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Abstract

We propose a model of endogenous economic growth with “weak” scale effects
and diminishing returns to innovation at the micro level. In our model, entrants
introduce new technologies through research and incumbents incrementally improve
them through development. Over time, further improvement becomes harder such
that firms ultimately run out of ideas and exit, paving the way for entrants that
discover new technologies with further room for improvement. This turnover
gives rise to a continuous stream of (temporary) opportunities for technological
improvements that sustain economic growth. In a stationary equilibrium, the growth
rate is constant and endogenous to market incentives.
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1 Introduction

In this paper, we propose a model of innovation-driven growth that jointly replicates
two empirical regularities that prior endogenous-growth frameworks have struggled to
capture. First, economic growth has not accelerated despite sustained population growth
(Jones, 1995). Second, within any specific technological field, discovering better ideas
becomes increasingly difficult (Bloom, Jones, Van Reenen and Webb, 2020). However,
even as new ideas become harder to find at both the macro and micro levels, our model
delivers a constant rate of long-run economic growth that is endogenous to market
incentives, particularly tax and R&D policy (Akcigit, Grigsby, Nicholas and Stantcheva,
2021; Dechezleprêtre, Einiö, Martin, Nguyen and Van Reenen, 2023).

Our model builds on the framework of Aghion and Howitt (1996) by distinguishing
between two types of innovation: research and development. We define research as the
discovery of new products, while development consists of incremental improvements to
existing ones. The evolution of the camera industry illustrates this distinction clearly.
Early film cameras were developed from simple box models into sophisticated single-
lens reflex (SLR) systems with interchangeable lenses and precise electronic controls.
However, as improvement opportunities in film-based imaging were exhausted, further
progress required a fundamental shift. Ultimately, research delivered a new product: the
digital camera, which opened up new avenues for subsequent development (e.g., sensor
technology, image processing, and software-driven features).

The central mechanism of our model operates through the interplay between these
two types of innovation. Development is conducted by incumbent firms seeking to
improve their existing product lines. However, this process is subject to diminishing
returns; as a product is refined, finding further improvements becomes increasingly
difficult. Eventually, these development opportunities are exhausted, leading to the
technological stagnation and eventual exit of incumbent firms. Their exit opens the door
to potential entrants, which can introduce new products through research, effectively
“resetting the innovation clock” by unlocking a new wave of development opportuni-
ties. This dynamic of creative destruction, driven by the lifecycle of technologies from
research to development (and eventual obsolescence), generates a continuous stream of
temporary innovation opportunities that sustain long-run economic growth.

The cycle of research and development is also what allows our model to reconcile
endogenous economic growth with the two aforementioned empirical facts. Diminishing
returns in development make ideas progressively harder to find along any product
line and ultimately lead to their technological stagnation. However, the entry of new
products through research continuously replenishes the pool of development oppor-
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tunities. R&D policy can influence the pace of development for these new products,
therefore affecting the growth rate of the economy in the long run. Finally, to rule
out “strong scale effects”, we allow for free entry into research as in second-generation
endogenous growth models (Peretto, 1998; Dinopoulos and Thompson, 1998; Young,
1998; Segerstrom, 1998; Howitt, 1999). This ensures that the number of product lines
scales with the population, keeping the ratio of developers per line constant.

Our model relies on two key assumptions that are empirically motivated: namely,
that new entrants build on the shoulders of giants and that entry costs rise with technical
progress. By “shoulders of giants” we mean that entrants inherit the prevailing state of
technology, such that the initial quality of a new product scales with the contempora-
neous average quality across products. This assumption is motivated by evidence that
most measured aggregate U.S. productivity growth reflects improvements on existing
products by incumbent firms rather than the net creation of new products (Garcia-
Macia, Hsieh and Klenow, 2019). Without the “building on the shoulders of giants”
effect, average quality growth would stall due to the inevitable exhaustion of devel-
opment opportunities within a given product line, and our model would revert to a
semi-endogenous model where growth is exclusively fueled by the creation of new
products.

The second assumption, that the flow cost of creating a new product is tied to product-
level profits (and thus to productivity), is crucial to neutralize strong scale effects. If
entry costs rose faster than product-level profits, entry would fall, and the number of
developers per line would rise over time due to population growth. This would lead
to explosive growth as in first-generation endogenous growth models.1 Denominating
entry costs as constant in units of labor ensures that they scale with product-level profits,
and that the number of product lines scales with the population. This is consistent with
U.S. evidence that firm-level revenues increase with labor productivity (Klenow and Li,
2024), and that the number of firms scales with population while R&D employment per
firm remains stable (Laincz and Peretto, 2006). We elaborate on these assumptions and
the supporting evidence in Section 3.

With these assumptions, our model admits a tractable balanced growth path where
the firm size distribution has an exact Pareto tail and the growth rate of consumption
per capita is constant and, crucially, endogenous. In particular, economic growth is
fueled by two forces: a semi-endogenous “love of variety” component tied to population
growth and a product quality improvement component driven by development, as in
Peters and Walsh (2021). Importantly, if population growth falls to zero, our model still

1Another way to sterilize this strong scale effect is to assume that vertical innovation faces “severely”
diminishing returns to research labor as in Trammell (2025).
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delivers growth in consumption per capita due to improvements in product quality.
We show how different policies affect the latter. Subsidies for development directly
increase the pace of quality improvements and raise long-run productivity growth. In
contrast, subsidies for research, while encouraging entry, intensify competition and
erode incumbents’ development incentives, leading to a negative overall effect on
growth (Peretto, 1998).

To assess the quantitative implications of our framework, we calibrate the model to
match key features of the U.S. economy. We demonstrate that our deliberately parsimo-
nious model can simultaneously replicate several establishment-level moments from the
U.S. Business Dynamics Statistics, including the exit rate, the average establishment size,
and the shape of the establishment size distribution. This simple calibration exercise
allows us to quantify the impact of various policies. For instance, we find that a 10%
subsidy to development expenditures raises the long-run growth rate of per-capita
consumption by nearly 50 basis points.2 However, the transition to this new steady state
is gradual, with the growth rate initially slowing down due to the reallocation of labor
away from production and research (entry).

The remainder of the paper is organized as follows. The following section reviews the
relevant literature. Section 2 presents our model and its aggregate implications. Section
3 discusses its key assumptions. Section 4 presents a simple calibration of the model to
illustrate the effects of different policies. Finally, Section 5 concludes. Throughout, we
intentionally adopt a parsimonious specification to keep the mechanisms transparent
and tractable; richer variants (stochastic innovation, alternative demand or exit, head-to-
head competition, etc.) are discussed in Section 3.3.

Literature review

This paper makes two contributions. First, it speaks to the long-standing discussion
on the future of technological progress, contested by techno-pessimists like Gordon
(2017), who argue that transformative innovations are behind us, and optimists like
Mokyr (2014), who see recent technological revolutions (e.g., IT and more recently AI)
as sources of potentially unprecedented future growth. Our model offers a synthesis:
it formally incorporates the view that ideas become harder to find within any single
technological paradigm, yet it shows how the continual discovery of new paradigms
can sustain aggregate economic growth indefinitely.

2While our model is intentionally parsimonious and the magnitude of this effect should be interpreted
with caution, it is broadly consistent with growth effect estimates reported elsewhere in the literature,
such as Acemoglu, Akcigit, Alp, Bloom and Kerr (2018) and Aghion, Bergeaud, Boppart, Klenow and Li
(2025).
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Second, our work contributes to the debate between endogenous and semi-endogenous
growth paradigms. This debate has persisted since the mid-1990s, largely because of a
seemingly insurmountable empirical challenge; convincingly discriminating whether
market incentives (e.g., market size or R&D policies) have a causal effect on long-run
productivity growth or level when transition dynamics can be slow. Consequently, the
discussion has advanced by developing theoretical models from both sides and testing
them against other, more measurable empirical moments.

The first generation of endogenous growth models (e.g., Romer (1990) and Aghion
and Howitt (1992)) developed the framework through which market incentives could
shape long-run economic growth. However, in these models, the population had to
remain constant to prevent explosive growth, which ran counter to empirical evidence.
In response, the semi-endogenous growth model of Jones (1995) eliminated this “strong
scale effect” by assuming that innovation efficiency declines with the aggregate stock of
knowledge. This solution, however, came at the cost of rendering long-run productivity
growth unresponsive to market incentives.

A “second generation” of models subsequently sought to break the strong scale
effect while preserving a role for market incentives (e.g., Peretto (1998), Dinopoulos
and Thompson (1998), Young (1998), Segerstrom (1998), and Howitt (1999)). This was
achieved by allowing the number of firms to grow in proportion to the population
(through free entry), keeping the ratio of researchers per firm constant and delivering
constant growth at the firm level. However, recent evidence from Bloom et al. (2020)
directly challenges the assumption that a constant number of researchers per firm can
deliver constant firm-level growth. They show across multiple contexts that innovation
efficiency is instead consistently declining at the firm level.

Our contribution to this debate is to propose a model that reconciles this recent
empirical evidence with the desirable predictions of the second wave of endogenous
growth models: long-run economic growth is responsive to market incentives, yet
constant even as the population expands. In our model, this reconciliation is achieved
by the endogenous arrival of technological breakthroughs (i.e., new products, firms, or
industries) that continuously “reset the innovation clock.”

2 A new growth model

In this section, we present an intentionally simple model that captures the essence of our
argument: firms invest in the development of existing products to improve their quality,
but eventually run out of ideas and exit. Simultaneously, investments in research lead
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to the entry of new firms with entirely new product lines. As a consequence, quality-
upgrading opportunities are continuously replenished in aggregate even though they
are ultimately exhausted on any existing lines. We keep the environment intentionally
lean to isolate the core mechanism; richer variants are discussed in Section 3.3.

2.1 The economic environment

Preferences

Consider a continuous-time economy where time is indexed by t ∈ [0, ∞). This economy
is populated by a representative household of measure Nt evolving according to:

Ṅt = n · Nt, (1)

where n ≥ 0. The household inelastically supplies one unit of labor at every point in
time, and has logarithmic preferences over per-capita consumption ct such that lifetime
utility is defined as:

U0 =
∫ ∞

0
e−(ρ−n)t ln(ct)dt. (2)

Here, ρ > n denotes the rate of time preference. The individual consumption basket is a
Dixit and Stiglitz (1977) aggregator of differentiated products indexed by i ∈ It:

ct =

(∫
i∈It

(qit · cit)
θ−1

θ di
) θ

θ−1
, (3)

where cit is the consumed quantity of product i (per capita), qit > 0 is the quality of that
product, θ > 1 is the elasticity of substitution between products, It is the set of available
products, and its (endogenous) cardinality is denoted by Mt ≡ |It|.

Each of those products is produced by a single firm using production labor according
to the linear technology:

yit = lP
it , (4)

where yit denotes the quantity of product i supplied at time t by the firm and lP
it denotes

the quantity of labor used in production.

Over time, a firm can incrementally improve the quality of its product by directing
labor towards development. More precisely, a product’s quality evolves according to
the following controlled process:

q̇it = γit · qit, (5)
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where γit is the proportional drift of the product’s quality. The labor requirement lD
it to

achieve this quality drift is given by:

lD
it =

cD(qit/Qt)θ−1γ
1+ζ
it

1 + ζ
(6)

where cD > 0 determines the scale of the development cost function, ζ > 0 measures its
elasticity, and Qt is an average quality index defined as:

Qt ≡
(

M−1
t

∫
i∈It

qθ−1
it di

) 1
θ−1

.

The development technology is such that there is a finite upper bound γ > 0 on the
drift of product quality to ensure that the optimal allocation does not involve any corner
solutions as described in Trammell (2025).3,4

However, at Poisson rate ϵ > 0, a firm may receive an idiosyncratic “obsolescence”
shock after which it can no longer improve its product’s quality. This is an extreme and
stylized case of “ideas becoming harder to find” (Bloom et al., 2020) in which innovation
efficiency literally falls to zero once the shock hits. After being hit by this shock, the
product quality eventually falls below a certain threshold q

t
= q · Qt where q ∈ (0, 1),

and the firm exogenously exits the market.

In every point in time, a unit measure of potential entrants attempt to discover
through research products that are entirely new to society. Specifically, these entrants
can direct cR units of labor to research in order to invent a unit flow of these new
products. Once a product is discovered, its initial quality is drawn from a point mass at
the lower bound q

t
of the product quality support.

Labor supplied by the household can be allocated to either production, development,
or research, delivering the labor market clearing condition:

LP
t + LD

t + LR
t ≤ Nt, (7)

where these aggregate labor allocations are defined as:

LP
t ≡

∫
i∈It

lP
itdi, LD

t ≡
∫

i∈It
lD
it di, and LR

t ≡ cRRt

and where Rt is the flow of new products discovered at time t. Finally, the resource

3We thank Phillip Trammell and Chad Jones for pointing this out to us.
4We choose the value of γ such that this constraint does not bind in equilibrium. This delivers a

restriction on parameters such that γ must be greater than the corresponding expression in equation (11).
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constraints for each product are given by:

citNt ≤ yit, ∀i ∈ It. (8)

2.2 The decision problems

In this section, we define the decision problems of each economic agent. In terms of
market structure, we assume that all agents partake in perfect competition in all markets
besides firms who engage in monopolistic competition.

The household’s problem

Taking prices as given, the household’s problem is to choose its consumption of each
product to maximize lifetime utility:

max
{{cit}i∈It}t≥0

∫ ∞

0
e−(ρ−n)t ln(ct)dt s.t. ct =

(∫
i∈It

(qit · cit)
θ−1

θ di
) θ

θ−1

subject to the flow budget constraint:

ȧt +
∫

i∈It
pitcitdi ≤ (rt − n)at + wt − Tt.

Here, pit is the price of product i, wt is the wage rate, Tt are lump-sum per-capita taxes,
at is the value of corporate assets per capita, and rt is the rate of return on those assets:

atNt =
∫

i∈It
Vitdi where lim

t→∞
e−

∫ t
0 (rt′−n)dt′at = 0,

and where Vit denotes the value of product i at time t. This problem thus delivers the
usual intertemporal Euler equation:

ċt = (rt − ρ)ct

and the following demand functions:

cit = (Pt/pit)
θqθ−1

it ct. (9)
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Since aggregate consumption is chosen as the numéraire, the price index Pt is normalized
to one for all t:

Pt ≡
(∫

i∈It
(pit/qit)

1−θdi
) 1

1−θ

= 1.

The firm’s problem

Firms engage in monopolistic competition in the product market but perfect competition
in the labor market, taking the wage and the demand for their product as given. A firm
thus chooses the price at which to sell its product and its labor demands to maximize
the expected present discounted value of its profits.

From this point on, we abandon the i-index notation since a firm is entirely described
by its product’s quality q and its obsolescence status. We denote the latter by S ∈ {O, N}
where O represents an “old” firm that has received the obsolescence shock, and N
represents a “new” firm that has not. The new firm’s value function satisfies a standard
Hamilton-Jacobi-Bellman (HJB) equation:

rtVN
t (q) = max

uN
t (q)≥0

{(1 − τC)[pt(q)yt(q)− wtlP
t (q)]− (1 − τD)wtlD

t (q)

+ γt(q)q∂qVN
t (q)}+ ϵ[VO

t (q)− VN
t (q)] + V̇N

t (q)

subject to the production technology in equation (4), the development technology in
equation (6), the demand function in equation (9), and the product resource constraint in
equation (8). Here, uN

t (q) ≡ {pt(q), lP
t (q), lD

t (q)} is the vector of control variables, τC ≥
0 is the corporate income tax rate, and τD ≥ 0 is a subsidy on the firm’s development
expenditures. Similarly, the “old” firm’s value function satisfies the HJB equation:

rtVO
t (q) = max

uO
t (q)≥0

{(1 − τC)[pt(q)yt(q)− wtlP
t (q)]}+ V̇O

t (q)

subject to the production technology in equation (4), the demand function in equation
(9), the product resource constraint in equation (8), and where uO

t (q) ≡ {pt(q), lP
t (q)}.

The profit-maximization problem implies that a firm sets its price at a constant markup
above marginal cost irrespective of its obsolescence status:

pt(q) = µ · wt, ∀q, where µ ≡ θ

θ − 1
.

Hence, a firm’s flow profits can be expressed as:

πS
t (q) = (1 − τC)(q/Qt)

θ−1Ct/(θMt)− 1{S=N}(1 − τD)wtlD
t (q)
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where the optimal quality drift is

γt(q) =

[
q∂qVN

t (q)
(1 − τD)wtcD(q/Qt)θ−1

]1/ζ

.

Substituting this into equation (5) gives the optimal labor allocation to development.

The entrant’s problem

Entrants engage in perfect competition on the labor market and, thus, choose research
labor LR

t to maximize future expected profits while taking the wage rate as given:

VE
t = max

LR
t

{
VN

t (q
t
)LR

t /cR − (1 − τR)wtLR
t

}
where τR > 0 is a research subsidy. The first-order condition of the entrant’s problem
delivers what will be referred to as the free-entry condition:

VN
t (q

t
) = (1 − τR)wtcR.

2.3 The market equilibrium allocation

Having defined the decision problems of each economic agent, we can now define the
concept of a market equilibrium allocation, and lay out the equations that determine the
long-run equilibrium growth rate of the aggregate economy.

Definition 1. Given the initial conditions {N0, Q0, {mN
0 (q), mO

0 (q)
∞
q=q

t
}}, where mS

0(q) is the
initial measure of type-S firms with product quality q, a market allocation consists of time paths
for quantities, prices, and policy functions such that the following conditions hold:

1. {{ct(q)}∞
q=q

t
}t≥0 solve the household’s problem.

2. {{pt(q), lP
t (q), lD

t (q)}∞
q=q

t
}t≥0 solve the firm’s problem.

3. {LR
t }t≥0 solve the entrant’s problem.

4. {{pt(q)}∞
q=q

t
}t≥0 clear the product markets.

5. {wt}t≥0 clear the labor market.

6. {rt}t≥0 clear the asset market.
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7. The government’s budget is balanced: Tt = τRwtcRRt + τDwtLD
t − τCCt/θ.

The market allocation in this model admits a remarkably simple aggregation such
that aggregate consumption is given by:

Ct = M
1

θ−1
t QtLP

t .

That is, aggregate consumption is increasing in the measure of products (owing to a
taste for variety), the average quality across those products, and the labor input used
in production. In Appendix A.1 we show that on a balanced growth path (BGP), the
measure of products grows at the same rate as the population, the average quality index
grows at a constant rate, and, thus, the growth rate of consumption per capita is constant
and given by:

g =
n

θ − 1
+ gQ. (10)

We can derive an expression for the growth rate of the average quality index which is
composed of two additive terms:

gQ = γ · n + d
n + ϵ

−
n(1 − qθ−1)

θ − 1
where γ =

[
(θ − 1)(1 − τR)cR

(1 − τD)cDqθ−1

]1/ζ

(11)

and where d = ϵgQ/γ is the endogenous exit rate. The first is the product of the common
product quality drift γ among firms that haven’t yet received the obsolescence shock and
the fraction of such firms in the economy given by n+d

n+ϵ .5 The second term reflects the
negative growth contribution of net product entry occurring at rate n. Indeed, entering
firms draw their initial product quality at the lower bound q

t
of the quality support,

which drags down the average quality index.

Let us now consider the expression for γ, which is where market incentives and
R&D policy have their bite. First, a subsidy (τD) to development expenditures directly
increases γ by reducing the cost of improving a product’s quality. In contrast, a research
subsidy (τR) lowers γ as it encourages entry, intensifying competition, and eroding
expected profits per firm. This, in turn, dampens firms’ incentives to invest in develop-
ment. Finally, γ is neutral to corporate income taxes (τC) in the long run. While higher
corporate taxes reduce post-tax profits, they also make entry less attractive. Through
free entry, the number of firms in the market endogenously adjusts until expected profits
per firm are restored, as discussed in Peretto (1998).

The fraction n+d
n+ϵ of non-obsolete firms is itself endogenous. It is decreasing in the

5Note that it is an equilibrium outcome that the product quality drift γ is constant over time and
common across all firms.
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arrival rate ϵ of obsolescence shocks and increasing in the endogenous exit rate d = ϵgQ

γ

of firms that have already received this shock. The exit rate is increasing in gQ: faster
growth of the average quality index intensifies the race against the exit threshold, so
obsolete firms hit that threshold sooner. By contrast, it is decreasing in γ: faster product-
quality growth raises the likelihood that firms upgrade enough to move away from the
threshold. Substituting the expression for this exit rate in equation (11) and rearranging
yields

gQ =

[
(θ − 1)(1 − τR)cR

(1 − τD)cDqθ−1

]1/ζ

−
(n + ϵ)(1 − qθ−1)

θ − 1
,

which only depends on exogenous parameters and taxes. In particular, this expression
makes clear that even with zero population growth (n = 0), the economy can sustain
constant long-run growth in average quality, and hence in per-capita consumption (see
(10)).

Finally, these R&D and obsolescence forces also pin down the cross-sectional distri-
bution of product quality. Indeed, the stationary firm size distribution is Pareto with
shape parameter λ given by:

λ ≡ 1
1 − qθ−1 > 1.

Therefore, this distribution displays a fatter right tail when the initial quality of entrants
q is lower (close to zero). Conversely, when entrants are nearly as good as incumbents
(i.e., q close to one), the distribution becomes thinner-tailed. This is because a lower
initial quality of entrants implies that incumbents have more time to improve their
products before facing comparable competition from new entrants, leading to a wider
dispersion in product quality and, consequently, firm size.

3 Discussion

3.1 Modeling assumptions

The predictions of our model hinge on two important assumptions. First, we assume
that entrants draw an initial level of product quality that is proportional to the con-
temporaneous average productivity index Qt. This proportionality is what sustains
quality-led growth on a BGP. Without it (i.e., if entrants started producing at a fixed level
of product quality) average quality growth would eventually stall. Although individual
incumbent firms might temporarily improve their products’ quality, these gains would
be lost when they exit. New entrants would consistently reset the quality level to the
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same starting point, preventing any cumulative progress. The model would then revert
to a semi-endogenous growth framework where per-capita consumption growth would
be fueled exclusively by the introduction of new products, through a taste for variety.

This first assumption makes our model consistent with evidence from Garcia-Macia
et al. (2019) who find that about three quarters of productivity growth in the U.S. between
2003 and 2013 occurred through incumbents’ improvements to their existing products
rather than the introduction of entirely new products. Therefore, without this quality-
scaling at entry, our model would attribute too much of long-run growth to net entry
and too little to incremental improvements, contrary to their findings.

The second key assumption we make is that entry costs are constant in units of labor
and therefore rise with the wage at the same rate as firm-level profits. This keeps the free-
entry margin “balanced”: if entry costs grew faster than firm-level profits, entry would
be choked off, the firm count would lag population growth, and development labor per
firm would rise over time, delivering explosive growth with strong scale effects. This
outcome would be at odds with empirical evidence and with our objective of neutralizing
strong scale effects. As in second-generation endogenous growth models, by tying entry
costs to the wage, the number of firms can track population, and development effort per
firm remains constant.

Two sets of facts support this assumption. Direct evidence in Klenow and Li (2024)
indicates that revenue per firm in the U.S. increases with the level of productivity (both
over time and across states). If higher revenues are associated with higher profits, entry
costs must also rise with productivity to satisfy the free-entry condition. Therefore, they
conclude that entry costs rise with growth, as in our model. Complementarily, Laincz
and Peretto (2006) document that in the U.S. the number of firms scales with population
and the number of R&D workers per firm is roughly stable over time. Together, these
observations justify our treatment of entry costs and underscore why this assumption is
central to ruling out strong scale effects in the model.

3.2 Constrained-optimal allocation

In Appendix A.2, we also pose the problem of a planner that maximizes social wel-
fare while taking the incumbent-to-incumbent and incumbent-to-entrant technology
spillovers as given. More precisely, the planner takes the average quality index Qt,
which appears in the research and development technologies, as given. Because the
planner does not internalize such spillovers, we refer to the solution to this problem as
constrained-optimal. Interestingly, we show that the market equilibrium allocation ex-
actly coincides with this constrained-optimal allocation, echoing the findings of Dhingra

13



and Morrow (2019).

3.3 Modeling choices and possible alternatives

Our baseline model is deliberately parsimonious. Here, we outline several directions in
which the model could be extended without affecting its main insights. First, equation (5)
specifies a deterministic process for product quality but one could instead allow for
stochastic dynamics (e.g., Brownian or Poisson quality shocks), which would deliver
additional cross-sectional dispersion. Second, equation (6) scales development costs
by (qit/Qt)θ−1 to ensure Gibrat-type firm-level growth and tractability, but it is not a
necessary condition for our main mechanism to operate. Third, we model technological
obsolescence as a Poisson shock that shuts down development, but we could instead
assume that development efficiency gradually declines with product quality. Fourth,
we impose an exogenous exit threshold q

t
= q · Qt, but we could instead replace it by

an endogenous exit rule in the presence of overhead costs. Fifth, in the baseline model,
entrants draw their initial quality at that exit threshold q

t
, but one could entertain an al-

ternative learning process by new entrants (e.g., Yao 2024). These last two modifications
would affect the contributions of entry and exit to productivity growth in equation (11),
but would not otherwise affect our main results.

4 A simple calibration

In this section, we present a straightforward calibration of the parameters in our model
to illustrate its mechanisms. Although this exercise is not meant as a rigorous empirical
quantification for direct comparison with economic data, it provides insight into the
potential magnitude of different forces.

We set the pure rate of time preference, ρ, to 0.04 and assume an annual population
growth rate, n, of 1%. Consistent with Garcia-Macia et al. (2019), the elasticity of
substitution across products, θ, is set to 4. We fix ζ, which captures the degree of
decreasing returns to development labor, at 1, which aligns with the preferred value in
Acemoglu et al. (2018).

Four additional parameters require calibration: the development cost parameter cD,
the research cost parameter cR, the obsolescence shock arrival rate ϵ, and the initial
relative quality of new products q. Since these parameters are less conventional in the
literature or not directly observable, we calibrate them by jointly matching a growth rate
of per capita consumption of 2% per year, as well as the following three establishment-
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level moments, which we calculate from the U.S. Business Dynamics Statistics (BDS)
between 2015 and 2019:6

1. The (Pareto) tail index of the establishment size distribution is 2.95.7

2. The establishment-level exit rate is 8.7%.

3. The average establishment has 18.1 employees.

The calibrated parameter values are reported in Table 1 and all four of the above empiri-
cal moments are matched exactly.

Table 1: Calibration

Parameter Value Source
ρ 0.04 Standard
n 0.01 Population growth
θ 4 Garcia-Macia et al. (2019)
ζ 1 Acemoglu et al. (2018)

cD exp(9.17) Per capita consumption growth of 2%
cR exp(4.52) Average establishment employment (U.S. BDS)
q 0.87 Pareto tail index (U.S. BDS)
ϵ 0.23 Establishment exit rate (U.S. BDS)

While the parameters {cD, cR, ϵ, q} are jointly calibrated to match the aforementioned
moments, we provide some intuition for their identification. The development cost
parameter cD is primarily identified by the growth rate of per capita consumption, as it
governs the pace at which firms improve their product’s quality and, in turn, economic
growth. The research cost parameter cR is pinned down by the average establishment
size, since it influences the cost of entry and thereby the equilibrium number of firms.
The obsolescence shock arrival rate, ϵ, is identified from the establishment-level exit
rate because it governs how quickly products become obsolete and ultimately exit the
market. Finally, as discussed in Section 2.3, the initial relative quality of new products, q,
directly determines the Pareto tail index of the establishment size distribution.

6We use establishment- rather than firm-level data since every firm produces a single product in our
model. We view a firm as a set of products and proxy products by establishments, following Garcia-Macia
et al. (2019).

7The distribution of employment across U.S. establishments is better approximated by a lognormal
distribution. Therefore, we fit a lognormal distribution and calculate the local Pareto tail index at 250
employees.
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4.1 Policy experiments

Using this calibration, we can conduct simple policy experiments to illustrate the effects
of different R&D and tax policies. We consider three types of policies: a 10% subsidy to
development expenditures (τD), a 10% subsidy to research expenditures (τR), and a 10%
cut in the corporate income tax rate (τC).

Development subsidy. Figure 1 shows the effect of a 10% subsidy to development
expenditures on the growth rate of consumption per capita (in percentage points). This
policy has a powerful positive effect on long-run growth, increasing it by almost 50 basis
points. This is because it directly encourages firms to invest in improving their products,
which raises the growth rate of consumption per capita through equation (10). However,
this policy is costly in the first few years of its implementation, as it diverts labor away
from production (which explains the growth dip of about 6 percentage points on impact)
and research, which reduces the variety of products available to consumers.

Figure 1: 10% Development Subsidy

Research subsidy. Figure 2 reports the growth effect of a 10% research subsidy. This
policy reduces long-run consumption per capita growth by roughly 43 basis points,
as it promotes entry and competition, which erodes profits and discourages quality-
improving development. In the short run, however, the policy increases consumption
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growth by expanding product variety, although the reallocation of labor away from
production generates an instantaneous growth dip of about 1 percentage point. It is
worth noting that our model abstracts from the possibility that research could deliver
positive technological spillovers, in which case subsidies may enhance long-run growth.

Figure 2: 10% Research Subsidy

Corporate income tax cut. Finally, Figure 3 shows the effect of a 10% corporate income
tax cut on per capita consumption growth. In steady state, this policy has no effect since
the equilibrium number of products adjusts to restore average profitability.8 During
the transition, however, higher after-tax profits encourage entry and expand the variety
of products available to consumers. The impact effect again features a growth dip of
around 6 percentage points, reflecting the reallocation of labor toward research and
away from production.

These experiments highlight the different transitional and long-run consequences
of R&D and tax policies. They should be interpreted as stylized illustrations, and it is
important to note that, in our model, the market equilibrium allocation is constrained-
efficient. Thus, none of these interventions would improve welfare once we abstract

8Note, however, that if entry costs were increasing in the number of products per capita (Mt/Nt), such
a policy could increase long-run growth by discouraging entry and increasing the return to investments
in development. In that sense, a small modification of our model could accommodate long-run market
size effects on economic growth.
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Figure 3: 10% Corporate Income Tax Cut

from technological spillovers. As such, the welfare relevance of these policies ultimately
depends on forces that lie outside the model’s scope.

5 Conclusion

In this paper, we propose a new framework for endogenous economic growth that
captures two key empirical facts: the absence of strong scale effects and the evidence
that ideas are becoming harder to find at the micro level. Our model distinguishes
between research (the creation of new products) and development (the improvement
of existing products). Diminishing returns to development cause progress upon any
given product to eventually stall. However, the continuous entry of new products via
research “resets the innovation clock,” creating a perpetual stream of new development
opportunities that sustains aggregate growth.

This turnover-driven mechanism allows the model to generate a constant, endoge-
nous rate of long-run economic growth while remaining consistent with the evidence
of diminishing returns to innovation at both the macro and micro levels. Our calibra-
tion, disciplined by U.S. establishment-level data, demonstrates that policies directly
targeting incumbent innovation, such as development subsidies, can have a powerful
positive effect on long-run growth, whereas policies encouraging entry can backfire by
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intensifying product-market competition and weakening development incentives.

The implications of our framework are particularly important in light of the projected
slowdown in global population growth. A standard semi-endogenous growth model,
where per capita growth is entirely determined by population growth, would predict
“the end of economic growth” as the latter falls to zero (Jones, 2022). Our model, by
contrast, offers a more optimistic outlook. Because long-run growth is sustained by
a policy-sensitive engine of quality growth insulated from population dynamics, our
framework shows that sustained prosperity is possible even with a constant population.
By providing a theory of endogenous growth that is consistent with the key empirical
regularities of the U.S. economy, our model suggests that the future of economic growth
need not be bleak.
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A Theoretical appendix

This section of the appendix provides derivations and proofs for the results presented in
the paper.

A.1 The market equilibrium allocation

Hamilton-Jacobi-Bellman equations. The old firm’s value function satisfies the HJB
equation:

rtVO
t (q) = (1 − τC)(q/Qt)

θ−1ctNt/(θMt) + V̇O
t (q).

Defining xt ≡ ln(qt/Qt), we can rewrite:

rtVO
t (x) = (1 − τC) exp[(θ − 1)x]ctNt/(θMt)− gQ

t ∂xVO
t (x) + V̇O

t (x)

where gQ
t ≡ Q̇t/Qt denotes the growth rate of the average quality index. Let us guess

that this value function takes the following form:

VO
t (x) = VO

t exp[(θ − 1)x].

Substituting this guess into the HJB equation, we obtain the following ordinary differen-
tial equation (ODE):

V̇O
t = [rt + (θ − 1)gQ

t ]V
O
t − (1 − τC)ctNt/(θMt),

which verifies our guess. The new firm’s value function satisfies the HJB equation:

(rt + ϵ)VN
t (q) = max

lD
t (q)

{(1 − τC)(q/Qt)
θ−1ctNt/(θMt)− (1 − τD)wtlD

t (q)

+ γt(q)q∂qVN
t (q)}+ ϵVO

t (q) + V̇N
t (q).

Using the change of variable defined above, we can rewrite:

(rt + ϵ)VN
t (x) = max

lD
t (x)

{(1 − τC) exp[(θ − 1)x]ctNt/(θMt)− (1 − τD)wtlD
t (x)

+ [γt(x)− gQ
t ]∂xVN

t (x)}+ ϵVO
t (x) + V̇N

t (x).

Let us guess that this value function takes the following form:

VN
t (x) = VN

t exp[(θ − 1)x].
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Substituting this guess into the optimal product quality drift, we obtain:

γt =

[
(θ − 1)VN

t
(1 − τD)wtcD

]1/ζ

which is independent of a product’s quality. Substituting this result into the HJB equation
of the new firm, we obtain the following ODE, which verifies our guess:

V̇N
t = [rt + ϵ − (θ − 1)(γt − gQ

t )]V
N
t − ϵVO

t − (1 − τC)ctNt

θMt
− (1 − τD)wtcDγ

1+ζ
t

1 + ζ
.

Fokker-Planck equations. The Fokker-Planck (FP) equations describing the evolution
of the density of log relative quality among new and old firms are given by:

ṁN
t (x) = −(γt − gQ

t )∂xmN
t (x)− ϵmN

t (x),

ṁO
t (x) = gQ

t ∂xmO
t (x) + ϵmN

t (x),

where δ(·) denotes the Dirac delta function, x ≡ ln(q
t
/Qt), and we have the following

boundary condition:
(γt − gQ

t ) lim
x→x

mN
t (x) = δ(x − x)Rt.

Therefore, the law of motion for the measure of new and old products are given by:

ṀN
t = Rt − ϵMN

t and ṀO
t = ϵMN

t − dtMt

where dt denotes the exit rate at the lower bound of the quality support:

dt ≡ gQ
t lim

x→x
mO

t (x)/Mt.

Hence, the total measure of products evolves according to:

Ṁt = (et − dt)Mt

where et ≡ Rt/Mt denotes the entry rate.

Equilibrium conditions. Using our previous results, the free-entry condition can be
rewritten as:

VN
t qθ−1 = (1 − τR)wtcR
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the labor market clearing condition can be rewritten as:

Nt =
ctNt

µwt
+

cDγ
1+ζ
t

1 + ζ
·
∫ ∞

x
exp[(θ − 1)x]mN

t (x)dx + cRetMt.

The only endogenous variable for which a corresponding equation is missing is the
growth rate of the average quality index. Using the change of variable defined above,
the expression for this index implies:

M−1
t

∫ ∞

x
exp[(θ − 1)x]mt(x)dx = 1.

Normalizations. Let us define normalized variables:

VO
t ≡ VO

t
ct

, VN
t ≡ VN

t
ct

, Mt ≡
Mt

Nt
, SN

t ≡ MN
t

Mt
, SO

t ≡ MO
t

Mt
,

as well as the normalized distributions f N
t (x) = mN

t (x)/MN
t and f O

t (x) = mO
t (x)/MO

t .
With these definitions, we use the free-entry condition and the Euler equation to rewrite
the HJB equations as:

V̇O
t = [ρ + (θ − 1)gQ

t ]V
O
t − 1 − τC

θMt
,

V̇N
t = [ρ + ϵ − (θ − 1)(γ − gQ

t )]V
N
t − ϵVO

t − 1 − τC

θMt
− (θ − 1)γVN

t
1 + ζ

where the product quality drift can be rewritten as follows using the free-entry condition:

γ =

[
(θ − 1)(1 − τR)cR

(1 − τD)cDqθ−1

]1/ζ

.

Hence, the product quality drift is constant along any transition path. Similarly, the
labor market clearing condition can be rewritten as:

1 =
(1 − τR)cR

µVN
t qθ−1

+
cDγ1+ζ

1 + ζ
·MtSN

t

∫ ∞

x
exp[(θ − 1)x] f N

t (x)dx + cRetMt.
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The Fokker-Planck (FP) equations describing the evolution of the distribution of log
relative quality among new and old firms are given by:

ḟ N
t (x) = −(γ − gQ

t )∂x f N
t (x)− (et/SN

t ) f N
t (x),

ḟ O
t (x) = gQ

t ∂x f O
t (x) + (ϵSN

t /SO
t )[ f N

t (x)− f O
t (x)] + (dt/SO

t ) f O
t (x)

where (γ − gQ
t ) limx→x f N

t (x) = et/SN
t and dt ≡ gQ

t SO
t limx→x f O

t (x). The law of mo-
tion for the share of new and old products are given by:

ṠN
t = et − SN

t (et + ϵ − dt) and SO
t = 1 − SN

t ,

and the law of motion for the measure of products per capita is given by:

Ṁt = (et − dt − n)Mt.

Finally, the expression for the average quality index implies:∫ ∞

x
exp[(θ − 1)x][ f N

t (x)SN
t + f O

t (x)SO
t ]dx = 1.

Balanced growth path. On a BGP, the growth rate of the average quality index and the
drift of product quality for new firms are both constant. Moreover, the measure of new
and old firms both grow at the same rate as the population. This implies that the entry
and exit rates are constant, and the former is equal to e = n + d. The share of new and
old products are also constant and equal to:

SN
t =

n + d
n + ϵ

and SO
t =

ϵ − d
n + ϵ

.

The stationary FP equation for the distribution of log relative quality among new firms
is given by:

−(γ − gQ)∂x f N(x)− (n + ϵ) f N(x) = −(n + ϵ)δ(x − x).

With parameter values such that γ > gQ, the solution to this ODE is:

f N(x) = λN exp[−λN(x − x)] where λN ≡ n + ϵ

γ − gQ .
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Similarly, the stationary FP equation for this distribution of log relative quality among
old firms is given by:

gQ∂x f O(x)− n f O(x) = −ϵ(n + d)
ϵ − d

· f N(x).

Dividing through by gQ, and multiplying by the integration factor exp(−λOx) where
λO ≡ n/gQ, we can rewrite:

∂x[exp(−λOx) f O(x)] = − ϵ(n + d)
(ϵ − d)gQ · exp(−λOx) f N(x).

Integrating this equation and solving for f O(x), we obtain:

f O(x) =
[

C − ϵ(n + d)
(ϵ − d)gQ ·

∫ x

x
f N(x) exp(−λOx)dx

]
exp(λOx)

where C is an integration constant. For f O(x) to be integrable, we must have:

C =
ϵ(n + d)
(ϵ − d)gQ ·

∫ ∞

x
f N(x) exp(−λOx)dx.

Substituting this expression back in the solution for f O(x), we obtain:

f O(x) =
ϵ(n + d) f N(x)

(ϵ − d)(λNgQ + n)
.

For f O(x) to be a probability distribution, we must verify that:

ϵ(n + d) = (ϵ − d)(λNgQ + n).

Using the consistency condition of the exit rate, which delivers d = ϵgQ/γ, it is straight-
forward to verify that this condition is satisfied. Using the ODE for the old firm’s value
function, we find:

VO =
1 − τC

θM[ρ + (θ − 1)gQ]
.

To obtain that last expression for the growth rate of the average quality index, we use
the definition of the index itself:

gQ = γ −
(n + ϵ)(1 − qθ−1)

θ − 1
.
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Using the ODE for the new firm’s value function, we find:

VN =

ϵ+ρ+(θ−1)gQ

ρ+(θ−1)gQ · 1−τC

θM

ρ + ϵ − (n + ϵ)(1 − qθ−1)− (θ − 1)γ/(1 + ζ)
.

Finally, we have the labor market clearing condition:

1 =
(1 − τR)cR

µVNqθ−1 +
(n + d)cDγ1+ζ

(1 + ζ)(n + ϵ)
·M+ cR(n + d)M.

A.2 The constrained-optimal allocation

Notation. We introduce the following notation to define the inner product between
two square-integrable functions f (x), g(x) : Ω → R over their common domain:

⟨ f (x), g(x)⟩x∈Ω ≡
∫

Ω
f (x)g(x)dx.

Second, let us denote the (partial) Gateaux derivative of a functional F with respect to
the function f (x) in direction ϱ(x) as:

δF[ f (x); ϱ(x)] ≡ ∂F[ f (x) + ε · ϱ(x), .]
∂ε

∣∣∣∣
ε=0

where the functional F can take additional arguments through the “dot” notation and the
“test” function ϱ(x) is assumed to vanish on the boundaries of the relevant integration
domain.

The planner’s problem. Consider the problem of a planner seeking to maximize the
following objective:

U0 =
∫ ∞

0
e−(ρ−n)t ln(Ct/Nt)dt
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subject to the constraints:9

Ct = [∑S∈{N,O}⟨(qlP
t

S
(q))

θ−1
θ , mS

t (q)⟩q∈[q
t
,∞)]

θ
θ−1 ,

Nt ≥ ∑S∈{N,O}⟨lP
t

S
(q), mS

t (q)⟩q∈[q
t
,∞) + ⟨lD

t (q), mN
t (q)⟩q∈[q

t
,∞) + LR

t ,

ṁN
t (q) = −∂q[γt(q)qmN

t (q)]− ϵmN
t (q) + δ(q − q

t
)LR

t /cR,

ṁO
t (q) = ϵmN

t (q)

by choosing {{{lP
t

S
(q)}S∈{N,O}, lD

t (q)}∞
q=q

t
, LR

t }∞
t=0. The solution to the planner’s prob-

lem is “constrained-optimal” in the sense that the planner takes externalities across
firms (technology spillovers) as given. More precisely, the planner takes Qt as given
in the development technology. Reformulating this problem using the current-value
Hamiltonian, we obtain:

Ht = ln(Ct/Nt) + νL
t [Nt − ∑S∈{N,O}⟨lP

t
S
(q), mS

t (q)⟩q∈[q
t
,∞) − ⟨lD

t (q), mN
t (q)⟩q∈[q

t
,∞) − LR

t ]

− ⟨νN
t (q), ∂q[γt(q)qmN

t (q)]⟩q∈[q
t
,∞) + ϵ⟨νO

t (q)− νN
t (q), mN

t (q)⟩q∈[q
t
,∞)

+ νN
t (q

t
)LR

t /cR

where {νL
t , {νN

t (q), νO
t (q)}∞

q=q
t
}∞

t=0 are the costate functions. Using integration by parts,
we can rewrite:

Ht = ln(Ct/Nt) + νL
t [Nt − ∑S∈{N,O}⟨lP

t
S
(q), mS

t (q)⟩q∈[q
t
,∞) − ⟨lD

t (q), mN
t (q)⟩q∈[q

t
,∞) − LR

t ]

+ ⟨γt(q)q∂qνN
t (q), mN

t (q)⟩q∈[q
t
,∞) + ϵ⟨νO

t (q)− νN
t (q), mN

t (q)⟩q∈[q
t
,∞)

+ νN
t (q

t
)LR

t /cR.

The first-order condition with respect to lP
t

S
(q) implies:

δCt[lP
t

S
(q); ϱ(q)]/Ct = νL

t ⟨mS
t (q), ϱ(q)⟩q∈[q

t
,∞)

where δCt[lP
t

S
(q); ϱ(q)] is the Gateaux derivative of Ct with respect to lP

t
S
(q) in direction

ϱ(q), which is an arbitrary function that vanishes on the boundaries of [q
t
, ∞):

δCt[lP
t

S
(q); ϱ(q)] = C1/θ

t ⟨q θ−1
θ lP

t
S
(q)−1/θmS

t (q), ϱ(q)⟩q∈[q
t
,∞).

9Here, we substituted the product resource constraints in the labor resource constraint.
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Since that first-order condition must hold for any function ϱ(q), we obtain:

lP
t

S
(q) = (q/Ct)

θ−1νL
t
−θ

, ∀q ∈ [q
t
, ∞).

Integrating this expression, we find:

νL
t = 1/LP

t

such that we can rewrite:

lP
t

S
(q) = (q/Qt)

θ−1LP
t /Mt, ∀q ∈ [q

t
, ∞).

The first-order condition with respect to lD
t (q) implies:

⟨γt(q)q∂qνN
t (q)mN

t (q)/lD
t (q), ϱ(q)⟩q∈[q

t
,∞)/(1 + ζ) = νL

t ⟨mN
t (q), ϱ(q)⟩q∈[q

t
,∞).

Since that first-order condition must hold for any function ϱ(q), we obtain:

γt(q) =

[
q∂qνN

t (q)
νL

t cD(q/Qt)θ−1

]1/ζ

, ∀q ∈ [q
t
, ∞).

The first-order condition with respect to LR
t implies:

νL
t cR = νN

t (q
t
).

The first-order condition with respect to mN
t (q) implies:

⟨(ρ − n)νN
t (q)− ν̇N

t (q), ϱ(q)⟩q∈[q
t
,∞) = ⟨(q/Qt)

θ−1, ϱ(q)⟩q∈[q
t
,∞)/[(θ − 1)Mt]

+ ⟨γt(q)q∂qνN
t (q)− νL

t lD
t (q) + ϵ[νO

t (q)− νN
t (q)], ϱ(q)⟩q∈[q

t
,∞).

Since this condition must hold for any function ϱ(q), we have:

(ρ − n)νN
t (q)− ν̇N

t (q) = (q/Qt)
θ−1/[(θ − 1)Mt]− νL

t lD
t (q)

+ γt(q)q∂qνN
t (q) + ϵ[νO

t (q)− νN
t (q)], ∀q ∈ [q

t
, ∞).

Similarly, the first-order condition with respect to mO
t (q) implies:

(ρ − n)νO
t (q)− ν̇O

t (q) = (q/Qt)
θ−1/[(θ − 1)Mt], ∀q ∈ [q

t
, ∞).
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Defining the following functions:

VN∗
t (q) ≡ νN

t (q)Ct/µ, VO∗
t (q) ≡ νO

t (q)Ct/µ, w∗
t ≡ νL

t Ct/µ, r∗t ≡ ċt/ct + ρ,

and substituting them in the new firm’s social HJB equation, we obtain:

r∗t VN∗
t (q)− V̇N∗

t (q) = (q/Qt)
θ−1Ct/(θMt)− w∗

t lD
t (q)

+ γt(q)q∂qVN∗
t (q) + ϵ[VO∗

t (q)− VN∗
t (q)]

where γt(q) is given by:

γt(q) =

[
q∂qVN∗

t (q)
cDw∗

t (q/Qt)θ−1

]1/ζ

.

Doing so for the old firm’s social HJB equation, we obtain:

r∗t VO∗
t (q)− V̇O∗

t (q) = (q/Qt)
θ−1Ct/(θMt).

Finally, substituting these functions in the social free-entry condition, we obtain:

w∗
t cR = VN∗

t (q
t
).

This demonstrates that market equilibrium allocation is constrained-optimal since it
exactly coincides with the solution to the planner’s problem, echoing the findings of
Dhingra and Morrow (2019). This efficiency holds for both research (entry) and devel-
opment (product quality improvements). In each case, it arises because two opposing
forces exactly cancel each other out under a Dixit and Stiglitz (1977) demand system.
For research, a positive consumer surplus externality (entrants do not internalize that
they raise the demand for their competitors’ products through a love-of-variety) is
precisely offset by a negative business-stealing externality (entrants ignore the profits
they divert from incumbents). Similarly, for development, the incentive to improve a
product is dampened by market power, since firms must deploy those quality improve-
ments at a suboptimal production scale. This push toward too little development is
perfectly counteracted by the fact that this same underproduction frees up labor for
development (away from production), creating a push toward too much. It is worth
noting, however, that this efficiency result is sensitive to the model’s structure; adding
head-to-head creative destruction or a different demand system, for instance, could lead
to constrained-inefficient R&D.
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