Preuves formelles mutatis mutandis

Assia Mahboubi
En collaboration avec Enzo Crance et Cyril Cohen

Formalisation des mathématiques et types dépendants — 2 Juin 2025

Inria, LS2N, Nantes Université, Vrije Universiteit Amsterdam

Formalization of Mathematics and
Dependent Types

Interational Congress of Mathematicians 2022

Plenary
Special Plenary Lecture
Room 1

Saturday, July 9, 10:15 - 11:15
The rise of formalism in mathematics

Lecture on proof formalisation for ordinary mathematicians

Abstract:

Formalism is the art of writing down what you actually mean. Mathematics has a rich history of formalisation: Euclid, R L i and
Bourbaki all tried it. This century Avigad, Hales and Gonthier have shown us that there is another way. Now a new generation of young people are
formalising algebra, analysis, category theory, combinatorics, geometry, number theory, topology and more at Masters level and beyond, this time
using a computer. Lean’s mathematics library mathlib contains nearly a million lines of free and open source code corresponding to proofs of over
80,000 theorems such as the fundamental theorem of Galois theory, and it is growing fast. Als trained on the library have solved IMO problems by
themselves. What is happening? This is not about making sure the papers are right. This is not about making a computer program which will print
out a one billion line proof of the Birch and Swinnerton-Dyer conjecture using only the axioms of mathematics. This is not about extracting the
beauty from a proof and leaving only the directed acyclic graph. This is about developing computer tools which have the potential to help
researchers and PhD students in new ways. Much remains to be done. | will give an overview of the area.

Chair: Martin Hairer (United Kingdom)
Plenary Speaker: Kevin Buzzard (United Kingdom)

A fast growing corpus of formalized mathematics

[A computer-checked proof of the four color theorem, G. Gonthier 2003]
[A formal proof of the Odd Order theorem, Gonthier et al., Proc. of ITP 2013]
[A formal proof of the Kepler conjecture Hales et al., Cambridge University Press, 2017]

[Formalising the h-Principle and Sphere Eversion, F. van Doorn, P. Massot, O. Nash, Procs. of CPP 2023]

An instrument for mathematics in the making

Quoting P. Scholze about the Liquid Tensor experiment:

“(...) This makes the rest of the proof of the Liquid Tensor Experiment
considerably more explicit and more elementary, removing any use of stable
homotopy theory. | expect that Commelin's complex may become a standard
tool in the coming years.”

“(...) this made me realize that actually the key thing happening is a reduction
from a non-convex problem over the reals to a convex problem over the
integers.”

Ready for monumental endeavors

FLT

Ongoing Lean formalisation of the proof of Fermat's Last Theorem

Readme Versions(15) Dependencies (10)

& Apache 2.0
@ 10 hours ago

Blueprint WIP @ Gitpod ready-to-code 460 stars

Fermat's Last Theorem

Lean
An ongoing multi-author open source project to formalise a proof of Fermat's Last Theorem in the
Lean theorem prover. © v4.20.0-rcs
@ v4.19.0-rc3
Information about the project © va180
@ v4.18.0-rc1
The project is currently being led by Kevin Buzzard. Until September 2029 it is being funded by @ v4.17.0-rc1
grant EP/Y022904/1, awarded by the EPSRC. The project is hosted at Imperial College London. Kevin @ v4.16.0-rc2
Wf?u|d like to extend many many thanks to both of these institutions for their ongoing support of @ v4.16.0-rc1
this nonstandard research. ® v4.15.0c1
General information ("What is Fermat's Last Theorem/Lean?" / "Why are you doing this?" etc) is © v4.140
here. @ v4.14.0-rc3
® 30 more

The route we will be taking was planned out essentially entirely by Richard Taylor in discussions
with Buzzard. It is a modern variant of the original Wiles/Taylor-Wiles proof. For more details about Homepage
the mathematics behind the proof, a good place to start is the blueprint.
A imperialcollegelondon.gith..

Information on how to contribute is available here. B
Renancitory

Backstage

A page in analytic number theory

MAJOR ARCS FOR GOLDBACH’S PROBLEM 35

By Cauchy-Schwarz, this is at most

1

— 14 2)
1 3 /(s x) 1 Ltico)
Lo A s s [st
e

27 J 1 i [L(s,X) s

By @12,

/*%‘Fwo ‘L’(s,x) 1
“loio | L(six) s

logq

s

2
\ s

2 —3+ico
ds| < /
“loico

2

. /w |3 log (2 + §) +4.1396 + logr|*
—o0 4L+72
< V2rmlogq+ v226.844,

where we compute the last integral numerically@

[Major arcs for Goldbach’s problem. H. Helfgott. arxiv 2013]

lwan Quemerais’ internship (2022): Verify a Legendre quadrature algorithm

e Fast and rigorous arbitrary-precision computation of Gauss-Legendre

quadrature nodes and weights
F. Johansson and M. Mezzarobba. SIAM J. Sci. Comput. (2018)

e Accurate multiple-precision Gauss-Legendre quadrature
L. Fousse. IEEE Symp. on Computer Arithmetic (2007)

e Ball arithmetic (cf F. Johansson's Arb)

Ball arithmetic, formalized

Objective: complement Coq/Rocq’s Interval library with a center-radius variant:

B(m,r) 2 {xeR"||m—x||<r}, for mecR" recR¥

Ball arithmetic, formalized

Objective: complement Coq/Rocq’s Interval library with a center-radius variant:

B(m,r) 2 {xeR"||m—x||<r}, for mecR" recR¥

Ingredients:
e Different types of numbers
FCR, CRyandFCR, " CR,

e Different types of balls
for m,r € F, for m € R and r € R+, NaBs,. ..

What brave interns end up spending their implementation efforts

a p (a0 MR p w1 m2)))

Proving this specification of the ball addition takes 58l.

A pervasive issue in libraries of formalized mathematics

A few examples among many:

e A Formal Disproof of Hirsch Conjecture
X. Allamigeon, Q. Canu and P.-Y. Strub. Proc. of CPP. (2023)

e Extended reals in Lean's mathlib library

e Sandrine Blazy's interview for ETAPS 2024

10

Natural numbers, in unary and binary
representation

Natural numbers in unary representation

(* Unary representation for natural numbers *)
Inductive nat : Type := 0 : nat | S : nat -> nat.

Check nat_ind : VP : nat -> Type,
PO -> (forall n : nat, Pn ->P (Sn)) ->Vn : nat, Pn
Definition (_ + _) : nat -> nat -> nat := fun x, y : nat =>
match x, y with
10, m=>m (* 0 +m=m %)
ISn, m=>8S (m+m (¥ (Sn) +m=25 (n+m *)

end.
Fact test_add : 17 + 3 = 20. Proof. by compute. Qed.
Definition prime x : nat -> bool := ...

Fact test_prime : prime 17 = true. Proof. by compute. Qed.

(* too long *)
Fact test_prime_larger : prime 29986577 = true. Proof. by compute. Qed.

alal

Natural numbers, in binary representation

Inductive positive : Type := Inductive N : Type :=
| xI : positive — positive (* pl1 *) | Oy : N
| x0 : positive — positive (* p0 *) | Npos : positive — N.
| xH : positive. (x 1 %)

12

Natural numbers, in binary representation

Inductive positive : Type := Inductive N : Type :=
| xI : positive — positive (* pl1 *) | Oy : N
| x0 : positive — positive (* p0 *) | Npos : positive — N.
| xH : positive. (x 1 %)

Check N_ind : VP : N -> Prop, P Oy -> (V p : positive, P (Npos p)) -> Vn : N, Pn

12

Natural numbers, in binary representation

Inductive positive : Type := Inductive N : Type :=
| xI : positive — positive (* pl1 *) | Oy : N
| x0 : positive — positive (* p0 *) | Npos : positive — N.
| xH : positive. (x 1 %)

Check N_ind : VP : N -> Prop, P Oy -> (V p : positive, P (Npos p)) -> Vn : N, Pn

Definition S, (p : positive) : positive :=
match p with | xH = x0 xH | x0 p = xI p | xI p = x0 (Sps p) end.

Definition Sy (n : N) := match n with Npos p = Npos (S,s p) | _ = Npos xH end.

12

Natural numbers, in binary representation

Inductive positive Type := Inductive N : Type :=
| xI : positive — positive (* pl1 *) | Oy N
| x0 : positive — positive (* p0 *) | Npos positive — N.
| xH : positive. (* 1 *)
Check N_ind : VP : N -> Prop, P Oy -> (V p : positive, P (Npos p)) -> Vn : N, Pn
Definition S, (p : positive) : positive :=
match p with | xH = x0 xH | x0 p = xI p | xI p = x0 (Sps p) end.
Definition Sy (n : N) := match n with Npos p = Npos (S,s p) | _ = Npos xH end.

Definition (_ +y _) : N -> N -> N := fun x, y : N => ...

12

Relating representations

Casts Ty : N — Nand |ny: N — N:
e Are inverse of each other:

Vx o N, tyv (dux)=x and Vx : N, |n (Tnx)=x

')

Relating representations

Casts Ty : N — Nand |ny: N — N:
e Are inverse of each other:

Vx o N, tyv (dux)=x and Vx : N, |n (Tnx)=x

e Relate zeros and successors:
Vn:N, Inv(Snyn)=8Sy (In n) and |y Oy =0y
e Relate additions:

Vn,m:N, Iy (n-+xm)=nn)+x ({nm)

'3}

Relating representations

This should be enough for:
e Refinements:

2y +n In =

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndw (2n 4+ 1)

14

Relating representations

This should be enough for:
o Refinements:

2y +n In = Pvdn (2n 4w 1n)
=tndn (Sv (Sy On) +wv (S On))

14

Relating representations

This should be enough for:
o Refinements:

2y +n In = Tndn (2n +w 1n)
=Ty (In (Sv (Sn On))+w In (Sn On))

14

Relating representations

This should be enough for:
o Refinements:

2y +n In = Ty (2n +w 1n)
=Pn ((Sv I~ (Sw On))+u(Sv dn On))

14

Relating representations

This should be enough for:
o Refinements:

2y +n In = Ptvdw (2w +n 1n)
=M ((Sv (Sv 4w On))+u(Sw On))

14

Relating representations

This should be enough for:
o Refinements:

2y +n In = Tndn (2n +w 1n)
=P ((Sv (Sv On))+w(Sv On))

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndw (2n 4+ 1)
=Tn (2v +v 1n)

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndw (2n 4+ 1)

e More refinements:

17y 17y
Do =t
=0y i=0y

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndw (2n 4+ 1)

e More refinements:

17y 17y
E i =1~ E i
=0y i=0y

e |dentities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndw (2n 4+ 1)

e More refinements:

17y 17y
Do =t
=0y i=0y

e |dentities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind :V P : N — Prop,
POy - (n:N,Pn— P (Syn)) »Vn:N,Pn.

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndw (2n 4+ 1)

e More refinements:

17y 17y
Do =t
=0y i=0y

e |dentities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind :V P : N — Prop,
POy - (n:N,Pn— P (Syn)) »Vn:N,Pn.

Generalization, e.g. using N C Z

14

Relating representations

This should be enough for:
e Refinements:

2y +n In = Tndw (2n 4+ 1)

e More refinements:

17y 17y
Do =t
=0y i=0y

e |dentities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind :V P : N — Prop,
POy - (n:N,Pn— P (Syn)) »Vn:N,Pn.

Generalization, e.g. using N C Z

14

Relating representations

This should be enough for:

e Refinements:

2y +n In = Pvdw (2w +w 1n)

More refinements:

[]
17y 17y
Do =)
=0y i=0y

e Identities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

Induction principles:

Fact N_ind :V P : N — Prop,
POy - (n:N,Pn—P(Syn) »Vn:N, Pn.

Generalization, e.g. using N C Z

= Can we automate these proofs entirely?

14

Parametricity

Related output from related input

VX, I (=x) = = T (%)

15

Related output from related input

|0
o
=

B N

Z—2Z

Z———2Z2

Vx, Tw (opn x) = opn (T (x))

15

Related output from related input

|0
o
=

B N

Z—2Z

Z———2Z2

Vx, Tw (opn x) = opn (T (x))

A—B

15

Related output from related input

|0
o
=

B N

Z—2Z

Z———2Z2

Vx, Tw (opn x) = opn (T (x))

A—B

Vx,y,Rxy = R (opn x) (opy y) for RuvZu=tyv

15

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

o [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)e[B]}
o VX,F X] & {(A,f) |

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

o [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)e[B]}
o [VX,F X] £ {(f,f) | VAA VR,

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

o [A—B] & {(f,f)]|Vad,(ad)c[Al= (A aka)c[B]}
o [VX,FX] 2 {(h,f)|VAA VR, (f A.f A) € F R}

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

o [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)e[B]}
o [VX,F X] 2 {(f f)|VAA VR, (f A f A') € F R}

with FR defined by:

e Ri - Ry 2 {(f,f)|Vad,(a,a)€ER1=(f ahha)ecRa}
e VR, FR & {(f,f)|

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

o [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)e[B]}
o [VX,F X] 2 {(f f)|VAA VR, (f A f A') € F R}

with FR defined by:

e Ri - Ry 2 {(f,f)|Vad,(a,a)€ER1=(f ahha)ecRa}
¢ VR,FR 2 {(f,f)|VAA VR,

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

o [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)e[B]}
o [VX,F X] 2 {(f f)|VAA VR, (f A f A') € F R}

with FR defined by:

e Ri - Ry 2 {(f,f)|Vad,(a,a)€ER1=(f ahha)ecRa}
e VR,FR 2 {(A,f)|VAA,VR,(f A RA) € F R}

16

Relational interpretation of (polymorphic) types

Any type T is associated a (here binary) relation [T] on terms defined by:

o [A—B] & {(f,f)|Vad, (a,d)€[Al= (fathad)e[B]}
o [VX,F X] 2 {(f f)|VAA VR, (f A f A') € F R}

with FR defined by:

e Ri - Ry 2 {(f,f)|Vad,(a,a)€ER1=(f ahha)ecRa}
e VR,FR 2 {(A,f)|VAA,VR,(f A RA) € F R}

Extensions:

e R1 X Ro relates pairs of related elements
o Jist R relates lists of same length, with pairwise related elements

16

Parametricity and theorems for free

Theorem (Abstraction theorem for system F)
Ifbt : T in System F, then [T] t t

17

Parametricity and theorems for free

Theorem (Abstraction theorem for system F)
Ifbt : T in System F, then [T] t t

Also related to realizability, logical relations, full abstraction ...
C. Strachey, G. Plotkin, R. Statman, J. Reynolds, J.-Y. Girard,. ..

17

Parametricity and theorems for free

Theorem (Abstraction theorem for system F)
Ifbt : T in System F, then [T] t t

Also related to realizability, logical relations, full abstraction ...
C. Strachey, G. Plotkin, R. Statman, J. Reynolds, J.-Y. Girard,. ..
Used to:
e Study definability in type systems
e Prove strong normalization results

e Obtain theorems for free

17

Parametricity and theorems for free

Theorem (Abstraction theorem for system F)
Ifbt : T in System F, then [T] t t

Also related to realizability, logical relations, full abstraction ...
C. Strachey, G. Plotkin, R. Statman, J. Reynolds, J.-Y. Girard,. ..
Used to:
e Study definability in type systems

e Prove strong normalization results

e Obtain theorems for free
(after the title of a paper by P. Wadler)

17

Parametricity and theorems for free

Theorem (Abstraction theorem for system F)
Ifbt : T in System F, then [T] t t

Also related to realizability, logical relations, full abstraction ...
C. Strachey, G. Plotkin, R. Statman, J. Reynolds, J.-Y. Girard,. ..
Used to:
e Study definability in type systems

e Prove strong normalization results

e Obtain theorems for free
(after the title of a paper by P. Wadler)

17 17y ;
Example of free theorem: ;% i = T > ;55 i

17

Example of free theorem

Prove than Y7 oy =1Tn ZIHBN i

18

Example of free theorem

Prove than Z,ZON i =1n ZZ&G i

By relating:

° fO'd N +N ON [ON7 0oo 171\;]
o fOld N +N ON [ON, coo 171\!]

18

Example of free theorem

Prove than Z,ZON i =1n ZZ&G i

By relating:

° fO'd N +N ON [ON7 0oo 171\;]
o fOld N +N ON [ON, coo 171\!]

Via:

e Relation R 2 {(x,y) | y =t~ x}

18

Example of free theorem

Prove than Z,ZON i =1n Z;l:?g]q i

By relating:

° fO'd N +N ON [ON7 0oo 171\;]
o fOld N +N ON [ON, coo 171\!]

Via:
e Relation R 2 {(x,y) | y =t~ x}

Using:
o [A—B] £ {(A f)]|Vad, (a3d)€[A]=(fiafa)e[B]}
o VX,F X] & {(fA,f)|VAA VR, (A AL A)EFR}

with:
e Ri—~Re = {(A,f)]|Vad,(a,a) € Ri= (f afad)c R}
e VR, FR £ {(A,h)|VAA VR, (A A KL A)ecFR}

o Jist R relates lists of same length, with pairwise related elements

18

Pametricity for dependent type theory

A binary relation on type A and B is a term of type A — B — U.

19

Pametricity for dependent type theory

A binary relation on type A and B is a term of type A — B — U.
e Term translation:
[UTENAB.A— B —U
[x] £ xs
[AB]2[A] B B [B]
[Ax: A t] & Mx: A)(X A)(xg: [A] x xX'). [t]
[Vx: A Bl 2 X .¥(x:A)(x" : A)(xg : [A] x X). [B](f x)(f x")

19

Pametricity for dependent type theory

A binary relation on type A and B is a term of type A — B — U.

e Term translation:
[UTENAB.A— B —U
[x] £ xs
[AB]2[A] BB [B]
[Ax: A t] & Mx: A)(X A)(xg: [A] x xX'). [t]
[Vx: A Bl 2 X .¥(x:A)(x" : A)(xg : [A] x X). [B](f x)(f x")

Theorem (Abstraction theorem)
If Et: T then E[t]:[T]t¢t

J.-P. Bernardy, M. Lasson, ...

cog-community/paramcoq 19

Pametricity for dependent type theory

A binary relation on type A and B is a term of type A — B — U.
e Term translation:
[UTENAB.A— B —U
[x] £ xs
[AB]2[A] B B [B]
[Ax: A t] & Mx: A)(X A)(xg: [A] x xX'). [t]
[Vx: A Bl 2 X .¥(x:A)(x" : A)(xg : [A] x X). [B](f x)(f x")
e Context translation:

[O1=0)
[T,x:A] 2 [T],x: A x : A xg: [A] x X’

Theorem (Abstraction theorem)
If TEt: T then [TJF¢t:T, [Tt :T and [T]F[t]:[T]tt.

J.-P. Bernardy, M. Lasson, ...

cog-community/paramcoq 19

Formal proofs for free?

This should be enough for:

e Refinements:
28+~ In =T (20 +n 1n)

e More refinements:

17 17y
D=t
i=0y i=0y

e |dentites:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + 2.

e Induction principles:

Fact N_ind :V P : N — Prop,
POy - (Vn:N,Pn—P(Syn)) —»Vn:N, Pn.

e Implications, e.g, using N C Z

20

Formal proofs for free?

This should be enough for:

e Refinements:Yes
28+~ In =T (20 +n 1n)

e More refinements: Yes

17 17y
D=t
i=0y i=0y

o |dentites:

Fact addN_assoc :V xy : N, x + (y +2) = (x +y) + 2.

e Induction principles:

Fact N_ind :V P : N — Prop,
POy - (n:N,Pn—P(Syn)) »Vn:N, Pn.

e Implications, e.g, using N C Z

20

Formal proofs for free?

This should be enough for:

e Refinements:Yes
28+~ In =T (20 +n 1n)

e More refinements: Yes
17 17y
D=ty
=0y i=0y

e |dentites: No

Fact addN_assoc :V xy : N, x + (y +2) = (x +y) + 2.

e Induction principles: No

Fact N_ind :V P : N — Prop,
POy - (n:N,Pn—P(Syn)) —»Vn:N, Pn.

Implications, e.g, using N C Z No

20

Richer relational interpretations for types

The key ingredient is to turn:

[UTAB & A—=B—U

Into:
[U] AB ES Y(R:A—=B—=U),...

21

Free theorems by univalent parametricity

[U]AB & ¥(R:A— B—U),Ris a type equivalence

[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]

22

Free theorems by univalent parametricity

A

[UTAB = X(R:A— B —U),Ris a type equivalence
[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]

o Refinements:Yes
28 4~ In =T (20 +v 1n)

e More refinements: Yes

17 17y
Do =)
=0 i=0y

o |dentities:

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind : VP : N — Prop,
POy - (Vn:N,Pn—P(Syn)) — Vmn:N,Pn.

e Implications, e.g. using N C Z

22

Free theorems by univalent parametricity

A

[UTAB = X(R:A— B —U),Ris a type equivalence
[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]

o Refinements:Yes
28 4~ In =T (20 +v 1n)

e More refinements: Yes

17 17y
Do =)
=0 i=0y

o ldentities: Yes

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind : VP : N — Prop,
POy - (Vn:N,Pn—P(Syn)) — Vmn:N,Pn.

e Implications, e.g. using N C Z

22

Free theorems by univalent parametricity

A

[UTAB = X(R:A— B —U),Ris a type equivalence
[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]

o Refinements:Yes
28 4~ In =T (20 +v 1n)

e More refinements: Yes

17 17y
Do =)
=0 i=0y

o ldentities: Yes

Fact addN_assoc :V xy : N, x + (y + 2) = (x +y) + z.

e Induction principles: Yes, but assuming the univalence axiom

Fact N_ind : VP : N — Prop,
POy - (Vn:N,Pn—P(Syn)) — Vmn:N,Pn.

e Implications, e.g. using N C Z No

22

A hierarchy of structures on relations

Let Gy, 2 {(x,y) | y = ¢ x} and define [U]*' for k,I € {0,1,2a,2b,3,4} as:

Examples:
o [U]°° : arbitrary relation o [U]*? : type isomorphism
o [U]** : type equivalence o [U]** : Nand Z,
o [U]™° : existence of a map o [U]*?*: Rso and Rxo

23

Generalized parametricity translations

Abstraction theorems:

e When restricting to [/]%°
J.-P. Bernardy, M. Lasson et al. 2010 - 2013

4,4

e When restricting to [U/ ", under the univalence axiom

[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]

24

Generalized parametricity translations

Abstraction theorems:

e When restricting to [/]%°
J.-P. Bernardy, M. Lasson et al. 2010 - 2013

4,4

e When restricting to [U/ ", under the univalence axiom

[The Marriage of Univalence and Parametricity - N. Tabareau, E. Tanter, M. Sozeau. J. ACM (2021)]
Trocq:
e Vore relations

Abstraction theorems for [1/]"'

e Stronger free theorems
Non-systematic usage of the univalence axiom

e |Implemented

Translation and inference algorithm, programmed in Cog-Elpi

[Proof transfer for free, beyond unival and ival , Cyril Cohen, Enzo Crance, A.M. - TOPLAS 2025]

24

Automating proof transfer

The trocq proof command is typically useful to prove a goal Gy — G>, by:

e Trying to construct a relation at level (1,0) between the G; and G;
e Gradually computing sufficient conditions and synthesizing the proof;

e Finding base cases proofs of relations in a data-base populated by users.

Note: Lucie Lahaye recently proved the optimality of these conditions.

25

Free theorems by Trocq

o Refinements:
28 +n In =T (20 +v 1n)

o More refinements:

17 17y
Do =D
=0y i=0y

o |dentities:

Fact addN_assoc : Vxy : N, x + (y + 2) = (x +y) + z.

e Induction principles:

Fact N_ind : VP : N — Prop,
POy —- (Vn:N,Pn—P (Syn) — Vn:N,Pn.

Implications, e.g using N C Z

26

Free theorems by Trocq

o Refinements:Yes
28 4+~ In =T (20 +v 1n)

o More refinements: Yes

17 17y
Do =)
i=0p i=0y

o |dentities: Yes

Fact addN_assoc : Vxy : N, x + (y + 2) = (x +y) + z.

e Induction principles: Yes, without assuming the univalence axiom

Fact N_ind : VP : N — Prop,
POy —- (Vn:N,Pn—P (Syn) — Vn:N,Pn.

Implications, e.g using N C Z Yes

26

Free theorems by Trocq

o Refinements:Yes
28 4+~ In =T (20 +v 1n)

o More refinements: Yes

17 17y
Do =)
i=0p i=0y

o |dentities: Yes

Fact addN_assoc : Vxy : N, x + (y + 2) = (x +y) + z.

e Induction principles: Yes, without assuming the univalence axiom

Fact N_ind : VP : N — Prop,
POy —- (Vn:N,Pn—P (Syn) — Vn:N,Pn.

Implications, e.g using N C Z Yes

And more, e.g. setoid, generalized rewriting, coercions and cast insertion, etc.

26

Demo and conclusion

The Trocq plugin by examples: elementary number theory

e User input:
e (3,2;)-relate Zg and Z, and their zero, multiplication, addition.

27

The Trocq plugin by examples: elementary number theory

e User input:

e (3,2;)-relate Zg and Z, and their zero, multiplication, addition.
e Also relate their 3-divisiblity :

3 |(x mod 9) = 3|x.
e Transfer from Zg to Z:

Lemma flt3_step :
(forall (mnp : Zg), m *n * p # 0 [mod 3] -> (m"3 + n~3) # p~3) ->

(forall mnp : Z), m*n * p # 0 [mod 3] -> (™3 + n~3) # p~3).
Proof. by trocq=> /=. Qed.

27

"Simple things should be simple, complex things should be possible" A. Kay

e Trocq streamlines and extends several crucial automation devices.
e More fruits can surely be rept from the theory of programming languages.

e Formalizing mathematics should and will become easier and faster.

28

The Trocq plugin by example: natural numbers

e User input:
VX,,J,N (TN X):X \LN ONION VX,\LN (SN X):SN (l,N X)

= (2a,3)-relate N and N.

29

The Trocq plugin by example: natural numbers

e User input:
VX,,J,N (TN X):X \LN ONION VX,\LN (SN X):SN (l,N X)

= (2a,3)-relate N and N.

e Generation and axiom-free proof of the implication:

(VP :N— Type, POy - (Vn : N, Pn - P (Syn)) - Vn: N, Pn)
—

VP:N— Type, PON — (Vn : N, Pn —> P (Syn) -Vn:N,Pn

29

The Trocq plugin by examples: extended reals

e Consider types

Inductive R : Type := Fin : Rsq — Ry | Inf : Ryg.

Record summable := {to_seq : N -> R>p; to_seqP : summable to_seq}

30

The Trocq plugin by examples: extended reals

e Consider types

Inductive R : Type := Fin : Rsq — Ry | Inf : Ryg.
Record summable := {to_seq : N -> R>p; to_seqP : summable to_seq}

e User input:

e (4,2,)-relate R>g and R>¢,and their additions and sums
e (4,2p)-relate summable and N -> Rxq, and their additions and sums

30

The Trocq plugin by examples: extended reals

e Consider types

Inductive R : Type := Fin : Rsq — Ry | Inf : Ryg.
Record summable := {to_seq : N -> R>p; to_seqP : summable to_seq}

e User input:

e (4,2,)-relate R>g and R>¢,and their additions and sums
e (4,2p)-relate summable and N -> Rxq, and their additions and sums

e Transfer from (summable sequences of positive) extended reals to reals:

Lemma ZR>0_add : Yu v : summable,):p;>0 (u +v) = ZR>0 u + ZR>0 V.

Proof. trocq; exact):§>°_add4 Qed.

30

	Formalization of Mathematics and Dependent Types
	Backstage
	Natural numbers, in unary and binary representation
	Parametricity
	Demo and conclusion

