L'adversité comme levier d'innovation

Innovation et adversité

- Lors de **l'invasion russe** du 24 février 2022, la **résilience ukrainienne** a impressionné le monde entier.
- Confrontés à un adversaire **supérieur** militairement et numériquement, les Ukrainiens ont **tenu bon**.
- Cette résistance doit beaucoup au développement de nouvelles armes bon marché et adaptées aux nouvelles formes de conflit, notamment les drones.
- Plutôt que de **subir les contraintes** matérielles, tactiques ou logistiques, l'Ukraine a **innové pour s'en affranchir**.

Innovation et adversité

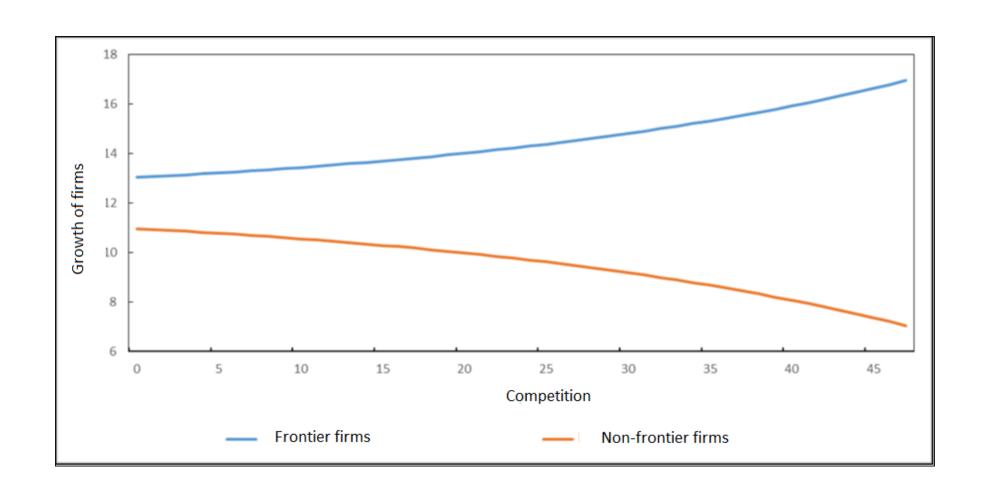
- L'exemple ukrainien illustre bien une constante de l'histoire économique : les crises et les pénuries, loin de freiner le progrès technique, peuvent au contraire accélérer l'innovation.
- Les situations difficiles (guerre, famine, manque de ressources) poussent les innovateurs à se surpasser pour répondre au plus vite aux problèmes qui surgissent.
- L'adversité se transforme donc en **levier d'innovation** technologique.
- « La nécessité est mère de l'invention »

Plan de cette leçon

I. Adversité et innovation

II. Adversité, innovation et décollage

Plan de cette leçon


I. Adversité et innovation

II. Adversité, innovation et décollage

Prémices

- Innover pour échapper à la concurrence
- Innover pour échapper aux règlementations
- Changement technique biaisé

Concurrence et innovation

Innovation et pénurie

• Idée de base: La rareté d'un facteur de production incite à développer des innovations permettant d'économiser sur l'usage de ce facteur.

Innovation et pénurie

"Escaping Labor Scarcity: Innovation and Human Capital after WW1 in France" (2025) de A. Bergeaud, J.-B. Chaniot et C. Malgouyres

• Objectifs :

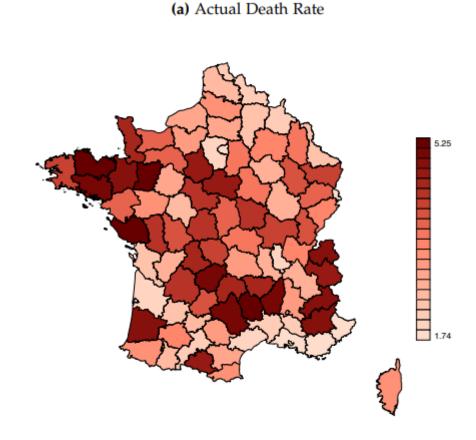
- Etudier la façon dont l'innovation réagit à une **pénurie de main d'œuvre**.
- Analyser si cet effet provient de différences initiales de capital humain.

L'exemple de la Première Guerre mondiale

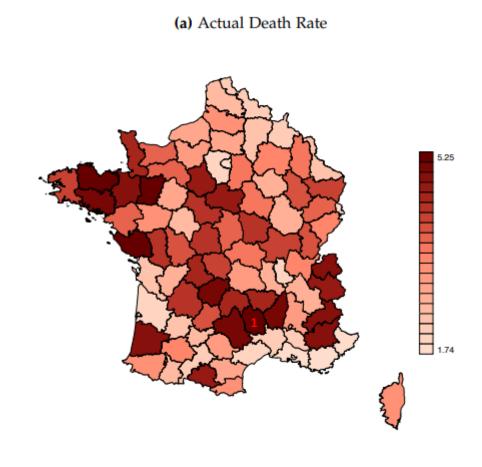
- Le papier s'appuie sur un **exemple historique** de **choc démographique** : la **Première Guerre mondiale** en France :
 - **1,3 million** de morts : 3,4% de la population mais surtout 15% des hommes de 15 à 45 ans.
 - 4 millions de blessés
 - Les victimes sont issues de toutes les régions de France

L'exemple de la Première Guerre mondiale

- Ces pertes frappent plus durement le secteur agricole :
 - Celui-ci était **très intensif en main-d'œuvre** : **40**% des travailleurs exerçaient dans le secteur agricole.
 - Les ouvriers agricoles subissent des pertes plus lourdes que le reste de la population : 20% sont tués, notamment en raison d'une plus forte proportion d'enrôlés :
 - Ils sont rarement employés dans les **industries critiques** où les ouvriers sont **exemptés** de conscription
 - Ils occupent rarement des **postes d'officiers** (moins exposés sur le front) en raison d'un niveau d'éducation plus faible que la moyenne nationale.

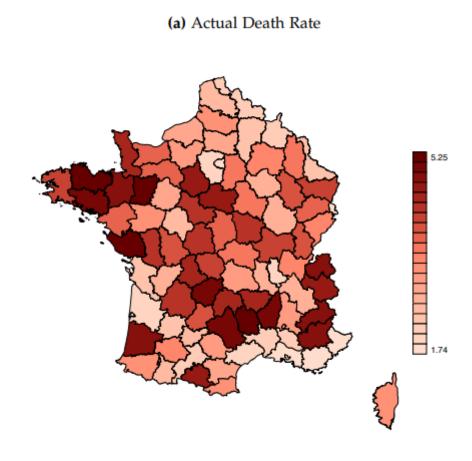

L'exemple de la Première Guerre mondiale

- Au total, la Première Guerre mondiale entraîne une baisse d'au moins 14% de la main-d'œuvre agricole française.
- Au sortir de la guerre, l'agriculture française est donc confrontée à une **pénurie de travail** particulièrement aiguë.

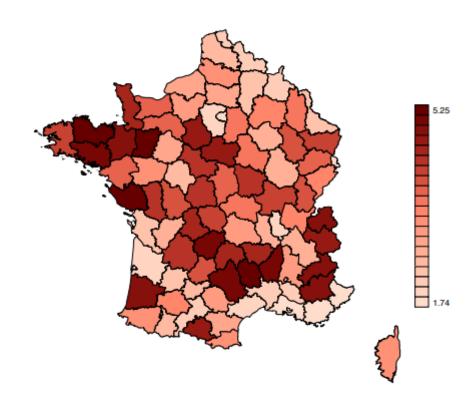

- Quelle **méthodologie** adopter pour étudier l'effet causal de la pénurie de main-d'œuvre sur l'innovation ?
- On pourrait être tenté de comparer l'innovation dans le secteur agricole avant et après la guerre.
- Mais on risquerait alors de **confondre** l'effet de la pénurie de main d'œuvre avec **d'autres conséquences** de la Première Guerre mondiale :
 - Destructions
 - Indemnités payées par l'Allemagne à la France
 - Etc.

- Pour contourner ces difficultés méthodologiques qui brouillent la causalité, Bergeaud et al. exploitent la variation du taux de mortalité des soldats entre les différents départements.
- Dans les départements où cette mortalité a été **plus élevée**, la pénurie de main-d'œuvre agricole de l'après-guerre est **plus aigüe**.

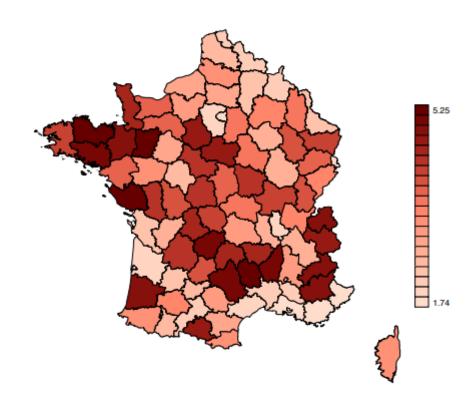
- Cette carte représente le nombre de morts durant la guerre en pourcentage de la population du département en 1911 (dernier recensement avant la guerre).
- Le taux de mortalité moyen en France est de **3,38%**.
- Mais ce taux **varie** selon les départements.


- Cette variation n'est pas liée à la proximité du front.
- La Lozère (1), pourtant située loin du front, a par exemple été très durement touchée : 5,08% de sa population de 1911 trouve la mort pendant la guerre.
- En revanche, les départements les plus ruraux sont également les plus touchés.
- Cela s'explique par le plus fort taux de pertes chez les **ouvriers agricoles**.

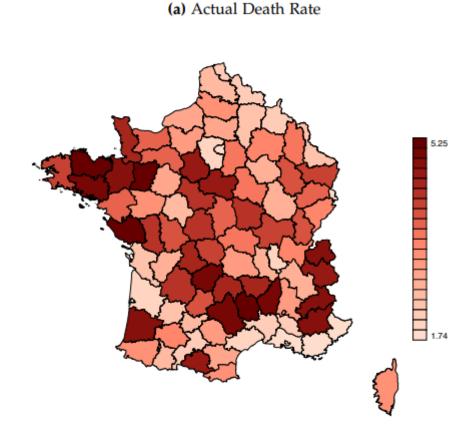
- Problème : le taux de mortalité de chaque département pourrait être corrélé à des caractéristiques intrinsèques, présentes avant à la Première Guerre mondiale.
- Ces caractéristiques pourraient à leur tour avoir influencé le niveau d'innovation dans le département après la guerre.


• Deux **exemples** :

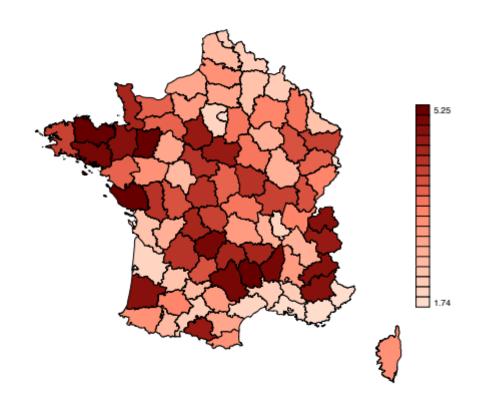
- Gilles et al. (2014) : corrélation négative entre proportion d'immigrés et conscription.
- Guillot et Parent (2018) : les soldats issus des départements les **plus riches** ont **moins de chances** de survie sur le front.


- Les 2 solutions de Bergeaud et al. pour éviter ce biais :
 - Inclure des **contrôles** relatifs aux caractéristiques **pré-1914**.
 - Construire un **indicateur de mortalité alternatif** plus robuste : le surplus de mortalité.

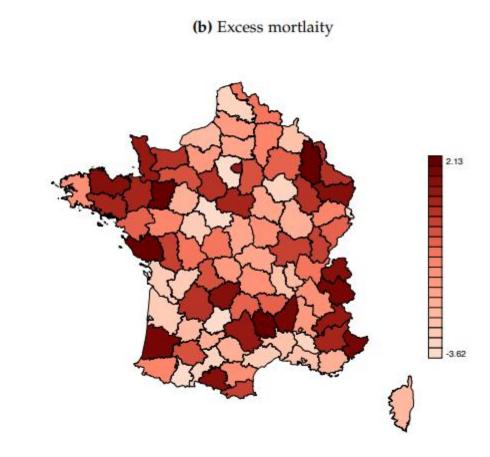
(a) Actual Death Rate


- Les 2 solutions de Bergeaud et al. pour éviter ce biais :
 - Inclure des **contrôles** relatifs aux caractéristiques **pré-1914**.
 - Construire un indicateur de mortalité alternatif plus robuste : le surplus de mortalité.

(a) Actual Death Rate

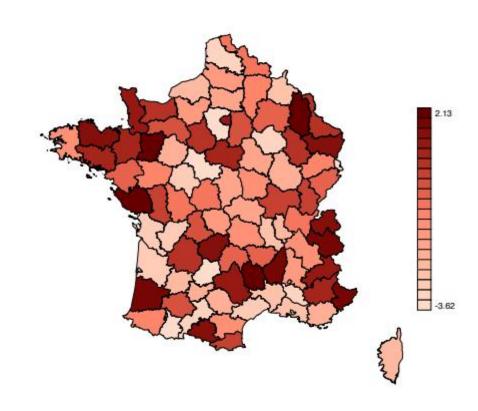

Contrôles

- Contrôle = prendre en compte une variable dans le modèle pour éviter de confondre son effet avec celui de l'indicateur qui nous intéresse.
- L'article inclut comme contrôles :
 - Proportion de jeunes hommes dans la population
 - Proportion de personnes nées à l'étranger dans la population
 - Densité de population
 - Part du secteur agricole


- Les 2 solutions de Bergeaud et al. pour éviter ce biais :
 - Inclure des **contrôles** relatifs aux caractéristiques **pré-1914**.
 - Construire un **indicateur de mortalité alternatif** plus robuste : le surplus de mortalité.

(a) Actual Death Rate

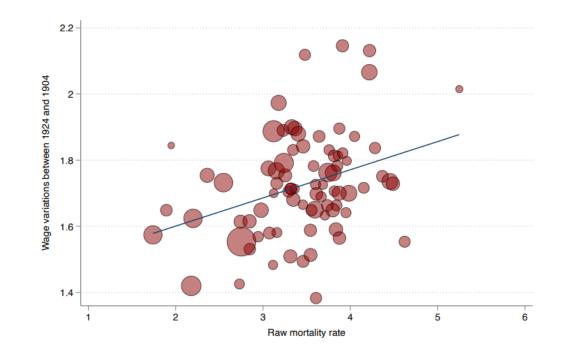
Surplus de mortalité


- Ce nouvel indicateur est construit à partir de la **mortalité réelle**.
- Mais il neutralise la part de cette mortalité qui est liée :
 - Au taux de conscription
 - Au **PIB** par tête
 - A la distance à la frontière
- L'indicateur est aussi **standardisé**, c'est-à-dire qu'on soustrait à chaque valeur la moyenne nationale puis on la divise par l'écart-type des valeurs.

Surplus de mortalité

- La nouvelle carte est **relativement similaire** à la précédente.
- La **Lozère** fait toujours partie des départements où la mortalité est la plus forte.

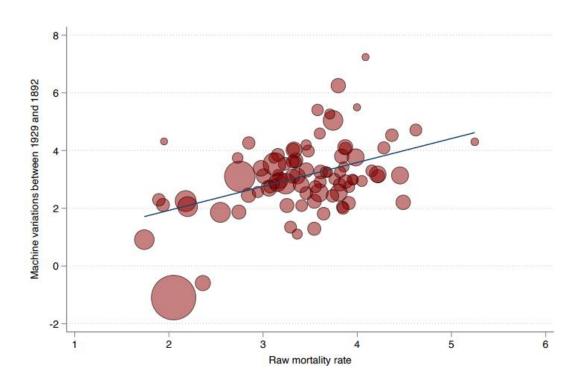
(b) Excess mortlaity



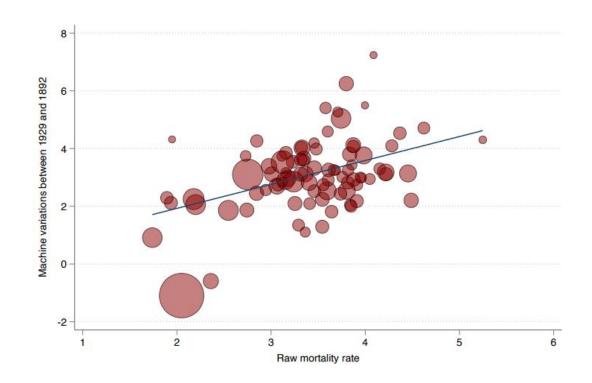
- Une mortalité plus forte est synonyme de pénurie plus aiguë de maind'œuvre agricole.
- Cette pénurie a une double conséquence :
 - Hausse plus forte des salaires agricoles : l'offre étant inférieure à la demande, les prix s'ajustent à la hausse.
 - Hausse de l'adoption de **machines agricoles** : pour remplacer le travail humain devenu rare et cher.

- Une mortalité plus forte est synonyme de pénurie plus aiguë de maind'œuvre agricole.
- Cette pénurie a une double conséquence :
 - Hausse plus forte des **salaires agricoles** : l'offre étant inférieure à la demande, les prix s'ajustent à la hausse.
 - Hausse de l'adoption de machines agricoles : pour remplacer le travail humain devenu rare et cher.

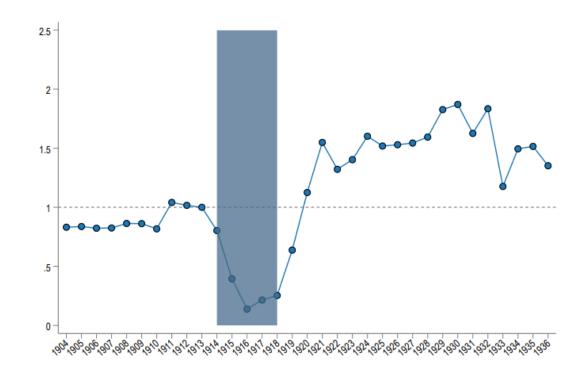
Hausse des salaires agricoles


- Lorsque l'on étudie les données, on observe bien une **corrélation positive** entre mortalité et évolution des salaires agricoles entre 1904 et 1924.
- La pénurie de main-d'œuvre conduit à une pression à la hausse sur les salaires ruraux, jusqu'à ce que la demande s'ajuste à l'offre.

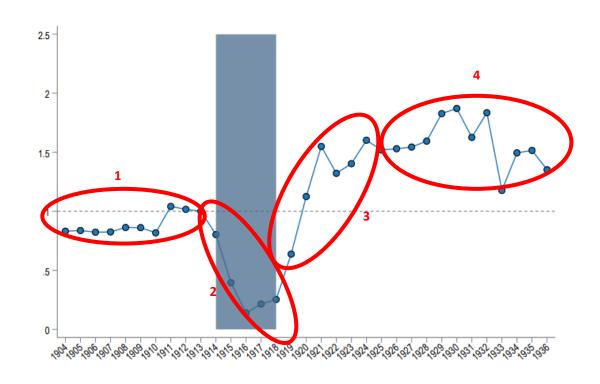
- Une mortalité plus forte est synonyme de pénurie plus aiguë de maind'œuvre agricole.
- Cette pénurie a une double conséquence :
 - Hausse plus forte des salaires agricoles : l'offre étant inférieure à la demande, les prix s'ajustent à la hausse.
 - Hausse de l'adoption de **machines agricoles** : pour remplacer le travail humain devenu rare et cher.


L'innovation permettant d'économiser du travail

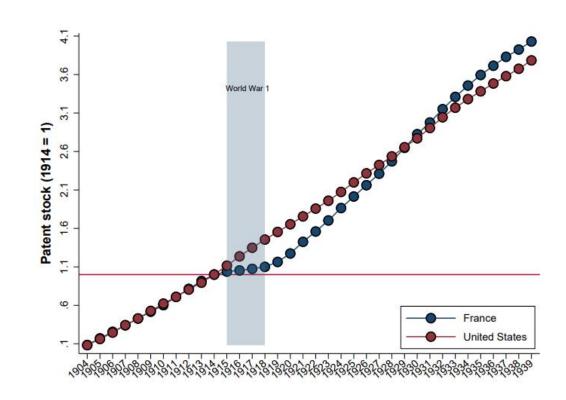
- On observe également une corrélation positive entre mortalité et évolution du stock de machines agricoles entre 1892 et 1929.
- Données : 2 **sondages** sur les matériels agricole locaux.
- Trois matériels considérés comme des machines agricoles :
 - Faucheuses
 - Moissonneuses-lieuses
 - Semoirs mécaniques

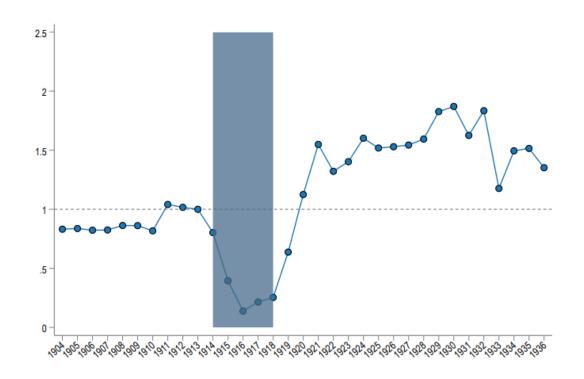

L'innovation permettant d'économiser du travail

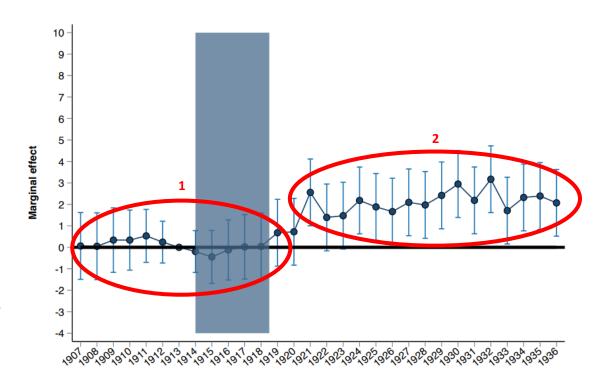
- Les départements à forte mortalité adoptent plus de machines agricoles.
- Ils connaissent donc une substitution du capital au travail suite au changement de leurs coûts relatifs.



• Quel est l'effet de ces changements de prix et de dotation des facteurs sur l'innovation ?

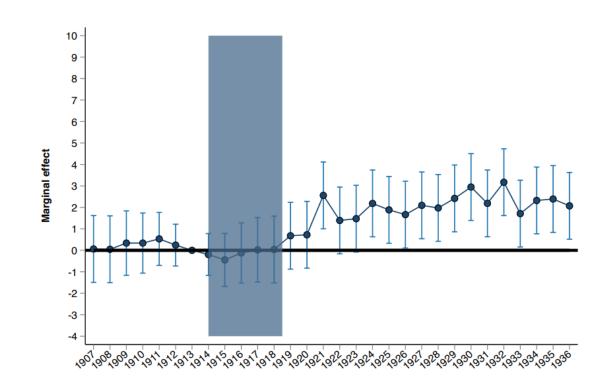

- Le graphique représente l'évolution du **nombre de brevets** déposés pour **100 000 habitants** par an.
- Les valeurs ont toutes été divisées par le nombre de brevets déposés en **1913** (d'où la valeur 1 en 1913).


- Le nombre de brevets est stable avant la Première Guerre mondiale (1).
- Il chute significativement pendant la guerre (2).
- Il **rebondit ensuite** rapidement après 1918 (3).
- Il **dépasse** alors son niveau initial pour se stabiliser autour de **1,5 fois** le niveau de 1913 (4).

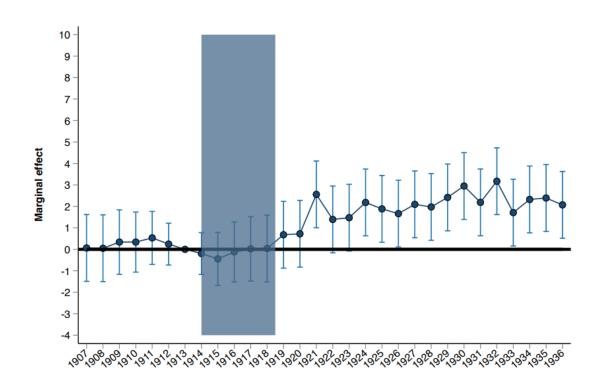

- Si l'on compare la France aux **Etats- Unis**, beaucoup moins touchés par la Première Guerre mondiale, on observe que le rebond fait **plus que compenser la chute** du nombre de brevets provoquée par la guerre.
- En 1930, le **stock** de brevets en France rapporté à son niveau de 1914 **dépasse** celui des Etats-Unis.

- Mais comment s'assurer qu'il s'agit bien d'un **effet causal** ?
- En exploitant la variation de mortalité entre départements.

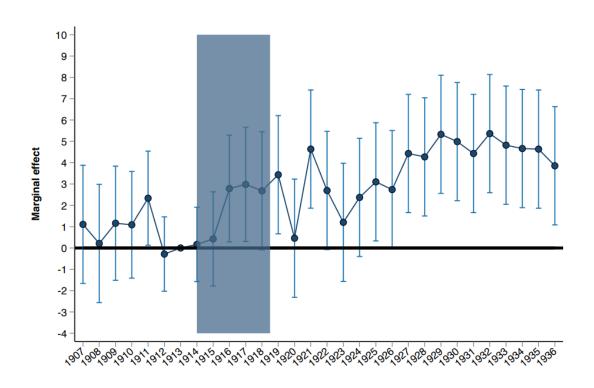
- Le graphique représente l'effet moyen d'une hausse d'un écart-type du surplus de mortalité sur le nombre de brevets pour 100 000 habitants dans un département.
- On regarde l'évolution de cet effet dans le temps.
- Comme attendu, l'effet n'est pas significatif avant et pendant la guerre (1): les conséquences de la mortalité pendant la Première Guerre mondiale sur l'innovation ne se font sentir qu'après le conflit (2).


Qu'est-ce qu'un écart-type?

- A quoi correspond cette hausse d'un écart-type de la mortalité ?
- L'écart-type est un indicateur utilisé en statistiques pour mesurer la dispersion des valeurs prises par une même variable.
- Pour le dire plus simplement, plus une variable prend des valeurs très éloignées (notamment très grandes et très petites), plus l'écart-type est grand.
- On calcule l'écart-type en mesurant l'écart entre chaque valeur de la variable et leur moyenne, puis en faisant la moyenne de ces écarts.
- Plus simplement, l'écart-type correspond à l'écart que l'on trouvera en moyenne entre une valeur de la variable et la valeur moyenne de cette variable.


Qu'est-ce qu'un écart-type?

- Si l'on revient à notre exemple de la mortalité durant la **Première Guerre** mondiale :
 - Un écart-type correspond à la différence qu'on observe en moyenne entre la mortalité moyenne en France, et la mortalité d'un département en particulier.
 - Dire qu'on augmente la mortalité d'un écart-type revient à comparer l'effet de la mortalité sur un département représentatif et sur un département tiré au hasard.
 - Cela permet de s'intéresser à un écart de mortalité qui est assez « courant » au sein des départements.

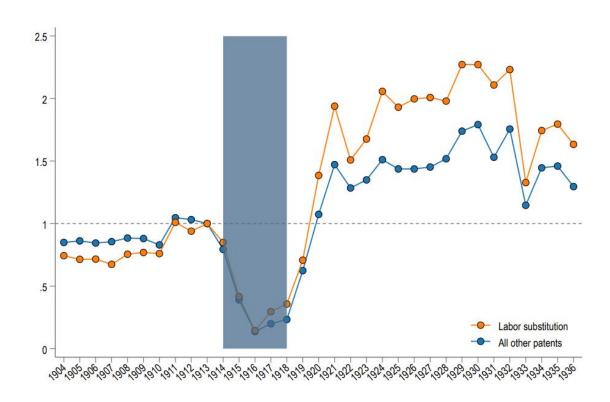

- En moyenne entre 1919 et 1936, la pénurie de main-d'œuvre agricole provoquée par une hausse de la mortalité d'un écart-type se traduit par une hausse de **2 brevets pour 100 000** habitants par an de l'innovation.
- Cet effet apparaît essentiellement après 1920.

• Un département situé dans le quartile supérieur de mortalité (mortalité supérieure à 75% des départements) déposera 3 brevets de plus par an pour 100 000 habitants qu'un département situé sur le quartile inférieur (mortalité inférieure à 75% des départements).

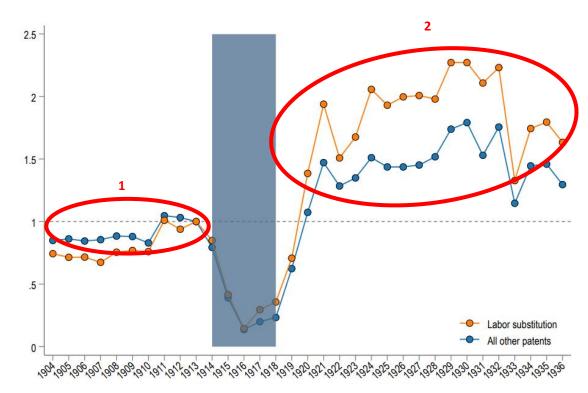
- L'effet est plus important dans les départements où l'agriculture était **très intensive en travail** avant la guerre (25% des départements les plus intensifs)
- Environ +5 brevets pour 100 000 habitants (contre +3 pour la moyenne nationale).

- Bergeaud et al. extrapolent ensuite ces résultats pour estimer la hausse totale du nombre de brevets en France provoquée par la pénurie de main-d'œuvre post-Première Guerre mondiale.
- Cette hausse serait de **500 brevets** par an, soit **10**% du nombre total de brevets déposés chaque année en France avant la guerre.

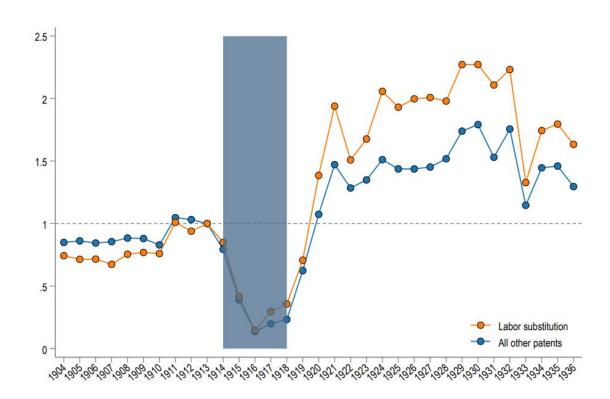
- A travers **quels mécanismes** la pénurie de main d'œuvre conduitelle à une hausse de l'innovation ?
- Cette pénurie pousse à innover dans des technologies permettant de diminuer l'intensité en travail de la production.


L'innovation permet d'économiser du travail

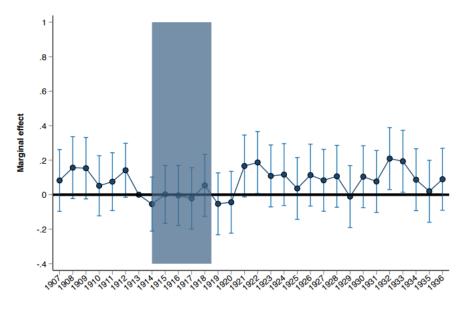
- Comment définir une **innovation permettant d'économiser du travail** (labor-saving technology) ?
- Les auteurs commencent par identifier les classes de brevets liées à l'agriculture (environ 2% du total) :
 - A01B: Travail agricole du sol
 - A01C : Plantation, fertilisation
 - A01D : Récolte et fauchage
 - A01F : transformation des récoltes
 - A01G: horticulture et culture des plantes
 - A01M : lutte contre les nuisibles et protection des plantes


L'innovation permet d'économiser du travail

- Ils effectuent ensuite une **comparaison sémantique** entre ces brevets et l'ensemble des brevets pour isoler deux groupes :
 - Les brevets **économisant** du travail : top 10% des brevets les **plus proches** sémantiquement.
 - Les brevets **n'économisant pas** de travail : top 10% des brevets les **plus éloignés** sémantiquement.
- Exemple de technologie économisant du travail : brevet n°FR533229 déposé en 1920 par Etienne-Joseph-Ernest Gau pour une nouvelle machine accélérant et semi-automatisant la plantation de pommes de terre.

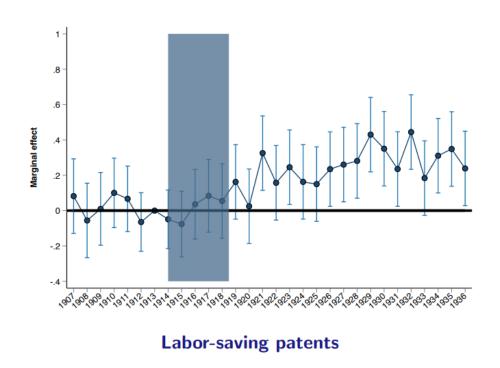

- Le graphique représente le nombre de **brevets déposés chaque année** en France, divisés par le nombre en 1913.
- La courbe orange représente les brevets permettant une substitution du capital au travail.
- La courbe bleue représente tous les autres brevets.

- Avant et pendant la guerre, les brevets liés à des innovations permettant d'économiser de la force de travail suivent une trajectoire similaire aux autres brevets (1).
- Après la guerre, les premiers croissent plus vite que les seconds (2).



- La pénurie de travail n'a donc pas seulement influencé l'innovation en quantité mais aussi en direction.
- Est-ce que cette divergence est le fruit **d'autres facteurs** ou est-il possible d'identifier l'effet **causal** de la pénurie de main-d'œuvre ?

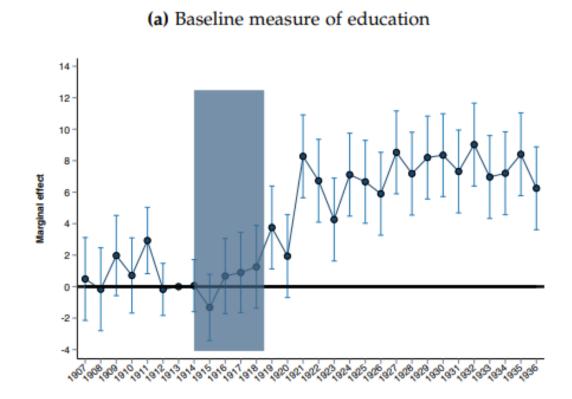
L'innovation permet d'économiser du travail


- Le graphique représente l'effet à différentes dates d'une hausse d'un écart-type de la mortalité durant la Première Guerre mondiale sur le nombre de brevets déposés pour des technologies classées comme n'économisant pas de travail.
- On n'observe pas d'effet significatif de la mortalité sur l'innovation : la **ligne horizontale** indiquant un effet nul est toujours contenue dans **l'intervalle de confiance**.

Non labor-saving patents

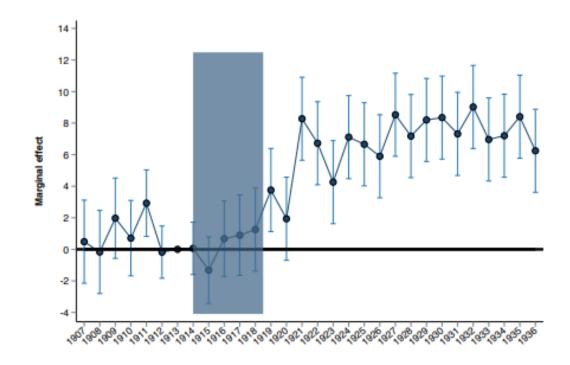
L'innovation permet d'économiser du travail

- En revanche, l'effet est positif et significatif pour les technologies permettant d'économiser du travail.
- Il y a donc une redirection de l'innovation en faveur de technologies réduisant la pénurie de travail.

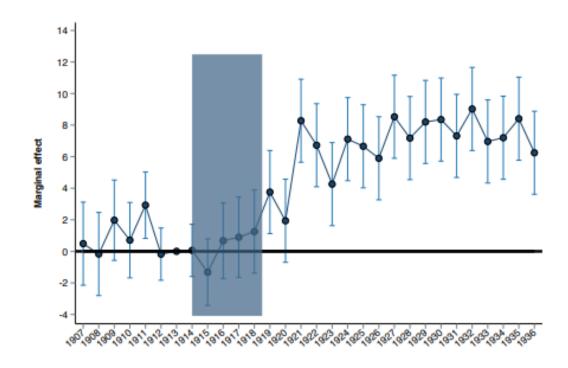

- Y a-t-il des caractéristiques qui **encouragent l'innovation**, pour un niveau de **mortalité donné** ?
- Le **capital humain initial** de la région amplifie l'effet de la pénurie de travail sur l'innovation.
- Seuls les départements qui ont la **capacité de le faire** innovent pour répondre au manque de main-d'œuvre.

- Pourquoi le capital humain initial joue-t-il un tel rôle ?
- Plusieurs facteurs explicatifs :
 - Les innovateurs doivent avoir une **compréhension fine** des besoins auxquels son innovation apportera une réponse. Or, cette compréhension est plus facile et moins chère à obtenir lorsque l'inventeur est **physiquement proche**.
 - Effet d'entraînement (spillover effect) : dans les départements à haut niveau d'éducation, un innovateur bénéficie de la proximité d'autres experts mais aussi de fournisseurs, ce qui encourage l'innovation.

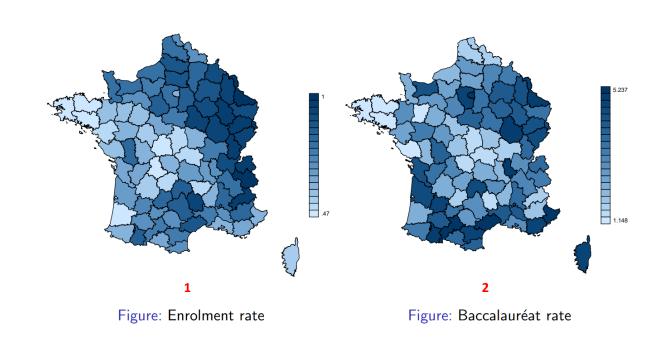
• Exemple de l'importance d'un ancrage local des innovateurs : il y a de grandes différences entre une machine conçue pour les champs vastes et plats de la Beauce et une autre conçue pour l'agriculture spécialisée et en terrasse d'autres régions.


- Pour mesurer le **capital humain**, les auteurs distinguent deux groupes en fonction de la **proportion** des jeunes hommes ayant atteint un **niveau scolaire de base** lors de leur conscription en 1901 :
 - Haut niveau de capital humain : le département fait partie des 25% des départements ayant la plus forte proportion.
 - Faible niveau de capital humain : le reste des départements.

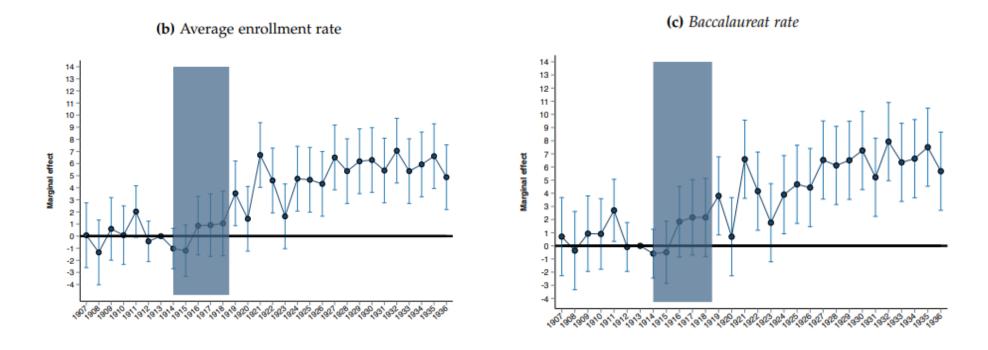
- Le graphique compare l'effet sur l'innovation d'une hausse d'un écart-type de la mortalité entre les départements à haut capital humain et les autres.
- Un effet positif signifie que les départements à haut capital humain innovent encore plus que les autres lorsqu'ils sont confrontés à une pénurie de main-d'œuvre.


- L'effet est significatif et aux alentours de +6 brevets pour 100 000 habitants.
- L'effet de la pénurie de maind'œuvre sur l'innovation est donc trois fois plus important dans les zones à haut capital humain.

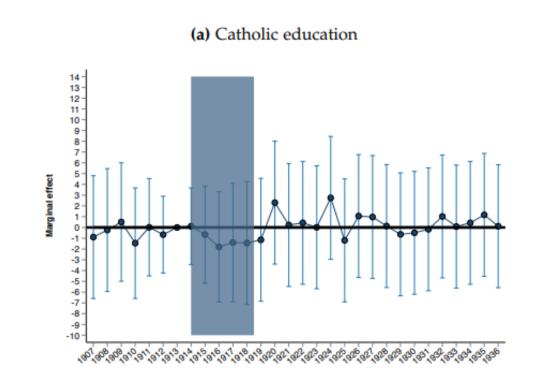
(a) Baseline measure of education



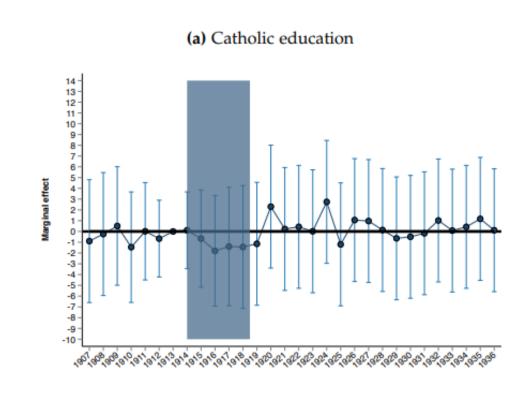
- La **nécessité** ne suffit donc pas.
- La **capacité** joue aussi un rôle essentiel dans l'innovation.


(a) Baseline measure of education

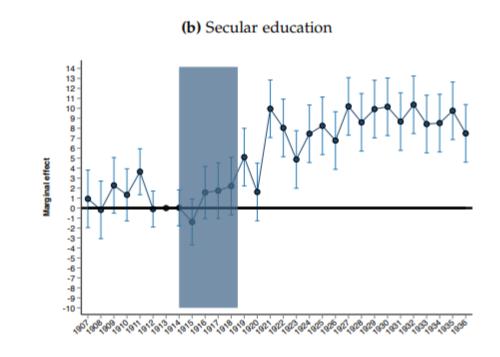
- Pour confirmer leurs résultats, les auteurs s'intéressent à 2 mesures alternatives de niveau d'éducation :
 - Taux moyen de scolarisation des enfants de 5 à 15 ans à partir des recensements entre 1861 et 1901 (1).
 - Proportion des jeunes hommes conscrits en 1901 ayant obtenu le baccalauréat (alors obtenu par moins de 1% d'une cohorte d'âge, 2).



• Ces deux mesures donnent des **résultats similaires** :



- Mais toutes les éducations ont-elles un effet identique sur l'innovation ?
- A l'époque, le système scolaire français est constitué de deux types d'école :
 - L'instruction publique laïque
 - L'instruction privée religieuse (essentiellement catholique)
- Les deux systèmes proposent des cursus relativement différents.
- Les auteurs étudient si ces différences ont un effet sur l'innovation.
- On retrouve ici des réflexions **institutionnalistes** sur le rôle de l'école dans l'innovation.


- On se concentre ici sur les départements où la part de l'enseignement catholique est supérieure à la médiane nationale.
- A hausse de mortalité donnée, l'effet d'un capital humain plus élevé avant guerre est non significatif.

- L'instruction catholique ne semble donc **pas faciliter l'innovation** à l'époque.
- On peut l'expliquer par l'accent mis dans le curriculum sur les humanités et la théologie.
- Un tel enseignement ne permet pas d'acquérir les compétences techniques, qui sont essentielles à l'innovation.

- A l'inverse, l'effet, l'éducation laïque a un effet fort sur l'innovation à l'époque.
- Cela s'explique par un programme éducatif plus technique, qui facilite l'émergence d'innovations.

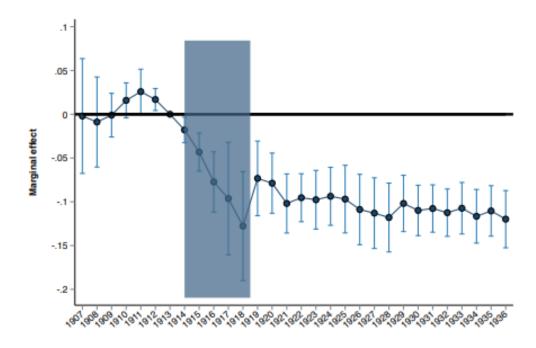
- Ainsi, si la durée d'éducation joue un rôle important dans l'acquisition d'un capital humain, elle n'est pas la seule.
- Ce que l'on apprend à l'école est aussi très important.
- Ces conclusions sont intéressantes pour penser le rôle des investissements publics dans l'éducation.

Quand les innovateurs meurent au front

- Si la hausse de la mortalité encourage l'innovation par le biais de la **pénurie de main-d'œuvre**, elle vient aussi **diminuer le capital humain**.
- En effet, lorsque la mortalité touche des innovateurs ou des innovateurs en devenir, elle limite la capacité future du département à produire des innovations.

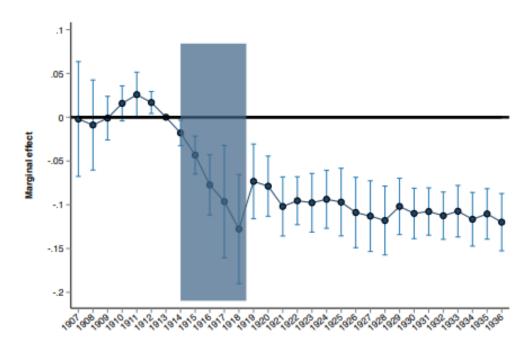
- Pour étudier la mortalité des innovateurs, les auteurs croisent les noms des inventeurs ayant déposé un brevet entre 1900 et 1913 avec ceux des soldats décédés.
- Environ **8 000** inventeurs, soit **10**%, sont morts pendant la Première Guerre mondiale.
- Ce taux de mortalité est **plus faible** que la moyenne nationale mais il constitue une **perte significative**.

- 2 exemples d'innovateurs morts lors de la Première Guerre mondiale :
 - Alexandre Marie **Danlos**:
 - Détenteur d'un brevet de signalisation ferroviaire
 - Engagé lors de la bataille de la Marne (1914)
 - Meurt début 1916
 - Charles Henri Lindecker:
 - Officier d'aviation
 - Détenteur de 10 brevets dans le domaine des transports
 - Meurt en 1914


- Ces pertes touchent particulièrement les **jeunes élites intellectuelles** du pays.
- Engagés comme sous-officiers, ces jeunes étudiants prometteurs, notamment des ingénieurs et des scientifiques, sont alignés en première ligne avec leurs troupes et subissent de fortes pertes.
- On parle à l'époque de « blessure à la tête » pour évoquer ce drame.

• Deux **exemples** :

- Les **polytechniciens** :
 - 800 décèdent pendant la guerre
 - 20% des cohortes 1911-1918 ne reviennent pas du front
- Les **normaliens** :
 - 45% des cohortes 1910-1913 meurent pendant la guerre
 - **Joseph Marty** (normalien Sciences 1905) :
 - Août 1914 : appelé comme sergent au 38e régiment d'infanterie coloniale
 - 10 septembre 1914 : tué en sortant de sa tranchée à la tête de ses hommes


- Le graphique représente l'effet d'une hausse d'un écart-type de la mortalité sur le nombre de brevets déposés dans un département donné pour une technologie donnée.
- Mesure de la mortalité des innovateurs : nombre d'inventeurs ayant déposé un brevet entre 1900 et 1913 tués à la guerre divisé par le nombre total d'inventeurs ayant déposé un brevet entre 1900 et 1913.

(b) At the technology-county level

- La mortalité des inventeurs a un effet négatif significatif et durable sur l'innovation.
- En moyenne, une hausse d'un écarttype de la mortalité des inventeurs d'un département spécialisés dans une technologie donnée entraîne une baisse de -0,75 brevet de l'innovation dans ce département pour cette technologie.

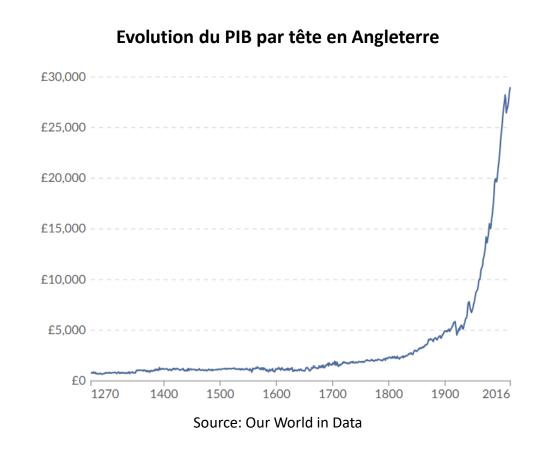
(b) At the technology-county level

Innovation et pénurie – Synthèse

- L'adversité que représente un conflit a donc un effet positif sur l'innovation, à travers la pénurie de main-d'œuvre créée par la mortalité parmi les travailleurs.
- Si un conflit a aussi un **effet négatif** sur l'innovation, réduisant le **« stock » d'innovateurs**, dans le cas de la Première Guerre mondiale cet effet est **plus que contrebalancé** au niveau agrégé par celui de la pénurie de main-d'œuvre.

Innovation et pénurie – Synthèse

• Plus généralement, l'adversité a-t-elle joué un rôle dans le **décollage économique** ?


Plan de cette leçon

I. Adversité et innovation

II. Adversité, innovation et décollage

Le décollage de la croissance

- Nous l'avons vu, la croissance économique a décollé en **Angleterre** autour de **1820** (cf. Leçons 2 et 3).
- Ce décollage a coïncidé avec la première des quatre vagues technologiques (cf. Leçon précédente) : la Révolution industrielle.
- Quel rôle a pu jouer l'adversité dans ce décollage de la croissance du PIB par tête ?

Pénurie de main-d'œuvre et révolution industrielle

"Fighting for Growth: Labor Scarcity and Technological Progress During the British Industrial Revolution" (2022) de H.-J. Voth, B. Caprettini et A. Trew

- Les auteurs cherchent à étudier les **déterminants du progrès** technologique durant la révolution industrielle britannique.
- Pour cela, ils mettent l'accent sur le rôle du capital humain et de la pénurie de main-d'œuvre.

Pénurie de main-d'œuvre et révolution industrielle

- L'article s'intéresse à l'effet de la pénurie de main d'œuvre sur deux facettes de l'innovation :
 - L'adoption de technologies existantes : le côté « diffusion » des vagues technologiques.
 - L'amélioration de ces technologies : le volet « perfectibilité » des vagues technologiques.

- Comme Bergeaud et al., cet article étudie un exemple historique de conflit.
- Il s'intéresse aux guerres de la **Révolution française** et les guerres **napoléoniennes** (1793-1815) :
 - 1793 : Louis XVI est exécuté par les révolutionnaires
 - Une alliance entre l'Autriche-Hongrie, la Prusse, la Grande-Bretagne, les Provinces-Unies, la Russie et l'Espagne, lance alors une campagne pour envahir la France.
 - S'ensuivent plus de deux décennies de conflit meurtrier en Europe.
 - 1815 : après son retour d'exil de l'île d'Elbe, Napoléon est à nouveau vaincu à Waterloo, marquant la fin du conflit.

- En Grande-Bretagne, ces guerres se traduisent par un **recrutement massif** de jeunes hommes pour servir dans les armées du royaume.
- L'infanterie (Army) et la marine (Navy) ont des besoins importants en main-d'œuvre.
- En 1813, **350 000 hommes** servent dans la marine et l'infanterie britanniques, soit 10 à 14% de la main-d'œuvre masculine.

- Non seulement le **nombre** de soldats augmente, mais la **mortalité** nécessite de sans cesse **renouveler** les effectifs.
- Les décès **au combat** sont relativement rares mais bon nombre de soldats sont frappés par la **maladie**.
- Au total, on estime à plus de **300 000** les pertes des armées britanniques sur la seule période 1804-1815.

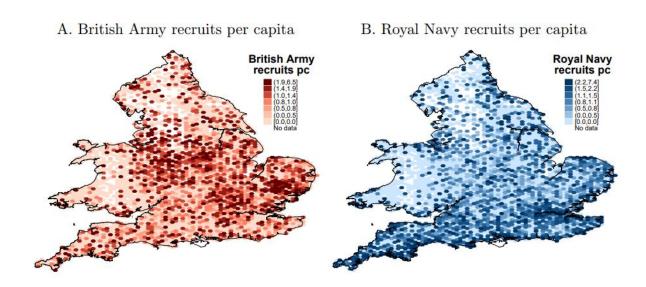
- Pour faire face à ces besoins très importants, un **intense** recrutement était effectué dans tout le pays.
- Près de 43% des recrues de l'infanterie étaient des travailleurs journaliers, auxquels il faut ajouter 7% de fermiers.
- Dans la marine, le recrutement se concentrait sur des marins. A première vue, ce recrutement n'a pas d'effet sur la main-d'œuvre agricole disponible.
- Mais le départ de ces marins influence **indirectement** le marché du travail agricole, certains travailleurs agricoles **remplaçant** au sein de la marine marchande les marins enrôlés.

- Ces chocs de demande de travail entraînent une **pénurie de main- d'œuvre** en Grande-Bretagne.
- La pénurie n'est **pas compensée** par un afflux d'**immigrants**, ce qui provoque une **hausse des salaires**.
- Comme pour le cas de la **France** après la Première Guerre mondiale, cette hausse des salaires pourrait avoir **encouragé l'innovation**.

- Les zones situées sur les côtes connaissent un recrutement plus intensif de la part de la marine britannique que les autres.
- Les contemporains constatent que ces zones se caractérisent également par une adoption plus précoce de machines permettant d'économiser du travail (définies selon le même principe que chez Bergeaud et al.).
- Enquête sur l'état de l'agriculture dans le comté de Dorset (1812) : « Un grand nombre de batteuses ont été construites dans ce comté … la principale raison de leur utilisation est la pénurie de travailleurs qu'on s'attendrait, en temps de guerre, à voir toucher plus durement les régions côtières. »

- Mais peut-être d'autres facteurs viennent-ils expliquer cette adoption plus rapide de machines substituables au travail humain.
- Peut-on identifier ici aussi un **effet causal** de l'adversité (pénurie de main-d'œuvre) sur l'innovation ?

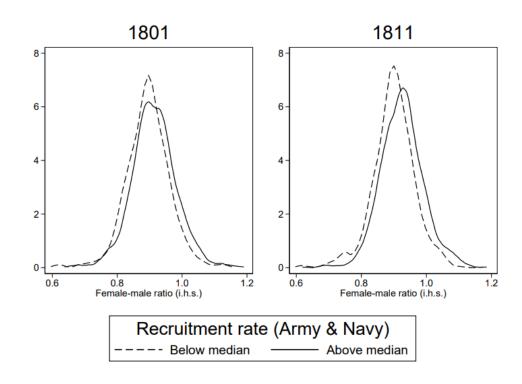
Données


- Les auteurs s'appuient sur 4 datasets :
 - Liste complète des **individus recrutés** par les armées britanniques durant les guerres révolutionnaires et napoléoniennes.
 - Cartographie de la répartition des **origines géographiques** des personnels de certains **navires** : permet d'estimer l'intensité du recrutement dans les différentes zones.
 - Données sur l'adoption de dix technologies (7 substituables au travail et 3 non-substituables) sur la période 1800-1830 à l'échelle de la paroisse, à partir des publicités dans les journaux locaux.
 - Nombre et qualité des **machines agricoles expérimentales** présentées à des réunions de la **Royal Agricultural Society of England** (RASE) : un bon proxy du niveau d'**innovation incrémentale**.

Données

- A partir de ces données, les auteurs établissent un découpage géographique de la Grande-Bretagne en unités hexagonales de 120 km².
- Ils **excluent** de leur étude les unités urbaines, celles dont la population est nulle, et celles pour lesquelles ils manquent de données.
- Leur analyse porte donc sur 2 600 unités couvrant une large partie du territoire.

Données


- Les cartes ci-contre représentent le nombre de recrues de l'infanterie et de la marine pour 1 000 habitants.
- Cette variable est établie à partir d'un certain nombre de registres indiquant l'origine géographique des soldats et des marins.
- On constate une **forte variation** de cette donnée sur le territoire.
- C'est cette variation que les auteurs vont exploiter pour leur analyse.

- Les auteurs commencent par étudier dans quelle mesure le recrutement de troupes par les armées britanniques s'accompagne bien d'une **pénurie de main d'œuvre**.
- Pour cela, ils s'intéressent au ratio entre le nombre de femmes et le nombre d'hommes dans la population active de chaque unité.
- Si les hommes enrôlés dans l'armée étaient **remplacés** par des travailleurs d'autres zones, il ne devrait **pas** y avoir en moyenne **de différence** dans ce ratio en fonction de l'intensité du recrutement.

- Le graphique représente la distribution de ce ratio parmi les unités géographiques :
 - Situés **au-dessus** de la médiane en termes d'intensité du recrutement : en trait **plein**.
 - Situés **en-dessous** de la médiane en termes d'intensité du recrutement : en **pointillé**.

Figure A.2: Sex Ratios and Recruitment

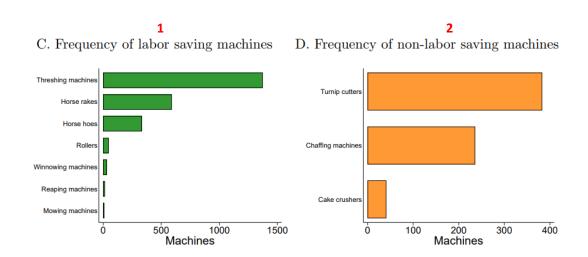
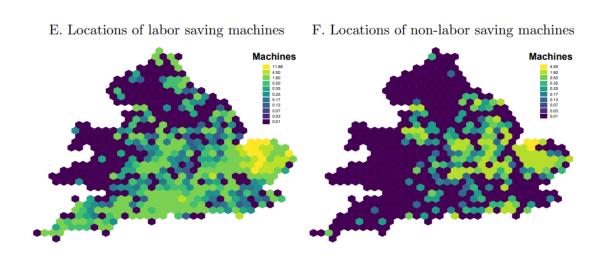
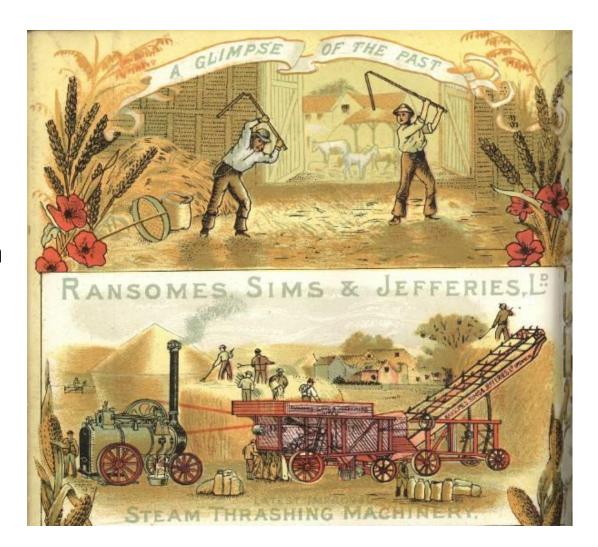
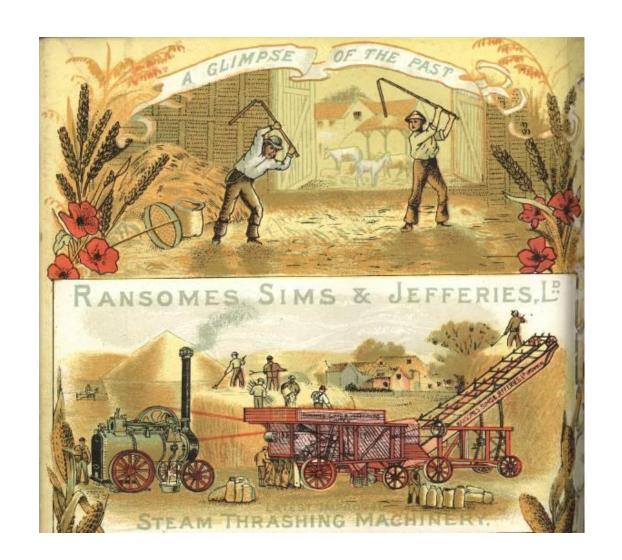

- Que ce soit en 1801 ou en 1811, la courbe des unités dont l'intensité de recrutement est supérieure à la médiane est décalée à droite par rapport à celle des autres unités.
- Ces unités ont donc un plus grand ratio femmes-homme parmi les actifs :
 - +1,4% en 1801
 - +1,8% en 1811

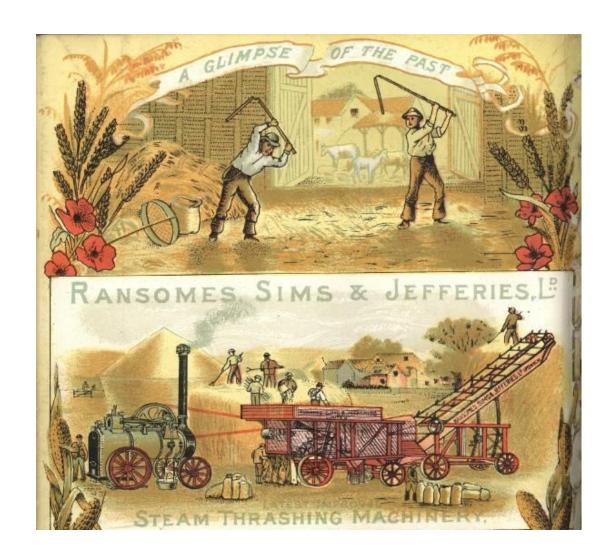
Figure A.2: Sex Ratios and Recruitment

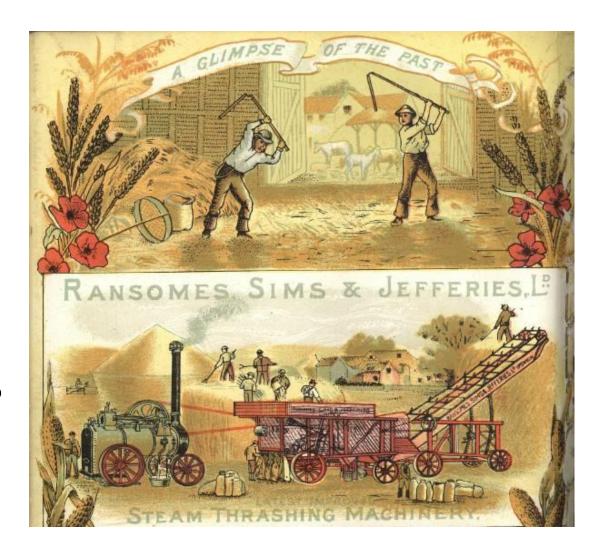


- Une plus forte intensité du recrutement militaire se traduit donc bien par une pénurie de main-d'œuvre plus aigüe.
- Mais quel est l'effet de cette pénurie sur la diffusion d'innovations ?

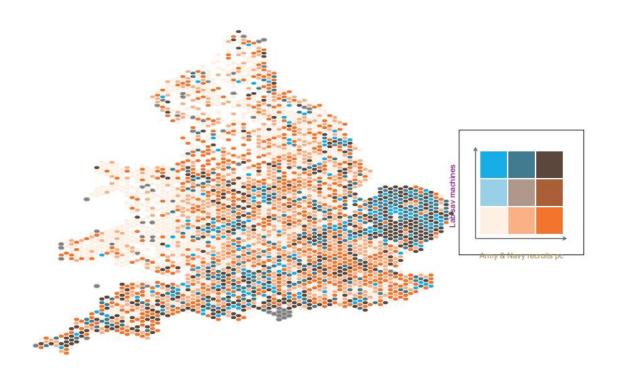

- Les auteurs s'intéressent à l'effet de la pénurie de main-d'œuvre sur l'adoption d'innovations existantes en production agricole.
- Ils distinguent deux types d'innovations :
 - Les innovations permettant d'économiser du travail en se substituant à lui (1).
 - Les autres innovations (2).


 Les deux cartes représentent le nombre de machines de chacun des deux types adoptés par les différentes unités géographiques.


- Exemple de technologie permettant d'économiser de la force de travail : la batteuse :
 - Utilisée pour **séparer le grain** des autres parties de la céréale (tige, balle).
 - Auparavant, le battage était très intensif en travail, représentant environ 50% de la force de travail employée dans les fermes anglaises entre novembre et mars.
 - La première batteuse est inventée par l'ingénieur Andrew Meikle en Ecosse à la fin du XVIIIe siècle. Elle utilise la force de chevaux.
 - La machine est progressivement perfectionnée, utilisant la force hydraulique puis la machine à vapeur.


- La batteuse se diffuse d'abord essentiellement dans le Nord de l'Angleterre.
- Des salaires agricoles plus élevés l'y rendent compétitive par rapport au travail humain.
- La pénurie de main-d'œuvre liée à la **guerre** entraîne la diffusion de la batteuse dans le **Sud** de l'Angleterre.

• L'introduction de la batteuse produit des gains significatifs de productivité, ce qui permet d'économiser de la main-d'œuvre.



- Réponse de **Burnham**, un village du Buckinghamshire, à une enquête de la *Poor Law Commission* (1832) :
 - "Vos fermiers emploient-ils moins de bras qu'avant depuis que ces machines sont arrivées? – Considérablement."
 - "Combien de mois faut-il à une batteuse pour battre la production d'une ferme qui prenait auparavant dix mois aux hommes?
 Ils auront fini en deux mois."

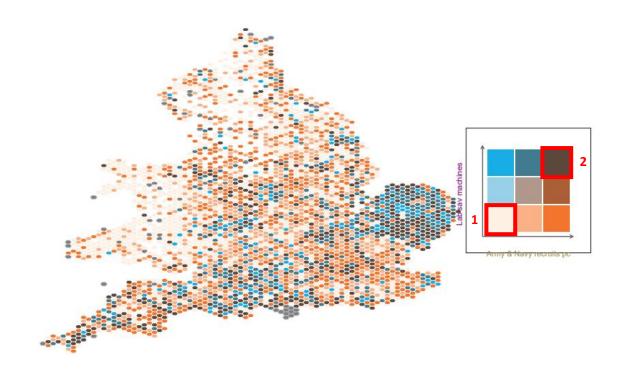

- La carte représente les différentes unités géographiques étudiées en fonction de deux caractéristiques :
 - L'adoption de machines permettant d'économiser du travail : plus cette adoption est forte, plus une unité est de couleur bleue.
 - L'intensité du **recrutement** par l'infanterie et la marine : plus ce recrutement est intense, plus une unité est **orangée**.

Figure A.3: Machine adoption and military recruitment (Bicolor Map)

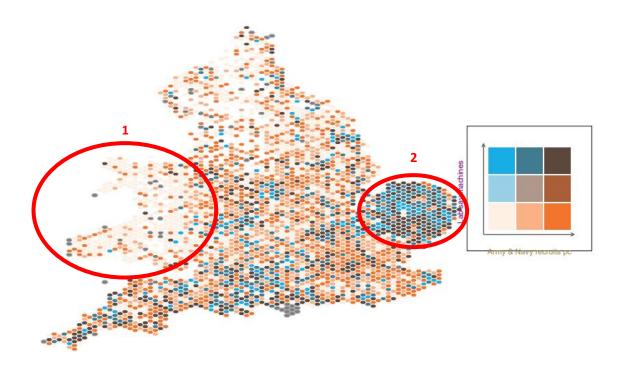

- Un carré clair (1) signifie à la fois peu de machines et un recrutement faible.
- Un carré sombre (2) signifie à la fois une forte adoption des machines et un recrutement intense.

Figure A.3: Machine adoption and military recruitment (Bicolor Map)

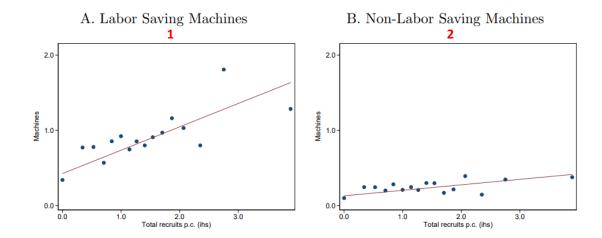
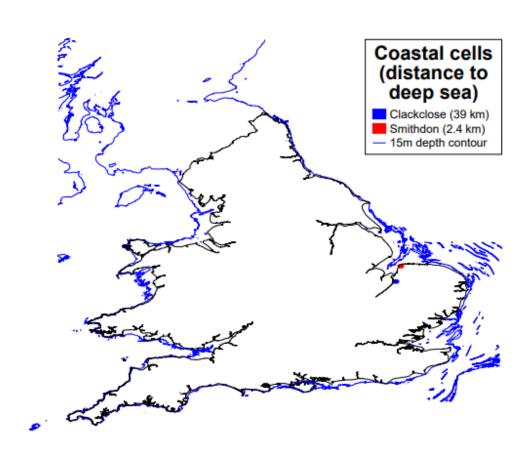

- Le **Pays-de-Galles** (1) concentre les unités avec un faible niveau pour les deux variables.
- L'Est de l'Angleterre (2) est dans la situation inverse.
- Mais on retrouve ces cas polaires un peu partout sur le territoire.
- Au total, 2/5^e des unités relèvent d'un des deux cas polaires, soit une surreprésentation de +23%.

Figure A.3: Machine adoption and military recruitment (Bicolor Map)

- Lorsque l'on regarde plus précisément, on observe une forte corrélation entre l'intensité de recrutement et l'adoption de machines permettant d'économiser du travail (1).
- En revanche, le lien entre recrutement et adoption d'autres types de machines agricoles est très faible voire non-significatif si l'on intègre un certain nombre de variables de contrôle (2).

Figure 3: Military recruitment and machine adoption


- Problème : il existe un risque de biais dans l'estimation avec cette méthode :
 - Erreurs de mesure : on étudie seulement une fraction des recrutés (ceux pour lesquels on dispose d'informations sur leur origine géographique).
 - Variables omises : on néglige l'importance d'autres variables influençant à la fois le recrutement et l'adoption

- Solution : utiliser une variable instrumentale : au lieu de regarder directement l'effet de l'intensité du recrutement, on regarde l'effet d'une autre variable qui n'a un effet sur l'innovation que par le biais de l'intensité du recrutement.
- Variable instrumentale choisie : distance la plus courte à la haute mer (>15m) en neutralisant l'effet de la distance à la côte et en se concentrant sur les zones à moins de 15km de la côte (pour éviter de confondre l'effet avec celui d'être situé sur la côte).
- L'article se concentre donc désormais sur les seuls recrutements liés à la marine.

- Pour éviter de s'ensabler, les navires de guerre mouillaient en haute mer lorsqu'ils envoyaient des hommes à terre pour recruter de nouveaux marins.
- Depuis la haute mer, de **plus petites embarcations** rejoignaient la terre ferme la plus proche.
- Une fois à terre, se mettait en place une intense campagne de recrutement, au cours de laquelle bon nombre des recrues étaient contraintes à s'engager (51 à 86% des enrôlés).

- On a donné à cette forme de conscription forcée le nom de « presse » (impressment en anglais).
- Pour forcer des individus à s'engager, la marine recourait notamment à des « gangs de presse ».
- Ceux-ci étaient envoyés dans les pubs et les lieux de rassemblement locaux pour enrôler des jeunes hommes, quitte à les menacer.

- Exemple : comparaison entre Clackclose (en bleu) et de Smithdon (en rouge), deux unités situées dans le Norfolk :
 - Situation économique et démographique très similaire avant les guerres avec la France.
 - Mais Smithdon est situé bien plus près de la haute mer (2,4 km contre 39).
 - En conséquence, Smithdon a un ratio de femmes-hommes dans sa population active plus élevé.
 - Et l'unité adopte près de **trois fois plus** de machines que sa voisine.

Industrie et pénurie de main-d'œuvre

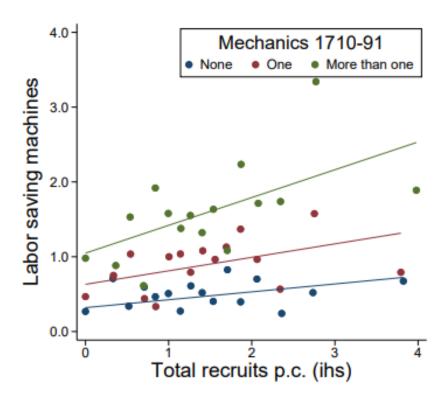
- Plus précisément, lorsqu'on analyse les données, on observe que la distance à la haute mer a :
 - Un effet négatif et significatif sur le recrutement pour la Royal Navy (1).
 - Un effet négatif et significatif sur l'adoption de machines économisant du travail (2).
 - Pas d'effet significatif sur l'adoption d'autres types de machines (3).

	(1)	(2)
	Royal Navy	Royal Navy
Distance to deep sea	-0.739***	-0.585***
	[0.119]	[0.130]
R^2	0.288	0.314
Mean. dep. var.	0.995	0.995
Distance to coast	Yes	Yes
Demographic and geographic controls	Yes	Yes
Region FEs (5)	No	Yes
F-stat of excluded instrument	38.5	20.2
Observations	886	886

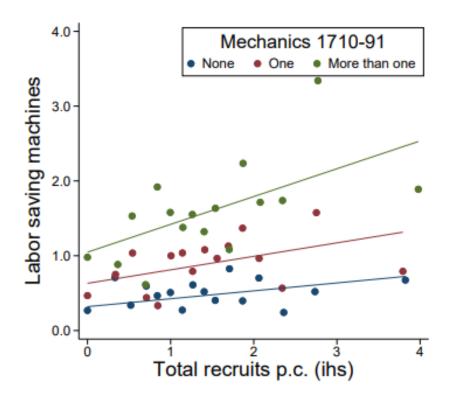
	(1) Lab sav	(2) Lab sav	(3) Non lab sav	(4) Non lab sav
Distance to deep sea	-1.003*** [0.288]	-0.747** [0.299]	0.016 [0.110]	-0.133 [0.134]
R^2	0.110	0.141	0.045	0.061
Mean. dep. var.	0.887	0.887	0.205	0.205
Distance to coast	Yes	Yes	Yes	Yes
Demographic and geographic controls	Yes	Yes	Yes	Yes
Region FEs (5)	No	Yes	No	Yes
Observations	886	886	886	886

Industrie et pénurie de main-d'œuvre

- On peut ensuite en déduire l'effet causal de la pénurie de main-d'œuvre (approximée par l'intensité de recrutement de la marine) sur l'adoption des machines permettant d'économiser du travail.
- Cet effet est large et significatif (1).
- En revanche, l'effet sur l'adoption des autres machines agricoles n'est pas significatif (2).


	Machines						
	(1)	(2)	(3)	(4)			
	Lab sav	Lab sav	Non lab sav	Non lab sav			
Royal Navy recruits p.c. (i.h.s.)	$\begin{bmatrix} 1.357***\\ [0.439] \end{bmatrix}$ 1	1.277** [0.579]	-0.022 [0.147] 2	0.227 [0.234]			
R^2	-0.208	-0.120	0.044	0.014			
Mean. dep. var.	0.887	0.887	0.205	0.205			
Distance to coast	Yes	Yes	Yes	Yes			
Demographic and geographic controls	Yes	Yes	Yes	Yes			
Region FEs (5)	No	Yes	No	Yes			
Anderson-Rubin test (p-value)	0.001	0.013					
Observations	886	886	886	886			

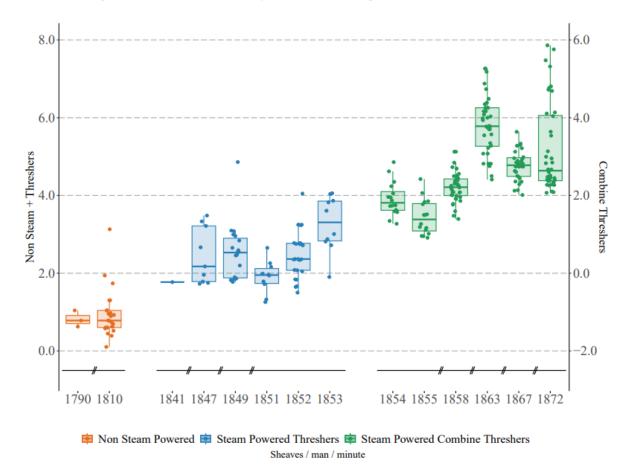
Rôle amplificateur du capital humain


- Comme Bergeaud et al., les auteurs se posent la question des facteurs pouvant faciliter l'adoption des technologies substituables au travail.
- Ils s'intéressent eux-aussi à l'effet du stock de capital humain préalable à l'adversité (ici aux guerres révolutionnaires).

- Pour mesurer ce stock de capital humain, l'article s'intéresse à la **formation d'apprentis** avant le début des guerres avec la France.
- En effet, les compétences techniques étaient à l'époque essentiellement transmise par le biais de la pratique de l'apprentissage :
 - En l'absence d'école professionnelle, le savoir était dispensé par les maîtresartisans directement dans leurs ateliers.
 - Ces maîtres accueillaient dans leur atelier un certain nombre de jeunes hommes qui **apprenaient le métier** tout en travaillant à leur service.
 - Cette pratique était largement encadrée par les corporations professionnelles.
- On dispose de données sur le nombre d'apprentis car un maître devait **payer une taxe** avant de commencer à former un nouvel apprenti.

- Le graphique représente le lien entre intensité du recrutement et adoption de technologies économisant du travail pour différentes concentrations d'apprentis :
 - Aucun apprenti : en bleu
 - Un seul apprenti : en rouge
 - Plusieurs apprentis : en vert

- La présence préalable de capital humain amplifie l'effet de la pénurie de main d'œuvre sur l'adoption d'innovations.
- L'effet est ainsi trois fois plus fort dans les zones comptant plus d'un apprenti que dans celles n'en comptant aucun.



- L'éducation renforce donc l'effet de l'adversité sur l'adoption d'innovations.
- Mais l'adversité a-t-elle un effet sur **l'innovation elle-même** (et non son adoption) ?

- Pour s'intéresser à l'effet de la pénurie de main-d'œuvre sur l'innovation, les auteurs se concentrent sur le cas de la batteuse.
- Nous l'avons vu dans la leçon précédente, les vagues technologiques fonctionnent par **perfectionnement progressif**.
- Les auteurs vont donc s'intéresser aux progrès technologiques permettant d'améliorer l'efficacité d'une machine comme la batteuse.

- La productivité des batteuses mises sur le marché a considérablement augmenté en Angleterre.
- Elle a été multipliée par près de 6 entre 1790 et 1872.

Figure 2: Productivity of threshing machines: 1790-1872

- Les auteurs observent un lien **fort et significatif** entre l'adoption de batteuses et l'innovation dans l'efficacité de ces machines.
- Plus une zone concentre de batteuses, plus les batteuses proposées par ses habitants aux concours de la Royal Agricultural Society of England sont productives.

Table 6: Productivity of Thresher Designs and Its Determinants

	Productivity						
	(1)	(2)	(3)	(4)	(5)	(6)	
	OLS	IV	OLS	OLS	IV	RF	
Threshers within 50 km	0.003** [0.001]	0.007*** [0.002]					
Total recruits p.c. (i.h.s.)		-	0.631***				
			[0.232]				
Royal Navy recruits p.c. (i.h.s.)				0.377**	1.448***		
				[0.179]	[0.511]		
Distance to deep sea						-2.052***	
Distance to coast						[0.606] 2.794***	
						[0.771]	
R^2	0.515	-0.015	0.515	0.514	-0.010	0.519	
Distance to the coast	No	Yes	No	No	Yes	Yes	
Mean dep var	2.658	2.658	2.658	2.658	2.658	2.658	
Demographic and geographic controls	Yes	Yes	Yes	Yes	Yes	Yes	
Technology and finance	Yes	Yes	Yes	Yes	Yes	Yes	
Year FEs	Yes	Yes	Yes	Yes	Yes	Yes	
Observations	306	306	306	306	306	306	

- Pour les auteurs, cela s'explique par un phénomène d'apprentissage par la pratique (learning by doing en anglais).
- Dans les zones où les machines sont plus nombreuses, l'utilisation régulière de ces machines conduit à déterminer des moyens d'en augmenter le rendement.

Table 6: Productivity of Thresher Designs and Its Determinants

	Productivity					
	(1) OLS	(2) IV	(3) OLS	(4) OLS	(5) IV	(6) RF
Threshers within 50 km	0.003**	0.007***				
	[0.001]	[0.002]				
Total recruits p.c. (i.h.s.)			0.631***			
			[0.232]			
Royal Navy recruits p.c. (i.h.s.)				0.377**	1.448***	
				[0.179]	[0.511]	
Distance to deep sea						-2.052***
						[0.606]
Distance to coast						2.794***
						[0.771]
R^2	0.515	-0.015	0.515	0.514	-0.010	0.519
Distance to the coast	No	Yes	No	No	Yes	Yes
Mean dep var	2.658	2.658	2.658	2.658	2.658	2.658
Demographic and geographic controls	Yes	Yes	Yes	Yes	Yes	Yes
Technology and finance	Yes	Yes	Yes	Yes	Yes	Yes
Year FEs	Yes	Yes	Yes	Yes	Yes	Yes
Observations	306	306	306	306	306	306

 Par son effet sur l'adoption des machines, la pénurie de maind'œuvre a donc également un effet sur l'innovation elle-même.

Table 6: Productivity of Thresher Designs and Its Determinants

	Productivity					
	(1) OLS	(2) IV	(3) OLS	(4) OLS	(5) IV	(6) RF
Threshers within 50 km		$\frac{1 \text{ V}}{0.007^{***}}$		OLS	1 V	пг
Threshers within 50 km	[0.001]	[0.002]				
Total recruits p.c. (i.h.s.)	[0.002]	[0.00=]	0.631***			
			[0.232]			
Royal Navy recruits p.c. (i.h.s.)					1.448***	
				[0.179]	[0.511]	
Distance to deep sea						-2.052***
Distance to coast						[0.606] 2.794*** [0.771]
R^2	0.515	-0.015	0.515	0.514	-0.010	0.519
Distance to the coast	No	Yes	No	No	Yes	Yes
Mean dep var	2.658	2.658	2.658	2.658	2.658	2.658
Demographic and geographic controls	Yes	Yes	Yes	Yes	Yes	Yes
Technology and finance	Yes	Yes	Yes	Yes	Yes	Yes
Year FEs	Yes	Yes	Yes	Yes	Yes	Yes
Observations	306	306	306	306	306	306

Pénurie de main-d'œuvre et révolution industrielle - Synthèse

- L'adversité caractérisée par la pénurie de main-d'œuvre a donc contribué à la Révolution industrielle par le biais de deux canaux :
 - Une diffusion des technologies existantes au sein du secteur agricole.
 - Un perfectionnement de ces technologies pour en accroître la productivité.
- A ce titre, elle a donc **contribué au décollage** économique de l'Angleterre au début du XIX^e siècle.

CONCLUSION

- L'innovation n'est pas seulement motivée par la perspective de rentes économiques futures.
- Elle peut aussi être encouragée par des **contraintes** qui induisent une forme **d'adversité** dans le contexte économique.
- Sous la pression de cette adversité, et notamment de la pénurie de main d'œuvre, l'innovation progresse, que ce soit par l'adoption de technologies existantes ou leur perfectionnement.
- L'adversité joue donc un rôle dans l'innovation, y compris pour expliquer le décollage économique du début du XIX^e siècle.