Hong Phong DUONG

Sustainable materials chemistry early-career researcher Collège de France, 11 place Marcelin Berthelot 75005 Paris, France

Tel: (+33) 75 5 03 05 54

https://scholar.google.com/citations?user=Mi_k81YAAAAJ&hl=fr https://www.linkedin.com/in/hong-phong-duong-52a7baa6/ hong-phong.duong@college-de-france.fr

SUMMARY

In collaboration with TotalEnergies, my PhD and postdoctoral research focus on copper-based materials for CO(2) conversion employed in a flow-cell and membrane assembly electrode electrolyzers operating at industrially relevant conditions for CO₂ and CO conversion. I succeeded to achieve various highly active electro-catalysts for the conversion of CO₂ and CO to essential chemicals including ethylene, ethanol and n-propanol. My expertise includes gaseous and liquid products quantification by GC-FID(TCD) and NMR methods, electrochemical analyses, nano-materials syntheses, material characterizations including XPS, XRD, SEM, TEM, EDX, EXAFS. During my master's study, I had developed a new spray-drying synthesis and surface modification by noble metal to achieve 2 highly active photo-catalysts for hydrogen production as a green energy carrier from water splitting reaction.

RESEARCH EXPERIENCES

2024-Present	Postdoc in collaboration with <i>TotalEnergies</i> , Collège de France, France.
2021–2023	PhD, Electroatalysis and Chemical Engineering in collaboration with
	TotalEnergies, Collège de France and Sorbonne University, France.
	Supervisors: Prof. Marc Fontecave and Dr. Ngoc-Huan Tran.
2020	Research Associate, Electrocatalysis in collaboration with Sumitomo Metal
	Mining, Institute of Multidisciplinary Research for Advanced Materials, Tohoku
	University, Japan.
2017–2019	Master by research, Photocatalysis and Chemical Engineering, Tohoku
	University, Japan. Supervisors: Prof. Masato Kakihana and Prof. Hideki Kato.
2016	Intern, International Center for Materials Nanoarchitectonics, National Institute
	for Materials Science (NIMS), Japan. Supervisor: Prof. Gaulthier Rydzek.

PATENTS

- M.W. Schreiber, H. P. Duong, N.H.Tran, M. Fontecave, "Highly efficient copper nitridebimetallic catalysts for electrochemical reduction of one or more carbon oxides to n-propanol and/or ethanol". No.PCT/EP2023/079651, Application date: 24/10/2022.
- 1. M.W. Schreiber, **H. P. Duong**, N.H.Tran, M. Fontecave, "Electrochemical carbon oxides reduction to ethylene", US12188138B1.

SCIENTIFIC PUBLICATIONS 5 first-authored, 3 co-authored (1 under revision)

- 8. **H. P. Duong**, J. G. Rivera de la Cruz, D. Portehault, A. Zitolo, J. Louis, S. Zanna, Q. Arnoux, M.W. Schreiber, N. Menguy, N.H.Tran, M. Fontecave, "Incorporation of isolated Ag atoms and Au nanoparticles in copper nitride for selective CO electroreduction to multicarbon alcohols", Nat. Mater., 24, 900 (2025).
- 7. A. Ghoridi, CV. M. Inocêncio, **H.P. Duong**, N.H. Tran, I. Gómez-Recio, M L R. Gonzàlez, S. Steinmann, P. Verma, A. Miche, S. Casale, C. Gervais, C.C Diogo, I. Génois, A. Zitolo, C. Sahle, A. Longo, J.M González-Calbet, M. Fontecave, D. Portehault, "Tuning covalence for phosphorus-mediated C-C coupling in carbonmonoxide electroreduction to multicarbon oxygenates", <u>Under review</u>.
- 6. **H. P. Duong,** N.H.Tran, P-A. Deyris, Y-M. Lergrand, P. Hesemann, C. Grison, CM. Grison M. Fontecave, *"Electrocatalytic reduction of carbon dioxide using Cu-based ecocatalysts"*, <u>Chem.Commun.</u>, 61, 7514 (2025).
- 5. **H. P. Duong**, J. G. Rivera de la Cruz, N.H.Tran, J. Louis, S. Zanna, D. Portehault, A. Zitolo, M. Walls, D.V. Peron, M.W. Schreiber, N. Menguy, M. Fontecave, "Silver and Copper Nitride Cooperate for CO Electroreduction to Propanol", Angewandte Chemie, 62, e202310788 (2023).
- 4. **H.P. Duong**, N.H. Tran, G. Rousse, S. Zanna, M.W. Schreiber, M. Fontecave, "Highly selective copper-based catalysts for electrochemical conversion of carbon monoxide to ethylene using a gas-fed flow electrolyzer", ACS Catal., 12, 10285 (2022).
- 3. N.H. Tran, **H.P. Duong**, G. Rousse, S. Zanna, M.W. Schreiber, M. Fontecave, "Selective ethylene production from CO₂ and CO reduction via engineering membrane electrode assembly with porous dendritic copper oxide", <u>ACS Appl. Mater. Interfaces</u>, <u>14</u>, <u>31933 (2022)</u>.
- 2. D.N. Minh, **H.P. Duong**, L. Hoang, N.D. Phuc, P.D. Tran, P.N. Hong, "Plasma-assisted preparation of MoS₂/graphene/MOF hybrid materials and their electrochemical behaviours", <u>Materials Transactions</u>, 61, 1535 (2020).
- 1. **H.P. Duong**, T. Mashiyama, M. Kobayashi, A. Iwase, A. Kudo, Y. Asakura, S. Yin, M. Kakihana, H. Kato, "Z-scheme water splitting by microspherical Rh-doped SrTiO₃ photocatalysts prepared by a spray drying method", Applied Catalysis B: Environmental, 252, 222 (2019).

CONFERENCE PRESENTATIONS 8 talks (1 invited), 7 posters

Oral

- 09/2025 76^{th} Annual Meeting of the International Society of Electrochemistry, Mainz, Germany "Advancing C_{2+} alcohols synthesis from electrochemical CO reduction by a gold-silver incorporated with copper-nitride material"
- 07/2025 Invited talk at P2X HUB Webinar, Bangkok, Thailand "Copper-based Electrocatalysts for CO₂ Valorization at Industrially Relevant Conditions"
- 06/2024 8èmes journées du GDR Solar Fuels, Grenoble, France "Improving synthesis of n-propanol from CO reduction by Ag-Cu₃N electrocatalyst"
- 03/2023 3rd MOMENTOM International Congress, Saclay, France "Selective electrochemical reduction of CO to n-propanol and ethanol by nitride-derived bimetallic catalysts".

11/2022	6 ^{èmes} journées du GDR Solar Fuels, Fréjus, France "Highly efficient dendritic copper and nitride-derived bimetallic electrocatalysts CO reduction to multicarbon products".
01/2019	The 57 th Symposium on Basic Science of Ceramics, Sendai, Japan "Synthesis of well-dispersive highly active Rh-doped SrTiO ₃ photocatalyst by spray drying method".
09/2018	The 122 nd Catalysis Society of Japan Meeting, Hakodate, Japan "Modification of Rh-doped SrTiO ₃ with two kinds of cocatalyst for improvements of Z-schematic overall water splitting".
03/2018	The 98 th Chemical Society of Japan Annual Meeting, Funabashi, Japan "Influences of synthetic methods of Rh-doped SrTiO ₃ on Z-schematic overall water splitting".
Poster	
03/2025	4 ^{4th} MOMENTOM International Congress, Saclay, France "Copper-based electro-catalysts for sustainable chemical production from carbon oxides conversion.
05/2022	Renewable Energy: Solar Fuels-Gordon Research Conference, Barga, Italy "Dendritic copper catalyst combined with alkaline flow cell reactor as a highly efficient system for electrochemical CO reduction to ethylene".
11/2019	International Conference on Materials and Systems for Sustainability, Nagoya, Japan "Improvement of Activity of Rh-doped SrTiO ₃ Photocatalyst Aiming at Enhancement of Efficiency of Z-scheme Water Splitting".
09/2019	The 124 th Catalysis Society of Japan Meeting, Nagasaki, Japan "Improvement of activities of Z-scheme systems composed of SrTiO ₃ :Rh and BiVO ₄ by deposition of two kinds of cocatalyst on SrTiO ₃ :Rh".
05/2019	TU-USTB Joint Symposium, Sendai, Japan "Preparation of microspherical Rh-doped SrTiO $_3$ photocatalysts by a spray drying method and its application in Z-scheme water splitting".
11/2017	2017 Ceramic Society of Japan Tohoku-Hokkaido Branch Symposium, Sendai, Japan "Synthesis of SrTiO₃:Rh by a spray dry method employing a water-soluble titanium complex".
09/2017	The 120 th Catalysis Society of Japan meeting, Matsuyama, Japan "Study on improvement of efficiencies of Z-scheme systems employing SrTiO ₃ :Rh and BiVO ₄ ".