5 ms. This phase confines the atoms in an

optical molasses while allowing the residual fields of
the quadrupole to decay. At this point, the trapping
beams are turned off and the VSCPT cooling beams are
switched on. The VSCPT interaction time is 500 p, s

in the work described here. Atoms are detected on the
microchannel plate detector a time 7.f (30—70 ms) later
within a temporal window ~ which can be as small as
1 ms. By varying rf we can probe the (uncooled) vertical

velocity distribution, and by varying v we can select
the time resolution. Images from the CCD camera are
digitized in a PC, and successive images are summed.

Simple arguments [6] show that the temperature attain-

able is limited by the stray magnetic field and scales as
the square of the field; a stray field on the order of 1 mG
limits the achievable temperature to -T&/100. The ac
components of the magnetic field at 50 Hz (-10 mG) are
reduced to less than 1 mG by means of a Mumetal shield.
The static components are canceled in situ and at the time

of interest to within 0.5 mG by means of an additional

step based on the mechanical Hanle effect [16].
An image of the atomic position distribution detected

on the microchannel plate is shown in Fig. 2. The
four peaks are clearly resolved. The widths of the

peaks reflect, in addition to the final VSCPT momentum

distribution, contributions due to the size of the cloud of
trapped atoms, the size of the blips of light emitted by
the phosphor, and the dispersion of atom arrival times

during the observation time r T.he latter broadening
mechanism is absent in the direction perpendicular to
the recoil momentum. With this in mind, we present
in Fig. 3 a vertical profile through the peak at the right
in Fig. 2. An upper bound to the momentum dispersion
is given by neglecting the initial cloud size and the

imperfect detector resolution [17]. From the width of the

peak, we deduce a velocity spread (half-width at 1/~e)
of 2.3 cm/s (= v~/4, where v~ = hk/M = 9.2 cm/s is
the recoil velocity), with an uncertainty of 10%. The
corresponding temperature is TR/16.

A crucial issue is whether the VSCPT process actually
increases the density in momentum space or merely acts
to select atoms within a small velocity group. The answer
is dependent on the laser parameters. For a fixed value of
the detuning 8 = +0.5I, a scan of the laser power (Rabi
frequency 0 varying from 0 = 0.5I to 0 = 1.06I )
revealed both a monotonically increasing temperature
and a number of cooled atoms. The smallest laser
power, while giving the narrowest velocity distribution

(T = TR/30), yielded fewer atoms in the peak than

in the absence of the VSCPT cooling process. We
interpret this expulsion of atoms as being due to heating
from a "blue Doppler molasses" [1] before atoms are

trapped in the velocity-selective state. As the laser power
is increased, the distributions are observed to broaden

Cooled atom profile
~ Uncooled atom profile

FIG. 2. Image of the detected atomic position distribution
for the experimental parameters: Rabi frequency 0 = 0.81,
detuning 6 = +0.51, interaction time 0 = 500 p, s. The
figure shows an integration of 25 consecutive images for each
of which the camera was exposed from 45 to 65 ms after the
VSCPT interaction. The corresponding momentum distribution
consists of four peaks at ~hk along the x and Y axes; the peak
widths are clearly subrecoil.
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FIG. 3. Profiles of the atomic position distributions along the
dotted line of Fig. 2 with and without VSCPT cooling.
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the resulting blips of light are recorded with a triggered
charge coupled device (CCD) camera which provides

temporal resolution.
The detailed sequence is the following: The trap is

loaded for about 1.5 s, at which point the deceleration
coils are turned off while the quadrupole trapping coils
remain on. This allows the magnetic fields of the
deceleration coils to decay, during which time the trap
laser parameters are adjusted to provide further cooling.
After 250 ms, the trapping coils are switched off as

well, and the trapping laser beams are left on for an

additional 3.5 ms. This phase confines the atoms in an

optical molasses while allowing the residual fields of
the quadrupole to decay. At this point, the trapping
beams are turned off and the VSCPT cooling beams are
switched on. The VSCPT interaction time is 500 p, s

in the work described here. Atoms are detected on the
microchannel plate detector a time 7.f (30—70 ms) later
within a temporal window ~ which can be as small as
1 ms. By varying rf we can probe the (uncooled) vertical

velocity distribution, and by varying v we can select
the time resolution. Images from the CCD camera are
digitized in a PC, and successive images are summed.

Simple arguments [6] show that the temperature attain-

able is limited by the stray magnetic field and scales as
the square of the field; a stray field on the order of 1 mG
limits the achievable temperature to -T&/100. The ac
components of the magnetic field at 50 Hz (-10 mG) are
reduced to less than 1 mG by means of a Mumetal shield.
The static components are canceled in situ and at the time

of interest to within 0.5 mG by means of an additional

step based on the mechanical Hanle effect [16].
An image of the atomic position distribution detected

on the microchannel plate is shown in Fig. 2. The
four peaks are clearly resolved. The widths of the

peaks reflect, in addition to the final VSCPT momentum

distribution, contributions due to the size of the cloud of
trapped atoms, the size of the blips of light emitted by
the phosphor, and the dispersion of atom arrival times

during the observation time r T.he latter broadening
mechanism is absent in the direction perpendicular to
the recoil momentum. With this in mind, we present
in Fig. 3 a vertical profile through the peak at the right
in Fig. 2. An upper bound to the momentum dispersion
is given by neglecting the initial cloud size and the

imperfect detector resolution [17]. From the width of the

peak, we deduce a velocity spread (half-width at 1/~e)
of 2.3 cm/s (= v~/4, where v~ = hk/M = 9.2 cm/s is
the recoil velocity), with an uncertainty of 10%. The
corresponding temperature is TR/16.

A crucial issue is whether the VSCPT process actually
increases the density in momentum space or merely acts
to select atoms within a small velocity group. The answer
is dependent on the laser parameters. For a fixed value of
the detuning 8 = +0.5I, a scan of the laser power (Rabi
frequency 0 varying from 0 = 0.5I to 0 = 1.06I )
revealed both a monotonically increasing temperature
and a number of cooled atoms. The smallest laser
power, while giving the narrowest velocity distribution

(T = TR/30), yielded fewer atoms in the peak than

in the absence of the VSCPT cooling process. We
interpret this expulsion of atoms as being due to heating
from a "blue Doppler molasses" [1] before atoms are

trapped in the velocity-selective state. As the laser power
is increased, the distributions are observed to broaden

Cooled atom profile
~ Uncooled atom profile

FIG. 2. Image of the detected atomic position distribution
for the experimental parameters: Rabi frequency 0 = 0.81,
detuning 6 = +0.51, interaction time 0 = 500 p, s. The
figure shows an integration of 25 consecutive images for each
of which the camera was exposed from 45 to 65 ms after the
VSCPT interaction. The corresponding momentum distribution
consists of four peaks at ~hk along the x and Y axes; the peak
widths are clearly subrecoil.

0.0 0.5
t

1.0

cm
1.5

FIG. 3. Profiles of the atomic position distributions along the
dotted line of Fig. 2 with and without VSCPT cooling.
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Figure IV.20. Principle of Raman cooling. Left, first phase: a light pulse transfers
atoms of a given velocity class from the state |g1⟩ to the state |g2⟩. Right, second
phase: a pumping beam send the atoms back to |g1⟩. The momentum balance over
the cycle narrows the width of the velocity distribution.

The corresponding momentum transfer, q = ℏ(k1 − k2), can be ad-
justed by modifying the angle between the wave vectors k1 and k2.
The Raman detuning ∆ = ∆1 −∆2 and the time variation of the cou-
pling κ(t) induced by this pair of beams are chosen so as to excite
atoms whose velocity lies within a class determined by energy conser-
vation4 (to within ℏ/τ ):

E(g1) + ℏωL,1 +
1

2
Mv2 ≈ E(g2) + ℏωL,2 +

1

2
M(v + q/M)2, (IV.52)

which simplifies to give

v · q = ℏ∆− q2

2M
. (IV.53)

The momentum transfer q is chosen such that it brings the atom’s ve-
locity down to zero (v · q < 0): in a one-dimensional model, if the tar-
geted velocity class is negative, atoms in this class will with high prob-
ability make a transition that changes their velocity from v to v + 2vr,

4Strictly speaking, the energy E(gi) of the state gi must include the light shift δE(gi) of
this state due to laser i (Moler, Weiss, et al. 1992). However, the contributions of δE(g1) and
δE(g2) to (IV.52) offset each other if we take κ1 = κ2 and ∆1 ≈ ∆2.
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accompanied by the transition |g1⟩ → |g2⟩, whereas atoms outside this
class will be unaffected and remain in |g1⟩ (figure IV.21, middle).

• The second phase consists of repumping all atoms from |g2⟩ to |g1⟩. A
repumping beam resonantly couples the state |g2⟩ to the excited state
|e⟩ (figure IV.20). Once in the state |e⟩, the atom can fall back to |g1⟩
or |g2⟩. If it falls on |g1⟩, the desired pumping is obtained and the pro-
cess stops. If it falls on |g2⟩, it can reabsorb a photon from the pump-
ing beam, and so on. The momentum transferred during an optical
pumping process is ℏ(krep. − kfluo.), where kfluo. is the wave vector of
the spontaneously emitted photon (figure IV.21, bottom).

We repeat this sequence, varying the class of atoms involved in the Ra-
man pulse (figure IV.22): we can address atoms with positive or negative
velocity along different spatial axes, closer or further from zero velocity.
Ultimately, we hope to accumulate a large number of atoms around v = 0.

4-2 Velocity selectivity

To determine precisely the velocity class affected by a given Raman pulse,
let us consider a one-dimensional model with k1 = −kuz , k2 = +kuz as
shown in figure IV.10. Let us take an atom with initial velocity v and write
its internal state as

|ψ(t)⟩ = α1(t)|g1⟩+ α2(t)|g2⟩, α1(0) = 1, α2(0) = 0. (IV.54)

As indicated above, we are neglecting the population of the state |e⟩, which
is legitimate if the Rabi frequencies κj are small compared with the de-
tunings ∆j . The time evolution of the coefficients αj is given by the
Schrödinger equation

iα̇1 =
∆v

2
α1 +

κ∗(t)
2

α2, iα̇2 =
κ(t)

2
α1 −

∆v

2
α2, (IV.55)

where the velocity-dependent detuning ∆v is given by:

∆v = ∆+ 2k(v − vr). (IV.56)

The general solution to this equation requires a numerical treatment, but
an analytical solution can be obtained if we restrict ourselves to the case of

initial distributions state g2

state g2

state g2

state g1

state g1

state g1

after the Raman pulse

after repumping

v

v

v

0

0

0

Figure IV.21. Evolution of the velocity distribution during the two phases of Ra-
man cooling: selective velocity transfer from g1 to g2, then repumping from g2 to
g1.
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Figure IV.22. Excitation rates for the different Raman pulses used by Kasevich &
Chu (1992). The zero-velocity class remains "protected".

a weak excitation |α1| ∼ 1, |α2| ≪ 1 for any velocity:

α1(t) ≈ e−i∆vt/2, α2(t) ≈ −
i

2
ei∆vt/2

∫ t

0

κ(t′) e−i∆vt
′
dt′. (IV.57)

Let us take a pulse of duration τ . At the end of this pulse, the excitation
probability of an atom of velocity v is:

P (v) = |α2(v)|2 ≈
1

4

∣∣∣∣∫ τ

0

κ(t) e−i∆vt dt

∣∣∣∣2 . (IV.58)

The variation of this probability with velocity is therefore directly linked
to the Fourier transform of the pulse Rabi frequency.

4-3 Which form to choose for the pulse?

The simplest form for the intensity of the Raman pulse is a square function
(figure IV.23)

κ(t) = κ if 0 < t < τ, (IV.59)

whose Fourier transform is a cardinal sine, so that

P (v) ∝ sin2[(∆̄ + 2kv)τ/2]

(∆̄ + 2kv)2
(IV.60)

where ∆̄ = ∆− 2kvr [cf. (IV.56)]. We will therefore essentially excite atoms
with velocities in the range

−∆̄

2
− π

τ
< kv < −∆̄

2
+
π

τ
, (IV.61)

as well as, but to a lesser extent, atoms whose velocity is located in the
lateral lobes of the cardinal sine.

We will see later how to take advantage of the well-marked zeros of
the cardinal sine. However, as there is a risk that the parasitic excitation
created by the side lobes may generate undesirable effects, it is worth ex-
ploring the possibility of using other functions κ(t), with a Fourier trans-
form that decreases faster on either side of its maximum. This was done
in the first series of Raman cooling experiments, carried out at Stanford
between 1992 and 1994 (Kasevich & Chu 1992; Davidson, Lee, et al. 1994).
The temporal shape of the Raman pulses was a Blackman profile, i.e. the
apodization function given by:

f(t) = 0.42 + 0.5 cos(2πt/τ) + 0.08 cos(4πt/τ) for |t| < τ/2, (IV.62)

which has the merit of having a Fourier transform with low-amplitude
wings (cf. figure IV.23): one can thus efficiently excite a velocity class of
adjustable center v̄ and width at half-maximum ∆v, which guarantees an
extremely reduced probability (by at least six orders of magnitude) of ex-
citation for any velocity class more than 4∆v away from v̄.

This technique led to velocity distributions5 much narrower than the
recoil velocity in one dimension, with ∆v ≈ 0.2 vr (Kasevich & Chu 1992).
In two and three dimensions, performance was more modest, with ∆v ≈
1.2 vr and ∆v ≈ 2.3 vr, respectively. Among the reasons given for this drop
in performance, we find the point we studied in § 3: filling the velocity
class around v = 0 is all the slower the higher the dimensionality; a defect
that tends to depopulate this velocity class (during the repumping process,
for example) will therefore have a more sensitive effect at 2 or 3 D than at
1D. Furthermore, implementing the protocol described above requires, in
principle, alternating pairs of Raman beams in all the spatial directions
concerned, which is technically complicated to implement. Davidson, Lee,

5The widths given in the following are widths at 1/
√
e, which coincide with the r.m.s.

width for a Gaussian distribution.
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Figure IV.23. Two possible envelope shapes for Raman pulses, with associated
transition probability (IV.58), in linear and logarithmic scale. Top: square pulse
with a cardinal sine Fourier transform. Bottom: Blackman pulse, with a Fourier
spectrum much tighter than the cardinal sine. Both types of pulses have the same
duration τ = 1.3M/ℏk2. Figures from Jakob Reichel’s doctoral thesis, Université
Paris 6 (1996).

et al. (1994) have therefore simplified this procedure by applying several
Raman beams simultaneously. This can give rise to spurious non-linear
phenomena, which also contribute to increasing the departure rate from
the zero-velocity class.

Another way of achieving three-dimensional cooling is to work with
trapped atoms. In this case, one can simply cool one direction of space and
take advantage of the redistribution of energy with the other two directions
due to the ergodicity of the atoms’ motion in the trap. Still using Blackman
pulses, the Stanford group achieved 3D cooling leading to a velocity width
of 0.65 vr (Lee, Adams, et al. 1996; Lee & Chu 1998). A similar experiment
was carried out at ENS by Perrin, Kuhn, et al. (1999), using pulses with a
frequency sweep. In all these studies, the final phase-space density was of
the order of a few 10−3, so still quite far from the Bose-Einstein condensa-
tion threshold. However, it should be noted that these experiments were
carried out on atoms prepared in levels that we now know are not favor-
able if we are looking for high spatial densities: sodium in its ground level
F = 2 or cesium in its ground level F = 4. In addition, it seems that heat-
ing related to multiple scattering of the photon emitted during the optical
pumping process was present in these experiments. This heating could
be reduced by using highly anisotropic geometries, favoring rapid photon
exit.

Finally, let us return to square pulses and the corresponding excitation
law given by a cardinal sine. Since the ultimate goal is to accumulate atoms
in the vicinity of v = 0, the shape of this cardinal sine, with its marked
lobes, is not problematic, provided one takes care to always choose the
pair (∆̄, τ) such that the zero-velocity class coincides with the first zero of
P (v):

|∆̄|τ = 2π. (IV.63)

This technique has been successfully implemented in both one and two
dimensions. In one dimension, the LKB group at ENS (Reichel, Bardou, et
al. 1995) obtained a velocity distribution with a width of 0.12 (1) vr, notably
narrower than that measured with Blackman pulses at Stanford (0.2 (1)vr),
and which is still a record. Thanks to these very narrow distributions, the
ENS group was then able to observe Bloch oscillations in an optical lattice,
a phenomenon we described in the 2012-13 lecture series (Ben Dahan, Peik,
et al. 1996). In two dimensions, the NIST group produced a distribution of
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the atoms are compressed in a peak 7.5 times higher than
the initial distribution [Fig. 2(a)]. The velocity spread
(half-width at I/~e) is 0.34vR, much narrower than the
width (=4vg) of the hole in I'(v). This confirms that
6 vH can be much smaller than vo, as already indicated by
Eq. (3). The corresponding temperature T,rr = TR/8 =
25 nK is equivalent to our previous result using sequences
of eight Blackman pulses [13],but with a better fraction
of atoms in the cold peak and a considerably simpler
pulse sequence. Moreover, the time evolution of the
velocity spread obeys very well the 0 't law of Eq. (3)
[Fig. 2(b)]. When the square pulses are replaced by
Blackman pulses, centered at the same frequency and
twice as long as the square pulses to maintain the same
characteristic width, higher temperatures and lower peak
heights are obtained for all interaction times [Fig. 2(b)].
In this case, the evolution of the velocity spread is well
fitted by a 0' ' law, as predicted by Eq. (3).

In order to lower further the temperature, one would
like to decrease the width vo of the hole in I'(v)
since this produces a colder final distribution [Eq. (3)].
However, when vo is decreased, the pulse is longer in
time, it interacts with a smaller fraction of the velocity
distribution, and it ultimately gives fewer chances for a
given atom to fall near v = 0 by spontaneous emission.
Furthermore, atoms can also accumulate in the outermost
zeros of the excitation profile as can be seen already
near 8vg in Fig. 2(a). The immediate solution to this
problem is to use a cooling sequence made of two pulses:
a long pulse for good filtering (vo small) and a short pulse
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FIG. 3. (a) Raman cooling with 30 p, s pulses centered at
~4v~ and 120 p, s pulses centered at ~vR, 26 repetitions.
The central peak has a I/~e half-width of 0.12vg (an 8%
contribution due to the probe linewidth has been subtracted by
deconvolution). This corresponds to an effective temperature
of T,ff = 2.8 nK. The dashed curve is the velocity distribution
without Raman cooling, corresponding to T,rr = 6.0 p, K. (b)
The Raman pulses used for the above result (for clarity, only
the pulses on the negative-velocity side are shown). As the
available power limits the peak excitation probability of the
30 p, s pulse to about 0.4, it is repeated 3 times before the
120 p, s pulse is applied.

(7 (vtrap Bvo pt)) 0 (4)

The problem is now fully characterized by the two
equations (3), (4), having two parameters (0', v,„) and
two unknowns (vo pt or equivalently Hp pt Bvo pt).
Simple algebra gives the optimum values

".:"= ('..")"'(,")'"
where rR = 2M/Rk is the recoil time, and

6ve opt (2vm~x l &/3 2/3

(6)
vR ( vR ) 20

Note that Bvo,pt decreases as 0 t, whereas BvH
varies only as 0' 't for a fixed vent which is not optimized
for each value of O. For v,„=2vR, 0 = 10 ms =
130rR (the effective total time of the cooling pulses in the
experiment) the result is vo, pt

= 0.6vz and BvQ pt

covering a wide velocity range, in order to recycle those
atoms which do not interact with the narrow pulse. As
the recycling pulse is short in duration, its contribution
to the total cooling time is small. Raman cooling with
two square pulses is shown in Fig. 3(a). The sequence
consists of a 120 p, s pulse centered at v = ~vR and a
30 p, s pulse at v = ~4vR and is repeated 26 times. The
cold peak has a I/~e velocity spread of (0.12 ~ 0.01)vR,
corresponding to T,rr = 2.8 ~ 0.5 nK (TR/73), nearly a
factor of 10 lower than in the one-pulse cooling scheme.
The peak is 10 times as high as the initial distribution and
contains 35% of the total number of atoms. Narrower
filtering pulses lead to still lower temperatures, but with
a reduced gain at v = 0. For instance, T,ff = 0.8 nK =
Tg/250 has been observed with a peak height increase of
6.4, using a filtering pulse of 400 p, s duration.

In the search of an optimum square pulse cooling
configuration, a compromise must be made between the
fraction of cooled atoms and the width of the cooled
distribution. We present here a simplified derivation of
the width 6vH pt of the narrowest peak that can be filled
significantly in a given time 0, i.e., that accumulates
=50% of the atoms. A rigorous calculation optimizing the
height of the peak at v = 0 gives the same results, within
prefactors of order 1 [14]. The single important parameter
of the pulse sequence is the duration 00 of the filtering
pulse (the narrowest pulse). The excitation at ~v~ ~ vo
is realized efficiently by much shorter recycling pulses,
whose durations are neglected here. Oo is related to the
width vo of the dip in I'(v) by the condition of the first
zero of the sine function in v = 0 for I', which implies
vr/Ho = 0vo. Adding pulses on both sides of v = 0 leads
to a sequence duration of 7.

O
= 200 and the excitation rate

becomes I'(v = 0) = (v/vo) /2Hn and I'(~v( ~ vn) =
I/(2Ho). The optimization is now done very simply: The
narrowest peak that can be filled is defined by a filling time
just equal to the total time. The filling time being on the
order of the first return time, one has

4577

Figure IV.24. Experimental result by Reichel, Bardou, et al. (1995), showing
1D Raman cooling of cesium atoms with square pulses, such that an atom of zero
velocity has probability 0 of being excited by the Raman transition. The equivalent
temperature is ∼3 nanokelvin.

width 0.39 (5) vr (Boyer, Lising, et al. 2004), which is narrower than the best
performances obtained in 2D or 3D with narrow-line Doppler cooling. To
our knowledge, this Raman cooling experiment with square Raman pulses
has not yet been carried out in three dimensions.
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Chapter V

Sisyphus cooling

The first optical molasses was made in 1985 at Bell Labs with sodium
atoms (Chu, Hollberg, et al. 1985). Precise temperature measurements
were performed at NIST (the National Bureau of Standards –NBS– at the
time) on molasses of the same atomic species by Lett, Watts, et al. (1988b)
and Lett, Phillips, et al. (1989) (figure V.1). The conclusion of these mea-
surements was clear: Doppler cooling alone could not explain the observed
cooling; temperatures were lower than the predicted limit kBT = ℏΓ/2,
and the variation in temperature with laser detuning was not at all in line
with theory. Several cooling models were then developed (Ungar, Weiss,
et al. 1989; Dalibard & Cohen-Tannoudji 1989), with in common the idea of
taking into account more faithfully the structure of the atomic transition,
going beyond the two-level model.

The key point is that for an atom with several ground sublevels, long
time constants may appear, linked to the optical pumping time between
sublevels. These long time constants can be associated with low ener-
gies. In contrast, in the two-level model underlying Doppler cooling, the
only relevant time constant is Γ−1, and the associated energy ℏΓ gives the
limit of Doppler cooling. Of all the 1D models developed at the time, the
most robust is probably the Sisyphus effect, which generalizes almost un-
changed to three dimensions [for a review, see e.g. Grynberg & Robilliard
(2001)]. It is therefore the one we will discuss now in its initial version, be-
fore moving on to recent developments that generalize this type of cooling
to other atomic transitions.

1 The standard Sisyphus model

1-1 The 1/2↔ 3/2 transition

The simplest model for Sisyphus cooling is that of a transition between
a ground state Jg = 1/2 and an excited state Je = 3/2 (figure V.2). The
reason for the choice of this transition is simple: we have seen that the
simplest atomic transition Jg = 0 −→ Je = 1 only gives rise to Doppler
cooling, with a temperature bounded by the Doppler limit (for a broad line)
kBT ≥ ℏΓ/2. The appearance of this lower limit can be linked - although it
is not absolute proof - to the fact that the only time constant then appearing
in the atom’s internal dynamics is the lifetime of the excited state Γ−1. By
moving on to a more complicated atomic structure, particularly for the
ground state, the hope is to see the emergence of new, much longer time
constants. These time constants correspond, for example, to the optical
pumping time from one ground Zeeman |g,±1/2⟩ state to the other.

To create a non-trivial dynamic between these two ground states, which
from now on we will call |g±⟩, it is necessary to place the atom in a situa-
tion where the polarization of light varies in space. Let us limit ourselves
here to a one-dimensional example, with motion along the z axis. The pro-
totype of such a situation corresponds to the superposition of two running
light waves propagating in opposite directions along the z axis, with or-
thogonal linear polarizations ϵx and ϵy (lin⊥lin configuration, figure V.2).
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Figure V.1. First precise temperature measurements in optical molasses (sodium
atoms). The dashed curve represents the prediction for Doppler cooling. Figure
taken from Lett, Watts, et al. (1988b).

The two waves are chosen with the same frequency, the same intensity, and
a relative phase such that the resulting polarization ϵ(z) varies in space as
follows:

ϵ(z) =
1√
2

(
ϵxe

−ikz − iϵye
−ikz

)
=

1√
2
(ϵ− cos(kz)− iϵ+ sin(kz)) , (V.1)

where the complex unit vectors ϵ± = (∓ϵx − iϵy)/
√
2 represent the right

and left circular polarization basis.

The polarization of light therefore evolves continuously and periodi-
cally along the z axis. It is (left-handed) circular (ϵ−) at points z = 0 mod-
ulo λ/2, (right-handed) circular (ϵ+) at points z = λ/4 modulo λ/2, and
elliptical between these points. In particular, it is linear at z = λ/8 modulo
λ/4, along the bisectors of ϵx and ϵy .
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Figure V.2. Atomic transition Jg = 1/2↔ Je = 3/2 and 1D laser configuration
lin⊥lin giving rise to the Sisyphus effect.

1-2 Light shifts and optical pumping

Assuming that the detuning ∆ between the laser beam frequency and the
atomic frequency is large compared to the Rabi frequency κ characterizing
the atom-light coupling, we know that the atom will be predominantly in
one of the two states g±, and we can neglect the time spent in the excited
level. The effect of light on the atom is therefore twofold:

• Light creates a potential that shifts the energies of g± by an amount
that depends on the proportion of σ± light at a given point. The result
is a differential modulation V±(z) of the energies of g±.

• Light induces g+ ↔ g− transitions by spontaneous Raman processes,
i.e. absorption of a photon from one of the two laser waves and
spontaneous emission of a fluorescence photon. The rate of transition
γ+→−(z) from g+ to g− involves the local intensity of σ− light at the
point where the atom is located, and is therefore spatially modulated.
The same applies to the transition rate γ−→+(z) from g− to g+.

Sisyphus cooling will result from the correlation between the potentials
V±(z) and the optical pumping rates γ+→−(z) and γ−→+(z). For a more
quantitative description, let us start by calculating the light shifts V±(z).
To do this, we use the intensity factors (squares of the Clebsch–Gordan
coefficients) shown in figure V.2. At a given point z in space, the level g+
is displaced by a quantity proportional to I+(z) + 1

3I−(z), where I±(z) are
the intensities associated with the polarizations σ± at point z. Similarly, the
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Fig. 7. Variations with velocity v of the force due to polarization gradients in the lin lin configuration for a Jg = 1/2 Je = 3/2 transition
(solid curve). The values of the parameters are Q2 = 0.3r, a = -r. The dotted curve shows sum of the two radiation pressure forces exerted in-
dependently by the two Doppler-shifted counterpropagating waves. The force due to polarization gradients leads to a much higher friction
coefficient (slope at v = 0) but acts on a much narrower velocity range.

D
kBT= - (4.30)

a

Finally, we discuss the validity of the semiclassical approxi-
mation used throughout this calculation.

In order to calculate the exact value of Dp, one could
compute the correlation function of the force operator.'2 "13

For a multilevel atom, such a calculation would be rather
tedious, so that we prefer to use a heuristic calculation here.

There are three main contributions to Dp; the two first
ones are already present for a Jg = 0 Je = 1 transition, 2 '
and the third one is specific of an atom with several ground-
state sublevels:

(i) There are fluctuations of the momentum carried
away by fluorescence photons.

(ii) There are fluctuations in the difference among the
number of photons absorbed in each of the two laser waves.

(iii) There are fluctuations of the instantaneous dipole
force oscillating back and forth between f,/2(z) and f-/ 2 (z) at
a rate 1/Tp.

For a Jg = 0 Je = 1 transition, 2 ' the two first contribu-
tions give for a dipole radiation pattern

(4.31)

nitude for these two contributions in the case of a Jg = 1/2
Je = 3/2 transition. To evaluate the third contribution
(coefficient Dp"), we start from

D = dr[f(t)f(t + T) - 2], (4.32)

which must be calculated for an atom at rest in z (the label z
was omitted for simplification). The force f(t) oscillates
between f,/2(z) and f-.1 2 (z), and its correlation function can
be written as

f(t)f(t + T) = > Y fjP(i, t; j, t + T),
i=+1/2 j=1/2

(4.33)

where P(i, t; j, t + r) represents the probability of being in
state i at time t and in state j at time t + T. The calculation
is then similar to the one done to evaluate the fluctuations of
the dipole force for a two-level atom (Ref. 16, Subsection
4B), and it leads to

Dp 4[f, 2(z)] 21/ 2St(z) II_/ 2St(z)Tp

= 2h2 k2 - so sin4(2kz).

Once this is averaged over a wavelength, it gives

Dp"_ 3 622rDr- Th h2 -So.

(4.34)

(4.35)
We assume that Eq. (4.31) still gives the good order of mag-
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Fig. 2. - Temperature as a function of laser intensity and detuning. a) The lines are least-squares fits 
to those points which for a given detuning are within the range of validity of eq. (1). Insert: lowest 
temperature achieved as a function of detuning, for both polarization configurations. For 181 >>r 
(U2x = 5.3 MHz) the lowest temperature is essentially constant. b) Temperatures of a) plotted against 
Q2/)8(r. The straight iine is a fit to the points with small Q2//8(I'. 181/2n = 10 MHz (il, 20 MHz (O), 
30 MHz (O), 40 MHz (x), 54 MHz (O), 95 MHz (*), 140 MHz (O). 

each detuning, there is a lower l i t  to the intensity for which the molasses can function. As 
the intensity is decreased toward this limit, we observe a udisintegrationm of the molasses 
which manifests itself as a dramatic decrease in the size of the TOF signal and the 
appearance of wide wings on the TOF spectrum. The signal h a l l y  disappears at  an intensity 
which is nearly linear in detuning, and approximately given, to within about 15% for a given 
laser intensity calibration (see below), by 0 2 / ( 6 l r  = (0.6 + 2.W/161). At high intensity 
and for the smallest detunings, we observe a deviation from the linear law mentioned above; 
in this domain, the temperature increases more slowly than the laser intensity. 

In order to further illustrate the agreement with eq. (l), we have replotted in fig. 2b) the 
temperature as a function of 02/)61r. This strikingly demonstrates that the temperature 
depends only on this single parameter and is quite iinear for small values of 02/16(I'. We 
determine C of eq. (1) by calculating C(6)= 161(aTIai) for each 6. Excluding the 
6 =  - 10 MHz data, these C(6) are, as expected from eq. (l), independent of 6, to within a 
standard deviation of 5%. Expressing T in units of iii'lkB, and detuning and Rabi frequency 
in units of the natural width r, C is dimensionless, and for linIllin we find the average 
CI, = 0.45. The lin 1 lin data are similar and give C, = 0.35. 

The lowest measured temperature is (2.5 + 0.6) pK. As shown in the insert of fig. 2, it is 
nearly independent of detuning for 161 > W and we find that it is also independent of the 
polarization choice of the experiment. The corresponding r.m.s. velocity along the vertical 
axis v,.,., = (2kBTIM)lR is only 12.5 mm/s or 3.6 times the single photon recoil velocity 
v,, = hklM. Still narrower TOF peaks with «TB < 2 pK have been obtained but showing 
significantly non-Gaussian character in the wings. 

The uncertainty (standard deviation) of 0.6 pK includes the following contributions. 
Uncertainty in vertical thickness of the slice and the probe: 0.3 pK; uncertainty in the 
calculated effect of the slicing: 0.3 pK; statistical fluctuations in the measured TOF widths: 
0.3 pK; heating by the probe beam, which affects the time an atom spends in the probe: 
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κ2 / |Δ| Γ

z = 0

Figure V.3. Potentials V±(z) created by light on the two ground states g±. The
dark disks indicate the stationary populations for an atom at rest resulting from
optical pumping processes.

level g− is displaced by a quantity proportional to I−(z)+ 1
3I+(z). With an

additive constant of no importance here, the potentials experienced by g±
can be written as follows (figure V.3)

V+(z) = V0 cos
2(kz), V−(z) = V0 sin

2(kz), (V.2)

where the energy V0 is given by V0 = 2
3ℏ(−∆)s0. We note here s0 the

saturation parameter for each of the two running waves:

s0 =
κ2/2

∆2 + Γ2/4
(V.3)

where κ is the Rabi frequency associated with each traveling wave, cal-
culated for a Clebsch–Gordan coefficient equal to 1. The quantity V0 is
positive for negative detuning, which is the sign considered here (as for
Doppler cooling).

We can similarly calculate the rate γ±→∓(z) at which the atom initially
in g± will jump to g∓. We find

γ+→−(z) = γ0 cos
2(kz), γ−→+(z) = γ0 sin

2(kz), (V.4)

with γ0 = 2
9Γs0. The predicted correlation between light shifts and optical

pumping rates is therefore clear.

The equation giving the time evolution of the population P+ at a given
point z is

dP+

dt
= −γ+→−(z)P+ + γ−→+(z)P−, (V.5)

and ditto for P−. Using P+ + P− = 1, this evolution equation can also be
written as

dP+

dt
= −γ0

[
P+ − P stat

+ (z)
]
, (V.6)

where the stationary populations P stat
± (z) for an atom at rest in z are given

by (figure V.3):

P stat
+ (z) = sin2(kz), P stat

− (z) = cos2(kz). (V.7)

This result indicates that the most populated level is always the lower of
the two states g+ and g−. At z = 0, for example, light is polarized along ϵ−
and the atom is optically pumped into the g− state for which V−(z) = 0,
whereas V+(z) = V0 > 0.

1-3 The Sisyphus mechanism

For an atom at rest, we have just seen that optical pumping tends to move
the atom from the top of potential hills to the bottom of valleys. It is this
key point that gives the Sisyphus effect its name (figure V.4). It is easy to
understand why this effect gives rise to cooling: if the atom moves with
a low but non-zero velocity v, it will tend to climb more hills than it de-
scends. Energy conservation is ensured by spontaneous emission: when
an atom climbs a hill of potential V±(z), it converts its kinetic energy into
potential energy. This energy is then carried away by the fluorescence pho-
tons emitted spontaneously during optical pumping processes; these pro-
cesses transfer the atom from a peak of V± to a valley of V∓, and the pho-
tons have, on average, an energy greater than the energy of incident light
wave photons.

This picture generalizes without difficulty to three dimensions, with
an intensity and polarization pattern that can be more or less complicated
depending on the number, direction, and relative phases of the light waves
(Grynberg & Robilliard 2001). The essential point is (i) to maintain the fact
that atomic levels are displaced downwards by a space-dependent amount,
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Figure V.4. Typical evolution of an atom in the bi-valued potential V±(z) for a
velocity of the order of γ0/k.

and (ii) that optical pumping tends to accumulate the atom in the lowest-
energy sublevel. This result is guaranteed if we use a transition Jg ←→
Je = Jg+1 and monochromatic light of negative detuning, ∆ = ωL−ωA <
0.

2 Sisyphus cooling limit

To determine the limit of Sisyphus cooling, we take a Brownian motion
approach, calculating first the friction force acting on the atom, then the
diffusion coefficient for an atom at rest. We will see in the next section (§
3) how to go beyond this simple linear model.

2-1 Friction force and its linearity range

Our Sisyphus cooling model corresponds to a relatively simple problem
of statistical physics: a particle evolves in the bi-valued potential V±(z) by
randomly jumping between the two values with rates γ±(z). Let us con-
sider an atom of velocity v and determine the force acting on it in steady
state. This force is written as a function of the probability P±(z, v) of find-
ing the atom at point z in state g±:

F (z, v) = P+(z, v)F+(z) + P−(z, v)F−(z), (V.8)

where F±(z) are the forces derived from the potentials V±(z):

F±(z) = ±kV0 sin(2kz). (V.9)

To calculate the occupancy probabilities P±(z, v), let us take the evolution
equation (V.6) and look for its forced regime. The latter is obtained by
replacing d

dt by v d
dz , and the solution is written:

P±(z, v) =
1

2

(
1∓ cos(2kz) + (v/vc) sin(2kz)

1 + v2/v2c

)
with 2kvc = γ0.

(V.10)
The force (V.8) averaged over a spatial period is therefore:

F (v) = −Mα
v

1 + v2/v2c
with Mα = k2

V0
γ0
. (V.11)

This is the friction force we are looking for and we can make three com-
ments about it:

• At low velocities, v ≪ vc, we obtain a force linear in velocity F (v) =
−Mαv, as in Brownian motion theory.

• The friction coefficient α is proportional to the ratio of the mean light
shift V0 and the pumping rate γ0. Both quantities are proportional to
light intensity, so α is independent of intensity. More precisely, we
find:

V0 =
2

3
ℏ|∆|s0, γ0 =

2

9
Γs0 −→ Mα = 3 ℏk2

|∆|
Γ
. (V.12)

This value is to be compared with that obtained for Doppler cooling
in the optimum case (∆ = −Γ/2):

MαDop = ℏk2 s0, (V.13)

a result valid only if s0 ≪ 1. In practice, the friction coefficient corre-
sponding to the Sisyphus effect can therefore exceed αDop by several
orders of magnitude.

• The range over which the force is linear in velocity is given by |v| ≪
vc, i.e. kv ≪ 1

9Γs0 or v/γ0 ≪ λ/4π. For the force to be linear in
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Fig. 7. Variations with velocity v of the force due to polarization gradients in the lin lin configuration for a Jg = 1/2 Je = 3/2 transition
(solid curve). The values of the parameters are Q2 = 0.3r, a = -r. The dotted curve shows sum of the two radiation pressure forces exerted in-
dependently by the two Doppler-shifted counterpropagating waves. The force due to polarization gradients leads to a much higher friction
coefficient (slope at v = 0) but acts on a much narrower velocity range.

D
kBT= - (4.30)

a

Finally, we discuss the validity of the semiclassical approxi-
mation used throughout this calculation.

In order to calculate the exact value of Dp, one could
compute the correlation function of the force operator.'2 "13

For a multilevel atom, such a calculation would be rather
tedious, so that we prefer to use a heuristic calculation here.

There are three main contributions to Dp; the two first
ones are already present for a Jg = 0 Je = 1 transition, 2 '
and the third one is specific of an atom with several ground-
state sublevels:

(i) There are fluctuations of the momentum carried
away by fluorescence photons.

(ii) There are fluctuations in the difference among the
number of photons absorbed in each of the two laser waves.

(iii) There are fluctuations of the instantaneous dipole
force oscillating back and forth between f,/2(z) and f-/ 2 (z) at
a rate 1/Tp.

For a Jg = 0 Je = 1 transition, 2 ' the two first contribu-
tions give for a dipole radiation pattern

(4.31)

nitude for these two contributions in the case of a Jg = 1/2
Je = 3/2 transition. To evaluate the third contribution
(coefficient Dp"), we start from

D = dr[f(t)f(t + T) - 2], (4.32)

which must be calculated for an atom at rest in z (the label z
was omitted for simplification). The force f(t) oscillates
between f,/2(z) and f-.1 2 (z), and its correlation function can
be written as

f(t)f(t + T) = > Y fjP(i, t; j, t + T),
i=+1/2 j=1/2

(4.33)

where P(i, t; j, t + r) represents the probability of being in
state i at time t and in state j at time t + T. The calculation
is then similar to the one done to evaluate the fluctuations of
the dipole force for a two-level atom (Ref. 16, Subsection
4B), and it leads to

Dp 4[f, 2(z)] 21/ 2St(z) II_/ 2St(z)Tp

= 2h2 k2 - so sin4(2kz).

Once this is averaged over a wavelength, it gives

Dp"_ 3 622rDr- Th h2 -So.

(4.34)

(4.35)
We assume that Eq. (4.31) still gives the good order of mag-

D- '' 7h 2k2rso.
10

-w
__ _

J. Dalibard and C. Cohen-Tannoudji

Force#(unité#hkΓ/2)#

0.1#

50.1#

Vitesse#(unité#Γ/k)#
1#51#

0
0#

0#

50.01#

0.02#

Figure V.5. Force versus velocity for the Sisyphus effect (solid line) and for the
Doppler effect (dashed line), plotted for ∆ = −Γ and s0 ≪ 1.

velocity, the atom’s displacement during the relaxation time γ−1
0 must

be very small compared to the spatial period of the light potential. In
other words, many optical pumping processes must occur as the atom
travels along a wavelength. This linearity range is proportional to the
saturation parameter s0, i.e. the power of the light waves.

The linearity range for Sisyphus cooling is much smaller than that for
Doppler cooling, where the result is independent of light power (kv ≪ Γ).
For Doppler cooling, on the other hand, the friction coefficient decreases
with decreasing power (figure V.5), whereas it is constant (and large) for
Sisyphe cooling. In fact, in practice both the Doppler and Sisyphus mech-
anisms operate simultaneously, taking advantage of both the wide capture
range of Doppler cooling and the high friction coefficient of Sisyphus cool-
ing.

The force (V.11) has its maximum F = kV0/4 for v = vc, then decreases
as 1/v at high velocities. The maximum force for v = vc corresponds to the
situation where about one optical pumping process occurs per potential
hill, as shown in figure V.4. This force then corresponds (to within a multi-
plicative coefficient) to the maximum force felt in the potentials V±(z) (we

Force&

temps&

Figure V.6. Random evolution of the force felt by a stationary atom at the z point
as it randomly flips between g± states.

could not hope for better!).

The 1/v behavior of the force at high velocities corresponds to a con-
stant power dissipation P = vF (v) :

P =
1

4
V0γ0, (V.14)

i.e. an energy loss of the order of a quarter of the modulation of the poten-
tials V± for each optical pumping process. Again, this corresponds to the
optimum that could be expected for this mechanism. This high-velocity
regime F (v) ∝ 1/v is found in all variants of the Sisyphus effect, whatever
the details of atomic dynamics.

In the rest of this paragraph, we will assume that at equilibrium, the
atomic velocity distribution is essentially contained in the |v| ≪ vc region,
so that the friction force (V.11) is linear in velocity:

F = −Mαv with Mα = 3ℏk2
|∆|
Γ
, (V.15)

as in Brownian motion theory. To determine the equilibrium state, we must
also evaluate the momentum diffusion coefficient Dp to deduce the equi-
librium temperature kBT = Dp/Mα.
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2-2 Momentum diffusion

Recall that the momentum diffusion coefficient Dp gives, to within a factor
of 2, the growth rate of the momentum variance ∆p2 = ⟨p2⟩−⟨p⟩2. To eval-
uate Dp, let us take an atom at rest at a point z. Due to optical pumping
processes, the atom jumps randomly between the levels g+ and g−, expe-
riencing a fluctuating force F (t) = ±kV0 sin(2kz) given by the gradients
of the potentials V±(z) experienced on each level (figure V.6). This fluctu-
ating force is primarily responsible for the atom’s momentum diffusion in
Sisyphus cooling, and is therefore what we will be focusing on first. As
with Doppler cooling, this contribution is supplemented by heating due to
random momentum changes during spontaneous emission processes. We
will take this into account later.

By decomposing the force felt by the atom into an average force F̄ (z)
and a fluctuating force of zero average, the corresponding diffusion coeffi-
cient is obtained from the expression (cf. chapter 1):

Dp(z) =

∫ +∞

0

(
F (z, 0)F (z, t)− F̄ (z)2

)
dt, (V.16)

where the average force F̄ (z) is calculated using stationary populations
(V.7)

F̄ (z) = [P+(z)− P−(z)] kV0 sin(2kz) =
1

2
kV0 sin(4kz). (V.17)

The expression of Dp(z) can then be calculated without difficulty [cf. Dal-
ibard & Cohen-Tannoudji (1989)] and its average over a spatial period is
equal to

Dp,1 =
3

4
ℏ2k2 s0

∆2

Γ
. (V.18)

As mentioned above, to this diffusion coefficient Dp,1 must in principle
be added the contribution Dp,0 due to the random recoils during sponta-
neous emission processes. This contribution is of the same order as that
found for Doppler cooling:

Dp,0 ≈ ℏ2k2s0Γ. (V.19)

However, in most applications, Sisyphus cooling is used with a detuning
significantly greater (in absolute value) than the natural width Γ. We can

therefore neglect the contribution of Dp,0 and concentrate on Dp,1. We will
seeDp,0 reappear when we try to go beyond the linear model for Brownian
motion (§ 3).

2-3 Equilibrium temperature

The equilibrium temperature for Sisyphus cooling is deduced from the fric-
tion and diffusion coefficients found above:

|∆| ≫ Γ : kBT ≈
Dp,1

Mα
≈ 1

4
ℏ|∆|s0 =

ℏκ2

8|∆| . (V.20)

At first glance, it seems that we can obtain an arbitrarily low temperature,
by taking the limit of a Rabi frequency κ→ 0. However, we need to check
that the condition v0 ≪ vc holds for the thermal velocity v0 =

√
kBT/M .

Since v0 varies as κ while vc varies as κ2, this imposes a lower limit on
acceptable Rabi frequencies. For a given detuning ∆, we find that the min-
imum thermal velocity is

Limit of linear model: v0,min ∼ vr
|∆|
Γ

with vr =
ℏk
M
. (V.21)

Residual trapping of atoms. The average force (V.17) felt by an atom at
rest is derived from the potential V0

4 sin2(2kz). The amplitude of this poten-
tial V0

4 = 1
6ℏ|∆|s0 is of the same order as the thermal energy kBT . In this

semi-classical model, we therefore expect a slight modulation of atomic
density with periodicity λ/4, the density being slightly greater where light
has circular polarization (right- or left-handed).

2-4 First experimental results

The prediction (V.20) corresponds to a very simple scaling law: provided
the detuning is taken (in absolute value) to be greater than the natural
width Γ, the equilibrium temperature should only depend on the ratio of
intensity to detuning.
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This prediction is remarkably well verified in practice. We have plotted
on figure V.7 the results of measurements made on a 3D cesium optical mo-
lasses by Salomon, Dalibard, et al. (1990). The selected detunings ranged
from ∆/Γ = −2 to −28 and the law found for this 3-dimensional situation
can be written:

Mv20 = kBT ≈ 0.4
ℏκ2

|∆| , (V.22)

where v0 represents the mean square velocity of the distribution and where
κ denotes the Rabi frequency for each of the 6 travelling waves making
up the optical molasses. A very comparable result was found for the two
rubidium isotopes by Gerz, Hodapp, et al. (1993). The change in coefficient
from 1

8 = 0.125 to 0.4 is due both to the shift from 1D to 3D and to the fact
that the atomic transition involved is considerably more complicated than
the 1/2− 3/2 model. A quantum Monte Carlo simulation taking these two
points into account has made it possible to recover this coefficient with
good accuracy (Castin & Mølmer 1995).

On the other hand, for a given detuning ∆, the limit (V.21) obtained
within the framework of this linear model is not reproduced experimen-
tally. In fact, the experiment gives a more favourable result: effective Sisy-
phus cooling continues to be observed even when the velocity distribu-
tion falls outside the linear range. The temperature limit reached when
the intensity is lowered is in fact the same whatever the detuning chosen:
v0 ∼ some vr, This limit is also verified for sodium ((Lett, Phillips, et al.
1989)) and rubidium (isotopes 85 and 87, Gerz, Hodapp, et al. (1993)). The
explanation for this better-than-expected situation lies in the fact that Sisy-
phus cooling remains effective well beyond the linear regime, as we shall
now see.

3 Beyond the linear model

To go beyond the linear Brownian model, we will use the Liouville equa-
tion formalism, which is well suited to taking into account the bi-valued
potential V±(z) and the jumps between g± levels (Castin, Dalibard, et al.
1991).
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Fig. 7. Variations with velocity v of the force due to polarization gradients in the lin lin configuration for a Jg = 1/2 Je = 3/2 transition
(solid curve). The values of the parameters are Q2 = 0.3r, a = -r. The dotted curve shows sum of the two radiation pressure forces exerted in-
dependently by the two Doppler-shifted counterpropagating waves. The force due to polarization gradients leads to a much higher friction
coefficient (slope at v = 0) but acts on a much narrower velocity range.

D
kBT= - (4.30)

a

Finally, we discuss the validity of the semiclassical approxi-
mation used throughout this calculation.

In order to calculate the exact value of Dp, one could
compute the correlation function of the force operator.'2 "13

For a multilevel atom, such a calculation would be rather
tedious, so that we prefer to use a heuristic calculation here.

There are three main contributions to Dp; the two first
ones are already present for a Jg = 0 Je = 1 transition, 2 '
and the third one is specific of an atom with several ground-
state sublevels:

(i) There are fluctuations of the momentum carried
away by fluorescence photons.

(ii) There are fluctuations in the difference among the
number of photons absorbed in each of the two laser waves.

(iii) There are fluctuations of the instantaneous dipole
force oscillating back and forth between f,/2(z) and f-/ 2 (z) at
a rate 1/Tp.

For a Jg = 0 Je = 1 transition, 2 ' the two first contribu-
tions give for a dipole radiation pattern

(4.31)

nitude for these two contributions in the case of a Jg = 1/2
Je = 3/2 transition. To evaluate the third contribution
(coefficient Dp"), we start from

D = dr[f(t)f(t + T) - 2], (4.32)

which must be calculated for an atom at rest in z (the label z
was omitted for simplification). The force f(t) oscillates
between f,/2(z) and f-.1 2 (z), and its correlation function can
be written as

f(t)f(t + T) = > Y fjP(i, t; j, t + T),
i=+1/2 j=1/2

(4.33)

where P(i, t; j, t + r) represents the probability of being in
state i at time t and in state j at time t + T. The calculation
is then similar to the one done to evaluate the fluctuations of
the dipole force for a two-level atom (Ref. 16, Subsection
4B), and it leads to

Dp 4[f, 2(z)] 21/ 2St(z) II_/ 2St(z)Tp

= 2h2 k2 - so sin4(2kz).

Once this is averaged over a wavelength, it gives

Dp"_ 3 622rDr- Th h2 -So.

(4.34)

(4.35)
We assume that Eq. (4.31) still gives the good order of mag-
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Fig. 2. - Temperature as a function of laser intensity and detuning. a) The lines are least-squares fits 
to those points which for a given detuning are within the range of validity of eq. (1). Insert: lowest 
temperature achieved as a function of detuning, for both polarization configurations. For 181 >>r 
(U2x = 5.3 MHz) the lowest temperature is essentially constant. b) Temperatures of a) plotted against 
Q2/)8(r. The straight iine is a fit to the points with small Q2//8(I'. 181/2n = 10 MHz (il, 20 MHz (O), 
30 MHz (O), 40 MHz (x), 54 MHz (O), 95 MHz (*), 140 MHz (O). 

each detuning, there is a lower l i t  to the intensity for which the molasses can function. As 
the intensity is decreased toward this limit, we observe a udisintegrationm of the molasses 
which manifests itself as a dramatic decrease in the size of the TOF signal and the 
appearance of wide wings on the TOF spectrum. The signal h a l l y  disappears at  an intensity 
which is nearly linear in detuning, and approximately given, to within about 15% for a given 
laser intensity calibration (see below), by 0 2 / ( 6 l r  = (0.6 + 2.W/161). At high intensity 
and for the smallest detunings, we observe a deviation from the linear law mentioned above; 
in this domain, the temperature increases more slowly than the laser intensity. 

In order to further illustrate the agreement with eq. (l), we have replotted in fig. 2b) the 
temperature as a function of 02/)61r. This strikingly demonstrates that the temperature 
depends only on this single parameter and is quite iinear for small values of 02/16(I'. We 
determine C of eq. (1) by calculating C(6)= 161(aTIai) for each 6. Excluding the 
6 =  - 10 MHz data, these C(6) are, as expected from eq. (l), independent of 6, to within a 
standard deviation of 5%. Expressing T in units of iii'lkB, and detuning and Rabi frequency 
in units of the natural width r, C is dimensionless, and for linIllin we find the average 
CI, = 0.45. The lin 1 lin data are similar and give C, = 0.35. 

The lowest measured temperature is (2.5 + 0.6) pK. As shown in the insert of fig. 2, it is 
nearly independent of detuning for 161 > W and we find that it is also independent of the 
polarization choice of the experiment. The corresponding r.m.s. velocity along the vertical 
axis v,.,., = (2kBTIM)lR is only 12.5 mm/s or 3.6 times the single photon recoil velocity 
v,, = hklM. Still narrower TOF peaks with «TB < 2 pK have been obtained but showing 
significantly non-Gaussian character in the wings. 

The uncertainty (standard deviation) of 0.6 pK includes the following contributions. 
Uncertainty in vertical thickness of the slice and the probe: 0.3 pK; uncertainty in the 
calculated effect of the slicing: 0.3 pK; statistical fluctuations in the measured TOF widths: 
0.3 pK; heating by the probe beam, which affects the time an atom spends in the probe: 

0# 0.5# 1#

κ2 / |Δ| Γ

Figure V.7. Variation of temperature in 3D cesium molasses as a function of the
light shift. Figure taken from Salomon, Dalibard, et al. (1990).

3-1 Coupled Liouville equations

For a particle with no internal structure moving in a force field F (z), the
evolution of the distribution P (z, v, t) in phase space is given by Liouville’s
equation:

∂P

∂t
+ v

∂P

∂z
+
F (z)

M

∂P

∂v
= 0. (V.23)

This is equivalent to Newton’s equation of motion for a point particle: ż =
v, Mv̇ = F (z).

For the problem at hand, we need to introduce two distributions
P±(z, v) and take account of jumps from one level to the other:

∂P+

∂t
+ v

∂P+

∂z
+
F+(z)

M

∂P+

∂v
= −γ+(z)P+(z, v) + γ−(z)P−(z, v) (V.24)

and a symmetrical equation for P−(z, v).

Let us look at the steady state of these two coupled equations, which
removes the term in ∂

∂t . Let us also consider the total phase space density
and the difference between the densities of g±:

P (z, v) = P+(z, v) + P−(z, v), δ(z, v) = P+(z, v)− P−(z, v). (V.25)
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Subtracting (V.24) and the equation for P−, we first find, using F− = −F+:

v
∂δ

∂z
+ (γ+ + γ−)δ = −

F+

M

∂P

∂v
+ (γ− − γ+)P. (V.26)

By integrating this equation, we can express the difference δ(z, v) as a func-
tion of the sum P (z′, v). Let us then assume that P is independent of po-
sition in the steady state: P (z, v) ≡ P (v); we saw earlier (§ 2-3) that this
assumption is reasonable, at least in the linear regime. Solving (V.26) is
then straightforward and yields

δ(z, v) =
−v/vc

1 + (v/vc)2

[ (
sin 2kz +

vc
v
cos 2kz

)
P (v)

−kV0
γ0

(
cos 2kz − vc

v
sin 2kz

) dP

dv

]
. (V.27)

We then inject this result into the equation of motion for P (v), obtained by
summing (V.24) and its equivalent for P−. The result is written:

0 =
d

dv

[
−F (v)P (v) + Dp(v)

M

dP

dv

]
(V.28)

where the force F (v) is identical to that already found in (V.11) for a motion
at constant v velocity:

F (v) = −Mα
v

1 + v2/v2c
with Mα = k2

V0
γ0
, (V.29)

and where the velocity-dependent diffusion coefficient Dp(v) is:

Dp(v) =
Dp,1

1 + v2/v2c
with Dp,1 = ℏ2k2s0

∆2

Γ
. (V.30)

We recover here the momentum diffusion coefficient Dp,1, associated with
fluctuations in the dipole force when the atom at rest randomly tilts be-
tween g±, which has already been calculated in (V.18)1. Remember that
we have so far neglected the diffusion coefficient linked to the random re-
coil accompanying spontaneous emission processes; this contribution will
soon make its reappearance when we come to the question of the ultimate
limit of Sisyphus cooling.

1There is a 4/3 factor between the expression found here for Dp1 and that of (V.18). This
factor is linked to the approximation made here of a strictly uniform density (Castin, Dalibard,
et al. 1991).

3-2 Stationary state

Solving (V.28) is straightforward:

P (v) ∝ exp

(∫ v

0

MF (v′)
Dp(v′)

dv′
)
. (V.31)

We note that the 1+ v2/v2c denominator that appears in the force F (v) out-
side the linearity range is offset by the same denominator inD(v). The ratio
F (v′)/D(v′) remains a linear function of v′, so the stationary distribution
remains Gaussian:

P (v) ∝ exp(−v2/2v20) with Mv20 =
1

3
ℏ|∆|s0. (V.32)

This result explains why we experimentally find low r.m.s. velocities, of
the order of a few recoil velocities, well outside the range of validity (V.21)
initially predicted for large detunings.

So what is the true limit of validity of the result (V.32) for the equilib-
rium temperature of Sisyphus cooling? To determine it, we need to go back
to the two heating sources present in this mechanism. In the foregoing, we
have taken into account momentum diffusion due to dipole force fluctua-
tions. On the other hand, as we have indicated on several occasions, we
have neglected the random kicks of amplitude ℏk caused by spontaneous
emission processes. If we also take this second process into account, we
have to replace the diffusion coefficient (V.30) by:

Dp(v) =
Dp,1

1 + v2/v2c
+Dp,0 where Dp,0 = ϵ ℏ2k2s0Γ, (V.33)

where the value of the multiplicative coefficient ϵ, taking into account the
various branching factors between Zeeman sublevels, is ϵ = 11

18 .

Solving (V.28) is then a little more complicated, but no great difficulty.
We find

P (v) ∝ 1

(1 + v2/v̄2c )
A

with
v̄c
vr

= ξ1
V0
Er
, A = ξ2

V0
Er

(V.34)

i.e. the power of a Lorentzian function. The dimensionless numbers ξ1
and ξ2 are respectively equal to 1√

88
≈ 0.11 and 1

44 ≈ 0.023. The result is
therefore a function of a single physical parameter, the ratio V0/Er.
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where ER = h2k2/2M is the recoil energy. We see from (7) that our treatment is valid, for a 
given potential depth Uo, in the limit of large detunings. This is known experimentally to 
lead to the lowest temperatures [3]. Classically, this situation corresponds to the case of 
particles performing a large number of oscillations on a given potential U+(z) or U-(2) before 
jumping to the other one. 

When (7) is satisfied, the procedure is straightforward. We first look for the eigenstates 
and the energy spectrum of Ho. We fhd, as usual for periodic potentials, altemating bands 
of allowed and forbidden energies (fig. lc)). The eigenstates can be labeiled as In, q, E), 
where n is an integer 3 O labelling the band, and where E = f 1 stands for the intemal state 
g,. q is the Bloch index, chosen in the first Brillouin zone (- k < q <  k), and which takes ' 
discrete values since we use here standard periodic boundary conditions in a box with a size 
large compared to the spatial period hl2. We note that the two states ln, q, +) have the 
same energy En,, due to the symrpetry between U*. This eigenvalue problem can be cast 

' 

into a universal one (Mathieu equation) if one expresses both Uo and E, ,  in terms of the 
recoil energy ER (fig. 2a)) ('). For a ~typical* laser cooling situation, Uo = 100ER, obtained 
with cesium atoms for instance with 6= - 20r and D = 1.W, one fhds o,IZx- 40 kHz, 
with 6 bands corresponding to bound states (E, ,  < - Uo/2); the width of the lowest band, 
n = O, is extremely small (< 10-6ER). The number of such ~bound bands* increases as v m ,  as does the splitting ho, between two adjacent bands. 

Now we take into account the relaxation part of (3), which causes transitions between the 
various In, q, E) (fig. lc)). Since 70 is very small compared to o,, we can use a secular 
approximation and assume that a is diagonal in the basis ln, q, E)  in steady  tat te(^). 
Averaging (5) in a given ln, q, E), we find the foilowing relation between the steady-state 

Kg. 2. - a) Band structure of the energy spectrum of Ho, plotted as a fundion of the potential depth 
Uo. The shaded areas correspond to aiiowed energies. For a given Uo, the energies above - Uo/2 
corresponding to an above-bamer motion (see eq. (2)) are mostly allowed (quasi-free motion). On the 
opposite, energy bands corresponduig to a bound classicai motion (- 3Uo/2 < E < - Uo/2) are very 
narrow except in the immediate vicinity of - Uo/2. b) Steady-state population of the various energy 
bands, as a fundion of Uo. c) Steady-state kinetic energies EK = d.ms./2M and Ei( = 6p2,/2M (where 
Gp, is the halfwidth at 1 1 6  of the momentum distribution) as a fundion of Uo. These two quantities 
would be equal for Gaussian momentum distributions. 

(') A similar treatment has been applied to the case of a Blevel atom moving in a standing wave, in 
the absence of spontaneous emission 1101. 

(9 If u is a solution of (3) in steady state, then  TUT^, where T is the A/2 spatial translation operator, 
is also a solution. The uniqueness of steady state therefore irnplies u =  TUT^, so that any nondiagonal 
matrix element inside a band (n, ql,  E 1 uln, q2, o) is zero, although the secular approximation 
argument cannot be applied to it. On the other hand, one can show that the spatial coherence of u in 
stesdy state is restricted to a m i o n  of wavelength b u s e  of spontaneous ernission processes. 

Figure V.8. Result of a numerical calculation taking into account the quantum
character of atomic motion in the bi-valued potential V±(z), with jumps between
g+ and g− caused by spontaneous emission processes. Left: populations of dif-
ferent energy bands as a function of the ratio V0/Er. Right: Variation in mean
kinetic energy Mv̄2/2 in units of Er, with two possible definitions for v̄: the mean
square velocity

√
⟨v2⟩ and the width at 1/

√
e of the velocity distribution. These

two quantities coincide for a Gaussian; here, the second definition gives a lower
energy than the first. Figure taken from Castin & Dalibard (1991).

This power-of-Lorentzian distribution is an interesting generalization
of the Maxwell-Boltzmann Gaussian distribution. When the power A of
the Lorentzian is large in front of 1, i.e. V0 ≫ Er, the significantly popu-
lated velocity classes are small in front of v̄c and we then recover the Gaus-
sian function of (V.32):

(1 + v2/v̄2c )
−A = exp

[
−A ln(1 + v2/v̄2c )

]
≈ exp

[
−Av2/v̄2c

]
. (V.35)

On the other hand, if we decrease the ratio V0/Er, and therefore the ex-
ponent A, the wings of the distribution become more pronounced and we
finally reach, for A = 3/2, a distribution for which the mean kinetic en-
ergy M⟨v2⟩/2 is no longer defined. For A < 1/2, the distribution itself can
no longer be normalized, which means that there is no stationary regime:
particle velocities will increase indefinitely with time, as the Sisyphus mo-
lasses is not strong enough to keep them close to zero velocity.

3-3 Quantum approach

To go a step further and get away from the various approximations made
above, in particular the assumption of a distribution P (z, v) uniform in z,
it is convenient to run a numerical simulation of classical particle motion
on this bi-valued potential V±(z). This simulation leads to a minimum
r.m.s. velocity of the order of 6 vr, in good agreement with the previous
analytical model (Castin, Dalibard, et al. 1991). However, when the r.m.s.
velocity is down to a few recoil velocities, the de Broglie wavelength of
the atoms becomes a significant fraction of the optical wavelength λ. This
raises legitimate questions as to the validity of the preceding semi-classical
treatment, which used the concept of the atom’s position z defined to a
precision much better than λ.

To go beyond this, a quantum treatment of the atom’s motion is re-
quired, introducing the energy bands corresponding to the eigenstates in
the periodic potential and the transfer rates between bands due to spon-
taneous emission processes. This treatment performed by Castin & Dal-
ibard (1991) confirmed the conclusions reached here on the limits of cool-
ing, while at the same time refining them. The accumulated population in
the ground band is found to be as high as ∼ 30% (figure V.8, left). More-
over, this treatment confirmed the non-Gaussian character of the velocity
distribution for relatively low values of V0/Er. The minimum root-mean-
square velocity is of the order of 5.5 vr, while the width at 1/

√
e, which

should be equal to the previous one for a Gaussian distribution, can be as
low as 2.2 vr (figure V.8, right).

3-4 Experimental results

We have already described the first experimental results obtained on cae-
sium (figure V.7), which confirmed the general law kBT ∝ V0. An example
of the velocity distribution obtained for a shallow depth V0 is shown in
figure V.9. We can see that this distribution deviates significantly from a
Gaussian, and that it is very well fitted by a power of Lorentzian, with
A ≈ 2 here. The width at 1/

√
e of the velocity distribution is very narrow,

of the order of only 2 vr.

One of the major advantages of Sisyphus cooling, in addition to its very
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FIG. 1. (a) Velocity distribution of the atoms in the moving
frame. The fit with a square of a Lorentzian (see text) cannot be
distinguished from the data (solid line). The Gaussian fit (dotted
line) is clearly not adequate. (b) Fraction of detected atoms as a
function of the launch velocity (squares). Solid line: numerical
simulation. Dotted line: Gaussian velocity distribution.

n̄ !
P

j n̄j . Typically, in case (i) with Nhigh ! 4.3 3 107,
n̄ ! 1.5 3 107 cm3.

Figure 2 shows the differential measurement of the
clock frequency shift as a function of the cavity detuning
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FIG. 2. Relative frequency shift vs cavity detuning for DN !
3.5 3 107 in case (i). Solid line: fit from Eq. (2).

Dncav with respect to the atomic resonance, for atoms
initially selected in j1, 0!, with Nhigh " 4.3 3 107 en-
tering the microwave cavity and Nlow " 0.8 3 107. The
simulation shows that this modulates the effective density
by a factor of #3.3. The frequency and quality factor of
the cavity are measured with an uncertainty of 20 kHz and
4%, respectively, and the cavity is tuned by temperature
[16]. The solid line is a least squares fit of the data using
the following function:

dn$n ! A% f&Dncav'DN 1 BDn̄( , (2)

where A and B are the free parameters of the fit, and
DN ! Nhigh 2 Nlow [17]. f&Dncav' is the calculated dis-
persive line shape of the cavity pulling effect for a single
atom in the cavity. A is a common scale factor on the atom
number and is expected to be 1. We find A ! 1.26&14'
and B ! 27.2&20.0' 3 10224 cm3. Thus, the number of
atoms determined by the cavity pulling effect has an un-
certainty of 11% and agrees with the measurements de-
scribed above, within the combined error bars. This more
precise determination of N is now used for the evaluation
of the collisional shift. B, the collisional shift coefficient,
is surprisingly consistent with zero even with a frequency
standard deviation of 3 3 10216 given by the fit. Thus
in case (i), at a density of 1.5 3 107, 87Rb exhibits no
detectable shift [Fig. 3(i)], whereas 133Cs would exhibit a
shift of 3 3 10214.

Figure 3 summarizes the collisional shifts measure-
ments versus the effective density n̄ [18]. By contrast
to case (i), data recorded in cases (ii) and (iii) show
a clear dependence with the density after subtracting
the cavity pulling effect. The measured value in case
(ii) 250&10' &122

234' 3 10224 cm3 is in reasonable agree-
ment with 256 3 10224 cm3 (Ref. [10]) and 233 3
10224 cm3 (Ref. [12]). The first set of parentheses refers
to the frequency statistical uncertainty (1 standard devia-
tion); the second set refers to the linear combination of
frequency uncertainty and density calibration uncertainty.
From variations of the parameters in the simulation and
experimental calibrations, we deduce a 35% type B
uncertainty on our density. Adding quadratically the
11% statistical uncertainty on atom number, we get a
40% combined uncertainty on the density. This corre-
sponds to a scale factor of 1.4 and 1$1.4 on the density
axis of Fig. 3, defining the acceptance domain of the
measurements (dotted lines). In case (iii), the agree-
ment is similar. We find 260&16' &129

246' 3 10224 cm3

to be compared to 268 3 10224 cm3 (Ref. [10]) and
241 3 10224 cm3 (Ref. [12]). Finally, our data in case
(i), 27.2&20.0' &125

231' 3 10224, show a disagreement at
#3s with the theory of Ref. [10] and seem to favor the
more recent theory of Ref. [12].

In summary, the smallness of the 87Rb clock transition
collisional shift makes this atom very attractive for
high accuracy microwave frequency standards. When

3119

Figure V.9. Velocity distribution of 87Rb atoms cooled in 3D optical molasses with
detuning ∆ = −5Γ. The effective temperature is 1.2µK, i.e. a half-width at 1/

√
e

of only 1.8 vr. Note, however, that the distribution is clearly not Gaussian: the best
fit by a Gaussian is given by the dotted line, while fit by a power of Lorentzian,
in this case with exponent A = 2, gives a result perfectly superimposed on the
experimental curve. Image taken from Sortais, Bize, et al. (2000).

low temperature limit, is its robustness. The only requirement is to pre-
serve the essential ingredient - a different modulation of the Zeeman sub-
levels, with optical pumping preferably towards the lowest level. Sisyphus
cooling therefore continues to work when atoms are placed in a magneto-
optical trap: measurements by Drewsen, Laurent, et al. (1994) and Cooper,
Hillenbrand, et al. (1994) have shown temperatures well below the Doppler
limit, albeit with a rapid increase in this temperature with the number of
atoms trapped.

Sisyphus cooling also remains operational when the atoms are im-
mersed in an additional optical lattice. The combination of Sisyphus cool-
ing and a lattice that is highly detuned from the atomic resonance makes
it possible to create atomic microscopes, i.e. devices that enable the vi-
sualization of atoms localized at lattice sites. Sisyphus cooling fulfils two
functions: (i) cooling the atoms to a temperature well below the energy
barrier between two sites, so that a given atom remains localized at the
same site for the duration of the experiment; (ii) ensuring that the atom
continuously emits light, which can be detected via a microscope objective
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x

y

z

x

y

z

4.9 µm

t = 0 s

t = 3 s

Figure 2 Photographs taken in turn of each of three adjacent lattice planes before and after a 3 s delay. Each small bright spot is due to a single atom. We observe the
lattice from the negative z axis. The haze in each photo is from atoms trapped in out-of-focus lattice planes. Atoms in the central areas of each image do not hop in 3 s,
although some hopping can be seen near the edges and a few atoms are lost to background-gas collisions. The out-of-focus contribution from atoms in the central plane can
in many cases be discerned in images of the adjacent planes, and vice versa. A 500ms exposure was used. The display is a linear grey scale, with no image processing.

We use a diVraction-limited objective outside the vacuum cell. Its
depth of field, 2.8 µm, is suYciently shallow that only one plane
of atoms is in focus at a time (see the Methods section). We image
one plane, then focus on the next plane by axially translating the
objective with a piezoelectric transducer, and then image again.
Figure 2 shows three adjacent lattice planes before and after a 3 s
delay. Each bright spot is due to a single atom. In the central region
of the lattice, the CCD detects ⇠3,300 photons per atom during the
500 ms exposure time (consistent with the calculated value). The
photon number per atom varies slightly across the lattice owing to
the spatial profile of the cooling beams. The diVuse light in Fig. 2
comes from trapped atoms in out-of-focus planes.

By comparing the image of each plane with the corresponding
image 3 s later, we see that no atoms in the central ⇠80 lattice sites
of each plane have changed sites. Similar measurements of other
lattice planes reveal no site hopping from roughly the 500 central
sites. Some atoms at the shallower edges of the lattice move, and
some atoms are lost to background-gas collisions, which occur at a
rate per atom of 10�2 s�1.

To determine how likely it is for an atom in the central region
to site-hop, we vary the depth of the confining potential due to the
lattice light, U0. We model site hopping as an Arrhenius process23,
where the probability that a particle hops to an adjacent site is

dictated by the ratio of its temperature to an activation energy,
assuming a Maxwell–Boltzmann distribution. Here U0 plays the
role of the activation energy. The tunnelling probability is negligible
for these lattice spacings and depths, so only thermal hopping
is relevant. The energy distribution of the atoms is imposed by
laser cooling (see the Methods section), which acts like a thermal
bath. The model holds to the extent that the polarization-gradient
cooling force remains linear in the tails of the distribution. The site
hopping attempt rate, �a, is the rate at which an atom samples the
tail of its energy distribution, which is related to the laser cooling
time. Because the atoms equilibrate with the cooling light and not
the lattice, as in condensed-matter systems23, �a is not directly
related to the trap oscillation frequency, ⌫osc, except that �a must
be smaller than 2⌫osc.

We measure the site-hopping rate in one dimension, �h, by
lowering the power in only one pair of lattice beams and counting
the number of hops in a fixed time interval. We take pictures
every 100 ms for 60 s and count the times an atom in the central
three rows of the lattice moves from one site to another. The
technique and analysis are similar to those used in real-time
scanning tunnelling microscopy studies of diVusion on surfaces24,
except that we constrain the hopping to one dimension. The total
number of hops is normalized by the average number of atoms in

nature physics VOL 3 AUGUST 2007 www.nature.com/naturephysics 557
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Figure V.10. Sisyphus cooling of cesium atoms trapped in a large-period optical
lattice (4.9µm). Each light point corresponds to a single atom. The estimated
temperature is 10µK and the lattice depth 165µK. Image extracted from Nelson,
Li, et al. (2007).

and a CCD camera. In this way, the atoms are individually observed, the
experiment being limited only by the optical resolution of the microscope
objective, which must be able to separate two adjacent sites. An example
is shown in figure V.10, for a relatively large-period lattice∼ 5µm (Nelson,
Li, et al. 2007). This experiment was then repeated and improved to image
atoms in a lattice with a period smaller than 1µm (Bakr, Peng, et al. 2009;
Sherson, Weitenberg, et al. 2010).

Finally, note that we have concentrated on the case of Sisyphus cooling
in a periodic potential. However, this mechanism can also be used as a
single-shot process, as in the inelastic bouncing of atoms in an evanescent
wave on the surface of a prism (Desbiolles, Arndt, et al. 1996; Ovchinnikov,
Manek, et al. 1997). The emission of a single fluorescence photon enables
the dissipation of a significant amount of energy, equal to the difference in
potential energy between the two internal sublevels under consideration.
This type of mechanism has also been used to cool fluoromethane (CH3F)
molecules electrostatically confined by their electric dipole moment (Zep-
penfeld, Englert, et al. 2012).
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Force&

temps&

from the total internal reflection of a laser running wave ~Fig.
1!. This wave is linearly polarized parallel to the dielectric
surface; the resulting evanescent field is then linearly polar-
ized and it varies along the vertical direction ~perpendicular
to the dielectric surface! as

E~z !5E0exexp~2kz !, ~1!

where k21 is the decay length of the field amplitude and
E0 the value of the electric field on the interface. We restrict
ourselves here to the analysis of the atomic motion along the
z direction only; a full 3D analysis of this motion will be
given in Sec. III.

The interaction between the field and the atom, which we
model first as a two-level g-e system, is characterized by two
parameters: the detuning d5vL2vA between the laser vL
and the atomic resonance frequency vA for the g-e transi-
tion, and the Rabi frequency V05dE0/2\ , proportional to
the atomic dipole moment d of the g-e transition. We as-
sume here that the level g is stable, and that the level e has
a radiative lifetime 1/G . The atom-field interaction generates
two classes of phenomena @19#. The reactive part of the cou-
pling results in the dipole potential, which coincides with the
ac Stark shift of the ground state g @20# for a weak laser
excitation (V2!G214d2). For d@G , this potential is

Ug~z !5
\V0

2

4d
exp~22kz !. ~2!

The dissipative part of the coupling leads to absorption
and subsequent spontaneous emission of photons. The prob-
ability for a spontaneous process during a time interval dt is
given by

dna5G
V0

2

4d2 exp~22kz !dt . ~3!

The average number of scattered photons during a bounce is
calculated by integrating Eq. ~3! along the classical atomic
trajectory which results in @21,22#

np5
G

d
mv0

\k
, ~4!

where G , v0, m are the atomic natural width, velocity, and
mass, respectively. In the following, we restrict to situations
where np!1 so that np can be considered as the probability
for a scattering event during a bounce.

B. Sisyphus effect in an evanescent field

We consider now a three-level atom, with an unstable
excited state e and two stable ground states. In our experi-
ment, these two states correspond to the hyperfine ground
levels (6s1/2 ,Fg53 and Fg54) of the cesium atom sepa-
rated by D52p39.193 GHz. The excited state corresponds
to the level 6p3/2 , whose hyperfine structure can be ne-
glected since it is small compared with the laser detunings
chosen in the experiment.

The interaction between the atom and the evanescent
wave gives rise to a potential which depends on the ground
state @Fig. 2~a!#:

U3~z !5
\V0

2

4d
exp~22kz !, ~5!

U4~z !5
\V0

2

4~d1D!
exp~22kz !5

d
d1D

U3~z !, ~6!

where d5vL2v3 is the detuning between the laser fre-
quency and the atomic resonance corresponding to the tran-
sition 6s1/2 ,Fg53!6p3/2 . The potential U4(z) is propor-
tional to U3(z), but weaker.

Consider an atom in state Fg53 with kinetic energy
Ei5mv0

2/2 entering into the wave. It experiences the repul-
sive potential, so that its kinetic energy decreases, whereas
its potential energy increases. If we choose the intensity and
the detuning such as to get np!1, the spontaneous emission
process, if it occurs, will preferentially take place in the vi-
cinity of the classical turning point z0, given by
Ei5U3(z0) ~see Fig. 2!. The atom may then fall back in
either one of the two ground states.

FIG. 1. Atoms are dropped from a MOT located 3.2 mm above
a mirror formed by a laser evanescent wave. They are detected
through the absorption of a probe laser beam located in the vicinity
of the mirror surface.

FIG. 2. Sisyphus cooling in the evanescent wave. The laser
detuning with respect to the state Fg53 differs by D/2p59.2 GHz
from that of Fg54. ~a! The potential-energy difference between the
two states depends on the atom position in the evanescent wave.
The atoms are initially prepared in Fg53. If a spontaneous Raman
transition towards Fg54 occurs during the bounce, the atom loses
potential energy and emerges from the evanescent wave mirror with
a velocity reduced with respect to the incident one. ~b! Branching
ratios for the decay to the ground states.
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Figure V.11. Inelastic rebound of atoms on an evanescent laser wave. The two
ground sublevels g1 and g2 experience repulsive potentials of different values. The
atom arrives in the level g1, which is strongly repelled by the surface. It then
undergoes an optical pumping process towards the level g2 in the vicinity of the
surface, and leave on this level g2, which is more weakly repelled than g1. The
total mechanical energy of the atom has therefore decreased in the rebound process
(Desbiolles, Arndt, et al. 1996; Ovchinnikov, Manek, et al. 1997).

4 Gray molasses

The above description of Sisyphus cooling, with a Jg = 1/2 ↔ Je = 3/2
transition, took advantage of the correlation between optical pumping rate
and light shift. The key point was to accumulate the atomic population
at the bottom of the potential valleys. For the Jg = 1/2 ↔ Je = 3/2
transition, this was ensured by taking a negative detuning, i.e. ωL < ωA

(laser on the red of the atomic resonance). For this configuration Jg < Je,
atoms were accumulated in the levels most coupled to light, leading to
maximum fluorescence photon emission. We will now look at the opposite
situation, Jg ≥ Je, where optical pumping tends to accumulate atoms in
states weakly coupled to light.

4-1 The transition Jg = 1/2↔ Je = 1/2

To begin with, let us consider a Jg = 1/2↔ Je = 1/2 transition in the same
one-dimensional lin⊥lin laser configuration as above. Several results will
remain valid; in particular, the light shifts of the two sublevels g± are still
spatially modulated, as are the optical pumping rates (figure V.12). How-

v0 vr

γ0"

v0vt

z

σ+

V(z)

g_ g+ σ- σ+

Jg=1/2

Je=1/2

Figure V.12. Sisyphus cooling for a transition Jg = 1/2↔ Je = 1/2. A positive
detuning must be taken and the atoms accumulate in the ground sublevel least
coupled to light.

ever, the modulation of energy levels takes place with an opposite phase
to the previous case: at a point where the light is σ+ polarized, the g+ level
is not displaced, whereas the g− level is. The phase of the modulation of
optical pumping rates is unchanged: σ+ light always tends to accumulate
atoms in the g+ state.

To achieve Sisyphus cooling, the atoms must accumulate at the bottom
of the valleys. At a point where light is σ+ polarized, the state g+ must
therefore have a lower energy than the state g−. However, the level g+ is
not displaced by light, whereas g− is. We deduce that the light shift of g−
must be upwards, which means that the detuning of the laser must now be
positive: ωL > ωA.

Once this positive detuning has been chosen, the treatment of Sisyphus
cooling for the Jg = 1/2 ↔ Je = 1/2 transition is in every respect similar
to what we saw for the Jg = 1/2 ↔ Je = 3/2 transition, with a bi-valued
potential and optical pumping rates equal (within a numerical factor) to
those given in (V.2) and (V.4). The only difference at this stage is that the
Sisyphus cooling mechanism will oppose the Doppler mechanism (which
is a heating mechanism for ∆ > 0), whereas the Sisyphus and Doppler
mechanisms work together for a transition with Je = Jg +1 and a negative
detuning ∆. However, this point may be negligible if the velocity ranges
associated with the two mechanisms are sufficiently different.
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Figure V.13. A Λ system that emerges in the dynamics of a Jg = 1 ↔ Je = 1
transition illuminated by σ± light.

4-2 The transition Jg = 1↔ Je = 1

The passage from Jg = 1/2 ↔ Je = 1/2 to Jg = 1 ↔ Je = 1 enriches
the problem considerably. The reason is that this transition allows the con-
struction of internal states not coupled to radiation, at any point in space.

Here, we present the proposal originally made by Shahriar, Hemmer,
et al. (1993) and Weidemüller, Esslinger, et al. (1994). This is a 1D con-
figuration in which the amplitudes of the σ± polarizations oscillate in
space as before, but not necessarily in phase opposition. This configura-
tion is achieved using two light waves of the same frequency and intensity,
counter-propagating, each linearly polarized and such that their polariza-
tions make an angle ϕ (we took ϕ = π/2 in § 1). We will call this configura-
tion lin∨ lin.

As we saw in the previous chapter on coherent population trapping, the
fact that light is purely σ± polarized means that internal atomic dynamics
essentially occur in the Λ system (figure V.13): |g,m = −1⟩ ↔ |e,m = 0⟩ ↔
|g,m = +1⟩, with couplings that can be written, for a suitable choice of
z-axis origin:

κ±(z) = κ0 cos(kz ± ϕ/2). (V.36)

Eigenstates and energies for an atom at rest at a point z. We will as-
sume that the ∆ detuning of the light waves is large in front of κ0, so we
can restrict our analysis to the two-dimensional subspace of the ground
level, made up of linear combinations of g±. At any point z in space, we
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Je=1"
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g-, m=-1 g+, m=+1

ψNC
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Figure V.14. Coupled and uncoupled atomic levels in the lin∨ lin configuration.
Motional coupling allows the transition from the uncoupled to the coupled state,
where the levels are close to each other. A second photon scattering process sends
the atom back to the uncoupled state, with a conversion of atomic potential energy
into photon energy [Physical image proposed by C. Cohen-Tannoudji in his 1995-
96 lecture at the Collège de France].

can identify a coupled state and an uncoupled state in this subspace, with
energies ℏωC and ℏωNC respectively:

|ψC⟩ ∝ κ+|g+⟩+ κ−|g−⟩, ℏωC ≈
ℏ
4∆

(
κ2+ + κ2−

)
, (V.37)

|ψNC⟩ ∝ κ−|g+⟩ − κ+|g−⟩, ℏωNC = 0. (V.38)

Using the expression (V.36) for the Rabi frequencies of the σ± waves, the
energy of the coupled state is written in this large ∆ regime:

ℏωC ≈ V0 [1 + cos(ϕ) cos(2kz)] with V0 =
ℏκ20
4∆

. (V.39)

Here we choose a positive ∆ detuning, so that the coupled state is always
energetically above the uncoupled state (figure V.14).

Furthermore, as a result of its interaction with the light field, the atom
prepared in the coupled state can scatter photons, and the corresponding
rate is

γC ≈ γ0 [1 + cos(ϕ) cos(2kz)] with γ0 = Γ
κ20
4∆2

. (V.40)
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The photon scattering rate for an atom at rest prepared in the state |ψNC⟩
is zero by construction, so an atom at rest in z (in a semi-classical approxi-
mation) will eventually fall into this state.

The Sisyphus effect in this context. Consider now an atom in slow mo-
tion, still in the semi-classical approximation and assume that this atom is
initially prepared in the state |ψNC⟩. Since the expressions of the states
|ψC⟩ and |ψNC⟩ depend on position, motion will create a coupling be-
tween these two states. More precisely, let us take the atom’s initial state
|ψ(0)⟩ = |ψNC[z(0)]⟩ and write2 its state at time t as

|ψ(t)⟩ = α(t) |ψNC[z(t)]⟩+ β(t) |ψC[z(t)]⟩, (V.41)

with, if the atom moves slowly, |β| ≪ |α| ≈ 1. The evolution equation for
β is obtained using the Schrödinger equation:

iβ̇ =
(
ωC − i

γC
2

)
β − iα v ⟨ψC|

dψNC

dz
⟩, (V.42)

where (i) the complex term iℏγC/2 has been added to the energy ℏωC of
the coupled state to account for its finite lifetime under the effect of laser
irradiation, and (ii) we took into account the fact that the basis vectors |ψC⟩
and |ψNC⟩ rotate when the position z varies. Assuming that the atom’s
displacement over time 1/γC is small compared to the spatial period λ/2
of the problem, the steady state of (V.42) reads

|β| ≈ k|v|√
ω2
C +

γ2
C

4

µ (V.43)

with
µ =

1

k
⟨ψC|

dψNC

dz
⟩ = sin(ϕ)

1 + cos(ϕ) cos(2kz)
. (V.44)

For a moving atom, the contamination of the uncoupled state by the
coupled state has the weight |β|2. It is maximal at points where the gap ωC

between these two states is minimal: this is where the rotation frequency
kvµ of the vectors |ψC⟩ and |ψNC⟩ is greatest. In particular, it is at these

2To go beyond the semi-quantitative arguments presented here, we refer the reader to C.
Cohen-Tannoudji’s 1995-96 course where the problem is discussed in detail.

points that the atom initially prepared in the state |ψNC⟩ has the highest
probability of scattering a photon, which (with probability 1/2) can cause
it to switch to the state |ψC⟩.

Once this process has taken place, the usual Sisyphus effect resumes:
the atom will climb a fraction of the potential hill in the coupled state, then
be optically repumped to the state |ψNC⟩ after a time τ ∼ 1/γC (figure V.14).
In the low-velocity limit, the energy lost in climbing the hill isEC(z+vτ)−
EC(z). The atom can then start a new cycle: switch from |ψNC⟩ to |ψC⟩ by
photon scattering induced by motional coupling, and back from |ψC⟩ to
|ψNC⟩ by standard optical pumping.

The velocity-dependent force. Due to the z ↔ −z symmetry of the
problem, the velocity-dependent force is necessarily an odd function of
v: F (−v) = −F (v). In the traditional Sisyphus effect leading to the force
(V.11), the lowest-order term is linear in velocity, and the corrections are in
v3, v5, . . . . In the case we are interested in here, we find from (V.43) a first
factor v2 to obtain a non-zero population in the coupled state. The delay
effect in the establishment of the stationary regime, which causes the atom
to climb more hills than it descends, brings in an additional factor v (as in
§ 1) so that the force in the vicinity of zero velocity varies here as v3. The ex-
act result after spatial averaging over one period is written (Weidemüller,
Esslinger, et al. 1994) :

F (v) = −ξ ℏkγ0
(
kv

γ0

)3
Γ

∆
, (V.45)

with the dimensionless numerical coefficient:

ξ(ϕ) =
16

5π
sin2 ϕ cosϕ

∫ 2π

0

cos(Z)

(1 + cos cosZ)5
dZ. (V.46)

We can see that in order to have a non-zero force, it is necessary that

• sinϕ must be non-zero; indeed, if ϕ = 0, κ± are equal at every point in
space, and coupled and uncoupled states do not depend on position.

• cosϕ must be non-zero; indeed, if ϕ = π/2 (lin⊥lin configuration), the
energy of the coupled level ℏωC does not vary in space and there is no
energy loss in the Sisyphus process of figure V.14.
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Fig. 2. - a) Velocity dependence of the NA force for B = r, So = 0.1, and 0 = x/4. The inset shows the 
w3-dependence of the non-adiabatic force for small velocities. b )  Velocity capture range as a function of 
the angle Q for E = r. By definition, at kv,, the force has its maximum. c) Velocity dependence of the 
NA force for 6 = lor, So = 0.1, and 9 = x/4. The arrows indicate the positions of the first six Raman 
doppleron resonances. d> Plot of the resonance velocities relative to the average light shift of the 
coupling state for different orders n (m n = 1, n = 2, n = 3, o n = 4, n = 5 , 0  n = 6) and angles $. 

To obtain an exact expression of the NA force, we have numerically solved the Bloch 
equations in the limit of low saturation and low velocities using a continued-fraction 
method [lo]. Figure Za) shows the resulting velocity dependence of the NA force for 6 = I', 
So = 0.1, and angle 9 = r/4. As depicted in fig. Zb), the capture range increases nearly 
linearly with the angle 9 for 6 = r. At the same time, the friction coefficient decreases. As 
expected, the NA force indeed vanishes for both 9 = 0 and for 9 = r/Z. 

As shown in fig. Zc), at higher detunings (8  > I') the NA force exhibits velocity resonances 
(resembling doppleron resonances observed in Doppler cooling[ll]) which can lead to  a 
considerable enhancement of the force. Although we cannot yet describe the exact 
mechanism for these resonances, we propose to attribute them to velocity-tuned Raman 
transitions between IC) and 1 NC) [12] which become possible due to  the mixing of these 
states introduced by the motional coupling. Thus, we expect a resonance to occur when 
integer multiples of twice the Doppler shift equal the typical energy difference between the 
two states I C) and I NC) divided by A,  i.e. n2kvr,, SSo /Z (Raman resonance condition). 
Our simulations show that kv,,,, is indeed proportional to So and 8. Furthermore, in fig. 2d) 
we have plotted 4nkvr,,, 12 /(So 8) for different angles and orders n. For sufficiently small 
angles, the Raman resonance condition is well fulfiiled. F o r  larger angles, where higher 
orders n can no longer be resolved, the Raman condition is approached with increasing n. 

Due to the existence of a velocity-selective dark state, we expect part of the atoms to be 

Figure V.15. Variation of the force F (v) for a transition Jg = 1 ↔ Je = 1
in a lin∨ lin configuration. Note the variation in v3 of the force near the origin.
Parameters: κ0 = 0.4Γ, ∆ = +Γ, ϕ = π/4 [figure taken from Weidemüller,
Esslinger, et al. (1994)].

We have extracted from Weidemüller, Esslinger, et al. (1994) the figure
V.15 showing the variation of F (v) with velocity v for typical parameters.
It clearly shows the variation in v3 in the vicinity of the origin. When the
velocity increases to such an extent that on average one optical pumping
cycle occurs as the atom travels through one period of the potential, then
the force felt is (to within one numerical coefficient) given by the maximum
force ∼ kV0 felt on the |ψC⟩ level. This maximum force is comparable to
that found for the standard Sisyphus effect. For even higher velocities, the
energy loss due to optical pumping saturates at a fraction of V0 and the
force decreases as 1/v, as we have seen for the standard Sisyphus effect.

Performance of grey-molasses cooling. To assess the cooling limit, let us
start with a semi-classical reasoning. The friction force, in v3 near the ori-
gin, is weaker than the linear velocity force found for traditional Sisyphus
cooling. But the velocity diffusion coefficient (which we will not calculate
here) is also affected by the same additional v2 coefficient, so that the ve-

locity distribution, evaluated from (V.31)

P(v) ∝ exp

(∫ v

0

MF (v′)
Dp(v′)

dv′
)

(V.47)

remains Gaussian, with an average energy kBT comparable to the modu-
lation of light shift V0, as in the case of the standard Sisyphus effect.

However, this semi-classical reasoning is insufficient for a transition
Jg = 1 ↔ Je = 1, since we saw in the previous chapter that there is al-
ways a dark state for this type of transition. It is expected that a fraction
of the atoms will accumulate in this dark state, which will be composed of
well-defined peaks in velocity in ±vr. This dynamics; which has a specif-
ically quantum origin, is much slower than the semi-classical dynamics
(figure V.16): quantum dynamics results from a random walk in which a
given atom must approach the dark state family with a precision much bet-
ter than the recoil velocity, which requires numerous spontaneous emission
processes. Semi-classical dynamics, on the other hand, which brings atoms
to within a few recoil velocities of the center, requires only a few sponta-
neous emission processes if we start from a velocity distribution pre-cooled
by the Doppler effect.

4-3 The first gray molasses

The Sisyphus cooling mechanism we have just discussed in the Jg = 1/2↔
Je = 1/2 and Jg = 1 ↔ Je = 1 cases can be generalized to higher angular
momentum transitions of the Jg ↔ Je type with Je = Jg − 1 and Je = Jg .
For this type of transition, optical pumping is always towards the ground
sublevel least coupled to light. A positive detuning ∆ must therefore be
chosen so that this least coupled state is also the lowest in energy, a neces-
sary condition for the Sisyphus effect to cause cooling and not heating.

Before going into a little more detail, we can highlight two points of
comparison with bright molasses:

• A clear advantage of gray molasses is that the fluorescence emitted
by the atoms decreases sharply, as the atoms are optically pumped to-
wards the less coupled sublevels, or even a dark state when it exists.
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presence of a dark state [9,11],

~D &—:[~a, —haik &exp( i—y)+ ~a, h'k &exp(iy)

—lb, —&k &
—Ib, tk & ]/2, (3)

which is decoupled from the state ~e,p & for all values of
p, where, for example, a, haik & represents an atom in state

~
a & with center-of-mass momentum of Rk. Thus

~
D & is a

zero-velocity dark state. The system undergoes VSCPT
into this zero-velocity dark state, so that the equilibrium
temperature is limited by the interaction time only, and
can be substantially below the recoil limit (ideally, the
temperature approaches zero). Note that the dark state
exists for all values of g. On the other hand, the
efficiency of VSCPT into this state varies [10] as sin y.
For the particular phases of y=0 and n/2, this result has
been corroborated theoretically as well as experimentally
by Aspect et al. [1,12].

The temperature of this system will become subrecoil
as soon as significant VSCPT has taken place. The
characteristic time r„, for this, however, is typically [1]
much larger than that for polarization-gradient cooling

As a result, for t ((~„,the semiclassical picture of
polarization-gradient cooling remains valid, and the sys-
tem reaches a "partial-steady-state" temperature which
can be larger than the recoil limit. This temperature is
determined by the energy balance between the
polarization-gradient cooling and the difFusive heating.
However, since a large fraction of atoms are in the local
—

& states during the polarization-gradient cooling pro-
cess (see Fig. 1), even this transient diffusion is expected
to be much smaller than that in the usual polarization-
gradient cooling schemes. We therefore expect a
precooled temperature that is much lower than the
steady-state temperature in conventional schemes of
polarization-gradient cooling.

In order to determine this partial-steady-state tempera-
ture and to investigate how this precooling enhances the
rate of VSCPT, we have performed Monte Carlo simula-
tions [13], treating the atom's external degree of freedom
quantum mechanically. Figure 3 illustrates the results
obtained for parameters close to those in Fig. 2. We start
with a distribution of atoms that is fIat over a momentum
range of +10fik, as a rough approximation of a Gaussian
distribution with an rms momentum of 104k, correspond-
ing to a Doppler precooled sample of sodium. The atoms
that go beyond +156k are deemed too hot to be recap-
tured, and are considered lost. Figure 3(a) corresponds to
the case where the lasers are on resonance (5=0), so that
there is no cooling. However, VSCPT occurs, so that
atoms start accumulating in the dark state, ~D &, mani-
fested by the peaks at +4k. The momentum redistribu-
tion takes place primarily by random walks, so that the
atoms that are far from these peaks have a very low rate
of getting into the dark state. Significant contributions to
this accumulation come only from the atoms that are
close to these peaks (i.e., within a distance of fik, which
we will call the VSCPT capture range). However, a large
fraction of even these atoms get heated beyond the
VSCPT capture range. As a result of these effects, we
find that only a small fraction (about 5%) of the atoms

—15

FIG. 3. (a) VSCPT in the absence of polarization-gradient
cooling (5=0, and go =0.3+5/2) and (b) polarization-gradient
cooling-assisted VSCPT, with 6=1 and go=0. 3/+2, corre-
sponding to the same degree of saturation as in (a).

have accumulated in the dark state (within a momentum
interval of +fik/8) after 100&+, where rz =—2m/haik is
the recoil time.

The result is much better when the laser is detuned, so
that polarization-gradient cooling occurs along with
VSCPT. This is illustrated in Fig. 3(b). The additional
cooling helps in two ways. First, it precools the atoms, in
about 6~&, to an rms momentum of 28k. Note that this
temperature is about a factor of 10 colder than the
theoretical steady-state temperature in a one-dimensional
polarization-gradient cooling using conventional schemes
corresponding to an rms momentum of 6fik [14]. Thus,
most of the atoms are within the VSCPT capture range
after the precooling. Next, as VSCPT proceeds, the
atoms tend to get heated out of the capture range. How-
ever, the cooling force prevents them from getting too
hot, essentially keeping them within the capture range all
the time. As a result, we find that after the same amount
time (100rz), close to 40% of the atoms are in the dark
state (a factor of 8 enhancement).

Before estimating the corresponding enhancement in
three dimensions, we brieAy point out how this scheme
can be realized in three dimensions. It can be she;wn

[9,10] that a three-dimensional dark state exists when a
J=1~J'=1 transition is excited by opposite circularly
polarized standing waves, with a pair in each of three or-
thogonal directions. The polarization-gradient cooling-
assisted VSCPT is optimum when the standing-wave
phase difFerence in each direction is m/4. In order to
reconcile the facts that Doppler cooling requires positive
detuning, while this polarization-gradient cooling re-
quires positive detuning, one could employ several
schemes. For example, a magneto-optic trap (MOT) can
be used first to capture atoms from the background and
cool them to the Doppler limit. Then the MOT can be
turned ofT' and the cooling scheme presented here can be
turned on. In the time needed to go a factor of 4 below
the recoil temperature (20 recoil times), only about 15%
of the atoms would be lost [see Fig. 3(b)].

Figure V.16. Evolution of the atom momentum distribution for a Jg = 1↔ Je =
1 transition in a lin∨ lin configuration. Time unit τR = 2M/ℏk2 (parameters
for the sodium atom), κ0 = 0.2Γ, ∆ = +Γ, ϕ = π/4. We can clearly see the
two time scales for (i) Sisyphus cooling, (ii) subrecoil cooling [Figure taken from
Shahriar, Hemmer, et al. (1993)].

Some of the harmful effects of fluorescent light can therefore be re-
duced: repulsive forces between atoms as in the magneto-optical trap
and light-assisted inelastic collisions.

• One disadvantage of grey molasses is the sign of the detuning at which
it operates; this detuning must be positive, i.e. opposite to that of
Doppler cooling. There is therefore a competition between the cooling
force due to grey molasses, important for velocities such as kv ≲ γC,
and the heating force due to the Doppler effect with a positive detun-
ing, important for kv ∼ Γ. If the parameters of the experiment can
be chosen such that the separation between these two velocity scales
is well marked, which in practice imposes kvr ≪ Γ, then this compe-
tition is not really a problem and Doppler heating can be ignored for
atoms cooled around recoil by grey molasses. This will be the case
for very broad lines, for which Γ exceeds the recoil frequency ωr by
several orders of magnitude.

The first cooling experiments on a Jg ↔ Je = Jg − 1 transition were
carried out at 1D by Valentin, Gagné, et al. (1992) at the Aimé Cotton lab-

oratory. This involved the Jg = 3 ↔ Je = 2 component of the D2 cesium
line, which is a closed transition. The extension to 3D was made on the
same atomic line by Boiron, Triché, et al. (1995) and Boiron, Michaud, et
al. (1996) (see also Hemmerich, Weidemüller, et al. (1995) for a 2D version
on a Jg = 1 ↔ Je = 1 transition). Boiron, Michaud, et al. (1996) mea-
sured temperatures in the microkelvin range at low atomic density, which
is lower by a factor of two than those measured on the bright transition
Jg = 4↔ Je = 5 for the same atom.

4-4 The grey molasses revival

Since 2012, grey molasses have become very popular for cooling certain
atomic species such as lithium or potassium (Fernandes, Sievers, et al.
2012; Grier, Ferrier-Barbut, et al. 2013; Nath, Easwaran, et al. 2013; Sa-
lomon, Fouché, et al. 2013; Burchianti, Valtolina, et al. 2014; Sievers, Kret-
zschmar, et al. 2015). These are alkaline atoms, for which we recall that
the resonance line, which couples an S state to a P state, is split into two
components due to the fine structure of the excited level. This excited level
therefore has two sublevels, P1/2 and P3/2, and the two corresponding lines
are called D1 and D2.

From the D2 line to the D1 line. For Li or K, the traditional Sisyphus
cooling on the D2 line (used successfully for Na, Rb, Cs) works poorly.
This D2 line links the two ground hyperfine sublevels, F and F − 1, to the
four hyperfine sublevels of the P3/2 excited state: F+1, F , F−1, F−2 (here
F = I +1/2, where I is the spin of the atomic nucleus). Standard Sisyphus
cooling works on the closed transition Jg = F ↔ Je = F + 1, and requires
a negative detuning ∆ (figure V.17, top). An additional repumping beam,
tuned to the Jg = F − 1 ↔ Je = F transition, for example, recycles atoms
that would eventually be pumped to the ground F − 1 level, but this re-
pump plays only a minor role in the problem. This picture is valid if the
hyperfine structure between the Je = F + 1 and Je = F sublevels is suf-
ficiently large in front of the natural Γ width. This condition is very well
met for heavy alkalis such as rubidium and cesium, but not for lithium and
potassium (it is marginal for sodium).

The alternative is to use the D1 line, which links the two ground hy-
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Figure V.17. Top: D2 line of an alkali atom and transitions used for standard Sisy-
phus cooling, with a main laser for cooling and a secondary laser for repumping.
Bottom: D1 line of an alkali atom; the two lasers play comparable roles in cooling.
Note that it is possible for the hyperfine levels to be inverted with respect to this
scheme, with the F level below the F −1 level (this is the case, for example, for 7Li
and 40K). The structure of the D2 line for 6Li (I = 1, F = 3/2) is also slightly
different from what is shown here.

perfine sublevels, F and F − 1, to the two hyperfine sublevels of the P1/2

excited state: F and F − 1 (figure V.17, bottom). An immediate advantage
of this line is that, for a given isotope, the hyperfine structure of the P1/2

excited level is significantly larger than that of the P3/2 level: the various
transitions are therefore better resolved. However, we no longer have a
closed transition between a given pair of sublevels: each excited sublevel
(F or F −1) can de-excite towards the two ground sublevels. We are there-
fore obliged to consider the problem of atom-light interaction by simulta-
neously taking into account the two ground levels and the two lasers that
excite them. There is no longer one main cooling laser and one repumping
laser (with a minor role), but two lasers playing equally important roles.

Raman resonance and Fano profile. A point highlighted by Grier,
Ferrier-Barbut, et al. (2013), then by Nath, Easwaran, et al. (2013) and Sa-
lomon, Fouché, et al. (2013), is the importance of Raman resonance be-
tween the two lasers exciting the F − 1 and F ground levels respectively.
This point is illustrated on the temperature measurement shown in figure
V.18 extracted from Sievers, Kretzschmar, et al. (2015), obtained with an
intense laser (laser 2) driving the Jg = 9/2 ↔ Je = 7/2 transition and a
weaker laser (laser 1) driving the Jg = 7/2 ↔ Je = 7/2 transition. When
the Raman detuning |∆| is greater than Γ, a temperature of the order of
50µK is measured, which can be interpreted as the result of gray molasses
9/2 ↔ 7/2 for the more intense laser, or 7/2 ↔ 7/2 for the other. We
then have black or gray states obtained by superimposing states of a given
ground sublevel (9/2 or 7/2).

When Raman resonance occurs (∆ = 0), the temperature drops by an
additional factor ranging from 2 to 4, depending on the atomic species.
An unfavorable zone also appears, for a slightly positive Raman detuning.
This result can be compared with the profile found in the previous chapter
for a Λ system (figure V.19). In the case where the two light waves driv-
ing the atom are such that κ1 ≪ κ2, we found a variation of the excited
level population in the vicinity of the Raman resonance very similar to the
variation found by Sievers, Kretzschmar, et al. (2015) for temperature. Let
us recall here the origin of this asymmetric profile, called Fano profile. This
form of profile is encountered when interference occurs between a reso-
nant scattering process and a much flatter scattering process. Lounis &
Cohen-Tannoudji (1992) proved that the Fano model was indeed realized

94



CHAPITRE V. SISYPHUS COOLING § 4. Gray molasses

FRANZ SIEVERS et al. PHYSICAL REVIEW A 91, 023426 (2015)

−1 0 1
101

102

103

Raman-detuning ∆ (units of Γ)

T
em

p
er
at
u
re

(µ
K
)

(a)

−1 0 1
101

102

103

Raman-detuning ∆ (units of Γ)

T
em

p
er
at
u
re

(µ
K
)

(b)

FIG. 3. (Color online) Temperature of the 6Li D1 molasses after
a 100-µs pulse with variable Raman detuning ! for different
cooling and repumping intensities. (a) Experiment; (b) simulation.
Standard intensities [(red) circles]: Icool = 9 Isat, Irep = 0.46 Isat.
Equal cooling/repumping ratio (black squares): Icool = Irep = 9 Isat.
Inverted cooling/repumping ratio [(blue) triangles]: Icool = 0.6 Isat,
Irep = 4.6 Isat.

Despite the nice match between simulations and experi-
ments in Figs. 2 and 3, we observe that the semiclassical
simulations provide temperatures that are systematically lower
by a factor of 2 to 4 than the measured ones, particularly near
the Raman-resonance condition ! = 0. Here the simulation
predicts a temperature of 20 µK, whereas the lowest measured
temperature is 50 µK. The reason for this is not fully
understood and may come from both theory and experimental
limitations. First, the simulation is semiclassical and neglects
the wave-function extent of the cold atoms. The predicted
temperature of 20 µK corresponds to only six times the
recoil energy ER = 1

2mv2
recoil = kB × 3.5 µK. Therefore, only

a quantum treatment of the atoms’ external motion can be
expected to give a quantitative equilibrium temperature pre-
diction in the low-intensity limit. In the simulation we observe
that slow atoms are likely trapped within subwavelength
regions, where the light shift is minimal and the atom is nearly
decoupled from light over a long time without quantum jump.
This coherent population trapping effect enhances the cooling
at both large and small !, although it is most pronounced at the
Raman resonance (! = 0) since more choices of decoupled
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FIG. 4. (Color online) Experiment: Atom number and equilib-
rium temperature of the 40K D1 molasses as functions of the Raman
detuning !. δcool = 3 #, Icool = 6 Isat, Irep/Icool = 7.6%, tm = 5 ms.
In the constant-temperature regions below −0.1 # and above 2 #

gray molasses cooling involves coherences between Zeeman states in
a given hyperfine state but not between hyperfine states. At the exact
Raman condition ! = 0, long-lived coherences between hyperfine
states are established, as shown in the simulation in Fig. 5. In a
narrow detuning range, the temperature [(red) triangles] drops to
20 µK. Inset: Expanded scale.

states emerge. The semiclassical picture clearly exaggerates
the cooling effect since the wave nature of the atoms’ external
motion is not included in the model. In fact, the wave
function of the slow atoms will sample a larger volume of
the subwavelength traps and will shorten the lifetime of the
dark periods.

On the experimental side the residual magnetic field
cancellation has only been coarsely tuned for the data set
presented in Fig. 2 (as well as in Figs. 3 and 4). With careful
tuning of the magnetic field zeroing we were able to lower the
40K temperature to 11 µK (Sec. II C, on 40K) for lower-density
samples. Interestingly, other groups have indeed found on
39K lower temperatures (6 µK) than ours under the Raman
condition [12]. Note also that in Fig. 2 for positive Raman
detunings (! ∼ 0.5# at low intensity and ! ∼ # at high
intensity) the “temperature” corresponds to out-of-equilibrium
situations as the atoms are quickly heated away and lost from
the molasses. The notion of temperature should thus be taken
with care in this region, unlike for negative Raman detunings,
where a steady-state temperature is reached.

Another reason for shortening the lifetime of dark periods
of the slow atoms is reabsorption of photons emitted by
other atoms. We have indeed seen a density-dependent excess
temperature, which we measured to be 4.6 µK × 1011 at/cm3

for 40K. A careful simulation of cooling including photon
reabsorption processes is far more complex and is beyond
the scope of this work.

We also study the same Raman-detuning-dependent effects,
but for different cooling/repumping ratios. Typical experi-
mental and simulation results are presented in Fig. 3. Here
again, the simulation parameters are chosen according to the
experimental values. The simulation and experiments match
fairly well. In particular, for the usual configuration with
Icool/Irep > 1 (Icool = 9Isat and Irep = 0.45Isat), we observe a
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a 100-µs pulse with variable Raman detuning ! for different
cooling and repumping intensities. (a) Experiment; (b) simulation.
Standard intensities [(red) circles]: Icool = 9 Isat, Irep = 0.46 Isat.
Equal cooling/repumping ratio (black squares): Icool = Irep = 9 Isat.
Inverted cooling/repumping ratio [(blue) triangles]: Icool = 0.6 Isat,
Irep = 4.6 Isat.

Despite the nice match between simulations and experi-
ments in Figs. 2 and 3, we observe that the semiclassical
simulations provide temperatures that are systematically lower
by a factor of 2 to 4 than the measured ones, particularly near
the Raman-resonance condition ! = 0. Here the simulation
predicts a temperature of 20 µK, whereas the lowest measured
temperature is 50 µK. The reason for this is not fully
understood and may come from both theory and experimental
limitations. First, the simulation is semiclassical and neglects
the wave-function extent of the cold atoms. The predicted
temperature of 20 µK corresponds to only six times the
recoil energy ER = 1
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recoil = kB × 3.5 µK. Therefore, only

a quantum treatment of the atoms’ external motion can be
expected to give a quantitative equilibrium temperature pre-
diction in the low-intensity limit. In the simulation we observe
that slow atoms are likely trapped within subwavelength
regions, where the light shift is minimal and the atom is nearly
decoupled from light over a long time without quantum jump.
This coherent population trapping effect enhances the cooling
at both large and small !, although it is most pronounced at the
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rium temperature of the 40K D1 molasses as functions of the Raman
detuning !. δcool = 3 #, Icool = 6 Isat, Irep/Icool = 7.6%, tm = 5 ms.
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gray molasses cooling involves coherences between Zeeman states in
a given hyperfine state but not between hyperfine states. At the exact
Raman condition ! = 0, long-lived coherences between hyperfine
states are established, as shown in the simulation in Fig. 5. In a
narrow detuning range, the temperature [(red) triangles] drops to
20 µK. Inset: Expanded scale.

states emerge. The semiclassical picture clearly exaggerates
the cooling effect since the wave nature of the atoms’ external
motion is not included in the model. In fact, the wave
function of the slow atoms will sample a larger volume of
the subwavelength traps and will shorten the lifetime of the
dark periods.

On the experimental side the residual magnetic field
cancellation has only been coarsely tuned for the data set
presented in Fig. 2 (as well as in Figs. 3 and 4). With careful
tuning of the magnetic field zeroing we were able to lower the
40K temperature to 11 µK (Sec. II C, on 40K) for lower-density
samples. Interestingly, other groups have indeed found on
39K lower temperatures (6 µK) than ours under the Raman
condition [12]. Note also that in Fig. 2 for positive Raman
detunings (! ∼ 0.5# at low intensity and ! ∼ # at high
intensity) the “temperature” corresponds to out-of-equilibrium
situations as the atoms are quickly heated away and lost from
the molasses. The notion of temperature should thus be taken
with care in this region, unlike for negative Raman detunings,
where a steady-state temperature is reached.

Another reason for shortening the lifetime of dark periods
of the slow atoms is reabsorption of photons emitted by
other atoms. We have indeed seen a density-dependent excess
temperature, which we measured to be 4.6 µK × 1011 at/cm3

for 40K. A careful simulation of cooling including photon
reabsorption processes is far more complex and is beyond
the scope of this work.

We also study the same Raman-detuning-dependent effects,
but for different cooling/repumping ratios. Typical experi-
mental and simulation results are presented in Fig. 3. Here
again, the simulation parameters are chosen according to the
experimental values. The simulation and experiments match
fairly well. In particular, for the usual configuration with
Icool/Irep > 1 (Icool = 9Isat and Irep = 0.45Isat), we observe a
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Equal cooling/repumping ratio (black squares): Icool = Irep = 9 Isat.
Inverted cooling/repumping ratio [(blue) triangles]: Icool = 0.6 Isat,
Irep = 4.6 Isat.

Despite the nice match between simulations and experi-
ments in Figs. 2 and 3, we observe that the semiclassical
simulations provide temperatures that are systematically lower
by a factor of 2 to 4 than the measured ones, particularly near
the Raman-resonance condition ! = 0. Here the simulation
predicts a temperature of 20 µK, whereas the lowest measured
temperature is 50 µK. The reason for this is not fully
understood and may come from both theory and experimental
limitations. First, the simulation is semiclassical and neglects
the wave-function extent of the cold atoms. The predicted
temperature of 20 µK corresponds to only six times the
recoil energy ER = 1

2mv2
recoil = kB × 3.5 µK. Therefore, only

a quantum treatment of the atoms’ external motion can be
expected to give a quantitative equilibrium temperature pre-
diction in the low-intensity limit. In the simulation we observe
that slow atoms are likely trapped within subwavelength
regions, where the light shift is minimal and the atom is nearly
decoupled from light over a long time without quantum jump.
This coherent population trapping effect enhances the cooling
at both large and small !, although it is most pronounced at the
Raman resonance (! = 0) since more choices of decoupled
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gray molasses cooling involves coherences between Zeeman states in
a given hyperfine state but not between hyperfine states. At the exact
Raman condition ! = 0, long-lived coherences between hyperfine
states are established, as shown in the simulation in Fig. 5. In a
narrow detuning range, the temperature [(red) triangles] drops to
20 µK. Inset: Expanded scale.

states emerge. The semiclassical picture clearly exaggerates
the cooling effect since the wave nature of the atoms’ external
motion is not included in the model. In fact, the wave
function of the slow atoms will sample a larger volume of
the subwavelength traps and will shorten the lifetime of the
dark periods.

On the experimental side the residual magnetic field
cancellation has only been coarsely tuned for the data set
presented in Fig. 2 (as well as in Figs. 3 and 4). With careful
tuning of the magnetic field zeroing we were able to lower the
40K temperature to 11 µK (Sec. II C, on 40K) for lower-density
samples. Interestingly, other groups have indeed found on
39K lower temperatures (6 µK) than ours under the Raman
condition [12]. Note also that in Fig. 2 for positive Raman
detunings (! ∼ 0.5# at low intensity and ! ∼ # at high
intensity) the “temperature” corresponds to out-of-equilibrium
situations as the atoms are quickly heated away and lost from
the molasses. The notion of temperature should thus be taken
with care in this region, unlike for negative Raman detunings,
where a steady-state temperature is reached.

Another reason for shortening the lifetime of dark periods
of the slow atoms is reabsorption of photons emitted by
other atoms. We have indeed seen a density-dependent excess
temperature, which we measured to be 4.6 µK × 1011 at/cm3

for 40K. A careful simulation of cooling including photon
reabsorption processes is far more complex and is beyond
the scope of this work.

We also study the same Raman-detuning-dependent effects,
but for different cooling/repumping ratios. Typical experi-
mental and simulation results are presented in Fig. 3. Here
again, the simulation parameters are chosen according to the
experimental values. The simulation and experiments match
fairly well. In particular, for the usual configuration with
Icool/Irep > 1 (Icool = 9Isat and Irep = 0.45Isat), we observe a
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Figure V.18. a) Schematic of 40K levels and lasers used. b) Temperature in 40K
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by measuring the evolution of the cloud over half of the
trap period, after switching off the 1D cooling laser.
For that purpose, we use the relationship !2

zðtÞ ¼
!2

zð0Þcos2ð!tÞ þ ½!pð0Þ=m!&2sin2ð!tÞ, linking the rms
value of the cloud size in the 1D harmonic trap, !zðtÞ, to
the initial values (at the switching off of the lasers) in real
space and momentum space.

Moreover, the mean square momentum depend on the
number of atoms, showing that collective effects also
induce extra heating. Regardless of the exact origin of
this extra heating, one example of this dependency is
shown in the inset of Fig. 2. We extrapolate the mean
square momentum value to the noninteracting limit (van-
ishing number of atoms) using a linear fit. The data points
for the mean square momentum in Fig. 2 are deduced in
this way.

Finally, even if the trap is loose along the cooling axis
(!k ' !r), it is not clear that it does not affect the cooling
process. Later on we will show that the trapping indeed has
a major impact when the transition is very narrow,!r(!.
To explore the influence of the trap, we use a Monte Carlo
(MC) simulation comparing cooling with and without the
trap. The MC simulation is based on a rate equation
describing the scattering events where the external degrees
of freedom are treated classically. This approach, neglect-
ing the quantum nature of the external degrees of freedom,
is known to be consistent with the full quantum approach in
free space [14]. This point is also confirmed here, where
the results of the MC simulation in free space are plotted in
Fig. 2 (green stars). In the trap, the dynamic is more subtle

because of the presence of the trapping force. It turns out,
however, that for the strontium intercombination transition
with !r ’ 0:6! the trap does not significantly modify the
mean square momentum in the steady state (red dots in
Fig. 2). We will see later that the condition !r ( ! leads
to different conclusions.
Other signatures of the quantum nature of Doppler

cooling can be found in the shape of the momentum
distribution. In the broad transition semiclassical picture,
the momentum distribution is essentially Gaussian since it
remains very well confined far from the two )"m=k
resonance lines. With a narrow transition, a single scatter-
ing event might be enough to bring the atom out of reso-
nance. As a consequence, the momentum distribution is not
Gaussian anymore and shows out-of-resonance long tails
and dips at the resonance lines [14,27]. A precise measure-
ment of the momentum distribution has been done for the
case of free space 1D cooling on clouds with large number
of atoms, to improve the signal to noise ratio. The laser
intensity was increased to 0:5Is in order to reach the
steady state regime during the laser interaction time. This
is a likely explanation to why there is only a qualitative
agreement found between the experiment and the MC

FIG. 2 (color online). Mean square momentum in temperature
and recoil units as function of cooling laser detuning. The
experimental data (black, full circles), extrapolated for N ! 0
(noninteracting gas), are compared to the full quantum approach
developed by Castin et al.[14] (green, solid line). The blue,
dashed curve shows the prediction for broad transition Doppler
theory. The red points (green stars) correspond to the MC
simulation performed in (without) the dipole trap. Inset:
Measured mean square momentum as function of the number
of atoms in the trap with " ¼ *20 kHz and If ¼ 0:06Is (red
circles) with linear fit (dashed line).

FIG. 3 (color online). Upper panels: Raw data, false color
image of the atomic cloud after 1D cooling in free space, and
50 ms time of flight. The cooling laser are along the horizontal
axis. From left to right the laser detunings are respectively
" ¼ *33 kHz, " ¼ *21 kHz and " ¼ *10 kHz, and the laser
intensity is around 0:5Is. The small horizontal asymmetry is
likely due to imperfect balance of the cooling beams intensity,
which were not precisely adjusted like for the cloud in the Dipole
trap case. Middle panels: Normalized spatial distribution along
the cooling axis extracted from the upper images. Lower panels:
Normalized momentum distribution extracted from the MC
simulation. The laser detuning is the same as in the experiment,
but the simulation is performed at the low intensity limit. These
plots show a qualitative agreement with the experiment at higher
intensity without the added trap (green open circles), as well as
in the trap (red dots). The resonance lines correspond to the
vertical, dashed lines.
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Figure V.19. Top: Model Λ system. Middle: Variation of excited population Pe

with detuning ∆1, measured in units of Γ. The other parameters are (in units of
Γ): κ1 = 0.1, κ2 = 1, ∆2 = 2. (Bottom) : The two scattering processes for a
photon from laser 1, leading to the Fano profile in the middle figure.
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CHAPITRE V. SISYPHUS COOLING § 4. Gray molasses

for the Λ system when κ1 ≪ κ2 ≪ |∆1,2|. To demonstrate this, we begin by
treating the interaction of beam 2 with the atom exactly. In the case where
κ2 ≪ |∆2|, this dressing of the g2 level induces the light shift:

|g2⟩ → |ḡ2⟩, E(ḡ2) = E(g2) + δE(g2) δE(g2) ≈
ℏ|κ2|2
4∆2

. (V.48)

Starting with the atom in the state |g1⟩, scattering of a photon from the
weak laser beam (beam 1) can take place either non-resonantly, passing
only through |e⟩ (figure V.19, bottom left), or resonantly via a Raman tran-
sition that leads the atom transiently into |ḡ2⟩ (figure V.19, bottom right).
The narrow maximum of the curve for Pe is obtained when Raman reso-
nance with the dressed state |ḡ2⟩ occurs:

ℏ∆1 = ℏ∆2 + δE(g2). (V.49)

We thus obtain a remarkable situation where Pe cancels for the "bare" Ra-
man resonance ∆1 = ∆2, then passes through a maximum for the "dressed"
Raman resonance (V.49).

This model of a Λ system is of course a considerable simplification com-
pared with the real case of the D1 line of potassium, for which 18 ground
states are coupled to 18 excited states. But it at least qualitatively accounts
for the gain obtained at the bare Raman resonance, which allows robust
dark states to appear, linear combinations of the 18 ground states from the
two hyperfine levels Fg = 7/2 and Fg = 9/2. It also helps explain the
significant heating observed for slightly positive Raman detuning (figure
V.18c).

Conclusion

The Sisyphus mechanism, whether "bright" for a transition such as Jg < Je
or "gray" for a Jg ≥ Je transition, achieves a temperature essentially lim-
ited by the recoil of a single photon. It is relatively robust, since it de-
pends only slightly on the quality of the light beams used (polarizations,
wavefronts, detuning). The most detailed studies to date of the shape of
velocity distributions have been carried out in the bright case. They have
shown that the narrowest velocity distribution profiles are notably non-
Gaussian, which does not always facilitate comparison between different

M λ Γ/2π vr ωr/2π Tmin v̄ v̄/vr
nm MHz cm/s kHz µK cm/s

Li 6 671 5.9 9.9 73.5 44∗ 24.6∗ 2.5∗

Li 7 671 5.9 8.5 63.0 60∗ 26.6∗ 3.1∗

Na 23 589 9.8 2.9 24.9 25 9.5 3.2
K 39 770 6 1.32 8.6 3∗ 2.5∗ 1.9∗

K 40 770 6 1.29 8.4 11∗ 4.8∗ 3.7∗

Rb 87 780 6.1 0.59 3.8 1.2 1.1 1.8
Cs 133 852 5.2 0.35 2.1 2.5 1.25 3.6
Cs 133 852 5.2 0.35 2.1 1.1∗ 0.83∗ 2.4∗

Figure V.20. Minimum temperatures obtained by Sisyphus cooling. Data with
one star correspond to gray molasses, others to bright molasses. Measured rms
velocities v̄ are all between 1.8 and 3.7 recoil velocities.

experiments, as the authors do not systematically use the same convention
for measuring their temperature.

Nevertheless, we have attempted to summarize the limit obtained by
Sisyphus cooling for different species of the alkali-metal family, with either
bright or grey Sisyphus cooling, in the table V.20. The essential point to
note is that, with the variety of mechanism, one can systematically achieve
a rms velocity of the order of a few recoil velocities, typically between 2
and 4 vr. Finally, it should be noted that the temperatures given here are
those measured for very dilute gases, in which collective effects such as
multiple scattering play no role. We will return to these effects in the final
chapter of this course.
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Chapter VI

Optical lattices and sideband cooling

In previous chapters, we explored various cooling mechanisms for free
atoms: Doppler cooling, velocity selective coherent population trapping,
Raman and Sisyphus cooling. With the exception of Doppler cooling on a
broad line, all these mechanisms have a limit, the scale of which is given
by the recoil velocity vr = ℏk/M . Some mechanisms allows one to reach
velocity distributions with a width lower than vr, while others like Sisy-
phus cooling lead to widths of a few vr. These results are obtained for very
dilute gases, in which collective effects play a negligible role.

One of the major challenges of experiments with cold atoms is to reach
the quantum regime for the gas, in which the different wave packets, of a
size given by the thermal wavelength of the gas, overlap. Let us go back
to the conditions we need to achieve for this. Consider a gas with r.m.s.
velocity v0 = vr, i.e. kBT = Mv2r = ℏ2k2/M . The thermal wavelength λT
of the gas is related to the optical wavelength λ = 2π/k by

λT =
ℏ
√
2π√

MkBT
=

λ√
2π
, (VI.1)

and the quantum degeneracy threshold of the gas is obtained for a density

n ≈ λ−3
T = (2π)3/2 λ−3. (VI.2)

For an optical wavelength of the order of 0.7µm, this corresponds to n ≈
50 atoms/µm3.

Achieving such a high density in the presence of laser cooling beams
is a challenge that has never been met for an atomic gas of uniform den-

sity. The main obstacles are multiple photon scattering in the gas, as well
as inelastic light-assisted collisions between atoms. The only successful
strategy so far is that adopted in Innsbruck by Stellmer, Pasquiou, et al.
(2013) and described in detail in Chapter 3: a small part of the volume oc-
cupied by atoms was confined in a high-stiffness trap and simultaneously
made transparent to cooling light; this yielded a Bose-Einstein condensate
containing around 1% of the total atom number present in the trap.

The aim of this chapter is first to review the limits imposed by collec-
tive effects induced by light, in particular the multiple scattering of sponta-
neously emitted photons. We will examine some of the remedies that have
been proposed, such as confinement in a trap with a high oscillation fre-
quency. This leads naturally to the last cooling mechanism we will discuss
in this lecture series: sideband cooling, well suited to an assembly of atoms
confined to the sites of an optical lattice. And finally, since the major ob-
stacle to obtaining degenerate gases is the multiple scattering of photons
emitted spontaneously during cooling, we will end this chapter by tack-
ling a recurring question in the field: is spontaneous emission, which is at
the root of the multiple scattering problem, indispensable to laser cooling
of atoms?
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CHAPITRE VI. OPTICAL LATTICES AND SIDEBAND COOLING § 1. Collective effects and multiple scattering
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Figure VI.1. An example of the difficulties associated with multiple scattering in
the case of Raman cooling. We start from the situation where an atom B is in
the desired state g1 and we wish to pump the atom A as well. Once the pumping
of atom A has taken place, the emitted photon can be absorbed by atom B, thus
cancelling out the gain of the first process and causing further heating due to
recoil in the scattering process kscat → k′

scat.

1 Collective effects and multiple scattering

We have already come across the problem of multiple scattering several
times in the previous chapters. Let us briefly recall its origins by taking the
example of Raman cooling, where atoms have to be optically pumped from
one internal state g2 to another g1 (figure VI.1). First, an atom A absorbs a
photon from the laser in charge of this optical pumping and spontaneously
emits a photon through a Raman scattering process:

|A : g2⟩+ kL −→ |A : g1⟩+ kscat, (VI.3)

In a second step, the emitted photon with momentum ℏkscat propagates
through the gas of atoms and arrives at an atom B in the state |g1⟩. There,
it can be absorbed, giving rise to another scattered photon with momentum
ℏk′

scat:
|B : g1⟩+ kscat −→ |B : gα⟩+ k′

scat, α = 1, 2, (VI.4)

and so on until the photon escapes the medium. Note that after scattering
the photon, the atom B may be in the internal state g1 or g2. In the second
case, the repumping process has contributed nothing: an atom initially in
the internal state g1 (atom B) has simply been removed and another atom
(atom A) added.

1-1 The dangers of multiple scattering

Multiple scattering has several effects, all of which are detrimental when
it comes to approaching the quantum degeneracy threshold, i.e. obtaining
low temperatures and high densities :

• It creates an effective repulsive force between the atoms, which tends
to destabilize the trapped cloud. We discussed this effect when study-
ing the magneto-optical trap.

• It tends to bring atoms out of the dark state in the coherent population
trapping cooling mechanism, by blurring the coherence between the
different internal states that enter the wave function of this dark state.

• It disrupts Raman cooling, and more specifically its repumping phase,
as mentioned above.
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CHAPITRE VI. OPTICAL LATTICES AND SIDEBAND COOLING § 1. Collective effects and multiple scattering

Force&

temps&

from the total internal reflection of a laser running wave ~Fig.
1!. This wave is linearly polarized parallel to the dielectric
surface; the resulting evanescent field is then linearly polar-
ized and it varies along the vertical direction ~perpendicular
to the dielectric surface! as

E~z !5E0exexp~2kz !, ~1!

where k21 is the decay length of the field amplitude and
E0 the value of the electric field on the interface. We restrict
ourselves here to the analysis of the atomic motion along the
z direction only; a full 3D analysis of this motion will be
given in Sec. III.

The interaction between the field and the atom, which we
model first as a two-level g-e system, is characterized by two
parameters: the detuning d5vL2vA between the laser vL
and the atomic resonance frequency vA for the g-e transi-
tion, and the Rabi frequency V05dE0/2\ , proportional to
the atomic dipole moment d of the g-e transition. We as-
sume here that the level g is stable, and that the level e has
a radiative lifetime 1/G . The atom-field interaction generates
two classes of phenomena @19#. The reactive part of the cou-
pling results in the dipole potential, which coincides with the
ac Stark shift of the ground state g @20# for a weak laser
excitation (V2!G214d2). For d@G , this potential is

Ug~z !5
\V0

2

4d
exp~22kz !. ~2!

The dissipative part of the coupling leads to absorption
and subsequent spontaneous emission of photons. The prob-
ability for a spontaneous process during a time interval dt is
given by

dna5G
V0

2

4d2 exp~22kz !dt . ~3!

The average number of scattered photons during a bounce is
calculated by integrating Eq. ~3! along the classical atomic
trajectory which results in @21,22#

np5
G

d
mv0

\k
, ~4!

where G , v0, m are the atomic natural width, velocity, and
mass, respectively. In the following, we restrict to situations
where np!1 so that np can be considered as the probability
for a scattering event during a bounce.

B. Sisyphus effect in an evanescent field

We consider now a three-level atom, with an unstable
excited state e and two stable ground states. In our experi-
ment, these two states correspond to the hyperfine ground
levels (6s1/2 ,Fg53 and Fg54) of the cesium atom sepa-
rated by D52p39.193 GHz. The excited state corresponds
to the level 6p3/2 , whose hyperfine structure can be ne-
glected since it is small compared with the laser detunings
chosen in the experiment.

The interaction between the atom and the evanescent
wave gives rise to a potential which depends on the ground
state @Fig. 2~a!#:

U3~z !5
\V0

2

4d
exp~22kz !, ~5!

U4~z !5
\V0

2

4~d1D!
exp~22kz !5

d
d1D

U3~z !, ~6!

where d5vL2v3 is the detuning between the laser fre-
quency and the atomic resonance corresponding to the tran-
sition 6s1/2 ,Fg53!6p3/2 . The potential U4(z) is propor-
tional to U3(z), but weaker.

Consider an atom in state Fg53 with kinetic energy
Ei5mv0

2/2 entering into the wave. It experiences the repul-
sive potential, so that its kinetic energy decreases, whereas
its potential energy increases. If we choose the intensity and
the detuning such as to get np!1, the spontaneous emission
process, if it occurs, will preferentially take place in the vi-
cinity of the classical turning point z0, given by
Ei5U3(z0) ~see Fig. 2!. The atom may then fall back in
either one of the two ground states.

FIG. 1. Atoms are dropped from a MOT located 3.2 mm above
a mirror formed by a laser evanescent wave. They are detected
through the absorption of a probe laser beam located in the vicinity
of the mirror surface.

FIG. 2. Sisyphus cooling in the evanescent wave. The laser
detuning with respect to the state Fg53 differs by D/2p59.2 GHz
from that of Fg54. ~a! The potential-energy difference between the
two states depends on the atom position in the evanescent wave.
The atoms are initially prepared in Fg53. If a spontaneous Raman
transition towards Fg54 occurs during the bounce, the atom loses
potential energy and emerges from the evanescent wave mirror with
a velocity reduced with respect to the incident one. ~b! Branching
ratios for the decay to the ground states.
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1.25 mK. We observe a linear dependence of the temperature
as a function of the intensity ~dashed lines! and a linear de-
pendence as a function of 1/d for detunings smaller than
14G . The open circles in Fig. 2 are theoretical predictions
for the mean kinetic energy obtained by a three-dimensional
~3D! Monte Carlo wave function calculation for cooling on a
J53!J852 transition, for a detuning d515G , and for
fixed relative phases between the three standing waves
(0,p/3,2p/3). The numerical implementation closely fol-
lows that of Ref. @12#. The agreement between theory and
experiments is good considering the theoretical ~0.2 mK! and
experimental ~0.1 mK! uncertainties. From this agreement,
we deduce an excited-state population on the order of
331024.

A deviation from the universal intensity-detuning law ap-
pears for d>5G and becomes more and more pronounced as
the detuning increases. We attribute this heating effect to a
destabilization of the uncoupled states by a parasitic excita-
tion of the F53!F853 transition which is indeed only at
1150 MHz ~i.e., 128G/2p) from the F53!F852 transi-
tion. Generally none of the two uncoupled states associated
with the F53!F852 transition coincides with the un-
coupled state associated with the F53!F853 transition.

Another interesting result deals with the density depen-
dence of the minimum temperature, presented in Fig. 3. For
n<109 atoms/cm 3, the temperature is as low as 1.160.1
mK. The corresponding rms velocity is 8.3 mm/s or 2.4
times the single-photon recoil velocity. We noticed that the
minimum temperatures measured with the second setup us-
ing the DBR lasers are higher by 0.4 mK than those found in
the first one ~narrow linewidth lasers!. When increasing the
density up to 1.531010 atoms/cm 3, the temperature in-
creases linearly to 2 mK. The density variations are obtained
either by increasing the MOT magnetic-field gradient or by
changing the diameter of the MOT beams without modifying
the GM beams. We attribute this heating effect to photon
multiple scattering within the GM atomic cloud. The surpris-
ing feature of these measurements is that the temperature in
GM as a function of density has nearly the same slope ~0.6
mK/1010 atoms/cm 3) as that of the F54!F855 bright mo-
lasses for a detuning of 210G , an intensity of
V250.23G2, and a temperature at low density of 3.5 mK. In
this case the one-beam excitation rate is 631024G , resulting

in an excited-state population of ;431023 @13#. The atoms
in GM being mostly in uncoupled states, one would indeed
expect a much-reduced heating effect in GM than in BM.
The theoretical interpretation of this heating, which is a cru-
cial point in attempts to build an atom laser, will be pub-
lished in a future paper and is only sketched here. The equi-
librium temperature in molasses results from a balance
between a cooling power from the Sisyphus mechanism and
the spontaneous emission ~and stimulated! heating. From
Fig. 1 we deduce an effective cooling time '20 times longer
than that of bright molasses @3#, resulting in a cooling power
20 times weaker in GM than in BM. It is thus sufficient to
have 20 times less fluorescence emission to produce an ex-
cess temperature in GM similar to that of BM.

Finally, we have investigated the lifetime of GM as a
function of the beam intensity at a detuning of d514.5G
~Fig. 4!. At relatively high intensity (V50.7G , T52.0
mK!, the 1/e lifetime is 290 ms, a factor of 3 shorter than
that of the MOT. At lower intensities this lifetime shortens
considerably, indicating that GM possesses a loss mecha-
nism. We have not yet studied this loss in detail ~anomalous
spatial diffusion, Doppler heating, etc.!, but we have checked
that it is not dependent on the background gas pressure in the
chamber.

IV. CONCLUSION

We have shown here that gray molasses yields lower tem-
peratures than bright optical molasses and that it can be very
simply implemented with only two DBR laser diodes. The
minimum temperature is 1.160.1 mK, similar to that of
bright optical lattices @5#. Gray molasses cools the atoms in
the lowest hyperfine state and has a reduced fluorescence
rate. This opens the way to produce atomic samples with
higher densities than in a MOT but, as we have shown, at the
expense of an increase in temperature. A first possibility that
we are presently investigating is to superimpose on the GM a
far off resonance dipole trap @14# or a crossed dipole trap
@15# to create an additional confining force. We foresee sev-
eral other applications of these gray molasses; for instance,
in atomic fountain clocks where it is desirable to get a colder

FIG. 3. Temperature of atoms in gray molasses as a function of
peak atomic density for d54.5G , V250.16G2. The absolute den-
sity is known to a factor of 2. Inset: time-of-flight signal corre-
sponding to a temperature of 1.160.1 mK (v rms58.3 mm/s!.

FIG. 4. Relative number of cold atoms in gray molasses as a
function of time t . The gray molasses beam intensity is kept con-
stant for t>13 ms ~from top to bottom: V2/G2 5 0.49, 0.36, 0.25,
and 0.16!. The two lower curves at V250.16G2 were obtained at
two background pressures of Cs which differ by 30%. For a MOT
lifetime of 1 s, 1/e time constants in GM are, respectively, 290, 220,
127, and 92 ms ~from top to bottom!.

R3736 53D. BOIRON et al.

Figure VI.2. Variation of temperature with atomic density in a Sisyphus cooling
experiment with gray molasses. Measurements made on a cloud of cesium atoms
by Boiron, Michaud, et al. (1996).

• It reduces the efficiency of Sisyphus cooling, by breaking the correla-
tion between light shift and optical pumping processes.

In addition, multiple scattering causes random recoil of photon-
scattering atoms and creates additional heating. It therefore appears to
be a major obstacle to obtaining quantum degeneracy directly from laser
cooling (Olshanii, Castin, et al. 1996).

In a number of experiments, an approximately linear variation in tem-
perature with sample density (at a fixed geometry) has been demonstrated.
Heating due to multiple scattering is then characterized by the coefficient
dT
dn . For example, for the Sisyphus effect (bright or gray molasses) in a
spherical geometry, the typical value for cesium gas is [figure VI.2 and
Townsend, Edwards, et al. (1995) and Boiron, Michaud, et al. (1996)]:

dT

dn
≈ 600 nK/(1010 cm−3), (VI.5)

which is considerable [100 times greater than the values given in Chapter
3 for narrow-line Doppler cooling (Katori, Ido, et al. 1999)]. In this regime,
starting from a dilute gas that would be cooled at the recoil limit (v0 = vr,
T = 200nK), the temperature would double as soon as the density reaches
3×109 cm−3, whereas a density 103 to 104 times greater would be required
to reach quantum degeneracy at this temperature.
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from the total internal reflection of a laser running wave ~Fig.
1!. This wave is linearly polarized parallel to the dielectric
surface; the resulting evanescent field is then linearly polar-
ized and it varies along the vertical direction ~perpendicular
to the dielectric surface! as

E~z !5E0exexp~2kz !, ~1!

where k21 is the decay length of the field amplitude and
E0 the value of the electric field on the interface. We restrict
ourselves here to the analysis of the atomic motion along the
z direction only; a full 3D analysis of this motion will be
given in Sec. III.

The interaction between the field and the atom, which we
model first as a two-level g-e system, is characterized by two
parameters: the detuning d5vL2vA between the laser vL
and the atomic resonance frequency vA for the g-e transi-
tion, and the Rabi frequency V05dE0/2\ , proportional to
the atomic dipole moment d of the g-e transition. We as-
sume here that the level g is stable, and that the level e has
a radiative lifetime 1/G . The atom-field interaction generates
two classes of phenomena @19#. The reactive part of the cou-
pling results in the dipole potential, which coincides with the
ac Stark shift of the ground state g @20# for a weak laser
excitation (V2!G214d2). For d@G , this potential is

Ug~z !5
\V0

2

4d
exp~22kz !. ~2!

The dissipative part of the coupling leads to absorption
and subsequent spontaneous emission of photons. The prob-
ability for a spontaneous process during a time interval dt is
given by

dna5G
V0

2

4d2 exp~22kz !dt . ~3!

The average number of scattered photons during a bounce is
calculated by integrating Eq. ~3! along the classical atomic
trajectory which results in @21,22#

np5
G

d
mv0

\k
, ~4!

where G , v0, m are the atomic natural width, velocity, and
mass, respectively. In the following, we restrict to situations
where np!1 so that np can be considered as the probability
for a scattering event during a bounce.

B. Sisyphus effect in an evanescent field

We consider now a three-level atom, with an unstable
excited state e and two stable ground states. In our experi-
ment, these two states correspond to the hyperfine ground
levels (6s1/2 ,Fg53 and Fg54) of the cesium atom sepa-
rated by D52p39.193 GHz. The excited state corresponds
to the level 6p3/2 , whose hyperfine structure can be ne-
glected since it is small compared with the laser detunings
chosen in the experiment.

The interaction between the atom and the evanescent
wave gives rise to a potential which depends on the ground
state @Fig. 2~a!#:

U3~z !5
\V0

2

4d
exp~22kz !, ~5!

U4~z !5
\V0

2

4~d1D!
exp~22kz !5

d
d1D

U3~z !, ~6!

where d5vL2v3 is the detuning between the laser fre-
quency and the atomic resonance corresponding to the tran-
sition 6s1/2 ,Fg53!6p3/2 . The potential U4(z) is propor-
tional to U3(z), but weaker.

Consider an atom in state Fg53 with kinetic energy
Ei5mv0

2/2 entering into the wave. It experiences the repul-
sive potential, so that its kinetic energy decreases, whereas
its potential energy increases. If we choose the intensity and
the detuning such as to get np!1, the spontaneous emission
process, if it occurs, will preferentially take place in the vi-
cinity of the classical turning point z0, given by
Ei5U3(z0) ~see Fig. 2!. The atom may then fall back in
either one of the two ground states.

FIG. 1. Atoms are dropped from a MOT located 3.2 mm above
a mirror formed by a laser evanescent wave. They are detected
through the absorption of a probe laser beam located in the vicinity
of the mirror surface.

FIG. 2. Sisyphus cooling in the evanescent wave. The laser
detuning with respect to the state Fg53 differs by D/2p59.2 GHz
from that of Fg54. ~a! The potential-energy difference between the
two states depends on the atom position in the evanescent wave.
The atoms are initially prepared in Fg53. If a spontaneous Raman
transition towards Fg54 occurs during the bounce, the atom loses
potential energy and emerges from the evanescent wave mirror with
a velocity reduced with respect to the incident one. ~b! Branching
ratios for the decay to the ground states.
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1.25 mK. We observe a linear dependence of the temperature
as a function of the intensity ~dashed lines! and a linear de-
pendence as a function of 1/d for detunings smaller than
14G . The open circles in Fig. 2 are theoretical predictions
for the mean kinetic energy obtained by a three-dimensional
~3D! Monte Carlo wave function calculation for cooling on a
J53!J852 transition, for a detuning d515G , and for
fixed relative phases between the three standing waves
(0,p/3,2p/3). The numerical implementation closely fol-
lows that of Ref. @12#. The agreement between theory and
experiments is good considering the theoretical ~0.2 mK! and
experimental ~0.1 mK! uncertainties. From this agreement,
we deduce an excited-state population on the order of
331024.

A deviation from the universal intensity-detuning law ap-
pears for d>5G and becomes more and more pronounced as
the detuning increases. We attribute this heating effect to a
destabilization of the uncoupled states by a parasitic excita-
tion of the F53!F853 transition which is indeed only at
1150 MHz ~i.e., 128G/2p) from the F53!F852 transi-
tion. Generally none of the two uncoupled states associated
with the F53!F852 transition coincides with the un-
coupled state associated with the F53!F853 transition.

Another interesting result deals with the density depen-
dence of the minimum temperature, presented in Fig. 3. For
n<109 atoms/cm 3, the temperature is as low as 1.160.1
mK. The corresponding rms velocity is 8.3 mm/s or 2.4
times the single-photon recoil velocity. We noticed that the
minimum temperatures measured with the second setup us-
ing the DBR lasers are higher by 0.4 mK than those found in
the first one ~narrow linewidth lasers!. When increasing the
density up to 1.531010 atoms/cm 3, the temperature in-
creases linearly to 2 mK. The density variations are obtained
either by increasing the MOT magnetic-field gradient or by
changing the diameter of the MOT beams without modifying
the GM beams. We attribute this heating effect to photon
multiple scattering within the GM atomic cloud. The surpris-
ing feature of these measurements is that the temperature in
GM as a function of density has nearly the same slope ~0.6
mK/1010 atoms/cm 3) as that of the F54!F855 bright mo-
lasses for a detuning of 210G , an intensity of
V250.23G2, and a temperature at low density of 3.5 mK. In
this case the one-beam excitation rate is 631024G , resulting

in an excited-state population of ;431023 @13#. The atoms
in GM being mostly in uncoupled states, one would indeed
expect a much-reduced heating effect in GM than in BM.
The theoretical interpretation of this heating, which is a cru-
cial point in attempts to build an atom laser, will be pub-
lished in a future paper and is only sketched here. The equi-
librium temperature in molasses results from a balance
between a cooling power from the Sisyphus mechanism and
the spontaneous emission ~and stimulated! heating. From
Fig. 1 we deduce an effective cooling time '20 times longer
than that of bright molasses @3#, resulting in a cooling power
20 times weaker in GM than in BM. It is thus sufficient to
have 20 times less fluorescence emission to produce an ex-
cess temperature in GM similar to that of BM.

Finally, we have investigated the lifetime of GM as a
function of the beam intensity at a detuning of d514.5G
~Fig. 4!. At relatively high intensity (V50.7G , T52.0
mK!, the 1/e lifetime is 290 ms, a factor of 3 shorter than
that of the MOT. At lower intensities this lifetime shortens
considerably, indicating that GM possesses a loss mecha-
nism. We have not yet studied this loss in detail ~anomalous
spatial diffusion, Doppler heating, etc.!, but we have checked
that it is not dependent on the background gas pressure in the
chamber.

IV. CONCLUSION

We have shown here that gray molasses yields lower tem-
peratures than bright optical molasses and that it can be very
simply implemented with only two DBR laser diodes. The
minimum temperature is 1.160.1 mK, similar to that of
bright optical lattices @5#. Gray molasses cools the atoms in
the lowest hyperfine state and has a reduced fluorescence
rate. This opens the way to produce atomic samples with
higher densities than in a MOT but, as we have shown, at the
expense of an increase in temperature. A first possibility that
we are presently investigating is to superimpose on the GM a
far off resonance dipole trap @14# or a crossed dipole trap
@15# to create an additional confining force. We foresee sev-
eral other applications of these gray molasses; for instance,
in atomic fountain clocks where it is desirable to get a colder

FIG. 3. Temperature of atoms in gray molasses as a function of
peak atomic density for d54.5G , V250.16G2. The absolute den-
sity is known to a factor of 2. Inset: time-of-flight signal corre-
sponding to a temperature of 1.160.1 mK (v rms58.3 mm/s!.

FIG. 4. Relative number of cold atoms in gray molasses as a
function of time t . The gray molasses beam intensity is kept con-
stant for t>13 ms ~from top to bottom: V2/G2 5 0.49, 0.36, 0.25,
and 0.16!. The two lower curves at V250.16G2 were obtained at
two background pressures of Cs which differ by 30%. For a MOT
lifetime of 1 s, 1/e time constants in GM are, respectively, 290, 220,
127, and 92 ms ~from top to bottom!.
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Figure VI.3. An attempt to reduce the effect of multiple scattering: detuning of
the repumping laser beam, which also detunes the spontaneously emitted Raman
photons.

In our study of narrow-line Doppler cooling, we pointed out a (partial)
remedy to the problem of multiple scattering: leave the spherical geome-
try and switch to highly elongated clouds, so that spontaneously emitted
photons can rapidly leave the medium by escaping laterally. This remedy
also works, at least in part, for Sisyphus cooling: using grey molasses in a
very elongated geometry (600 × 12 × 12 microns), Boiron, Michaud, et al.
(1998) obtained a temperature of ∼ 2µK for a central density of 1012 cm−3.

1-2 A simple remedy...that does not work

How can we get around the problem of multiple scattering? Consider the
Raman cooling process and its optical pumping phase, which brings the
atom back from g2 to g1, shown in figure VI.1. One might naively think
that it would be enough to sufficiently detune the light beam kL with re-
spect to the resonance g2 ↔ e to diminish the potential harm of the emitted
fluorescence photon (figure VI.3). Indeed, by conservation of energy, this
photon will also be detuned from the frequency of the g1 ↔ e transition.
Unfortunately, this remedy does not work: paradoxically, the effective ab-
sorption cross-section of the emitted photon by atom B remains equal to
the maximum permitted value ∼ λ2, despite the detuned frequency of this
photon relative to the atomic resonance!

The reason for this is shown in figure VI.4, already encountered in pre-
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Figure VI.4. Scattering of a photon of frequency ω in a Λ system when a laser
at frequency ωL drives the transition g2 ↔ e. The population of the excited state
Pe has two maxima as ω is varied: the first corresponds to the simple resonance
g1 ↔ e, the second to resonant Raman scattering involving the state ḡ2, i.e. the
state g2 displaced by the laser.

vious chapters. When a laser beam of frequency ωL "dresses" the atomic
transition g2 ↔ e and the transition g1 ↔ e is probed with another light
at frequency ω of arbitrarily low intensity, the population of the excited
atomic state has two maxima. The first, easy-to-understand maximum cor-
responds to a probe photon in resonance with the transition g1 ↔ e (with a
slight light shift from the bare transition due to the laser at frequency ωL ):

ℏω ≈ Ee − E1. (VI.6)

The other, more subtle maximum is obtained for (figure VI.4):

ℏω = ℏωL + E2 − E1 + δE2 (VI.7)

where δE2 is the light shift of the level g2 induced by the laser ωL. This is

the condition for Raman resonance between the state |g1⟩ and the state |ḡ2⟩
, displaced by the laser ωL. This resonance corresponds to a Fano profile al-
ready discussed in Chapter 4 (Lounis & Cohen-Tannoudji 1992). The high
population value of the state e corresponds to a large absorption cross-
section of the photon ω. This is exactly the frequency at which the photon
is emitted in the process shown in figure VI.3.

Finally, for a gas of uniform density, the only (partial) remedies to mul-
tiple scattering demonstrated to date are:

• choose a narrow transition and take advantage of the robustness of
Doppler cooling to still achieve appreciable phase-space densities,

• take a geometry that limits the mean free path of a photon in the sam-
ple, for example very elongated cigar-shaped geometries so that the
photon can escape laterally.

We will see in the next paragraph that the situation is favorably modified
in a trap.

1-3 The Festina lente regime

The festina lente regime, initially proposed by Cirac, Lewenstein, et al.
(1996) and further developed by Castin, Cirac, et al. (1998), involves plac-
ing atoms in a harmonic trap with a high oscillation frequency Ω. More
precisely, we consider the situation where

Ω≫ γ, (VI.8)

γ being the fluorescence rate caused by the cooling and the repumping
lasers.

For a pair of trapped atoms, heating during multiple scattering mani-
fests itself as follows: atoms a and b are initially on vibrational levels na
and nb (figure VI.5). After an optical pumping process, the atom a is trans-
ferred to the level n′a and a photon is emitted. The atom b can scatter this
photon and move to the level n′b. If n′a + n′b = na + nb, the energy of the
pair of atoms is the same as initially, so nothing serious has happened. On
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Figure VI.5. An example of the effect of multiple scattering for trapped atoms. An
atom A goes from na to n′a during a cooling process involving the spontaneous
emission of a photon. This photon can be scattered by atom B, which passes from
nb to n′b. If n′a + n′b > na + nb (which is the case in this figure), the energy of the
pair of atoms A–B has increased, which is unfavorable.

the other hand, if n′a +n′b > na +nb, the energy of the pair of atoms has in-
creased, and this heating, if repeated several times before the photon exits
the sample, will severely degrade cooling performance.

The argument of Cirac, Lewenstein, et al. (1996) is semi-qualitative: the
authors uses a reasoning based on the master equation within the rotating
field approximation to justify the fact that heating terms due to reabsorp-
tion processes must have a reduced contribution when the condition (VI.8)
is realized. More precisely, these terms correspond to a rapid rotation of
the coefficients in the master equation, as they oscillate at the frequency
(n′a + n′b − na − nb) while relaxation takes place at a rate γ. Their contribu-
tion therefore becomes negligible in the limit Ω≫ γ, except for the secular
terms n′a + n′b = na + nb, which are energetically painless, as mentioned
above.

Castin, Cirac, et al. (1998) took up the problem in a more quantita-
tive way; they showed that for two particles placed in an isotropic har-
monic trap such as γ ≪ ω ≪ ωr, the probability of reabsorption P was
strongly decreased in the festina lente regime. They considered the case
where the average distance between particles r is large in front of the
wavelength, i.e. kr ≫ 1, and found that the result known for free atoms,
P ∼ σ/4πr2 ∼ 1/(kr)2, had to be replaced in the festina lente regime by
P ∼ 1/(kr)3. The expected gain for the festina lente regime is therefore
validated by this precise theoretical analysis.

There have been few experimental studies to test, even qualitatively,
the predictions made for the festina lente regime. We can mention the work
of Perrin, Kuhn, et al. (1999), who explored the influence of the power
of the repumping beam in a Raman cooling experiment. A temperature
reduction of the order of 20% was observed for a variation of γ by a factor
of 20. However in this experiment, the pumping rate γ remained higher
than the oscillation frequency Ω in the trap: the regime festina lente was not
yet reached in this experiment.

1-4 Use of an optical lattice

Since the festina lente regime requires high oscillation frequencies Ω, it is
natural to seek to realize it in an optical lattice formed by superimposing
laser standing waves in different directions in space. Depending on the
detuning chosen for these waves, atoms are trapped at the nodes or antin-
odes of the standing waves. The confinement potential of the atoms varies
on the optical wavelength scale, and high oscillation frequencies of up to
MHz are obtained.

Although the analysis of Castin, Cirac, et al. (1998) does not apply as
such to an optical lattice, the intuitively hoped-for gain is indeed present
in the experiment: Wolf, Oliver, et al. (2000) studied the Sisyphus cooling
of caesium atoms in a deep optical lattice and showed that the heating
associated with multiple scattering was greatly reduced (by a factor ≳ 3)
compared with a gas of the same density cooled in free space.

The use of an optical lattice, with the high frequencies Ω it allows, opens
the way to the Lamb–Dicke regime, for which

Ω≫ ωr =
ℏk2

2M
. (VI.9)

This is a different condition from festina lente given in (VI.8), both condi-
tions being in practice realized simultaneously in the lattices we will con-
sider from now on.
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2 Sideband cooling

From now on, we consider atoms confined in a harmonic potential
1
2MΩ2x2 or a periodic potential V (x) = V0 sin

2(kx), V0 > 0 (or their equiv-
alent in two or three dimensions). In the case of the periodic potential, the
oscillation frequency in the vicinity of a minimum of this lattice is given by
ℏΩ = 2

√
V0Er. We assume that the Lamb–Dicke condition

η ≡
√
Er

ℏΩ
≪ 1 with Er = ℏωr =

ℏ2k2

2M
(VI.10)

is realized, which imposes the hierarchy of energies in the case of the lat-
tice:

Er ≪ ℏΩ≪ V0. (VI.11)

In practice, Lamb–Dicke’s condition is easily satisfied in an optical lattice,
and it can also be satisfied in an optical tweezer, formed by a highly fo-
cused light beam, if it is sufficiently intense. First, we will look at what this
condition implies for the absorption and emission of photons by an atom.
We will then present the principle of sideband cooling, first for trapped
ions, then for neutral atoms.

2-1 The Lamb–Dicke regime

To introduce the important elements that characterize photon absorption
and emission processes in the Lamb-Dicke regime, let us consider an ele-
mentary process (figure VI.6): an atom (or ion) with two levels, g and e, is
prepared in its excited internal state e. We are interested in the final state of
the atomic center of mass when the atom has fallen by spontaneous emis-
sion into its internal ground state g. We will assume in this paragraph that
the atom feels the harmonic potential 1

2MΩ2r2, independently of its inter-
nal state, g or e, the energy levels being (at 1D) En = (n+ 1

2 ) ℏΩ, n ∈ N.

The initial external state of the atom is an eigenstate of the motion in
the trap, characterized by the three vibrational quantum numbers n ≡
(nx, ny, nz). The spontaneous emission of a photon with momentum ℏk
corresponds to

|e,n⟩ −→ |g,n′⟩+ k. (VI.12)
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Figure VI.6. Spontaneous emission of a photon by a two-level atom confined in a
harmonic trap. In the Lamb-Dicke limit, the transition with the greatest weight is
the line without recoil n′x = nx. The other two transitions with significant weight
correspond to n′x = nx ± 1.

The natural question to ask concerns the possible values of n′, for a given
triplet n. To answer this, we note that the probability of arriving at a level
n′ involves, via Fermi’s golden rule (cf. Chapter 1):

|⟨n′|eik·r̂|n⟩|2, (VI.13)

where r̂ is the atomic position operator.

The spatial extension of the vibrational state n along a given axis, x for
example, is ≈ √nx aoh, where the length

aoh =

(
ℏ
MΩ

)1/2

(VI.14)

characterizes the extension of the ground state of the harmonic oscillator.
Let us restrict ourselves to weakly excited vibrational states, so that

√
nx is

of order unity. The order of magnitude of the argument of the exponential
entering (VI.13), k · r̂, is

|k · r| ∼ kaoh ∼ η ≪ 1, (VI.15)
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where η is defined in (VI.10). We can therefore expand the exponential
eik·r̂:

eik·r̂ ≈ 1 + ik · r̂. (VI.16)

Let us take a one-dimensional point of view to simplify notation. The
position operator x̂ is written as a function of the creation and annihilation
operators of the harmonic oscillator forming the trap along x:

x̂ =
aoh√
2

(
â+ â†

)
hence kx̂ = η

(
â+ â†

)
. (VI.17)

At order 1 of expansion (VI.16), we only obtain a non-zero matrix element
⟨n′|x̂|n⟩ if |n− n′| = 1:

⟨n+ 1|x̂|n⟩ =
√
n+ 1

aoh√
2
, ⟨n− 1|x̂|n⟩ = √n aoh√

2
. (VI.18)

From the above we can deduce the type of transitions that are dominant
in the Lamb–Dicke regime1 (figure VI.6):

• Transitions with no change of external state, i.e. n′ = n, obtained from
the first term of (VI.16).

• Transitions with a change of one vibration quantum along one axis,
while the other two remain unchanged, for example:

n′x = nx ± 1, n′y = ny, n′z = nz. (VI.19)

These transitions are obtained from the second term of (VI.16), and
occur with probability reduced by the factor η2(nx+1) (for n′x = nx+1)
and η2nx (for n′x = nx − 1) with respect to the transitions n′ = n.

Note that the predominance of the line n′ = n corresponds to a situation
formally very close to that of the Mössbauer effect, in which a strongly
bound radioactive nucleus in a crystal emits a γ photon with no change in
frequency due to recoil.

1It can be shown that the average energy increase during the spontaneous emission pro-
cess is independent of η and always equal to Er.
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Figure VI.7. Principle of sideband cooling for a trapped ion. A laser of frequency
ωL = ωA−Ω causes the ion to change state from |g, n+1⟩ to |e, n⟩. Spontaneous
emission occurs preferentially at the |e, n⟩ → |g, n⟩ transition, so that a quantum
ℏΩ is dissipated (in the form of photon energy) in this process.

2-2 Experiments on trapped ions

The first sideband cooling experiment, carried out in Boulder by Diedrich,
Bergquist, et al. (1989), succeeded in preparing an ion in the vibrational
ground state of the trap. This was a 198Hg+ ion, cooled on the nar-
row transition 2S1/2 ↔2D5/2 (a long-lived electric quadrupole transition:
Γ−1 ∼ 0.1 s).

The principle of cooling is illustrated in figure 1D. The ion is illuminated
by a laser tuned to the transition

absorption: |g, n+ 1⟩ −→ |e, n⟩, (VI.20)

i.e. its frequency is
ωL = ωA − Ω. (VI.21)

This choice gives rise to the name sideband cooling: in the ion’s rest frame of
reference, the absorption frequency is ωA. In the laboratory frame of refer-
ence, the ion oscillates at the frequency Ω and its absorption and emission
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spectrum is made up of a central band ωA and sidebands ωA ± nΩ. The
cooling laser is tuned to the first sideband on the red side of the resonance.

With the choice (VI.21), the resonant absorption of a photon results in a
one-unit decrease in the vibrational quantum number. Once in the excited
state |e, n⟩, the ion can fall back into the ground state by spontaneously
emitting a photon. In the Lamb–Dicke limit, this emission takes place with
a high probability (cf. fig. VI.6) on the transition

spontaneous emission: |e, n⟩ −→ |g, n⟩. (VI.22)

Each absorption-spontaneous emission cycle thus reduces the vibrational
state by one in average, until the ion reaches the vibrational ground state
n = 0.

The stationary state is characterized by the populations of the different
vibrational levels πn, with π0 ≈ 1 and πn ≪ 1 for n ≥ 1. The ratio between
π0 and π1 is obtained by equating the fluxes g, n = 1 → g, n = 0 and
g, n = 0→ g, n = 1. The first is (figure VI.8, left)

|g, n = 1⟩ → |e, n = 0⟩ → |g, n = 0⟩ : γ1→0 ≈
κ2η2

Γ
, (VI.23)

where κ is the Rabi frequency of the excitation laser, reduced by the
Lamb–Dicke factor η2 to account for the absorption matrix element ⟨n =
0|eikx|n = 1⟩.

The flux g, n = 0 → g, n = 1 is given by non-resonant excitation of the
excited states e, n = 0 or e, n = 1, followed by de-excitation to g, n = 1
(figure VI.8, right). The detuning ∆ for the excitation process is equal to Ω
in the first case and to 2Ω in the second case [cf. (VI.21)], so that

|g, n = 0⟩ → |e, n = 0⟩ → |g, n = 1⟩ : γ
(a)
0→1 ≈

Γ

4

κ2η2

Ω2
, (VI.24)

|g, n = 0⟩ → |e, n = 1⟩ → |g, n = 1⟩ : γ
(b)
0→1 ≈

Γ

4

κ2η2

(2Ω)2
, (VI.25)

and the total rate2 is γ0→1 = γ
(a)
0→1 + γ

(b)
0→1. The equality

π0γ0→1 = π1γ1→0 (VI.26)
2The probabilities of the two paths are summed here, not their amplitudes. One can show

that this is legitimate since we are taking the average over the momentum carried away by
the scattered photon during the optical pumping process.
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Figure VI.8. The two processes to consider when determining the steady-state of
sideband cooling. Left, flow from g, n = 1 to g, n = 0. Right, flow from g, n = 0
to g, n = 1 with two possible relay states.

then leads to (Wineland & Itano 1979)

π1
π0
≈ 5

16

Γ2

Ω2
≪ 1. (VI.27)

The populations of the other excited states (n = 2, 3, . . .) are even smaller
than π1 in the limit Γ≪ Ω.

One often uses the value of π0 to judge the efficiency of sideband cool-
ing, trying to make it as close to 1 as possible. We can also look at the
average number of excitations3

n̄ =
∑
n

nπn, (VI.28)

as well as at equilibrium temperature. It can be shown that the populations

3In the limit (VI.27), we have n̄ ≈ π1
π0

≈ 5
16

Γ2

Ω2 .
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of rapidly decaying to the ground state. When (n, ) « I,
a quantitative measurement of (n„) from the absorption
spectrum becomes very simple. The strength of absorp-
tion SL on the lower sideband is proportional to (n„),
while the strength SU of the upper sideband is propor-
tional to (n,, )+1. When (n„,) approaches zero, the lower
sideband disappears because no more vibrational quanta
can be extracted from the ion. If the sideband absorp-
tion spectrum is probed with saturating power, the ratio
of the strengths of lower to upper sidebands becomes in-
dependent of power' and directly gives (n„).

To simplify our discussion, we have assumed the trap
states and associated wave functions are those of a har-
monic potential which is equal to the classical pseudopo-
tential of the rf trap. In the quantum treatment of the rf
trap, ' ' the relevant states are not energy eigenstates
because of the time dependence of the potential. Howev-
er, when the trap drive frequency 0 » m„„ the atom's op-
tical spectrum and transition matrix elements relevant
for cooling closely approximate those for a harmonic po-
tential equal to the classical pseudopotential. The states
which represent the cooled ion look like harmonic-
oscillator states whose dimensions oscillate with small
amplitude at frequency A. These states are of the form
exp[ —iru„(n+ & )tIf, (x, t) where the f„are periodic in

time with period 2rr/A. '

Our trap' "(ro=466 pm, zo=330 pm) was operat-
ed at a trapping field frequency 0/2' =23.189 MHz.
With an rf peak voltage amplitude Vo= 1.2 kV and a
static potential Uo=+71.4 V applied to the ring elec-
trode, the trap potential was approximately spherical. In
order to cool all motional degrees of freedom to near the
Doppler cooling limit for the (A) transition, two orthogo-
nal beams of 194-nm radiation, both at an angle of 55'
with respect to the trap symmetry (z) axis, were used
(Fig. 1). The radiation to drive the (B) transition was
derived from a frequency stabilized dye laser (X =563
nm) with a linewidth less than 20 kHz. The output radi-
ation from this narrow-band laser was frequency doubled
and focused to as much as 25 W/cm at the position of
the ion; this allows strong saturation on the cooling tran-
sition. The radiation to drive the (C) transition was de-
rived from a frequency stabilized LD 700 dye laser
whose output radiation was frequency doubled and fo-
cused to give approximately 1 mW/cm at the position of
the ion.

Before the sideband cooling experiment was started,
an absorption spectrum of the (B) transition was taken'
to determine the carrier frequency as well as the side-
band frequencies (inset Fig. 2). We made sure that the
282-nm source had equal power at both the upper and
lower sideband frequencies. For the sideband cooling
and the probing of the absorption spectrum, the follow-
ing computer-controlled sequence was run repeatedly.
First, the 398- and 194-nm radiation were turned on
simultaneously for a 20-ms interrogation period. If the
194-nm fIuorescence exceeded a preset value during this
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period, it could be assumed that the ion was laser cooled
and cycling between the S~g2 and the P i~2 states. This
20-ms interrogation period was repeated until this condi-
tion was satisfied. Then the 194-nm radiation was
switched off and the 282-nm radiation, tuned to the first
lower sideband at mo —co„was switched on for a cooling
time r, (typically 200-500 ms). After the 282-nm radi-
ation was switched oA, the 398-nm radiation was kept on
for a relaxation time r„(typically 5 ms) in order to emp-
ty the Dg2 state. After this, the cooled ion was in the
electronic ground state and the probing of the absorption
spectrum was done as follows: The 282-nm source was
switched on at saturating intensity for 10 ms at a fre-
quency corresponding to one point near the upper or
lower sideband frequency. After this, the 282-nm beam
was switched off and the 194-nm radiation was switched
on to see if the ion had made the transition to the D5g
state. " The result was averaged with the results of pre-
vious measurements at the same probe frequency. The
frequency of the 282-nm source was stepped to the next
value and the cooling and probing cycle was repeated un-
til about 40 cycles for each value of the probe frequency
were completed. The results of a typical run are shown
in Fig. 2.

In order to deduce (n, ) for the different motional de-
grees of freedom, the geometry of our experiment (Fig.
1) has to be considered. The 282-nm beam enters the
trap at an angle of 55 with respect to the z axis. The x
and y directions were previously determined by the fixed
spatial alignment of two simultaneously stored ions, '

which we take to be along the x axis. From these data,
the squares of the projections p; of unit vectors along the

FIG. 2. Absorption spectrum of the SI/2- D5/2 electric
quadruple transition of ' Hg+, The inset spectrum was taken
before sideband cooling was applied. It shows the carrier at
zero detuning (frequency bio) and the first sidebands (at fre-
quencies coo —co. and r00+co„) generated by the ion's motion in
the approximately spherical well. For this spectrum, the band-
width of the 282-nm radiation was broadened to 120 kHz to
reduce the number of required data points and the laser power
was reduced in order to avoid saturation. The enlarged part of
the figure shows the absorption strength SL (S~) on the lower
(upper) motional sideband 15 ms after the end of the sideband
cooling. Values for SL and SU were obtained from Gaussian
fits to the data points which are averaged over 41 sweeps.

Figure VI.9. Sideband cooling of a single ion 198Hg+. The upper panel shows
the spectrum before cooling, with roughly equal weights for the two transitions
at ωA ± Ω, corresponding to |g, n⟩ −→ |e, n ± 1⟩. The main figure shows the
spectrum after cooling: the lower sideband at ωA − Ω is much reduced compared
with the upper sideband at ωA+Ω. From the relative weight of these two lines, one
can deduce the population ratio π1/π0 [figure extracted from Diedrich, Bergquist,
et al. (1989)].

πn follow a Boltzmann law πn ∝ exp(−nℏΩ/kBT ), i.e.

n̄ =
1

exp(ℏΩ/kBT )− 1
⇒ kBT =

ℏΩ
ln(1 + 1

n̄ )
. (VI.29)

In the experiment by Diedrich, Bergquist, et al. (1989), the 198Hg+ ion
was cooled essentially to the g, n = 0 state with π0 = 0.95. This was
deduced from the absorption spectrum of the trapped ion, which indi-
cated that the first red sideband, corresponding to the |g, n⟩ −→ |e, n − 1⟩
transitions, was much reduced compared with the first blue sideband
|g, n⟩ −→ |e, n+ 1⟩ (figure VI.9).

The experiment of Diedrich, Bergquist, et al. (1989) required a transition
g ↔ e with a long-lived excited state e, which seems restrictive. However,
we have seen in previous chapters that it is possible to replace the direct
transition g ↔ e by a Raman transition g1 ↔ g2 via an excited state, and
thus obtain an effective two-level system, where the lifetime γ−1 of g2 is
adjustable: all that is needed is to change the power of the repumping
beam which brings the atoms back from g2 to g1. This principle was im-
plemented by Monroe, Meekhof, et al. (1995) following an initial proposal

g1

x
x

g2

n
n-1

n-1

e

g1

x

g2

n
n-1

n-1

e

x

Figure VI.10. Sideband cooling via a Raman transition. The cooling process has
been separated into two phases, although both processes can occur simultaneously.
The atom is initially in the internal state g1 on vibrational level n (1D version).
Left: coherent coherent coupling takes it to the internal state g2 and vibrational
level n−1. Right: an optical pumping process involving the spontaneous emission
of a photon (dotted line) returns the atom to the state g1. In the Lamb–Dicke
regime, this process occurs on average without any change of external state, so
that the balance of the cycle is a decrease in the vibrational number by one unit.

by Heinzen & Wineland (1990). Sideband cooling via a Raman transition is
now a standard technique in trapped-ion physics, and leads to an average
population of the vibrational ground state greater than 0.99.

2-3 The case of neutral atoms

The principle of sideband cooling for neutral atoms is very similar to that
for a trapped ion. The atom is initially in the internal state g1, which in
practice is a Zeeman sublevel of the ground state, and in a vibrational state
n = (nx, ny, nz) of the trap confining the atom.

• A coherent coupling, which we will detail in the next paragraph,
causes the atom to be transferred to another internal state g2 and a
lower vibrational state, e.g. n′ = (nx − 1, ny, nz).

• An optical pumping process brings the atom back from g2 to g1 at a
rate γ chosen to be small compared with Ω. In the Lamb–Dicke limit,
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this optical pumping generally does not modify the vibrational state
of the atom, which therefore ends this cycle in the state |g1,n′⟩: the
atom energy has been reduced by the amount ℏΩx, this energy being
carried away by the fluorescence photon emitted during the optical
pumping from g2 to g1.

• This procedure is repeated for the spatial directions y and z.

The main difficulty in implementing this procedure lies in creating a
trap of sufficient stiffness. Indeed, the oscillation frequency Ω must be large
compared to ωr and γ, which leads to frequencies Ω/2π of the order of
several tens of kHz. As we have already announced, a well-suited method
for obtaining such frequencies is to use an optical lattice (see course 2012-
13). This lattice can be 1D (Perrin, Kuhn, et al. 1998; Vuletic, Chin, et al.
1998), 2D (Hamann, Haycock, et al. 1998) or 3D (Kerman, Vuletic, et al.
2000; Han, Wolf, et al. 2000).

In all that follows (except in § 2-5), we will treat each lattice site as an in-
dependent harmonic well. This approximation is valid when the condition
(VI.11) is satisfied, if we restrict ourselves to weakly excited vibrational
states: the non-harmonicity of the lattice potential is then negligible, as is
tunneling to neighboring wells. A complementary advantage of the op-
tical lattice is that it can cool a large number of atoms simultaneously, in
principle up to one atom per lattice site. However, as soon as two atoms
are present at the same site, at least in the case of a 3D lattice, light-assisted
collisions lead to the loss of this pair of atoms.

It is also possible to achieve sideband cooling in a single well, obtained
in an optical tweezer formed by a tightly focused laser beam. Because of
the losses just mentioned, at most one atom is present in the tweezer at
any time. The first experiments in this direction are recent, and have been
carried out in Boulder and at CUA (MIT-Harvard) by Kaufman, Lester, et
al. (2012) and Thompson, Tiecke, et al. (2013).

Very recently, the sideband cooling technique has been implemented to
image lattice gases (Patil, Chakram, et al. 2014), and observe individual
atoms trapped on optical lattice sites in quantum gas microscopy exper-
iments (Cheuk, Nichols, et al. 2015; Parsons, Huber, et al. 2015; Haller,
Hudson, et al. 2015) (figure VI.11). These are lithium and potassium atoms
(fermionic isotopes) for which Sisyphus-type cooling works poorly due to

Site-Resolved Imaging of Fermionic 6Li in an Optical Lattice

Maxwell F. Parsons, Florian Huber, Anton Mazurenko, Christie S. Chiu, Widagdo Setiawan,
Katherine Wooley-Brown, Sebastian Blatt, and Markus Greiner*

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 16 April 2015; published 28 May 2015)

We demonstrate site-resolved imaging of individual fermionic 6Li atoms in a single layer of a 3D optical
lattice. To preserve the density distribution during fluorescence imaging, we simultaneously cool the atoms
with 3D Raman sideband cooling. This laser cooling technique, demonstrated here for the first time for
6Li atoms, also provides a pathway to rapid low-entropy filling of an optical lattice. We are able to
determine the occupation of individual lattice sites with a fidelity > 95%, enabling direct, local
measurement of particle correlations in Fermi lattice systems. This ability will be instrumental for
creating and investigating low-temperature phases of the Fermi-Hubbard model, including antiferromag-
nets and d-wave superfluidity.
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Particle correlations reveal the underlying order of an
interacting quantum many-body system. Strong correla-
tions give rise to rich quantum many-body phenomena
such as high-temperature superconductivity and colossal
magnetoresistance [1]. One approach toward studying
correlated many-body systems uses ultracold atoms to
implement a well-understood and tunable realization of a
particular model and the behavior of the clean atomic
system as a benchmark for theory [2]. This “synthetic
matter” approach is especially fruitful for strongly corre-
lated fermionic systems, where, for even the simplest
models, the sign problem of the quantum Monte Carlo
method precludes accurate computations of thermody-
namic observables [3]. In addition to theoretical simplicity
and tunability, ultracold atomic systems can be designed to
have interparticle spacings of the order of the wavelength of
visible light. By placing a quantum gas under an optical
microscope we can therefore directly observe and manipu-
late quantum correlations at their smallest length scale.
Such a quantum gas microscope has been realized for
bosonic 87Rb [4,5] and very recently for bosonic 174Yb [6]
atoms. In bosonic systems, site-resolved imaging has been
used to study the quantum phase transition from a super-
fluid to a Mott insulator [5,7,8] and from a paramagnet to
an antiferromagnet [9]. Single-site resolution also enables
the extraction of nonlocal order parameters such as string
order [10] and allows studies of strongly correlated
dynamics in optical lattices [11–13]. Until very recently
[14,15], however, site-resolved imaging had not been
demonstrated for fermionic atoms. In Fermi-Hubbard
systems, cold atom experiments without single-site reso-
lution have observed Mott insulators [16,17] and antifer-
romagnetic correlations [18,19]. In these experiments,
an understanding of the prepared many-body state is
limited by lack of direct access to the many-body wave
function and the inability to locally measure correlations.

The extension of quantum gas microscopy to fermions
will provide novel probes for Fermi lattice systems, such as
site-resolved spin correlation functions and local entropy
measurement.
Here, we demonstrate site-resolved imaging of fermionic

6Li in a single layer of a 3D optical lattice with high fidelity
[see Fig. 1]. 6Li is an especially suitable species for many-
body experiments with ultracold atoms because its light
mass leads to fast thermalization and dynamics, and its
broad magnetic Feshbach resonances [20] allow precise
control of atomic interactions. The natural energy scale for

FIG. 1 (color online). Fluorescence image of atoms in a single
layer of a cubic lattice obtained using Raman sideband cooling.
The filling fraction in the center of the cloud is 40%. We collect
approximately 750 photons per atom during a 1.9 s exposure.
The color bar is in arbitrary units.

PRL 114, 213002 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
29 MAY 2015

0031-9007=15=114(21)=213002(5) 213002-1 © 2015 American Physical Society

Figure VI.11. Fluorescence of individual 6Li atoms trapped in a cubic optical
lattice and experiencing sideband cooling. The filling factor is about 40% at the
center of the cloud [figure extracted from Parsons, Huber, et al. (2015)].

the hyperfine structure being too small in the excited state (see Chapter 5).
Sideband cooling, coupled with high-efficiency imaging, makes it possible
to observe individual atoms while freezing their position, to within one
period of the optical lattice 4.

4Haller, Hudson, et al. (2015) uses a variant of sideband cooling, called electromagneti-
cally induced transparency cooling, first proposed by Morigi, Eschner, et al. (2000). There,
ones takes advantage of a dark resonance between g1, n and g2, n to minimize the influence
of transitions without change of the vibrational state, and maximize the desired transitions
g1, n → g2, n− 1.

106



CHAPITRE VI. OPTICAL LATTICES AND SIDEBAND COOLING § 2. Sideband cooling

2-4 How to achieve coherent coupling

Achieving coherent coupling is the trickiest part of implementing sideband
cooling for trapped atoms. Let us take a one-dimensional approach to sim-
plify the discussion: we need to find an operator Ŵ with non-zero matrix
elements between |g1, n⟩ and |g2, n− 1⟩:

⟨g2, n− 1|Ŵ |g1, n⟩ ≠ 0. (VI.30)

The operator Ŵ must therefore change both the atom’s internal state (g1 →
g2) and its external state (n→ n− 1).

Use of auxiliary laser beams. Conceptually, the simplest way to induce
the transition g1 → g2 is to use a pair of laser beams inducing a momentum
transfer ℏq (Bouchoule, Perrin, et al. 1999; Han, Wolf, et al. 2000). In this
case, the matrix element of the coherent coupling factorizes into

⟨g2, n− 1|Ŵ |g1, n⟩ = ⟨g2|Ŵinternal|g1⟩ × ⟨n− 1|eiq·r|n⟩ (VI.31)

and the spatial part is simply calculated in the Lamb–Dicke regime. The
direction of the vector q must be alternated along to three orthogonal axes
to obtain a 3D cooling (Han, Wolf, et al. 2000).

Use of a radio-frequency wave. To change the internal state, a radio-
frequency (or microwave) transition can do the trick. But as the wave-
length of this radio-frequency is very long compared to the extension of
the vibrational states, the action of Ŵ on the atomic external variables is
essentially negligible, so that

radio-frequency: ⟨g2, n−1|Ŵ |g1, n⟩ = ⟨g2|Ŵ |g1⟩×⟨n−1|n⟩ = 0 (VI.32)

because the vibrational states |n− 1⟩ and |n⟩ are orthogonal.

However, it is possible to get around this difficulty by spatially shifting
the bottom of the potential wells of g2 with respect to those of g1, so that the
vibrational state |n⟩1 (for the internal state g1) is not centered in the same
place as |n⟩2 (for the internal state g2). We then have:

radio-frequency (again) : ⟨g2, n−1|Ŵ |g1, n⟩ = ⟨g2|Ŵ |g1⟩×2⟨n−1|n⟩1 ̸= 0.
(VI.33)
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Figure VI.12. The four steps leading to sideband cooling via the vector compo-
nent of the light-shift operator (see text). This method has been implemented by
Hamann, Haycock, et al. (1998) and Kerman, Vuletic, et al. (2000).

This method is known as projective sideband cooling and has been imple-
mented5 in 1D by Förster, Karski, et al. (2009), then in 3D by Li, Corcovilos,
et al. (2012). The spatial shift between the potential wells for the two inter-
nal states g1 and g2 is obtained by taking advantage of the fact that the
light-shift operator, which creates the optical lattice potential, has a vec-
tor component which, for alkaline atoms, is significant if the laser creating
the lattice is not too far from the atomic resonance: the light potential then
depends on the internal state, which is the desired condition.

5Perrin, Kuhn, et al. (1998) used a Raman transition induced by two laser beams to cou-
ple g1 and g2, but these beams propagated in the same direction and did not induce spatial
coupling. Their action was therefore equivalent to a radio-frequency coupling.
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Use of the optical lattice itself. Since the light-shift operator at the origin
of the lattice can have a vector component that couples the different Zee-
man states, one can take advantage of it in the following way [Hamann,
Haycock, et al. (1998) and Kerman, Vuletic, et al. (2000)]:

• One fixes a target value for the oscillation frequency Ω and apply a
static magnetic field that shifts the energy of g2 relative to g1 by about
ℏΩ. Here, g1 and g2 are two Zeeman sublevels of the same hyperfine
level, e.g. |g1⟩ = |F,mF = F ⟩ and |g2⟩ = |F,mF = F − 1⟩ (figure
VI.12a).

• The optical lattice is applied. The scalar component of the light-shift
operator, which is the dominant term, creates identical potential wells
for g1 and g2 with frequency Ω. In combination with the effect of the
static magnetic field, the states |g2, n⟩ are therefore at the same level as
the states |g1, n+ 1⟩ (figure VI.12b).

• Consider now the vector component of the light-shift operator within
a given multiplicity {|g1, n + 1⟩, |g2, n⟩}: the energy eigenstates in the
lattice are not factorized in the form |gi, n⟩, but are superpositions
α|g1, n + 1⟩ + β|g2, n⟩. The only state that remains factorized is the
state |g1, 0⟩, as there is no state involving g2 in its immediate vicinity
(figure VI.12c).

• An optical pumping beam is applied, destabilizing the state g2 and
repumping the atoms back to g1. The atomic eigenstates in the lattice
thus acquire a finite lifetime as they are contaminated by g2, with the
exception of the ground state |g1, 0⟩ (figure VI.12d). The desired dark
state is thus obtained.

Most exploratory experiments on sideband cooling in optical lattices
have been carried out with cesium atoms. Performance after optimization
is comparable from one experiment to the next. In one and two dimen-
sions, populations π0 > 95% were observed by Hamann, Haycock, et al.
(1998), Morinaga, Bouchoule, et al. (1999) and Förster, Karski, et al. (2009).
In three dimensions, Kerman, Vuletic, et al. (2000) and Li, Corcovilos, et al.
(2012) obtained π0 ∼ 80%.

2-5 Adiabatic opening of a lattice

The temperature of the atoms after sideband cooling is given by (VI.29).
Unless we succeed in producing an average excitation number n̄ extremely
small in front of 1, this temperature is generally of order Ω. These are
therefore relatively high temperatures, since large values of Ω (compared
with ωr, for example) are required for sideband cooling to work properly.

Nevertheless, once the atoms have been cooled in an optical lattice, a
simple way of lowering their temperature (without changing the entropy
of the gas) is to adiabatically lower the lattice depth (Kastberg, Phillips,
et al. 1995; Kerman, Vuletic, et al. 2000). Starting with atoms cooled in the
ground state n = 0 at the lattice nodes, we show below that this leads to
a velocity distribution whose width is below the recoil limit. We will only
outline the reasoning here, and refer readers to the 2012-13 course (Chapter
2), where the physics of optical lattices was studied in more detail.

Since the potential of the optical lattice is periodic, the proper tool for
analyzing the dynamics of an atom is the formalism deduced from Bloch’s
theorem. Let us consider once again the 1D case to simplify notation, and
write the lattice potential V (x) = V0 sin

2(kx), with period a = λ/2 = π/k.
Bloch’s theorem indicates that we can search for the eigenstates of the
single-atom Hamiltonian in the form of Bloch states ψn,q(x) = eiqx un,q(x),
where the function un,q is periodic of period a and the quasi-moment q is
chosen in the first Brillouin zone

−π/a < q ≤ π/a ⇔ −k < q ≤ k. (VI.34)

The index n = 0, 1, 2, · · · marks, for a fixed quasi-momentum q, the differ-
ent energy states ranked in ascending order. When q varies in the Brillouin
zone, we obtain for a given n an energy band En(q) (figure VI.13).

Choosing a high oscillation frequency for the Lamb–Dicke regime [con-
dition (VI.11)] implies that the lattice depth V0 is large compared to the gap
between two consecutive bands, which is of order ℏΩ for weakly excited
bands. The width of the bands, determined by the tunneling effect from a
given well to the neighboring wells, is then very small compared to Ω and
these bands are almost flat, with energy equal to (n+ 1

2 )ℏΩ: each lattice site
can be treated as a harmonic well in which the atom is trapped, unable to
jump to a neighboring site.
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Figure VI.13. First energy bands En(q) (unit Er = ℏ2k2/2m), as a function of
q/k for the potential V (x) = V0 sin

2(kx). From left to right, V0/Er =(20, 4,0).
The shaded rectangle represents the energy zone below the height of potential V0.

After sideband cooling, let us assume that each atom has been placed
in the ground state of a lattice site (our reasoning can easily be generalized
to the case n̄ ̸= 0). We make no assumptions about the filling rate of the
lattice, and neglect any coherence phenomena between different sites. The
density operator describing this situation is a statistical mixture of the dif-
ferent states ψn,q(x) with n = 0 and with q uniformly distributed in the
first Brillouin zone:

ρ̂ ∝
∫ +k

−k

|ψ0,q⟩⟨ψ0,q| dq. (VI.35)

When we decrease the depth of the lattice, i.e. vary the amplitude of
the potential as V (x, t) = V0(t) sin

2(kx), we retain the periodic nature of
the problem. This remains true even when the potential is completely ex-
tinguished, since the potential V (x) = 0 can be seen as a potential of period
a and zero amplitude. In the case V0 = 0, the energy bands are obtained
simply by starting with the energy of a free particle E(p) = p2/2M , then
folding this parabola. To do this, we write the momentum in the form
p = ℏ(q + 2jk), with j ∈ Z and q in the first Brillouin zone (figure VI.13,
right).

Since the potential retains its periodic nature with period a, Bloch’s the-
orem continues to apply at every instant of the decompression. More pre-
cisely, starting from a Bloch state |ψ0,q⟩, the atom will remain in a Bloch
state eiqxu(x), where u(x) is a periodic function: the quasi-moment q is
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Figure VI.14. Adiabatic opening of an optical lattice. Atoms initially occupy the
ground band of the optical lattice, with all quasi-momenta q equally populated.
When the lattice intensity is decreased, the periodicity of the problem entails that
the quasi-momentum is conserved. If the intensity variation is sufficiently slow,
the atoms remain on the ground band until the lattice is completely extinguished.

therefore a constant of motion. For decompression to be accompanied by
optimum cooling, we simply need to ensure that the lattice is extinguished
slowly enough for the transfer from the ground band to the excited bands
(at a given q) to be negligible (figure VI.14). The criterion for this, estab-
lished in the 2012-13 course, is that the extinction time τ should be large in
front of 1/ωr.

When this condition is met, the final state is the same statistical mixture
as (VI.35), but with the energy of a state |ψ0,q⟩ corresponding to the case
of the free particle E(q) = ℏ2q2/2M . Since the initial quasi-momentum
q is randomly and uniformly distributed in the Brillouin zone, the mean
kinetic energy after lattice extinction is:

1

2
M⟨v2⟩ = 1

2k

∫ +k

−k

ℏ2q2

2M
dq =

1

6
Mv2r . (VI.36)

Cooling the atoms in the ground state of each lattice site therefore offers
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the possibility, via adiabatic opening, of producing a gas at subrecoil tem-
perature, with a r.m.s. velocity v0 ≈ 0.6 vr.

On a practical level, sideband cooling followed by adiabatic lattice de-
compression was studied by Kerman, Vuletic, et al. (2000). The fraction of
atoms in the ground band after cooling was ∼ 80% and the r.m.s. veloc-
ity after adiabatic decompression 1.2 vr. Kerman, Vuletic, et al. (2000) also
measured the variation of temperature with atomic density, and their re-
sult clearly illustrates the gain made by the lattice in reducing the adverse
effects of multiple scattering. They found

dT

dn
≈ 8 nK/(1010 cm−3), (VI.37)

which is 100 times smaller than the result (VI.5) found for Sisyphus cooling.

Lattice opening and interactions. Our reasoning concerning adiabatic
lattice opening has been made in the limit where interactions between
atoms play a negligible role during opening. The final state is then a gas
of low kinetic energy (below the recoil limit), but not condensed. This is
because two atoms initially occupying two distinct lattice sites are in or-
thogonal quantum states (the Wannier functions associated with each site).
In the absence of interaction, they will remain in orthogonal states during
the Hamiltonian evolution describing the opening. There can thus be no
macroscopic accumulation of particles in an individual state in this case.

The approximation of neglecting interactions is legitimate if the lat-
tice filling factor is low [10−3 in the experiment of Kerman, Vuletic, et al.
(2000)]. On the other hand, if one starts from a situation with all sites oc-
cupied by an atom and in the presence of repulsive interactions, the initial
state can be seen as a Mott insulator with unit filling factor. Adiabatic de-
compression of the lattice in the presence of interactions should then lead
to a condensed, superfluid phase with zero temperature.

3 Can we do without spontaneous emission?

In this course, we have reviewed a number of more or less complex mech-
anisms for increasing the phase-space density of an assembly of atoms,

whether free or trapped. Common to all these mechanisms is the phe-
nomenon of spontaneous emission. It is thanks to this that we have been
able to reduce the disorder of the gas, entropy being transferred to the
modes of the electromagnetic field. But this spontaneous emission also
imposes limits on cooling.

• At the fundamental level, several of these mechanisms lead to a r.m.s.
velocity v0 of the order of the recoil velocity vr, due to the random
nature of the recoils taken by the atom when it spontaneously emits a
photon.

• On a practical level, spontaneously emitted photons can undergo mul-
tiple scatterings before leaving the sample, creating additional heating
that can be considerable for dense gases, as we recalled in § 1.

This brings us to a natural question: is spontaneous emission really
essential for radiative cooling? Even if the intuitive answer to this question
is yes, we shall see that there are nuances to it. On the other hand, some
authors believe they have experimentally observed (slight) cooling of a gas
of atoms without spontaneous emission (Corder, Arnold, et al. 2015). In the
absence of precise information on these very recent experiments, we will
not discuss them here in detail, but we will set out in this final section a
number of results that restrict the type of effects that can be expected.

3-1 Hamiltonian evolution of a gas without interaction

The Hamiltonian evolution of a gas ofN non-interacting atoms cannot lead
to an increase in its phase-space density or in the occupancy of any individ-
ual quantum state. We have already detailed this point in the introductory
chapter of the course [see also Ketterle & Pritchard (1992)]. If the Hamilto-
nian is written as a sum of one-particle Hamiltonians

Ĥ(t) =
N∑

n=1

Ĥ(n)(t), (VI.38)

then the evolution of the single-particle density operator is unitary and its
eigenvalues are constant over time: we can neither increase nor decrease
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Figure VI.15. Adiabatic opening of a harmonic trap: the population of each quan-
tum state remains constant.

the occupancy of a given state, but simply convert one state into another.
For example, by adiabatically opening a trap, it is possible to convert states
of low spatial extension x0 and high r.m.s. velocity v0, into states of large
x0 and low v0. The temperature, defined by kBT = Mv20 , then decreases,
but each quantum state in the trap retains its population (figure VI.15).

3-2 Atoms and quantized electromagnetic fields

When a set of atoms is coupled to the quantized electromagnetic field, the
Hamiltonian of the system is richer than (VI.38). Let us restrict ourselves to
the single-atom case and use the electric dipole approximation to describe
the atom-field coupling. The total Hamiltonian is written:

Ĥ = ĤA + ĤF − D̂ · Ê(r̂), (VI.39)

where ĤA and HF represent the Hamiltonians of the atom and of the free
electromagnetic field. The atom Hamiltonian is

ĤA =
p̂2

2M
+ ĤA,intern. (VI.40)

In these expressions, r̂ and p̂ represent the position and momentum opera-
tors of the atom center of mass, ĤA,intern is the Hamiltonian describing the
evolution of the atom internal variables and D̂ its electric dipole operator.
In the simple two-level model of the atom we have used many times in this

lecture series, the dipole operator is written as

D̂ = d |e⟩⟨g|+ H.c. (VI.41)

where the vector d represents the reduced dipole of the transition. The
field modes are characterized by their wave vector k (with ω = ck) and
polarization ϵ, and each mode is indexed by the compact notation λ ≡
(k, ϵ). The Hamiltonian of the free electromagnetic field is

ĤF =
∑
λ

ℏω â†λâλ (VI.42)

where â†λ and âλ are the photon creation and annihilation operators in the
mode λ. Finally, the electric field operator Ê(r) is written as

Ê(r) =
∑
λ

Eλ ϵ âλ eik·r + H.c. with Eλ = i

√
ℏω

2ϵ0L3
, (VI.43)

where L3 represents the quantization volume, and the wave vectors k are
k = 2π

L n, n ∈ Z3.

When no light beam reaches the atom, the electromagnetic field is the
vacuum state, in which no mode is populated:

|vac⟩ =
∏
λ

|0⟩λ. (VI.44)

When the atom is illuminated by a beam of light, some modes of the elec-
tromagnetic field are occupied. The absorption and stimulated emission
processes correspond to the destruction and creation of photons in these
occupied modes, while the phenomenon of spontaneous emission corre-
sponds to the creation of photons in initially empty modes6.

3-3 Use of a non-classical field

If no additional constraints are placed on the field state, it is possible to find
situations where cooling (in the sense of accumulation in the same quan-
tum state) occurs without populating radiation modes that would initially

6More precisely, the probability of creating a photon in a mode λ already containing nλ

photons will be proportional to nλ + 1: the term nλ is due to stimulated emission and the
term "1" to spontaneous emission.
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Figure VI.16. 1D laser configuration with two counterpropagating running
waves of frequency ω and ω′ inducing a resonant transition between the zero mo-
mentum state p = 0 and the momentum state p = ℏK with K = k + k′.

be empty. Let us take a 1D example, illustrated in figure VI.16. An atom
is illuminated by two counter-propagating beams of frequency ω = ck and
ω′ = ck′ chosen such that ω − ω′ = ℏK2/(2M) with K = k + k′, so that
the Raman transition between the zero momentum state p = 0 and the mo-
mentum state p = ℏK occurs resonantly. The detuning from the excited
state can be assumed to be large enough to neglect the population of this
state. Similarly, for sufficiently weak atom-light coupling, we can neglect
the non-resonant processes that would lead to the population of p = nℏK
states with n ̸= 0, 1.

First, let us assume that the initial state of the atom + field system is

|ψ(0)⟩ = |p = 0⟩ ⊗ |N,N ′⟩, (VI.45)

with N photons in the mode ω and N ′ photons in the mode ω′. Note that
this notion of explicitly defining the number and momentum of photons
in a given mode only makes sense if these modes are defined by a physical
(ring) cavity, which we will assume from now on. The state of the system
at time t can be written as

|ψ(t)⟩ = α(t)|p = 0⟩ ⊗ |N,N ′⟩+ β(t)|p = ℏK⟩ ⊗ |N − 1, N ′ + 1⟩ (VI.46)

since the atom goes from p = 0 to p = ℏK by absorption of a photon
in the mode ω and stimulated emission of a photon in the mode ω′. The
corresponding matrix element is deduced from the action of the operators
â′†â and is therefore proportional to

√
N(N ′ + 1). Starting from p = 0 at

time t = 0, the probability of finding the atom in state p = 0 at time t can
then be written as

P (p = 0 : t|p = 0 : 0) = cos2
(√

N(N ′ + 1) α0t
)
, (VI.47)

where the parameter α0 is α0 = κ20/(4∆), κ0 being the single-photon Rabi
frequency characterizing the atom-light coupling, and ∆ the detuning of ω
and ω′ from the atomic resonance frequency (|∆| ≫ ωr,Γ).

Now let us assume that the initial state of the atom + field system is

|ψ(0)⟩ = |p = ℏK⟩ ⊗ |N,N ′⟩. (VI.48)

A similar reasoning indicates that the state at time t is of the form

ψ(t)⟩ = γ(t)|p = ℏK⟩ ⊗ |N,N ′⟩+ δ(t)|p = 0⟩ ⊗ |N + 1, N ′ − 1⟩ (VI.49)

with absorption in the mode ω′ and stimulated emission in the mode ω.
The probability of finding the atom in the momentum state p = 0 at time
t, knowing that the atom was in the momentum state p = ℏK at time 0, is
therefore as follows

P (p = 0 : t|p = ℏK : 0) = sin2
(√

(N + 1)N ′ α0t
)
. (VI.50)

We can then choose a pair N,N ′ and a value of the parameter α0t such
that7:

• The atom initially in state p = 0 has a probability close to 1 of still
being in this state at time t:√

N(N ′ + 1) α0t ≈ 0 mod π. (VI.51)

• The atom initially in the p = ℏK state has a probability close to 1 of
being in the p = 0 state at time t :√

(N + 1)N ′;α0t ≈
π

2
mod π. (VI.52)

7For example α0t = π/10, N = 102, N ′ = 104.
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Starting from a density matrix for the atom corresponding to a statistical
mixture with weight 1/2 for p = 0 and p = ℏK, we find at time t a density
matrix where the population of the state p = 0 has become close to 1. In
other words, thanks to the laser field initially prepared in the Fock state
|N,N ′⟩ (a non-classical state!), we have succeeded (without emitting pho-
tons in the initially empty modes) in reducing the initial disorder of the
atom’s momentum distribution, by transferring this disorder to the light
field.

Note. To write that the above process operates without spontaneous
emission may be considered as a misuse of language: the argument is
based on the difference between N and N +1 (or N ′ vs. N ′ +1). However,
the physical origin of this difference corresponds precisely to spontaneous
emission in the mode ω (or ω′). It is therefore correct to say that there are
no photons created in the empty radiation modes, but abusive to say that
spontaneous emission plays no role at all8.

3-4 And with a coherent state?

The example in the previous paragraph showed us that it was possible,
using a well-chosen state of the electromagnetic field, to cool an assem-
bly of atoms without having to rely on spontaneous emission of photons
into empty modes of the radiation. However, the generation of Fock states,
such as the state |N,N ′⟩ in this example, is a delicate operation. In a realis-
tic experiment, we manipulate light fields that originate from laser sources
and are well described by coherent (or quasi-classical) states of the electro-
magnetic field, i.e. eigenstates of annihilation operators:

âλ|coh⟩ = αλ|coh⟩ (VI.53)

where αλ is a complex number.

Let us start with a single mode of the field to simplify notations. The
eigenstate of â with eigenvalue α, which we will denote |α⟩ from now on,

8A result similar to (VI.51–VI.52) can be obtained by taking N = 0, N ′ ̸= 0, a situation in
which accumulation in p = 0 results from spontaneous emission in the mode ω, via a simple
optical pumping process.

can be written explicitly in different ways:

|α⟩ = exp
(
αâ† − α∗â

)
|0⟩ = e−|α|2/2eαâ

† |0⟩

= e−|α|2/2
∞∑

n=0

αn

√
n!
|n⟩. (VI.54)

In a realistic situation, several modes of the electromagnetic field are
populated, corresponding to different wave vectors, polarizations and fre-
quencies. The state of the field at initial time t = 0, before interaction with
the atoms has begun, can therefore be written as follows

|ψC(0)⟩ = D̂[{αλ}] |vac⟩ (VI.55)

with the unitary operator D̂, called displacement operator, defined by:

D̂[{αλ}] =
∏
λ

exp
(
αλâ

†
λ − α∗

λâλ

)
. (VI.56)

We will assume that the state of the total system atom+field |Ψ(0)⟩ is fac-
torized at this initial time (no correlation between the two) so that:

|Ψ(0)⟩ = |ψA(0)⟩ ⊗ |ψC(0)⟩. (VI.57)

It is then interesting to perform on the state vector of the total system
|Ψ(t)⟩ the following unitary transformation, originally suggested by Mol-
low (1975) [see also Cohen-Tannoudji, Dupont-Roc, et al. (2012), exercise
17]:

|Ψ̃⟩ = Û(t)|Ψ(t)⟩ with Û(t) =
(
D̂[{αλ e−iωt}]

)†
. (VI.58)

In this unitary transformation, the Schrödinger equation

iℏ
d|Ψ(t)⟩

dt
= Ĥ|Ψ(t)⟩ (VI.59)

becomes

iℏ
d|Ψ̃(t)⟩

dt
= ˆ̃H(t)|Ψ̃(t)⟩ (VI.60)
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with the now time-dependent Hamiltonian

ˆ̃H(t) = Û(t)ĤÛ†(t) + iℏ
dÛ(t)

dt
Û†(t). (VI.61)

Before explicitly calculating this new Hamiltonian, let us immediately
point out the interest of this unitary transformation: at initial time, the
state after unitary transformation is

|Ψ(0)⟩ = |ψA(0)⟩ ⊗ |vac⟩. (VI.62)

At the cost of an explicit time dependence of the Hamiltonian, we can
therefore consider that the electromagnetic field is initially in its ground
state, the vacuum of photons.

The transformed Hamiltonian is easily calculated from the relations:

Û(t) âλ Û
†(t) = âλ + αλ e

−iωt (VI.63)

(VI.64)

Û(t) â†λ Û
†(t) = â†λ + α∗

λ e
+iωt, (VI.65)

which imply that

Û(t) ĤF Û†(t) + iℏ
dÛ(t)

dt
Û†(t) = ĤF . (VI.66)

The atomic Hamiltonian is unchanged in the transformation, and the elec-
tric dipole coupling becomes

Û(t) D̂ · Ê(r̂) Û†(t) = D̂ · Ê(r̂) + D̂ · E(r̂, t) (VI.67)

where the function E(r, t) is given by:

E(r, t) =
∑
λ

Eλ ϵαλ e
i(k·r−ωt) + c.c. (VI.68)

This expression is none other than the classical time-dependent electric
field, for which each mode has been given its initial amplitude αλ.

In the end, the Hamiltonian of the total system can be written as the

sum of two terms, ˆ̃H(t) = Ĥ1(t) + Ĥ2. The first is time-dependent and
relates only to the atomic variables, coupled to the classical field E(r, t) :

Ĥ1(t) = ĤA − D̂ · E(r̂, t). (VI.69)

Atom
Quantum field
Filled modes

Atom
Quantum field
Empty modes

Figure VI.17. Summary of the unitary transformation (VI.58). The upper figure
represents the starting situation, the lower one the situation after transformation.

The second involves the dynamics of the quantized electromagnetic field
and the coupling of the quantum field to the atom:

Ĥ2 = ĤF − D̂ · Ê(r̂). (VI.70)

The outcome of this transformation is therefore remarkable: we arrive
at a situation where spontaneous emission phenomena are clearly sepa-
rated from those linked to absorption and stimulated emission:

• The state of the quantum electromagnetic field after transformation is
the photon vacuum (VI.62). The phenomena of absorption and stim-
ulated emission are described by the Hamiltonian Ĥ1(t), which in-
volves only the atom’s variables, coupled to an externally imposed,
time-dependent classical field.

• Spontaneous emission phenomena are described by the Hamiltonian
Ĥ2, with all field modes initially empty and filling up as the atom
spontaneously emits photons.

We are then able to answer the initial question of this paragraph for the
case of an electromagnetic field initially in a coherent state. If we neglect
spontaneous emission phenomena, i.e. the Hamiltonian Ĥ2, we are back
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to a problem of the type considered in (VI.38) via the Hamiltonian Ĥ1(t).
In this case, we cannot expect to observe an accumulation of atoms in a
given quantum state: the eigenvalues of the one-body density operator
will be unchanged during the evolution due to atom-field coupling. In
other words, spontaneous emission is indispensable for cooling a gas of
non-interacting atoms when the radiation is prepared in a coherent state.

4 Conclusions

The first conclusion to be drawn from this course devoted to radiative cool-
ing is the great diversity of mechanisms that have been proposed since the
initial idea of Doppler cooling in 1975. Not all of them have been explored
experimentally, and we have chosen to describe in this series of lectures
only those that have given rise to a detailed and convincing practical study.
Despite this restriction, we have not been able to cover all the categories
of processes involved in cooling an assembly of atoms with light. Let us
mention two of them, which we may return to in subsequent years. Firstly,
cavity cooling, which has recently given rise to some spectacular develop-
ments [for a review, see for example Ritsch, Domokos, et al. (2013)]. Sec-
ondly, mechanisms including a feedback loop on the atoms, inspired by
the concept of stochastic cooling widely used in high-energy physics, have
been considered, see, for example, the original proposal by Raizen, Koga,
et al. (1998).

Nor have we touched on evaporative cooling, which, at the cost of par-
ticle losses and relatively long time constants, achieves temperatures com-
parable to those of optimized radiative cooling (between 0.1 and 1 µK),
with spatial densities often considerably greater. The remarkable success
of evaporative cooling begs the question: is it worth exploring further the
use of cooling mechanisms based on atom-light interaction, which are cer-
tainly lossless and faster, but more complicated to implement?

The final conclusion of this course will be a doubly positive answer to
this question. Firstly, evaporative cooling, however effective, also has its
limitations. A high-energy particle evaporates when it reaches the edges
of the sample, which means that cooling is not homogeneous; it is more
effective at the periphery of the gas than at the center, which can be a sig-

nificant bias in certain situations. Moreover, radiative cooling, transposed
to assemblies of interacting atoms, can provide a tool for exploring new
phases of matter. The principle of dark-state cooling, for example, can be
transposed to an assembly of atoms to prepare strongly correlated N -body
states that could not be reached by standard Hamiltonian evolution [see,
for example, Bardyn, Baranov, et al. (2013)]. Dissipative N -body physics
is still in its infancy in the field of quantum gases, but the concepts devel-
oped over the last forty years for cooling individual atoms with light will
undoubtedly play a key role.
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