Preuves formelles mutatis mutandis

Assia Mahboubi
En collaboration avec Enzo Crance et Cyril Cohen

Formalisation des mathématiques et types dépendants — 2 Juin 2025

Inria, LS2N, Nantes Université, Vrije Universiteit Amsterdam

Formalization of Mathematics and
Dependent Types

Interational Congress of Mathematicians 2022

A fast growing corpus of formalized mathematics

[A computer-checked proof of the four color theorem, G. Gonthier 2003]
ormal proof of the rder theorem, Gonthier et al., Proc. o 2013
A f | f of the Odd Order th, Gonthi I, P fITP
[A formal proof of the Kepler conjecture Hales et al., Cambridge University Press, 2017]

[Formalising the h-Principle and Sphere Eversion, F. van Doorn, P. Massot, O. Nash, Procs. of CPP 2023]

An instrument for mathematics in the making

Quoting P. Scholze about the Liquid Tensor experiment:

“(...) This makes the rest of the proof of the Liquid Tensor Experiment
considerably more explicit and more elementary, removing any use of stable
homotopy theory. | expect that Commelin's complex may become a standard
tool in the coming years.”

“(...) this made me realize that actually the key thing happening is a reduction
from a non-convex problem over the reals to a convex problem over the
integers.”

Ready for monumental endeavors

FLT

Ongoing Lean formalisation of the proof of Fermat's Last Theorem

Readme Versions(15) Dependencies (10)

& Apache 2.0
@ 10 hours ago

Blueprint WIP @ Gitpod ready-to-code 460 stars

Fermat's Last Theorem

Lean
An ongoing multi-author open source project to formalise a proof of Fermat's Last Theorem in the
Lean theorem prover. © v4.20.0-rcs
@ v4.19.0-rc3
Information about the project © va180
@ v4.18.0-rc1
The project is currently being led by Kevin Buzzard. Until September 2029 it is being funded by @ v4.17.0-rc1
grant EP/Y022904/1, awarded by the EPSRC. The project is hosted at Imperial College London. Kevin @ v4.16.0-rc2
Wf?u|d like to extend many many thanks to both of these institutions for their ongoing support of @ v4.16.0-rc1
this nonstandard research. ® v4.15.0c1
General information ("What is Fermat's Last Theorem/Lean?" / "Why are you doing this?" etc) is © v4.140
here. @ v4.14.0-rc3
® 30 more

The route we will be taking was planned out essentially entirely by Richard Taylor in discussions
with Buzzard. It is a modern variant of the original Wiles/Taylor-Wiles proof. For more details about Homepage
the mathematics behind the proof, a good place to start is the blueprint.
A imperialcollegelondon.gith..

Information on how to contribute is available here. B
Renancitory

Backstage

A page in analytic number theory

MAJOR ARCS FOR GOLDBACH’S PROBLEM 35

By Cauchy-Schwarz, this is at most

1

— 14 2)
1 3 /(s x) 1 Ltico)
Lo A s s [st
e

27 J 1 i [L(s,X) s

By @12,

/*%‘Fwo ‘L’(s,x) 1
“loio | L(six) s

logq

s

2
\ s

2 —3+ico
ds| < /
“loico

2

. /w |3 log (2 + §) +4.1396 + logr|*
—o0 4L+72
< V2rmlogq+ v226.844,

where we compute the last integral numerically@

[Major arcs for Goldbach’s problem. H. Helfgott. arxiv 2013]

lwan Quemerais’ internship (2022): Verify a Legendre quadrature algorithm

e Fast and rigorous arbitrary-precision computation of Gauss-Legendre

quadrature nodes and weights
F. Johansson and M. Mezzarobba. SIAM J. Sci. Comput. (2018)

e Accurate multiple-precision Gauss-Legendre quadrature
L. Fousse. IEEE Symp. on Computer Arithmetic (2007)

e Ball arithmetic (cf F. Johansson's Arb)

Ball arithmetic, formalized

Objective: complement Coq/Rocq’s Interval library with a center-radius variant:

B(m,r) 2 {xeR"||m—x||<r}, for meR" reR¥

Ball arithmetic, formalized

Objective: complement Coq/Rocq’s Interval library with a center-radius variant:

B(m,r) 2 {xeR"||m—x||<r}, for meR" reR¥

Ingredients:
e Different types of numbers
FCR, CRyandFCR, " CR,

e Different types of balls
for m,r € F, for m € R and r € R+, NaBs,. ..

What brave interns end up spending their implementation efforts

a p (a0 MR p w1 m2)))

Proving this specification of the ball addition takes 58l.

A pervasive issue in libraries of formalized mathematics

A few examples among many:

e A Formal Disproof of Hirsch Conjecture
X. Allamigeon, Q. Canu and P.-Y. Strub. Proc. of CPP. (2023)

e Extended reals in Lean's mathlib library

e Sandrine Blazy's interview for ETAPS 2024

10

Natural numbers, in unary and binary
representation

Natural numbers in unary representation

(* Unary representation for natural numbers *)
Inductive nat : Type := 0 : nat | S : nat -> nat.

Check nat_ind : VP : nat -> Type,
PO -> (forall n : nat, Pn ->P (Sn)) ->Vn : nat, Pn
Definition (_ + _) : nat -> nat -> nat := fun x, y : nat =>
match x, y with
10, m=>m (* 0 +m=m %)
ISn, m=>8 (m+m (¥ (Sn) +m=25 (n+m *)

end.
Fact test_add : 17 + 3 = 20. Proof. by compute. Qed.
Definition prime x : nat -> bool := ...

Fact test_prime : prime 17 = true. Proof. by compute. Qed.

(* too long *)
Fact test_prime_larger : prime 29986577 = true. Proof. by compute. Qed.

akil,

Natural numbers, in binary representation

Inductive positive : Type := Inductive N : Type :=
| xI : positive — positive (* pl1 *) | Oy : N
| x0 : positive — positive (* p0 *) | Npos : positive — N.
| xH : positive. (x 1 %)

12

Natural numbers, in binary representation

Inductive positive : Type := Inductive N : Type :=
| xI : positive — positive (* pl1 *) | Oy N
| x0 : positive — positive (* p0 *) | Npos : positive — N.
| xH : positive. (x 1 %)

Check N_ind : VP : N -> Prop, P Oy -> (V p : positive, P (Npos p)) -> Vn : N, Pn

12

Natural numbers, in binary representation

Inductive positive : Type := Inductive N : Type :=
| xI : positive — positive (* pl1 *) | Oy : N
| x0 : positive — positive (* p0 *) | Npos : positive — N.
| xH : positive. (x 1 %)

Check N_ind : VP : N -> Prop, P Oy -> (V p : positive, P (Npos p)) -> Vn : N, Pn

Definition Sy (p : positive) : positive :=
match p with | xH = x0 xH | x0 p = xI p | xI p = x0 (Sps p) end.

Definition Sy (n : N) := match n with Npos p = Npos (Sys p) | _ = Npos xH end.

12

Natural numbers, in binary representation

Inductive positive : Type := Inductive N : Type :=
| xI : positive — positive (* pl1 *) | Oy : N
| x0 : positive — positive (* p0 *) | Npos : positive — N.
| xH : positive. (x 1 %)

Check N_ind : VP : N -> Prop, P Oy -> (V p : positive, P (Npos p)) -> Vn : N, Pn

Definition Sy (p : positive) : positive :=
match p with | xH = x0 xH | x0 p = xI p | xI p = x0 (Sps p) end.

Definition Sy (n : N) := match n with Npos p = Npos (Sys p) | _ = Npos xH end.

Definition (_ +y _) : N -> N -> N := fun x, y : N =>

12

Relating representations

Casts 'y : N — Nand |y: N — N:
e Are inverse of each other:

Vx © N, tyv (dux)=x and Vx : N, [n (Tnx)=x

'3}

Relating representations

Casts 'y : N — Nand |y: N — N:
e Are inverse of each other:

Vx © N, tyv (dux)=x and Vx : N, [n (Tnx)=x

e Relate zeros and successors:
Vn:N, JInv(Snyn)=8Sy (In n) andlnOy =0y
e Relate additions:

Vn,m:N, Iy (n-+xm)=(nn) +x ({nm)

'3}

Relating representations

This should be enough for:
e Refinements:

2y +n In =

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndn (2n v 1)

14

Relating representations

This should be enough for:
o Refinements:

2y v In = Pvdn (2n 4w 1n)
=tndn (Sv (Sy On) +wv (S On))

14

Relating representations

This should be enough for:
o Refinements:

2y +n In = Tndn (2n +n 1n)
=Ty (In (Sv (Sn On))+w In (Sn On))

14

Relating representations

This should be enough for:
o Refinements:

2y +n In = Tndn (2n +w 1n)
=Py ((Sv I~ (Sw On))+u(Sv dn On))

14

Relating representations

This should be enough for:
o Refinements:

2y +n In = Pvdw (2w +n 1n)
=M ((Sv (Sv dnv On))+u(Sw On))

14

Relating representations

This should be enough for:
o Refinements:

2y +n In = Ty (2n +w 1n)
=P ((Sv (Sv On))+w(Sv On))

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndn (2n v 1)
=Tn (2v +v 1n)

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndn (2n v 1)

e More refinements:

17y 17y
Do =t
=0y i=0y

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndn (2n v 1)

e More refinements:

17y 17y
E i =1~ E i
=0y i=0y

e |dentities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndn (2n v 1)

e More refinements:

17y 17y
Do =t
=0y i=0y

e |dentities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind :V P : N — Prop,
POy - (n:N,Pn— P (Syn)) »Vn:N,Pn.

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndn (2n v 1)

e More refinements:

17y 17y
Do =t
=0y i=0y

e |dentities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind :V P : N — Prop,
POy - (n:N,Pn— P (Syn)) »Vn:N,Pn.

Generalization, e.g. using N C Z

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndn (2n v 1)

e More refinements:

17y 17y
Do =t
=0y i=0y

e |dentities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind :V P : N — Prop,
POy - (n:N,Pn— P (Syn)) »Vn:N,Pn.

Generalization, e.g. using N C Z

14

Relating representations

This should be enough for:

e Refinements:

2y +n In = Pdw (2w +w 1n)

More refinements:

[]
17y 17y
Do =D
=0 i=0y

e Identities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

Induction principles:

Fact N_ind :V P : N — Prop,
POy - (n:N,Pn—P(Syn) »Vn:N, Pn.

Generalization, e.g. using N C Z

= Can we automate these proofs entirely?

14

Parametricity

Related output from related input

VX, I (=x) = = T (%)

15

Related output from related input

|0
o
=

™ N

Z—2Z

Z———2

Vx, Tw (opn x) = opn (T (X))

15

Related output from related input

|0
o
=

™ N

Z—2Z

Z———2

Vx, Tw (opn x) = opn (T (X))

A—B

15

Related output from related input

|0
o
=

™ N

Z—2Z

Z———2

Vx, Tw (opn x) = opn (T (X))

A—B

Vx,y,Rxy = R (opn x) (opy y) for RuvZu=tyv

15

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

e [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)ec[B]}
o [VX,F X] & {(A,f) |

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

e [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)ec[B]}
o [VX,F X] £ {(f,f) | VAA VR,

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

o [A—=B] & {(f,f)]|Vad,(ad)c[Al= (A ak a)c[B]}
o [VX,FX] 2 {(hf)|VAA VR, (f A.f A) € F R}

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

e [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)ec[B]}
o [VX,FX] 2 {(f f)|VAA VR, (f A f A') € F R}

with FR defined by:

e Ri —» Ry 2 {(f,f)]|Vad,(a,a)€ER1=(f aha)ecRa}
e VR, FR & {(A,f)]|

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

e [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)ec[B]}
o [VX,FX] 2 {(f f)|VAA VR, (f A f A') € F R}

with FR defined by:

e Ri —» Ry 2 {(f,f)]|Vad,(a,a)€ER1=(f aha)ecRa}
¢ VR,FR 2 {(f,f)|VAA VR,

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

e [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)ec[B]}
o [VX,FX] 2 {(f f)|VAA VR, (f A f A') € F R}

with FR defined by:

e Ri —» Ry 2 {(f,f)]|Vad,(a,a)€ER1=(f aha)ecRa}
¢ VR,FR 2 {(f,f)|VAA VR, (f A RA) € F R}

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

e [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)ec[B]}
o [VX,FX] 2 {(f f)|VAA VR, (f A f A') € F R}

with FR defined by:

e Ri —» Ry 2 {(f,f)]|Vad,(a,a)€ER1=(f aha)ecRa}
¢ VR,FR 2 {(f,f)|VAA VR, (f A RA) € F R}

Extensions:

e R1 X Ro relates pairs of related elements
o Jist R relates lists of same length, with pairwise related elements

16

Parametricity and theorems for free

Theorem (Abstraction theorem for system F)
Ifbt : T in System F, then [T] t t

17

Parametricity and theorems for free

Theorem (Abstraction theorem for system F)
Ifbt : T in System F, then [T] t t

Also related to realizability, logical relations, full abstraction ...
C. Strachey, G. Plotkin, R. Statman, J. Reynolds, J.-Y. Girard,. ..

17

Parametricity and theorems for free

Theorem (Abstraction theorem for system F)
Ifbt : T in System F, then [T] t t

Also related to realizability, logical relations, full abstraction ...
C. Strachey, G. Plotkin, R. Statman, J. Reynolds, J.-Y. Girard,. ..
Used to:
e Study definability in type systems
e Prove strong normalization results

e Obtain theorems for free

17

Parametricity and theorems for free

Theorem (Abstraction theorem for system F)
Ifbt : T in System F, then [T] t t

Also related to realizability, logical relations, full abstraction ...
C. Strachey, G. Plotkin, R. Statman, J. Reynolds, J.-Y. Girard,. ..
Used to:
e Study definability in type systems

e Prove strong normalization results

e Obtain theorems for free
(after the title of a paper by P. Wadler)

17

Parametricity and theorems for free

Theorem (Abstraction theorem for system F)
Ifbt : T in System F, then [T] t t

Also related to realizability, logical relations, full abstraction ...
C. Strachey, G. Plotkin, R. Statman, J. Reynolds, J.-Y. Girard,. ..
Used to:
e Study definability in type systems

e Prove strong normalization results

e Obtain theorems for free
(after the title of a paper by P. Wadler)

17 17y ;
Example of free theorem: ;% i = T > ;55 i

17

Example of free theorem

Prove than Y7 oy =1Tn ZIHBN i

18

Example of free theorem

Prove than Z,ZON i =1n ZZ&G i

By relating:

) fO'd N +N ON [ON7 0oo 171\;]
o fOld N +N ON [ON, coo 171\!]

18

Example of free theorem

Prove than Z,ZON i =1n ZZ&G i

By relating:

) fO'd N +N ON [ON7 0oo 171\;]
o fOld N +N ON [ON, coo 171\!]

Via:

e Relation R 2 {(x,y) | y =t~ x}

18

Example of free theorem

Prove than Z,ZON i =1n Z;l:?g]q i

By relating:

) fO'd N +N ON [ON7 0oo 171\;]
o fOld N +N ON [ON, coo 171\!]

Via:
e Relation R 2 {(x,y) | y =t~ x}

Using:
o [A—B] £ {(A,f)]|Vad, (a3d)€c[A]=(fiaha)e[B]}
o [VX,F X] & {(fA,f)|VAA VR, (A AL A)E FR}

with:
e Ri—~R> = {(A,f)]|Vad,(a,a)€Ri1= (f afad)c R}
e VR, FR £ {(f,h)|VAA VR, (A A KL A)eFR}

o Jist R relates lists of same length, with pairwise related elements

18

Pametricity for dependent type theory

A binary relation on type A and B is a term of type A — B — U.

19

Pametricity for dependent type theory

A binary relation on type A and B is a term of type A — B — U.
e Term translation:
[UTENAB.A— B —U
[x] £ xs
[AB]2[A] B & [B]
[Ax: A t] & Mx: A)(X A)(xg: [A] x xX'). [t]
[Vx: A Bl 2 X .¥(x:A)(x" : A)(xg : [A] x X). [B](f x)(f x")

19

Pametricity for dependent type theory

A binary relation on type A and B is a term of type A — B — U.

e Term translation:
[UTENAB.A— B —U
[x] £ xs
[AB]2[A] BB [B]
[Ax: A t] & Mx: A)(X A)(xg: [A] x xX'). [t]
[Vx: A Bl 2 X .¥(x:A)(x" : A)(xg : [A] x X). [B](f x)(f x")

Theorem (Abstraction theorem)
If Et: T then E[t]:[T]t¢t

J.-P. Bernardy, M. Lasson, ...

cog-community/paramcoq 19

Pametricity for dependent type theory

A binary relation on type A and B is a term of type A — B — U.
e Term translation:
[UTENAB.A— B —U
[x] £ xs
[AB]2[A] B B [B]
[Ax: A t] & Mx: A)(X A)(xg: [A] x xX'). [t]
[Vx: A Bl 2 X .¥(x:A)(x" : A)(xg : [A] x X). [B](f x)(f x")
e Context translation:

[O1=0)
[T,x:A] 2 [T],x: A x : A xg: [A] x X’

Theorem (Abstraction theorem)
If TEt: T then [TJF¢t:T, [Tt :T and [T]F[t]:[T]tt.

J.-P. Bernardy, M. Lasson, ...

cog-community/paramcoq 19

Formal proofs for free?

This should be enough for:

e Refinements:
28+~ In =T (20 +n 1n)

e More refinements:
17 17y
D=ty
=0y =0y
o |dentites:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind :V P : N — Prop,
POy - (Vn:N,Pn—P(Syn)) —»Vn:N, Pn.

Implications, e.g, using N C Z

20

Formal proofs for free?

This should be enough for:

e Refinements:Yes
28+~ In =T (20 +n 1n)

e More refinements: Yes
17 17y
D=ty
=0y i=0y
o |dentites:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind :V P : N — Prop,
POy - (Vn:N,Pn—P(Syn)) —»Vn:N, Pn.

Implications, e.g, using N C Z

20

Formal proofs for free?

This should be enough for:

e Refinements:Yes
28+~ In =T (20 +n 1n)

e More refinements: Yes
17 17y
D=ty
=0y i=0y

e |dentites: No

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles: No

Fact N_ind :V P : N — Prop,
POy - (Vn:N,Pn—P(Syn)) —»Vn:N, Pn.

Implications, e.g, using N C Z No

20

Richer relational interpretations for types

The key ingredient is to turn:

[UTAB & A—=B—U

Into:
[U] AB ES Y(R:A—=B—=U),...

21

Free theorems by univalent parametricity

[UJ]AB & ¥(R:A— B—U),Ris a type equivalence

[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]

22

Free theorems by univalent parametricity

A

[UTAB = X(R:A— B —U),Ris a type equivalence
[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]

o Refinements:Yes
28 4~ In =T (20 +v 1n)

e More refinements: Yes

17 17y
Do =)
=0 i=0y

o |dentities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind : VP : N — Prop,
POy > (Vn:N,Pn—P(Syn)) — Vmn:N,Pn.

e Implications, e.g. using N C Z

22

Free theorems by univalent parametricity

A

[UTAB = X(R:A— B —U),Ris a type equivalence
[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]

o Refinements:Yes
28 4~ In =T (20 +v 1n)

e More refinements: Yes

17 17y
Do =)
=0 i=0y

o |dentities: Yes

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind : VP : N — Prop,
POy > (Vn:N,Pn—P(Syn)) — Vmn:N,Pn.

e Implications, e.g. using N C Z

22

Free theorems by univalent parametricity

A

[UTAB = X(R:A— B —U),Ris a type equivalence
[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]

o Refinements:Yes
28 4~ In =T (20 +v 1n)

e More refinements: Yes

17 17y
Do =)
=0 i=0y

o |dentities: Yes

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles: Yes, but assuming the univalence axiom

Fact N_ind : VP : N — Prop,
POy > (Vn:N,Pn—P(Syn)) — Vmn:N,Pn.

e Implications, e.g. using N C Z No

22

A hierarchy of structures on relations

Let Gy, 2 {(x,y) | y = ¢ x} and define [U]*' for k,I € {0,1,2a,2b,3,4} as:

Examples:
o [U]°° : arbitrary relation o [U]?? : type isomorphism
o [U]** : type equivalence o [U]** : Nand Z,
o [U]™° : existence of a map o [U]*?*: Rso and Rxo

23

Generalized parametricity translations

Abstraction theorems:

e When restricting to [/]%°
J.-P. Bernardy, M. Lasson et al. 2010 - 2013

4,4

e When restricting to [U/ ", under the univalence axiom

[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]

24

Generalized parametricity translations

Abstraction theorems:

e When restricting to [/]%°
J.-P. Bernardy, M. Lasson et al. 2010 - 2013

4,4

e When restricting to [U/ ", under the univalence axiom

[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]
Trocq:
e [Vore relations

Abstraction theorems for [1/]

e Stronger free theorems
Non-systematic usage of the univalence axiom

e |Implemented

Translation and inference algorithm, programmed in Cog-Elpi

[Proof transfer for free, beyond unival and ival , Cyril Cohen, Enzo Crance, A.M. - TOPLAS 2025]

24

Automating proof transfer

The trocq proof command is typically useful to prove a goal Gy — G>, by:

e Trying to construct a relation at level (1,0) between the G; and G;
e Gradually computing sufficient conditions and synthesizing the proof;

e Finding base cases proofs of relations in a data-base populated by users.

Note: Lucie Lahaye recently proved the optimality of these conditions.

25

Free theorems by Trocq

o Refinements:
28 4+~ In =T (20 +v 1n)

e More refinements:

17 17y
Do =D
=0y i=0y

o |dentities:

Fact addN_assoc : Vxy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind : VP : N — Prop,
POy —- (Vn:N,Pn—P (Syn) — Vn:N,Pn.

Implications, e.g using N C Z

26

Free theorems by Trocq

o Refinements:Yes
28 4+~ In =T (20 +v 1n)

o More refinements: Yes

17 17y
Do =D
=0y i=0y

o |dentities: Yes

Fact addN_assoc : Vxy : N, x + (y + 2) = (x +y) + z.

e Induction principles: Yes, without assuming the univalence axiom

Fact N_ind : VP : N — Prop,
POy —- (Vn:N,Pn—P (Syn) — Vn:N,Pn.

Implications, e.g using N C Z Yes

26

Free theorems by Trocq

o Refinements:Yes
28 4+~ In =T (20 +v 1n)

o More refinements: Yes

17 17y
Do =D
=0y i=0y

o |dentities: Yes

Fact addN_assoc : Vxy : N, x + (y + 2) = (x +y) + z.

e Induction principles: Yes, without assuming the univalence axiom

Fact N_ind : VP : N — Prop,
POy —- (Vn:N,Pn—P (Syn) — Vn:N,Pn.

Implications, e.g using N C Z Yes

And more, e.g. setoid, generalized rewriting, coercions and cast insertion, etc.

26

Demo and conclusion

The Trocq plugin by examples: elementary number theory

e User input:
e (3,2;)-relate Zg and Z, and their zero, multiplication, addition.

27

The Trocq plugin by examples: elementary number theory

e User input:

e (3,2;)-relate Zg and Z, and their zero, multiplication, addition.
e Also relate their 3-divisiblity :

3 |(x mod 9) = 3|x.
e Transfer from Zo to Z:

Lemma flt3_step :
(forall (mnp : Zg), m *n * p # 0 [mod 3] -> (m"3 + n~3) # p~3) ->

(forall mnp : Z), m*n * p # 0 [mod 3] -> (m™3 + n~3) # p~3).
Proof. by trocq=> /=. Qed.

27

"Simple things should be simple, complex things should be possible" A.

e Trocq streamlines and extends several crucial automation devices.
e More fruits can surely be rept from the theory of programming languages.

e Formalizing mathematics should and will become easier and faster.

28

The Trocq plugin by example: natural numbers

e User input:
VX,,J,N (TN X):X \LN ONION VX,\LN (SN X):SN (l,N X)

= (2a,3)-relate N and N.

29

The Trocq plugin by example: natural numbers

e User input:
VX,,J,N (TN X):X \LN ONION VX,\LN (SN X):SN (l,N X)

= (2a,3)-relate N and N.

e Generation and axiom-free proof of the implication:

(WVP:N— Type, POy - (Vn : N, Pn - P (Syn)) - Vn: N, Pn)
—

VP:N— Type, PON — (Vn : N, Pn - P (Syn) -Vn:N,Pn

29

The Trocq plugin by examples: extended reals

e Consider types

Inductive R : Type := Fin : Rsq — Ry | Inf : Ryg.

Record summable := {to_seq : N -> R>p; to_seqP : summable to_seq}

30

The Trocq plugin by examples: extended reals

e Consider types

Inductive R : Type := Fin : Rsq — Ry | Inf : Ryg.
Record summable := {to_seq : N -> R>p; to_seqP : summable to_seq}

e User input:

e (4,2,)-relate R>g and R>¢,and their additions and sums
o (4,2p)-relate summable and N -> Rxo, and their additions and sums

30

The Trocq plugin by examples: extended reals

e Consider types

Inductive R : Type := Fin : Rsq — Ry | Inf : Ryg.
Record summable := {to_seq : N -> R>p; to_seqP : summable to_seq}

e User input:

e (4,2,)-relate R>g and R>¢,and their additions and sums
o (4,2p)-relate summable and N -> Rxo, and their additions and sums

e Transfer from (summable sequences of positive) extended reals to reals:

Lemma ZR>0_add : Yu v : summable,):p;>0 (u +v) = Zp;>0 u + ZR>0 V.

Proof. trocq; exact):§>°_add4 Qed.

30

	Formalization of Mathematics and Dependent Types
	Backstage
	Natural numbers, in unary and binary representation
	Parametricity
	Demo and conclusion

